kern_ntptime.c revision 1.29.6.4 1 1.29.6.4 kardel /* $NetBSD: kern_ntptime.c,v 1.29.6.4 2006/04/30 18:03:13 kardel Exp $ */
2 1.29.6.1 simonb #include <sys/types.h> /* XXX to get __HAVE_TIMECOUNTER, remove
3 1.29.6.1 simonb after all ports are converted. */
4 1.29.6.1 simonb #ifdef __HAVE_TIMECOUNTER
5 1.29.6.1 simonb
6 1.29.6.1 simonb /*-
7 1.29.6.1 simonb ***********************************************************************
8 1.29.6.1 simonb * *
9 1.29.6.1 simonb * Copyright (c) David L. Mills 1993-2001 *
10 1.29.6.1 simonb * *
11 1.29.6.1 simonb * Permission to use, copy, modify, and distribute this software and *
12 1.29.6.1 simonb * its documentation for any purpose and without fee is hereby *
13 1.29.6.1 simonb * granted, provided that the above copyright notice appears in all *
14 1.29.6.1 simonb * copies and that both the copyright notice and this permission *
15 1.29.6.1 simonb * notice appear in supporting documentation, and that the name *
16 1.29.6.1 simonb * University of Delaware not be used in advertising or publicity *
17 1.29.6.1 simonb * pertaining to distribution of the software without specific, *
18 1.29.6.1 simonb * written prior permission. The University of Delaware makes no *
19 1.29.6.1 simonb * representations about the suitability this software for any *
20 1.29.6.1 simonb * purpose. It is provided "as is" without express or implied *
21 1.29.6.1 simonb * warranty. *
22 1.29.6.1 simonb * *
23 1.29.6.1 simonb **********************************************************************/
24 1.1 jonathan
25 1.29.6.1 simonb /*
26 1.29.6.1 simonb * Adapted from the original sources for FreeBSD and timecounters by:
27 1.29.6.1 simonb * Poul-Henning Kamp <phk (at) FreeBSD.org>.
28 1.29.6.1 simonb *
29 1.29.6.1 simonb * The 32bit version of the "LP" macros seems a bit past its "sell by"
30 1.29.6.1 simonb * date so I have retained only the 64bit version and included it directly
31 1.29.6.1 simonb * in this file.
32 1.29.6.1 simonb *
33 1.29.6.1 simonb * Only minor changes done to interface with the timecounters over in
34 1.29.6.1 simonb * sys/kern/kern_clock.c. Some of the comments below may be (even more)
35 1.29.6.1 simonb * confusing and/or plain wrong in that context.
36 1.29.6.1 simonb */
37 1.29.6.1 simonb
38 1.29.6.1 simonb #include <sys/cdefs.h>
39 1.29.6.1 simonb /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
40 1.29.6.4 kardel __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.4 2006/04/30 18:03:13 kardel Exp $");
41 1.29.6.1 simonb
42 1.29.6.1 simonb #include "opt_ntp.h"
43 1.29.6.1 simonb
44 1.29.6.1 simonb #include <sys/param.h>
45 1.29.6.1 simonb #include <sys/resourcevar.h>
46 1.29.6.1 simonb #include <sys/systm.h>
47 1.29.6.1 simonb #include <sys/kernel.h>
48 1.29.6.1 simonb #include <sys/proc.h>
49 1.29.6.1 simonb #include <sys/sysctl.h>
50 1.29.6.1 simonb #include <sys/timex.h>
51 1.29.6.1 simonb #include <sys/vnode.h>
52 1.29.6.1 simonb
53 1.29.6.1 simonb #include <sys/mount.h>
54 1.29.6.1 simonb #include <sys/sa.h>
55 1.29.6.1 simonb #include <sys/syscallargs.h>
56 1.29.6.1 simonb
57 1.29.6.1 simonb #include <machine/cpu.h>
58 1.29.6.1 simonb
59 1.29.6.1 simonb /*
60 1.29.6.1 simonb * Single-precision macros for 64-bit machines
61 1.29.6.1 simonb */
62 1.29.6.1 simonb typedef int64_t l_fp;
63 1.29.6.1 simonb #define L_ADD(v, u) ((v) += (u))
64 1.29.6.1 simonb #define L_SUB(v, u) ((v) -= (u))
65 1.29.6.1 simonb #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
66 1.29.6.1 simonb #define L_NEG(v) ((v) = -(v))
67 1.29.6.1 simonb #define L_RSHIFT(v, n) \
68 1.29.6.1 simonb do { \
69 1.29.6.1 simonb if ((v) < 0) \
70 1.29.6.1 simonb (v) = -(-(v) >> (n)); \
71 1.29.6.1 simonb else \
72 1.29.6.1 simonb (v) = (v) >> (n); \
73 1.29.6.1 simonb } while (0)
74 1.29.6.1 simonb #define L_MPY(v, a) ((v) *= (a))
75 1.29.6.1 simonb #define L_CLR(v) ((v) = 0)
76 1.29.6.1 simonb #define L_ISNEG(v) ((v) < 0)
77 1.29.6.1 simonb #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
78 1.29.6.1 simonb #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
79 1.29.6.1 simonb
80 1.29.6.3 kardel #ifdef NTP
81 1.29.6.1 simonb /*
82 1.29.6.1 simonb * Generic NTP kernel interface
83 1.29.6.1 simonb *
84 1.29.6.1 simonb * These routines constitute the Network Time Protocol (NTP) interfaces
85 1.29.6.1 simonb * for user and daemon application programs. The ntp_gettime() routine
86 1.29.6.1 simonb * provides the time, maximum error (synch distance) and estimated error
87 1.29.6.1 simonb * (dispersion) to client user application programs. The ntp_adjtime()
88 1.29.6.1 simonb * routine is used by the NTP daemon to adjust the system clock to an
89 1.29.6.1 simonb * externally derived time. The time offset and related variables set by
90 1.29.6.1 simonb * this routine are used by other routines in this module to adjust the
91 1.29.6.1 simonb * phase and frequency of the clock discipline loop which controls the
92 1.29.6.1 simonb * system clock.
93 1.29.6.1 simonb *
94 1.29.6.1 simonb * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
95 1.29.6.1 simonb * defined), the time at each tick interrupt is derived directly from
96 1.29.6.1 simonb * the kernel time variable. When the kernel time is reckoned in
97 1.29.6.1 simonb * microseconds, (NTP_NANO undefined), the time is derived from the
98 1.29.6.1 simonb * kernel time variable together with a variable representing the
99 1.29.6.1 simonb * leftover nanoseconds at the last tick interrupt. In either case, the
100 1.29.6.1 simonb * current nanosecond time is reckoned from these values plus an
101 1.29.6.1 simonb * interpolated value derived by the clock routines in another
102 1.29.6.1 simonb * architecture-specific module. The interpolation can use either a
103 1.29.6.1 simonb * dedicated counter or a processor cycle counter (PCC) implemented in
104 1.29.6.1 simonb * some architectures.
105 1.29.6.1 simonb *
106 1.29.6.1 simonb * Note that all routines must run at priority splclock or higher.
107 1.29.6.1 simonb */
108 1.29.6.1 simonb /*
109 1.29.6.1 simonb * Phase/frequency-lock loop (PLL/FLL) definitions
110 1.29.6.1 simonb *
111 1.29.6.1 simonb * The nanosecond clock discipline uses two variable types, time
112 1.29.6.1 simonb * variables and frequency variables. Both types are represented as 64-
113 1.29.6.1 simonb * bit fixed-point quantities with the decimal point between two 32-bit
114 1.29.6.1 simonb * halves. On a 32-bit machine, each half is represented as a single
115 1.29.6.1 simonb * word and mathematical operations are done using multiple-precision
116 1.29.6.1 simonb * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
117 1.29.6.1 simonb * used.
118 1.29.6.1 simonb *
119 1.29.6.1 simonb * A time variable is a signed 64-bit fixed-point number in ns and
120 1.29.6.1 simonb * fraction. It represents the remaining time offset to be amortized
121 1.29.6.1 simonb * over succeeding tick interrupts. The maximum time offset is about
122 1.29.6.1 simonb * 0.5 s and the resolution is about 2.3e-10 ns.
123 1.29.6.1 simonb *
124 1.29.6.1 simonb * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
125 1.29.6.1 simonb * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
126 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127 1.29.6.1 simonb * |s s s| ns |
128 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 1.29.6.1 simonb * | fraction |
130 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131 1.29.6.1 simonb *
132 1.29.6.1 simonb * A frequency variable is a signed 64-bit fixed-point number in ns/s
133 1.29.6.1 simonb * and fraction. It represents the ns and fraction to be added to the
134 1.29.6.1 simonb * kernel time variable at each second. The maximum frequency offset is
135 1.29.6.1 simonb * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
136 1.29.6.1 simonb *
137 1.29.6.1 simonb * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
138 1.29.6.1 simonb * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
139 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
140 1.29.6.1 simonb * |s s s s s s s s s s s s s| ns/s |
141 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
142 1.29.6.1 simonb * | fraction |
143 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
144 1.29.6.1 simonb */
145 1.29.6.1 simonb /*
146 1.29.6.1 simonb * The following variables establish the state of the PLL/FLL and the
147 1.29.6.1 simonb * residual time and frequency offset of the local clock.
148 1.29.6.1 simonb */
149 1.29.6.1 simonb #define SHIFT_PLL 4 /* PLL loop gain (shift) */
150 1.29.6.1 simonb #define SHIFT_FLL 2 /* FLL loop gain (shift) */
151 1.29.6.1 simonb
152 1.29.6.1 simonb static int time_state = TIME_OK; /* clock state */
153 1.29.6.1 simonb static int time_status = STA_UNSYNC; /* clock status bits */
154 1.29.6.1 simonb static long time_tai; /* TAI offset (s) */
155 1.29.6.1 simonb static long time_monitor; /* last time offset scaled (ns) */
156 1.29.6.1 simonb static long time_constant; /* poll interval (shift) (s) */
157 1.29.6.1 simonb static long time_precision = 1; /* clock precision (ns) */
158 1.29.6.1 simonb static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
159 1.29.6.1 simonb static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
160 1.29.6.1 simonb static long time_reftime; /* time at last adjustment (s) */
161 1.29.6.1 simonb static l_fp time_offset; /* time offset (ns) */
162 1.29.6.1 simonb static l_fp time_freq; /* frequency offset (ns/s) */
163 1.29.6.2 kardel #endif /* NTP */
164 1.29.6.1 simonb
165 1.29.6.2 kardel static l_fp time_adj; /* tick adjust (ns/s) */
166 1.29.6.2 kardel int64_t time_adjtime; /* correction from adjtime(2) (usec) */
167 1.29.6.1 simonb
168 1.29.6.1 simonb extern int time_adjusted; /* ntp might have changed the system time */
169 1.29.6.1 simonb
170 1.29.6.2 kardel #ifdef NTP
171 1.29.6.1 simonb #ifdef PPS_SYNC
172 1.29.6.1 simonb /*
173 1.29.6.1 simonb * The following variables are used when a pulse-per-second (PPS) signal
174 1.29.6.1 simonb * is available and connected via a modem control lead. They establish
175 1.29.6.1 simonb * the engineering parameters of the clock discipline loop when
176 1.29.6.1 simonb * controlled by the PPS signal.
177 1.29.6.1 simonb */
178 1.29.6.1 simonb #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
179 1.29.6.1 simonb #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
180 1.29.6.1 simonb #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
181 1.29.6.1 simonb #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
182 1.29.6.1 simonb #define PPS_VALID 120 /* PPS signal watchdog max (s) */
183 1.29.6.1 simonb #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
184 1.29.6.1 simonb #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
185 1.29.6.1 simonb
186 1.29.6.1 simonb static struct timespec pps_tf[3]; /* phase median filter */
187 1.29.6.1 simonb static l_fp pps_freq; /* scaled frequency offset (ns/s) */
188 1.29.6.1 simonb static long pps_fcount; /* frequency accumulator */
189 1.29.6.1 simonb static long pps_jitter; /* nominal jitter (ns) */
190 1.29.6.1 simonb static long pps_stabil; /* nominal stability (scaled ns/s) */
191 1.29.6.1 simonb static long pps_lastsec; /* time at last calibration (s) */
192 1.29.6.1 simonb static int pps_valid; /* signal watchdog counter */
193 1.29.6.1 simonb static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
194 1.29.6.1 simonb static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
195 1.29.6.1 simonb static int pps_intcnt; /* wander counter */
196 1.29.6.1 simonb
197 1.29.6.1 simonb /*
198 1.29.6.1 simonb * PPS signal quality monitors
199 1.29.6.1 simonb */
200 1.29.6.1 simonb static long pps_calcnt; /* calibration intervals */
201 1.29.6.1 simonb static long pps_jitcnt; /* jitter limit exceeded */
202 1.29.6.1 simonb static long pps_stbcnt; /* stability limit exceeded */
203 1.29.6.1 simonb static long pps_errcnt; /* calibration errors */
204 1.29.6.1 simonb #endif /* PPS_SYNC */
205 1.29.6.1 simonb /*
206 1.29.6.1 simonb * End of phase/frequency-lock loop (PLL/FLL) definitions
207 1.29.6.1 simonb */
208 1.29.6.1 simonb
209 1.29.6.1 simonb static void hardupdate(long offset);
210 1.29.6.1 simonb
211 1.29.6.1 simonb /*ARGSUSED*/
212 1.29.6.1 simonb /*
213 1.29.6.1 simonb * ntp_gettime() - NTP user application interface
214 1.29.6.1 simonb */
215 1.29.6.1 simonb int
216 1.29.6.1 simonb sys_ntp_gettime(l, v, retval)
217 1.29.6.1 simonb struct lwp *l;
218 1.29.6.1 simonb void *v;
219 1.29.6.1 simonb register_t *retval;
220 1.29.6.1 simonb
221 1.29.6.1 simonb {
222 1.29.6.1 simonb struct sys_ntp_gettime_args /* {
223 1.29.6.1 simonb syscallarg(struct ntptimeval *) ntvp;
224 1.29.6.1 simonb } */ *uap = v;
225 1.29.6.1 simonb struct ntptimeval ntv;
226 1.29.6.1 simonb int error = 0;
227 1.29.6.4 kardel register_t retval1 = TIME_ERROR;
228 1.29.6.1 simonb
229 1.29.6.1 simonb if (SCARG(uap, ntvp)) {
230 1.29.6.4 kardel ntp_gettime1(&ntv, &retval1);
231 1.29.6.1 simonb
232 1.29.6.1 simonb error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
233 1.29.6.1 simonb sizeof(ntv));
234 1.29.6.1 simonb }
235 1.29.6.1 simonb
236 1.29.6.4 kardel if (!error) {
237 1.29.6.4 kardel *retval = retval1;
238 1.29.6.1 simonb }
239 1.29.6.1 simonb return(error);
240 1.29.6.1 simonb }
241 1.29.6.4 kardel /*
242 1.29.6.4 kardel * ntp_gettime() - NTP user application interface
243 1.29.6.4 kardel */
244 1.29.6.4 kardel void
245 1.29.6.4 kardel ntp_gettime1(ntv, retval)
246 1.29.6.4 kardel struct ntptimeval *ntv;
247 1.29.6.4 kardel register_t *retval;
248 1.29.6.4 kardel {
249 1.29.6.4 kardel nanotime(&ntv->time);
250 1.29.6.4 kardel ntv->maxerror = time_maxerror;
251 1.29.6.4 kardel ntv->esterror = time_esterror;
252 1.29.6.4 kardel ntv->tai = time_tai;
253 1.29.6.4 kardel ntv->time_state = time_state;
254 1.29.6.4 kardel
255 1.29.6.4 kardel /*
256 1.29.6.4 kardel * Status word error decode. If any of these conditions occur,
257 1.29.6.4 kardel * an error is returned, instead of the status word. Most
258 1.29.6.4 kardel * applications will care only about the fact the system clock
259 1.29.6.4 kardel * may not be trusted, not about the details.
260 1.29.6.4 kardel *
261 1.29.6.4 kardel * Hardware or software error
262 1.29.6.4 kardel */
263 1.29.6.4 kardel if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
264 1.29.6.4 kardel
265 1.29.6.4 kardel /*
266 1.29.6.4 kardel * PPS signal lost when either time or frequency synchronization
267 1.29.6.4 kardel * requested
268 1.29.6.4 kardel */
269 1.29.6.4 kardel (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
270 1.29.6.4 kardel !(time_status & STA_PPSSIGNAL)) ||
271 1.29.6.4 kardel
272 1.29.6.4 kardel /*
273 1.29.6.4 kardel * PPS jitter exceeded when time synchronization requested
274 1.29.6.4 kardel */
275 1.29.6.4 kardel (time_status & STA_PPSTIME &&
276 1.29.6.4 kardel time_status & STA_PPSJITTER) ||
277 1.29.6.4 kardel
278 1.29.6.4 kardel /*
279 1.29.6.4 kardel * PPS wander exceeded or calibration error when frequency
280 1.29.6.4 kardel * synchronization requested
281 1.29.6.4 kardel */
282 1.29.6.4 kardel (time_status & STA_PPSFREQ &&
283 1.29.6.4 kardel time_status & (STA_PPSWANDER | STA_PPSERROR)))
284 1.29.6.4 kardel ntv->time_state = TIME_ERROR;
285 1.29.6.4 kardel
286 1.29.6.4 kardel *retval = (register_t)ntv->time_state;
287 1.29.6.4 kardel }
288 1.29.6.1 simonb
289 1.29.6.1 simonb /* ARGSUSED */
290 1.29.6.1 simonb /*
291 1.29.6.1 simonb * ntp_adjtime() - NTP daemon application interface
292 1.29.6.1 simonb */
293 1.29.6.1 simonb int
294 1.29.6.1 simonb sys_ntp_adjtime(l, v, retval)
295 1.29.6.1 simonb struct lwp *l;
296 1.29.6.1 simonb void *v;
297 1.29.6.1 simonb register_t *retval;
298 1.29.6.1 simonb {
299 1.29.6.1 simonb struct sys_ntp_adjtime_args /* {
300 1.29.6.1 simonb syscallarg(struct timex *) tp;
301 1.29.6.1 simonb } */ *uap = v;
302 1.29.6.1 simonb struct proc *p = l->l_proc;
303 1.29.6.1 simonb struct timex ntv;
304 1.29.6.1 simonb int error = 0;
305 1.29.6.4 kardel register_t retval1 = TIME_ERROR;
306 1.29.6.1 simonb
307 1.29.6.1 simonb if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
308 1.29.6.1 simonb sizeof(ntv))) != 0)
309 1.29.6.1 simonb return (error);
310 1.29.6.1 simonb
311 1.29.6.1 simonb if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
312 1.29.6.1 simonb return (error);
313 1.29.6.1 simonb
314 1.29.6.4 kardel ntp_adjtime1(&ntv, &retval1);
315 1.29.6.4 kardel
316 1.29.6.4 kardel error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
317 1.29.6.4 kardel if (!error) {
318 1.29.6.4 kardel *retval = retval1;
319 1.29.6.4 kardel }
320 1.29.6.4 kardel return error;
321 1.29.6.1 simonb }
322 1.29.6.1 simonb
323 1.29.6.4 kardel void
324 1.29.6.4 kardel ntp_adjtime1(ntv, retval)
325 1.29.6.1 simonb struct timex *ntv;
326 1.29.6.1 simonb register_t *retval;
327 1.29.6.1 simonb {
328 1.29.6.1 simonb long freq;
329 1.29.6.1 simonb int modes;
330 1.29.6.1 simonb int s;
331 1.29.6.1 simonb
332 1.29.6.1 simonb /*
333 1.29.6.1 simonb * Update selected clock variables - only the superuser can
334 1.29.6.1 simonb * change anything. Note that there is no error checking here on
335 1.29.6.1 simonb * the assumption the superuser should know what it is doing.
336 1.29.6.1 simonb * Note that either the time constant or TAI offset are loaded
337 1.29.6.1 simonb * from the ntv.constant member, depending on the mode bits. If
338 1.29.6.1 simonb * the STA_PLL bit in the status word is cleared, the state and
339 1.29.6.1 simonb * status words are reset to the initial values at boot.
340 1.29.6.1 simonb */
341 1.29.6.1 simonb modes = ntv->modes;
342 1.29.6.1 simonb if (modes != 0)
343 1.29.6.1 simonb /* We need to save the system time during shutdown */
344 1.29.6.1 simonb time_adjusted |= 2;
345 1.29.6.1 simonb s = splclock();
346 1.29.6.1 simonb if (modes & MOD_MAXERROR)
347 1.29.6.1 simonb time_maxerror = ntv->maxerror;
348 1.29.6.1 simonb if (modes & MOD_ESTERROR)
349 1.29.6.1 simonb time_esterror = ntv->esterror;
350 1.29.6.1 simonb if (modes & MOD_STATUS) {
351 1.29.6.1 simonb if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
352 1.29.6.1 simonb time_state = TIME_OK;
353 1.29.6.1 simonb time_status = STA_UNSYNC;
354 1.29.6.1 simonb #ifdef PPS_SYNC
355 1.29.6.1 simonb pps_shift = PPS_FAVG;
356 1.29.6.1 simonb #endif /* PPS_SYNC */
357 1.29.6.1 simonb }
358 1.29.6.1 simonb time_status &= STA_RONLY;
359 1.29.6.1 simonb time_status |= ntv->status & ~STA_RONLY;
360 1.29.6.1 simonb }
361 1.29.6.1 simonb if (modes & MOD_TIMECONST) {
362 1.29.6.1 simonb if (ntv->constant < 0)
363 1.29.6.1 simonb time_constant = 0;
364 1.29.6.1 simonb else if (ntv->constant > MAXTC)
365 1.29.6.1 simonb time_constant = MAXTC;
366 1.29.6.1 simonb else
367 1.29.6.1 simonb time_constant = ntv->constant;
368 1.29.6.1 simonb }
369 1.29.6.1 simonb if (modes & MOD_TAI) {
370 1.29.6.1 simonb if (ntv->constant > 0) /* XXX zero & negative numbers ? */
371 1.29.6.1 simonb time_tai = ntv->constant;
372 1.29.6.1 simonb }
373 1.29.6.1 simonb #ifdef PPS_SYNC
374 1.29.6.1 simonb if (modes & MOD_PPSMAX) {
375 1.29.6.1 simonb if (ntv->shift < PPS_FAVG)
376 1.29.6.1 simonb pps_shiftmax = PPS_FAVG;
377 1.29.6.1 simonb else if (ntv->shift > PPS_FAVGMAX)
378 1.29.6.1 simonb pps_shiftmax = PPS_FAVGMAX;
379 1.29.6.1 simonb else
380 1.29.6.2 kardel pps_shiftmax = ntv->shift;
381 1.29.6.1 simonb }
382 1.29.6.1 simonb #endif /* PPS_SYNC */
383 1.29.6.1 simonb if (modes & MOD_NANO)
384 1.29.6.1 simonb time_status |= STA_NANO;
385 1.29.6.1 simonb if (modes & MOD_MICRO)
386 1.29.6.1 simonb time_status &= ~STA_NANO;
387 1.29.6.1 simonb if (modes & MOD_CLKB)
388 1.29.6.1 simonb time_status |= STA_CLK;
389 1.29.6.1 simonb if (modes & MOD_CLKA)
390 1.29.6.1 simonb time_status &= ~STA_CLK;
391 1.29.6.1 simonb if (modes & MOD_FREQUENCY) {
392 1.29.6.1 simonb freq = (ntv->freq * 1000LL) >> 16;
393 1.29.6.1 simonb if (freq > MAXFREQ)
394 1.29.6.1 simonb L_LINT(time_freq, MAXFREQ);
395 1.29.6.1 simonb else if (freq < -MAXFREQ)
396 1.29.6.1 simonb L_LINT(time_freq, -MAXFREQ);
397 1.29.6.1 simonb else {
398 1.29.6.1 simonb /*
399 1.29.6.1 simonb * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
400 1.29.6.1 simonb * time_freq is [ns/s * 2^32]
401 1.29.6.1 simonb */
402 1.29.6.1 simonb time_freq = ntv->freq * 1000LL * 65536LL;
403 1.29.6.1 simonb }
404 1.29.6.1 simonb #ifdef PPS_SYNC
405 1.29.6.1 simonb pps_freq = time_freq;
406 1.29.6.1 simonb #endif /* PPS_SYNC */
407 1.29.6.1 simonb }
408 1.29.6.1 simonb if (modes & MOD_OFFSET) {
409 1.29.6.1 simonb if (time_status & STA_NANO)
410 1.29.6.1 simonb hardupdate(ntv->offset);
411 1.29.6.1 simonb else
412 1.29.6.1 simonb hardupdate(ntv->offset * 1000);
413 1.29.6.1 simonb }
414 1.29.6.1 simonb
415 1.29.6.1 simonb /*
416 1.29.6.1 simonb * Retrieve all clock variables. Note that the TAI offset is
417 1.29.6.1 simonb * returned only by ntp_gettime();
418 1.29.6.1 simonb */
419 1.29.6.1 simonb if (time_status & STA_NANO)
420 1.29.6.1 simonb ntv->offset = L_GINT(time_offset);
421 1.29.6.1 simonb else
422 1.29.6.1 simonb ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
423 1.29.6.1 simonb ntv->freq = L_GINT((time_freq / 1000LL) << 16);
424 1.29.6.1 simonb ntv->maxerror = time_maxerror;
425 1.29.6.1 simonb ntv->esterror = time_esterror;
426 1.29.6.1 simonb ntv->status = time_status;
427 1.29.6.1 simonb ntv->constant = time_constant;
428 1.29.6.1 simonb if (time_status & STA_NANO)
429 1.29.6.1 simonb ntv->precision = time_precision;
430 1.29.6.1 simonb else
431 1.29.6.1 simonb ntv->precision = time_precision / 1000;
432 1.29.6.1 simonb ntv->tolerance = MAXFREQ * SCALE_PPM;
433 1.29.6.1 simonb #ifdef PPS_SYNC
434 1.29.6.1 simonb ntv->shift = pps_shift;
435 1.29.6.1 simonb ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
436 1.29.6.1 simonb if (time_status & STA_NANO)
437 1.29.6.1 simonb ntv->jitter = pps_jitter;
438 1.29.6.1 simonb else
439 1.29.6.1 simonb ntv->jitter = pps_jitter / 1000;
440 1.29.6.1 simonb ntv->stabil = pps_stabil;
441 1.29.6.1 simonb ntv->calcnt = pps_calcnt;
442 1.29.6.1 simonb ntv->errcnt = pps_errcnt;
443 1.29.6.1 simonb ntv->jitcnt = pps_jitcnt;
444 1.29.6.1 simonb ntv->stbcnt = pps_stbcnt;
445 1.29.6.1 simonb #endif /* PPS_SYNC */
446 1.29.6.1 simonb splx(s);
447 1.29.6.1 simonb
448 1.29.6.4 kardel /*
449 1.29.6.4 kardel * Status word error decode. See comments in
450 1.29.6.4 kardel * ntp_gettime() routine.
451 1.29.6.4 kardel */
452 1.29.6.4 kardel if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
453 1.29.6.4 kardel (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
454 1.29.6.4 kardel !(time_status & STA_PPSSIGNAL)) ||
455 1.29.6.4 kardel (time_status & STA_PPSTIME &&
456 1.29.6.4 kardel time_status & STA_PPSJITTER) ||
457 1.29.6.4 kardel (time_status & STA_PPSFREQ &&
458 1.29.6.4 kardel time_status & (STA_PPSWANDER | STA_PPSERROR))) {
459 1.29.6.4 kardel *retval = TIME_ERROR;
460 1.29.6.4 kardel } else
461 1.29.6.4 kardel *retval = (register_t)time_state;
462 1.29.6.1 simonb }
463 1.29.6.2 kardel #endif /* NTP */
464 1.29.6.1 simonb
465 1.29.6.1 simonb /*
466 1.29.6.1 simonb * second_overflow() - called after ntp_tick_adjust()
467 1.29.6.1 simonb *
468 1.29.6.1 simonb * This routine is ordinarily called immediately following the above
469 1.29.6.1 simonb * routine ntp_tick_adjust(). While these two routines are normally
470 1.29.6.1 simonb * combined, they are separated here only for the purposes of
471 1.29.6.1 simonb * simulation.
472 1.29.6.1 simonb */
473 1.29.6.1 simonb void
474 1.29.6.1 simonb ntp_update_second(int64_t *adjustment, time_t *newsec)
475 1.29.6.1 simonb {
476 1.29.6.1 simonb int tickrate;
477 1.29.6.1 simonb l_fp ftemp; /* 32/64-bit temporary */
478 1.29.6.1 simonb
479 1.29.6.2 kardel #ifdef NTP
480 1.29.6.2 kardel
481 1.29.6.1 simonb /*
482 1.29.6.1 simonb * On rollover of the second both the nanosecond and microsecond
483 1.29.6.1 simonb * clocks are updated and the state machine cranked as
484 1.29.6.1 simonb * necessary. The phase adjustment to be used for the next
485 1.29.6.1 simonb * second is calculated and the maximum error is increased by
486 1.29.6.1 simonb * the tolerance.
487 1.29.6.1 simonb */
488 1.29.6.1 simonb time_maxerror += MAXFREQ / 1000;
489 1.29.6.1 simonb
490 1.29.6.1 simonb /*
491 1.29.6.1 simonb * Leap second processing. If in leap-insert state at
492 1.29.6.1 simonb * the end of the day, the system clock is set back one
493 1.29.6.1 simonb * second; if in leap-delete state, the system clock is
494 1.29.6.1 simonb * set ahead one second. The nano_time() routine or
495 1.29.6.1 simonb * external clock driver will insure that reported time
496 1.29.6.1 simonb * is always monotonic.
497 1.29.6.1 simonb */
498 1.29.6.1 simonb switch (time_state) {
499 1.29.6.1 simonb
500 1.29.6.1 simonb /*
501 1.29.6.1 simonb * No warning.
502 1.29.6.1 simonb */
503 1.29.6.1 simonb case TIME_OK:
504 1.29.6.1 simonb if (time_status & STA_INS)
505 1.29.6.1 simonb time_state = TIME_INS;
506 1.29.6.1 simonb else if (time_status & STA_DEL)
507 1.29.6.1 simonb time_state = TIME_DEL;
508 1.29.6.1 simonb break;
509 1.29.6.1 simonb
510 1.29.6.1 simonb /*
511 1.29.6.1 simonb * Insert second 23:59:60 following second
512 1.29.6.1 simonb * 23:59:59.
513 1.29.6.1 simonb */
514 1.29.6.1 simonb case TIME_INS:
515 1.29.6.1 simonb if (!(time_status & STA_INS))
516 1.29.6.1 simonb time_state = TIME_OK;
517 1.29.6.1 simonb else if ((*newsec) % 86400 == 0) {
518 1.29.6.1 simonb (*newsec)--;
519 1.29.6.1 simonb time_state = TIME_OOP;
520 1.29.6.1 simonb time_tai++;
521 1.29.6.1 simonb }
522 1.29.6.1 simonb break;
523 1.29.6.1 simonb
524 1.29.6.1 simonb /*
525 1.29.6.1 simonb * Delete second 23:59:59.
526 1.29.6.1 simonb */
527 1.29.6.1 simonb case TIME_DEL:
528 1.29.6.1 simonb if (!(time_status & STA_DEL))
529 1.29.6.1 simonb time_state = TIME_OK;
530 1.29.6.1 simonb else if (((*newsec) + 1) % 86400 == 0) {
531 1.29.6.1 simonb (*newsec)++;
532 1.29.6.1 simonb time_tai--;
533 1.29.6.1 simonb time_state = TIME_WAIT;
534 1.29.6.1 simonb }
535 1.29.6.1 simonb break;
536 1.29.6.1 simonb
537 1.29.6.1 simonb /*
538 1.29.6.1 simonb * Insert second in progress.
539 1.29.6.1 simonb */
540 1.29.6.1 simonb case TIME_OOP:
541 1.29.6.1 simonb time_state = TIME_WAIT;
542 1.29.6.1 simonb break;
543 1.29.6.1 simonb
544 1.29.6.1 simonb /*
545 1.29.6.1 simonb * Wait for status bits to clear.
546 1.29.6.1 simonb */
547 1.29.6.1 simonb case TIME_WAIT:
548 1.29.6.1 simonb if (!(time_status & (STA_INS | STA_DEL)))
549 1.29.6.1 simonb time_state = TIME_OK;
550 1.29.6.1 simonb }
551 1.29.6.1 simonb
552 1.29.6.1 simonb /*
553 1.29.6.1 simonb * Compute the total time adjustment for the next second
554 1.29.6.1 simonb * in ns. The offset is reduced by a factor depending on
555 1.29.6.1 simonb * whether the PPS signal is operating. Note that the
556 1.29.6.1 simonb * value is in effect scaled by the clock frequency,
557 1.29.6.1 simonb * since the adjustment is added at each tick interrupt.
558 1.29.6.1 simonb */
559 1.29.6.1 simonb ftemp = time_offset;
560 1.29.6.1 simonb #ifdef PPS_SYNC
561 1.29.6.1 simonb /* XXX even if PPS signal dies we should finish adjustment ? */
562 1.29.6.1 simonb if (time_status & STA_PPSTIME && time_status &
563 1.29.6.1 simonb STA_PPSSIGNAL)
564 1.29.6.1 simonb L_RSHIFT(ftemp, pps_shift);
565 1.29.6.1 simonb else
566 1.29.6.1 simonb L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
567 1.29.6.1 simonb #else
568 1.29.6.1 simonb L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
569 1.29.6.1 simonb #endif /* PPS_SYNC */
570 1.29.6.1 simonb time_adj = ftemp;
571 1.29.6.1 simonb L_SUB(time_offset, ftemp);
572 1.29.6.1 simonb L_ADD(time_adj, time_freq);
573 1.29.6.1 simonb
574 1.29.6.2 kardel #ifdef PPS_SYNC
575 1.29.6.2 kardel if (pps_valid > 0)
576 1.29.6.2 kardel pps_valid--;
577 1.29.6.2 kardel else
578 1.29.6.2 kardel time_status &= ~STA_PPSSIGNAL;
579 1.29.6.2 kardel #endif /* PPS_SYNC */
580 1.29.6.2 kardel
581 1.29.6.2 kardel #endif /* NTP */
582 1.29.6.2 kardel
583 1.29.6.1 simonb /*
584 1.29.6.1 simonb * Apply any correction from adjtime(2). If more than one second
585 1.29.6.1 simonb * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
586 1.29.6.1 simonb * until the last second is slewed the final < 500 usecs.
587 1.29.6.1 simonb */
588 1.29.6.1 simonb if (time_adjtime != 0) {
589 1.29.6.1 simonb if (time_adjtime > 1000000)
590 1.29.6.1 simonb tickrate = 5000;
591 1.29.6.1 simonb else if (time_adjtime < -1000000)
592 1.29.6.1 simonb tickrate = -5000;
593 1.29.6.1 simonb else if (time_adjtime > 500)
594 1.29.6.1 simonb tickrate = 500;
595 1.29.6.1 simonb else if (time_adjtime < -500)
596 1.29.6.1 simonb tickrate = -500;
597 1.29.6.1 simonb else
598 1.29.6.1 simonb tickrate = time_adjtime;
599 1.29.6.1 simonb time_adjtime -= tickrate;
600 1.29.6.1 simonb L_LINT(ftemp, tickrate * 1000);
601 1.29.6.1 simonb L_ADD(time_adj, ftemp);
602 1.29.6.1 simonb }
603 1.29.6.1 simonb *adjustment = time_adj;
604 1.29.6.1 simonb
605 1.29.6.1 simonb }
606 1.29.6.1 simonb
607 1.29.6.1 simonb /*
608 1.29.6.1 simonb * ntp_init() - initialize variables and structures
609 1.29.6.1 simonb *
610 1.29.6.1 simonb * This routine must be called after the kernel variables hz and tick
611 1.29.6.1 simonb * are set or changed and before the next tick interrupt. In this
612 1.29.6.1 simonb * particular implementation, these values are assumed set elsewhere in
613 1.29.6.1 simonb * the kernel. The design allows the clock frequency and tick interval
614 1.29.6.1 simonb * to be changed while the system is running. So, this routine should
615 1.29.6.1 simonb * probably be integrated with the code that does that.
616 1.29.6.1 simonb */
617 1.29.6.1 simonb void
618 1.29.6.1 simonb ntp_init(void)
619 1.29.6.1 simonb {
620 1.29.6.1 simonb
621 1.29.6.1 simonb /*
622 1.29.6.1 simonb * The following variables are initialized only at startup. Only
623 1.29.6.1 simonb * those structures not cleared by the compiler need to be
624 1.29.6.1 simonb * initialized, and these only in the simulator. In the actual
625 1.29.6.1 simonb * kernel, any nonzero values here will quickly evaporate.
626 1.29.6.1 simonb */
627 1.29.6.2 kardel L_CLR(time_adj);
628 1.29.6.2 kardel #ifdef NTP
629 1.29.6.1 simonb L_CLR(time_offset);
630 1.29.6.1 simonb L_CLR(time_freq);
631 1.29.6.1 simonb #ifdef PPS_SYNC
632 1.29.6.1 simonb pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
633 1.29.6.1 simonb pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
634 1.29.6.1 simonb pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
635 1.29.6.1 simonb pps_fcount = 0;
636 1.29.6.1 simonb L_CLR(pps_freq);
637 1.29.6.2 kardel #endif /* PPS_SYNC */
638 1.29.6.2 kardel #endif
639 1.29.6.1 simonb }
640 1.29.6.1 simonb
641 1.29.6.2 kardel #ifdef NTP
642 1.29.6.1 simonb /*
643 1.29.6.1 simonb * hardupdate() - local clock update
644 1.29.6.1 simonb *
645 1.29.6.1 simonb * This routine is called by ntp_adjtime() to update the local clock
646 1.29.6.1 simonb * phase and frequency. The implementation is of an adaptive-parameter,
647 1.29.6.1 simonb * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
648 1.29.6.1 simonb * time and frequency offset estimates for each call. If the kernel PPS
649 1.29.6.1 simonb * discipline code is configured (PPS_SYNC), the PPS signal itself
650 1.29.6.1 simonb * determines the new time offset, instead of the calling argument.
651 1.29.6.1 simonb * Presumably, calls to ntp_adjtime() occur only when the caller
652 1.29.6.1 simonb * believes the local clock is valid within some bound (+-128 ms with
653 1.29.6.1 simonb * NTP). If the caller's time is far different than the PPS time, an
654 1.29.6.1 simonb * argument will ensue, and it's not clear who will lose.
655 1.29.6.1 simonb *
656 1.29.6.1 simonb * For uncompensated quartz crystal oscillators and nominal update
657 1.29.6.1 simonb * intervals less than 256 s, operation should be in phase-lock mode,
658 1.29.6.1 simonb * where the loop is disciplined to phase. For update intervals greater
659 1.29.6.1 simonb * than 1024 s, operation should be in frequency-lock mode, where the
660 1.29.6.1 simonb * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
661 1.29.6.1 simonb * is selected by the STA_MODE status bit.
662 1.29.6.1 simonb *
663 1.29.6.1 simonb * Note: splclock() is in effect.
664 1.29.6.1 simonb */
665 1.29.6.1 simonb void
666 1.29.6.1 simonb hardupdate(long offset)
667 1.29.6.1 simonb {
668 1.29.6.1 simonb long mtemp;
669 1.29.6.1 simonb l_fp ftemp;
670 1.29.6.1 simonb
671 1.29.6.1 simonb /*
672 1.29.6.1 simonb * Select how the phase is to be controlled and from which
673 1.29.6.1 simonb * source. If the PPS signal is present and enabled to
674 1.29.6.1 simonb * discipline the time, the PPS offset is used; otherwise, the
675 1.29.6.1 simonb * argument offset is used.
676 1.29.6.1 simonb */
677 1.29.6.1 simonb if (!(time_status & STA_PLL))
678 1.29.6.1 simonb return;
679 1.29.6.1 simonb if (!(time_status & STA_PPSTIME && time_status &
680 1.29.6.1 simonb STA_PPSSIGNAL)) {
681 1.29.6.1 simonb if (offset > MAXPHASE)
682 1.29.6.1 simonb time_monitor = MAXPHASE;
683 1.29.6.1 simonb else if (offset < -MAXPHASE)
684 1.29.6.1 simonb time_monitor = -MAXPHASE;
685 1.29.6.1 simonb else
686 1.29.6.1 simonb time_monitor = offset;
687 1.29.6.1 simonb L_LINT(time_offset, time_monitor);
688 1.29.6.1 simonb }
689 1.29.6.1 simonb
690 1.29.6.1 simonb /*
691 1.29.6.1 simonb * Select how the frequency is to be controlled and in which
692 1.29.6.1 simonb * mode (PLL or FLL). If the PPS signal is present and enabled
693 1.29.6.1 simonb * to discipline the frequency, the PPS frequency is used;
694 1.29.6.1 simonb * otherwise, the argument offset is used to compute it.
695 1.29.6.1 simonb */
696 1.29.6.1 simonb if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
697 1.29.6.1 simonb time_reftime = time_second;
698 1.29.6.1 simonb return;
699 1.29.6.1 simonb }
700 1.29.6.1 simonb if (time_status & STA_FREQHOLD || time_reftime == 0)
701 1.29.6.1 simonb time_reftime = time_second;
702 1.29.6.1 simonb mtemp = time_second - time_reftime;
703 1.29.6.1 simonb L_LINT(ftemp, time_monitor);
704 1.29.6.1 simonb L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
705 1.29.6.1 simonb L_MPY(ftemp, mtemp);
706 1.29.6.1 simonb L_ADD(time_freq, ftemp);
707 1.29.6.1 simonb time_status &= ~STA_MODE;
708 1.29.6.1 simonb if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
709 1.29.6.1 simonb MAXSEC)) {
710 1.29.6.1 simonb L_LINT(ftemp, (time_monitor << 4) / mtemp);
711 1.29.6.1 simonb L_RSHIFT(ftemp, SHIFT_FLL + 4);
712 1.29.6.1 simonb L_ADD(time_freq, ftemp);
713 1.29.6.1 simonb time_status |= STA_MODE;
714 1.29.6.1 simonb }
715 1.29.6.1 simonb time_reftime = time_second;
716 1.29.6.1 simonb if (L_GINT(time_freq) > MAXFREQ)
717 1.29.6.1 simonb L_LINT(time_freq, MAXFREQ);
718 1.29.6.1 simonb else if (L_GINT(time_freq) < -MAXFREQ)
719 1.29.6.1 simonb L_LINT(time_freq, -MAXFREQ);
720 1.29.6.1 simonb }
721 1.29.6.1 simonb
722 1.29.6.1 simonb #ifdef PPS_SYNC
723 1.29.6.1 simonb /*
724 1.29.6.1 simonb * hardpps() - discipline CPU clock oscillator to external PPS signal
725 1.29.6.1 simonb *
726 1.29.6.1 simonb * This routine is called at each PPS interrupt in order to discipline
727 1.29.6.1 simonb * the CPU clock oscillator to the PPS signal. It measures the PPS phase
728 1.29.6.1 simonb * and leaves it in a handy spot for the hardclock() routine. It
729 1.29.6.1 simonb * integrates successive PPS phase differences and calculates the
730 1.29.6.1 simonb * frequency offset. This is used in hardclock() to discipline the CPU
731 1.29.6.1 simonb * clock oscillator so that intrinsic frequency error is cancelled out.
732 1.29.6.1 simonb * The code requires the caller to capture the time and hardware counter
733 1.29.6.1 simonb * value at the on-time PPS signal transition.
734 1.29.6.1 simonb *
735 1.29.6.1 simonb * Note that, on some Unix systems, this routine runs at an interrupt
736 1.29.6.1 simonb * priority level higher than the timer interrupt routine hardclock().
737 1.29.6.1 simonb * Therefore, the variables used are distinct from the hardclock()
738 1.29.6.1 simonb * variables, except for certain exceptions: The PPS frequency pps_freq
739 1.29.6.1 simonb * and phase pps_offset variables are determined by this routine and
740 1.29.6.1 simonb * updated atomically. The time_tolerance variable can be considered a
741 1.29.6.1 simonb * constant, since it is infrequently changed, and then only when the
742 1.29.6.1 simonb * PPS signal is disabled. The watchdog counter pps_valid is updated
743 1.29.6.1 simonb * once per second by hardclock() and is atomically cleared in this
744 1.29.6.1 simonb * routine.
745 1.29.6.1 simonb */
746 1.29.6.1 simonb void
747 1.29.6.2 kardel hardpps(struct timespec *tsp, /* time at PPS */
748 1.29.6.2 kardel long nsec /* hardware counter at PPS */)
749 1.29.6.1 simonb {
750 1.29.6.1 simonb long u_sec, u_nsec, v_nsec; /* temps */
751 1.29.6.1 simonb l_fp ftemp;
752 1.29.6.1 simonb
753 1.29.6.1 simonb /*
754 1.29.6.1 simonb * The signal is first processed by a range gate and frequency
755 1.29.6.1 simonb * discriminator. The range gate rejects noise spikes outside
756 1.29.6.1 simonb * the range +-500 us. The frequency discriminator rejects input
757 1.29.6.1 simonb * signals with apparent frequency outside the range 1 +-500
758 1.29.6.1 simonb * PPM. If two hits occur in the same second, we ignore the
759 1.29.6.1 simonb * later hit; if not and a hit occurs outside the range gate,
760 1.29.6.1 simonb * keep the later hit for later comparison, but do not process
761 1.29.6.1 simonb * it.
762 1.29.6.1 simonb */
763 1.29.6.1 simonb time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
764 1.29.6.1 simonb time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
765 1.29.6.1 simonb pps_valid = PPS_VALID;
766 1.29.6.1 simonb u_sec = tsp->tv_sec;
767 1.29.6.1 simonb u_nsec = tsp->tv_nsec;
768 1.29.6.1 simonb if (u_nsec >= (NANOSECOND >> 1)) {
769 1.29.6.1 simonb u_nsec -= NANOSECOND;
770 1.29.6.1 simonb u_sec++;
771 1.29.6.1 simonb }
772 1.29.6.1 simonb v_nsec = u_nsec - pps_tf[0].tv_nsec;
773 1.29.6.1 simonb if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
774 1.29.6.1 simonb MAXFREQ)
775 1.29.6.1 simonb return;
776 1.29.6.1 simonb pps_tf[2] = pps_tf[1];
777 1.29.6.1 simonb pps_tf[1] = pps_tf[0];
778 1.29.6.1 simonb pps_tf[0].tv_sec = u_sec;
779 1.29.6.1 simonb pps_tf[0].tv_nsec = u_nsec;
780 1.29.6.1 simonb
781 1.29.6.1 simonb /*
782 1.29.6.1 simonb * Compute the difference between the current and previous
783 1.29.6.1 simonb * counter values. If the difference exceeds 0.5 s, assume it
784 1.29.6.1 simonb * has wrapped around, so correct 1.0 s. If the result exceeds
785 1.29.6.1 simonb * the tick interval, the sample point has crossed a tick
786 1.29.6.1 simonb * boundary during the last second, so correct the tick. Very
787 1.29.6.1 simonb * intricate.
788 1.29.6.1 simonb */
789 1.29.6.1 simonb u_nsec = nsec;
790 1.29.6.1 simonb if (u_nsec > (NANOSECOND >> 1))
791 1.29.6.1 simonb u_nsec -= NANOSECOND;
792 1.29.6.1 simonb else if (u_nsec < -(NANOSECOND >> 1))
793 1.29.6.1 simonb u_nsec += NANOSECOND;
794 1.29.6.1 simonb pps_fcount += u_nsec;
795 1.29.6.1 simonb if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
796 1.29.6.1 simonb return;
797 1.29.6.1 simonb time_status &= ~STA_PPSJITTER;
798 1.29.6.1 simonb
799 1.29.6.1 simonb /*
800 1.29.6.1 simonb * A three-stage median filter is used to help denoise the PPS
801 1.29.6.1 simonb * time. The median sample becomes the time offset estimate; the
802 1.29.6.1 simonb * difference between the other two samples becomes the time
803 1.29.6.1 simonb * dispersion (jitter) estimate.
804 1.29.6.1 simonb */
805 1.29.6.1 simonb if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
806 1.29.6.1 simonb if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
807 1.29.6.1 simonb v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
808 1.29.6.1 simonb u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
809 1.29.6.1 simonb } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
810 1.29.6.1 simonb v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
811 1.29.6.1 simonb u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
812 1.29.6.1 simonb } else {
813 1.29.6.1 simonb v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
814 1.29.6.1 simonb u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
815 1.29.6.1 simonb }
816 1.29.6.1 simonb } else {
817 1.29.6.1 simonb if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
818 1.29.6.1 simonb v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
819 1.29.6.1 simonb u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
820 1.29.6.1 simonb } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
821 1.29.6.1 simonb v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
822 1.29.6.1 simonb u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
823 1.29.6.1 simonb } else {
824 1.29.6.1 simonb v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
825 1.29.6.1 simonb u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
826 1.29.6.1 simonb }
827 1.29.6.1 simonb }
828 1.29.6.1 simonb
829 1.29.6.1 simonb /*
830 1.29.6.1 simonb * Nominal jitter is due to PPS signal noise and interrupt
831 1.29.6.1 simonb * latency. If it exceeds the popcorn threshold, the sample is
832 1.29.6.1 simonb * discarded. otherwise, if so enabled, the time offset is
833 1.29.6.1 simonb * updated. We can tolerate a modest loss of data here without
834 1.29.6.1 simonb * much degrading time accuracy.
835 1.29.6.1 simonb */
836 1.29.6.1 simonb if (u_nsec > (pps_jitter << PPS_POPCORN)) {
837 1.29.6.1 simonb time_status |= STA_PPSJITTER;
838 1.29.6.1 simonb pps_jitcnt++;
839 1.29.6.1 simonb } else if (time_status & STA_PPSTIME) {
840 1.29.6.1 simonb time_monitor = -v_nsec;
841 1.29.6.1 simonb L_LINT(time_offset, time_monitor);
842 1.29.6.1 simonb }
843 1.29.6.1 simonb pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
844 1.29.6.1 simonb u_sec = pps_tf[0].tv_sec - pps_lastsec;
845 1.29.6.1 simonb if (u_sec < (1 << pps_shift))
846 1.29.6.1 simonb return;
847 1.29.6.1 simonb
848 1.29.6.1 simonb /*
849 1.29.6.1 simonb * At the end of the calibration interval the difference between
850 1.29.6.1 simonb * the first and last counter values becomes the scaled
851 1.29.6.1 simonb * frequency. It will later be divided by the length of the
852 1.29.6.1 simonb * interval to determine the frequency update. If the frequency
853 1.29.6.1 simonb * exceeds a sanity threshold, or if the actual calibration
854 1.29.6.1 simonb * interval is not equal to the expected length, the data are
855 1.29.6.1 simonb * discarded. We can tolerate a modest loss of data here without
856 1.29.6.1 simonb * much degrading frequency accuracy.
857 1.29.6.1 simonb */
858 1.29.6.1 simonb pps_calcnt++;
859 1.29.6.1 simonb v_nsec = -pps_fcount;
860 1.29.6.1 simonb pps_lastsec = pps_tf[0].tv_sec;
861 1.29.6.1 simonb pps_fcount = 0;
862 1.29.6.1 simonb u_nsec = MAXFREQ << pps_shift;
863 1.29.6.1 simonb if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
864 1.29.6.1 simonb pps_shift)) {
865 1.29.6.1 simonb time_status |= STA_PPSERROR;
866 1.29.6.1 simonb pps_errcnt++;
867 1.29.6.1 simonb return;
868 1.29.6.1 simonb }
869 1.29.6.1 simonb
870 1.29.6.1 simonb /*
871 1.29.6.1 simonb * Here the raw frequency offset and wander (stability) is
872 1.29.6.1 simonb * calculated. If the wander is less than the wander threshold
873 1.29.6.1 simonb * for four consecutive averaging intervals, the interval is
874 1.29.6.1 simonb * doubled; if it is greater than the threshold for four
875 1.29.6.1 simonb * consecutive intervals, the interval is halved. The scaled
876 1.29.6.1 simonb * frequency offset is converted to frequency offset. The
877 1.29.6.1 simonb * stability metric is calculated as the average of recent
878 1.29.6.1 simonb * frequency changes, but is used only for performance
879 1.29.6.1 simonb * monitoring.
880 1.29.6.1 simonb */
881 1.29.6.1 simonb L_LINT(ftemp, v_nsec);
882 1.29.6.1 simonb L_RSHIFT(ftemp, pps_shift);
883 1.29.6.1 simonb L_SUB(ftemp, pps_freq);
884 1.29.6.1 simonb u_nsec = L_GINT(ftemp);
885 1.29.6.1 simonb if (u_nsec > PPS_MAXWANDER) {
886 1.29.6.1 simonb L_LINT(ftemp, PPS_MAXWANDER);
887 1.29.6.1 simonb pps_intcnt--;
888 1.29.6.1 simonb time_status |= STA_PPSWANDER;
889 1.29.6.1 simonb pps_stbcnt++;
890 1.29.6.1 simonb } else if (u_nsec < -PPS_MAXWANDER) {
891 1.29.6.1 simonb L_LINT(ftemp, -PPS_MAXWANDER);
892 1.29.6.1 simonb pps_intcnt--;
893 1.29.6.1 simonb time_status |= STA_PPSWANDER;
894 1.29.6.1 simonb pps_stbcnt++;
895 1.29.6.1 simonb } else {
896 1.29.6.1 simonb pps_intcnt++;
897 1.29.6.1 simonb }
898 1.29.6.1 simonb if (pps_intcnt >= 4) {
899 1.29.6.1 simonb pps_intcnt = 4;
900 1.29.6.1 simonb if (pps_shift < pps_shiftmax) {
901 1.29.6.1 simonb pps_shift++;
902 1.29.6.1 simonb pps_intcnt = 0;
903 1.29.6.1 simonb }
904 1.29.6.1 simonb } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
905 1.29.6.1 simonb pps_intcnt = -4;
906 1.29.6.1 simonb if (pps_shift > PPS_FAVG) {
907 1.29.6.1 simonb pps_shift--;
908 1.29.6.1 simonb pps_intcnt = 0;
909 1.29.6.1 simonb }
910 1.29.6.1 simonb }
911 1.29.6.1 simonb if (u_nsec < 0)
912 1.29.6.1 simonb u_nsec = -u_nsec;
913 1.29.6.1 simonb pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
914 1.29.6.1 simonb
915 1.29.6.1 simonb /*
916 1.29.6.1 simonb * The PPS frequency is recalculated and clamped to the maximum
917 1.29.6.1 simonb * MAXFREQ. If enabled, the system clock frequency is updated as
918 1.29.6.1 simonb * well.
919 1.29.6.1 simonb */
920 1.29.6.1 simonb L_ADD(pps_freq, ftemp);
921 1.29.6.1 simonb u_nsec = L_GINT(pps_freq);
922 1.29.6.1 simonb if (u_nsec > MAXFREQ)
923 1.29.6.1 simonb L_LINT(pps_freq, MAXFREQ);
924 1.29.6.1 simonb else if (u_nsec < -MAXFREQ)
925 1.29.6.1 simonb L_LINT(pps_freq, -MAXFREQ);
926 1.29.6.1 simonb if (time_status & STA_PPSFREQ)
927 1.29.6.1 simonb time_freq = pps_freq;
928 1.29.6.1 simonb }
929 1.29.6.1 simonb #endif /* PPS_SYNC */
930 1.29.6.1 simonb
931 1.29.6.1 simonb /*
932 1.29.6.1 simonb * return information about kernel precision timekeeping
933 1.29.6.1 simonb * XXX this should share code with sys_ntp_gettime
934 1.29.6.1 simonb */
935 1.29.6.1 simonb static int
936 1.29.6.1 simonb sysctl_kern_ntptime(SYSCTLFN_ARGS)
937 1.29.6.1 simonb {
938 1.29.6.1 simonb struct sysctlnode node;
939 1.29.6.1 simonb struct ntptimeval ntv;
940 1.29.6.1 simonb
941 1.29.6.1 simonb /*
942 1.29.6.1 simonb * Construct ntp_timeval.
943 1.29.6.1 simonb */
944 1.29.6.1 simonb
945 1.29.6.1 simonb nanotime(&ntv.time);
946 1.29.6.1 simonb ntv.maxerror = time_maxerror;
947 1.29.6.1 simonb ntv.esterror = time_esterror;
948 1.29.6.1 simonb ntv.tai = time_tai;
949 1.29.6.1 simonb ntv.time_state = time_state;
950 1.29.6.1 simonb
951 1.29.6.1 simonb #ifdef notyet
952 1.29.6.1 simonb /*
953 1.29.6.1 simonb * Status word error decode. If any of these conditions occur,
954 1.29.6.1 simonb * an error is returned, instead of the status word. Most
955 1.29.6.1 simonb * applications will care only about the fact the system clock
956 1.29.6.1 simonb * may not be trusted, not about the details.
957 1.29.6.1 simonb *
958 1.29.6.1 simonb * Hardware or software error
959 1.29.6.1 simonb */
960 1.29.6.1 simonb if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
961 1.29.6.1 simonb
962 1.29.6.1 simonb /*
963 1.29.6.1 simonb * PPS signal lost when either time or frequency synchronization
964 1.29.6.1 simonb * requested
965 1.29.6.1 simonb */
966 1.29.6.1 simonb (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
967 1.29.6.1 simonb !(time_status & STA_PPSSIGNAL)) ||
968 1.29.6.1 simonb
969 1.29.6.1 simonb /*
970 1.29.6.1 simonb * PPS jitter exceeded when time synchronization requested
971 1.29.6.1 simonb */
972 1.29.6.1 simonb (time_status & STA_PPSTIME &&
973 1.29.6.1 simonb time_status & STA_PPSJITTER) ||
974 1.29.6.1 simonb
975 1.29.6.1 simonb /*
976 1.29.6.1 simonb * PPS wander exceeded or calibration error when frequency
977 1.29.6.1 simonb * synchronization requested
978 1.29.6.1 simonb */
979 1.29.6.1 simonb (time_status & STA_PPSFREQ &&
980 1.29.6.1 simonb time_status & (STA_PPSWANDER | STA_PPSERROR)))
981 1.29.6.1 simonb ntv.time_state = TIME_ERROR;
982 1.29.6.1 simonb else
983 1.29.6.1 simonb ntv.time_state = time_state;
984 1.29.6.1 simonb #endif /* notyet */
985 1.29.6.1 simonb
986 1.29.6.1 simonb node = *rnode;
987 1.29.6.1 simonb node.sysctl_data = &ntv;
988 1.29.6.1 simonb node.sysctl_size = sizeof(ntv);
989 1.29.6.1 simonb return (sysctl_lookup(SYSCTLFN_CALL(&node)));
990 1.29.6.1 simonb }
991 1.29.6.1 simonb
992 1.29.6.1 simonb SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
993 1.29.6.1 simonb {
994 1.29.6.1 simonb
995 1.29.6.1 simonb sysctl_createv(clog, 0, NULL, NULL,
996 1.29.6.1 simonb CTLFLAG_PERMANENT,
997 1.29.6.1 simonb CTLTYPE_NODE, "kern", NULL,
998 1.29.6.1 simonb NULL, 0, NULL, 0,
999 1.29.6.1 simonb CTL_KERN, CTL_EOL);
1000 1.29.6.1 simonb
1001 1.29.6.1 simonb sysctl_createv(clog, 0, NULL, NULL,
1002 1.29.6.1 simonb CTLFLAG_PERMANENT,
1003 1.29.6.1 simonb CTLTYPE_STRUCT, "ntptime",
1004 1.29.6.1 simonb SYSCTL_DESCR("Kernel clock values for NTP"),
1005 1.29.6.1 simonb sysctl_kern_ntptime, 0, NULL,
1006 1.29.6.1 simonb sizeof(struct ntptimeval),
1007 1.29.6.1 simonb CTL_KERN, KERN_NTPTIME, CTL_EOL);
1008 1.29.6.1 simonb }
1009 1.29.6.1 simonb #else /* !NTP */
1010 1.29.6.1 simonb /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
1011 1.29.6.1 simonb
1012 1.29.6.1 simonb int
1013 1.29.6.1 simonb sys_ntp_gettime(l, v, retval)
1014 1.29.6.1 simonb struct lwp *l;
1015 1.29.6.1 simonb void *v;
1016 1.29.6.1 simonb register_t *retval;
1017 1.29.6.1 simonb {
1018 1.29.6.1 simonb
1019 1.29.6.1 simonb return(ENOSYS);
1020 1.29.6.1 simonb }
1021 1.29.6.1 simonb #endif /* !NTP */
1022 1.29.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
1023 1.1 jonathan /******************************************************************************
1024 1.1 jonathan * *
1025 1.1 jonathan * Copyright (c) David L. Mills 1993, 1994 *
1026 1.1 jonathan * *
1027 1.1 jonathan * Permission to use, copy, modify, and distribute this software and its *
1028 1.1 jonathan * documentation for any purpose and without fee is hereby granted, provided *
1029 1.1 jonathan * that the above copyright notice appears in all copies and that both the *
1030 1.1 jonathan * copyright notice and this permission notice appear in supporting *
1031 1.1 jonathan * documentation, and that the name University of Delaware not be used in *
1032 1.1 jonathan * advertising or publicity pertaining to distribution of the software *
1033 1.1 jonathan * without specific, written prior permission. The University of Delaware *
1034 1.1 jonathan * makes no representations about the suitability this software for any *
1035 1.1 jonathan * purpose. It is provided "as is" without express or implied warranty. *
1036 1.1 jonathan * *
1037 1.1 jonathan ******************************************************************************/
1038 1.1 jonathan
1039 1.1 jonathan /*
1040 1.1 jonathan * Modification history kern_ntptime.c
1041 1.1 jonathan *
1042 1.1 jonathan * 24 Sep 94 David L. Mills
1043 1.1 jonathan * Tightened code at exits.
1044 1.1 jonathan *
1045 1.1 jonathan * 24 Mar 94 David L. Mills
1046 1.1 jonathan * Revised syscall interface to include new variables for PPS
1047 1.1 jonathan * time discipline.
1048 1.1 jonathan *
1049 1.1 jonathan * 14 Feb 94 David L. Mills
1050 1.1 jonathan * Added code for external clock
1051 1.1 jonathan *
1052 1.1 jonathan * 28 Nov 93 David L. Mills
1053 1.1 jonathan * Revised frequency scaling to conform with adjusted parameters
1054 1.1 jonathan *
1055 1.1 jonathan * 17 Sep 93 David L. Mills
1056 1.1 jonathan * Created file
1057 1.1 jonathan */
1058 1.1 jonathan /*
1059 1.1 jonathan * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
1060 1.1 jonathan * V4.1.1 and V4.1.3
1061 1.1 jonathan *
1062 1.1 jonathan * These routines consitute the Network Time Protocol (NTP) interfaces
1063 1.1 jonathan * for user and daemon application programs. The ntp_gettime() routine
1064 1.1 jonathan * provides the time, maximum error (synch distance) and estimated error
1065 1.1 jonathan * (dispersion) to client user application programs. The ntp_adjtime()
1066 1.1 jonathan * routine is used by the NTP daemon to adjust the system clock to an
1067 1.1 jonathan * externally derived time. The time offset and related variables set by
1068 1.1 jonathan * this routine are used by hardclock() to adjust the phase and
1069 1.1 jonathan * frequency of the phase-lock loop which controls the system clock.
1070 1.1 jonathan */
1071 1.16 lukem
1072 1.16 lukem #include <sys/cdefs.h>
1073 1.29.6.4 kardel __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.4 2006/04/30 18:03:13 kardel Exp $");
1074 1.16 lukem
1075 1.6 jonathan #include "opt_ntp.h"
1076 1.6 jonathan
1077 1.1 jonathan #include <sys/param.h>
1078 1.1 jonathan #include <sys/resourcevar.h>
1079 1.1 jonathan #include <sys/systm.h>
1080 1.1 jonathan #include <sys/kernel.h>
1081 1.1 jonathan #include <sys/proc.h>
1082 1.18 simonb #include <sys/sysctl.h>
1083 1.1 jonathan #include <sys/timex.h>
1084 1.1 jonathan #include <sys/vnode.h>
1085 1.1 jonathan
1086 1.1 jonathan #include <sys/mount.h>
1087 1.22 thorpej #include <sys/sa.h>
1088 1.1 jonathan #include <sys/syscallargs.h>
1089 1.1 jonathan
1090 1.1 jonathan #include <machine/cpu.h>
1091 1.2 christos
1092 1.4 thorpej #ifdef NTP
1093 1.1 jonathan /*
1094 1.1 jonathan * The following variables are used by the hardclock() routine in the
1095 1.28 perry * kern_clock.c module and are described in that module.
1096 1.1 jonathan */
1097 1.1 jonathan extern int time_state; /* clock state */
1098 1.1 jonathan extern int time_status; /* clock status bits */
1099 1.1 jonathan extern long time_offset; /* time adjustment (us) */
1100 1.1 jonathan extern long time_freq; /* frequency offset (scaled ppm) */
1101 1.1 jonathan extern long time_maxerror; /* maximum error (us) */
1102 1.1 jonathan extern long time_esterror; /* estimated error (us) */
1103 1.1 jonathan extern long time_constant; /* pll time constant */
1104 1.1 jonathan extern long time_precision; /* clock precision (us) */
1105 1.1 jonathan extern long time_tolerance; /* frequency tolerance (scaled ppm) */
1106 1.24 drochner extern int time_adjusted; /* ntp might have changed the system time */
1107 1.1 jonathan
1108 1.1 jonathan #ifdef PPS_SYNC
1109 1.1 jonathan /*
1110 1.1 jonathan * The following variables are used only if the PPS signal discipline
1111 1.1 jonathan * is configured in the kernel.
1112 1.1 jonathan */
1113 1.1 jonathan extern int pps_shift; /* interval duration (s) (shift) */
1114 1.1 jonathan extern long pps_freq; /* pps frequency offset (scaled ppm) */
1115 1.1 jonathan extern long pps_jitter; /* pps jitter (us) */
1116 1.1 jonathan extern long pps_stabil; /* pps stability (scaled ppm) */
1117 1.1 jonathan extern long pps_jitcnt; /* jitter limit exceeded */
1118 1.1 jonathan extern long pps_calcnt; /* calibration intervals */
1119 1.1 jonathan extern long pps_errcnt; /* calibration errors */
1120 1.1 jonathan extern long pps_stbcnt; /* stability limit exceeded */
1121 1.1 jonathan #endif /* PPS_SYNC */
1122 1.1 jonathan
1123 1.1 jonathan /*ARGSUSED*/
1124 1.1 jonathan /*
1125 1.1 jonathan * ntp_gettime() - NTP user application interface
1126 1.1 jonathan */
1127 1.1 jonathan int
1128 1.22 thorpej sys_ntp_gettime(l, v, retval)
1129 1.22 thorpej struct lwp *l;
1130 1.1 jonathan void *v;
1131 1.1 jonathan register_t *retval;
1132 1.1 jonathan
1133 1.1 jonathan {
1134 1.3 thorpej struct sys_ntp_gettime_args /* {
1135 1.5 cgd syscallarg(struct ntptimeval *) ntvp;
1136 1.1 jonathan } */ *uap = v;
1137 1.1 jonathan struct timeval atv;
1138 1.1 jonathan struct ntptimeval ntv;
1139 1.1 jonathan int error = 0;
1140 1.1 jonathan int s;
1141 1.1 jonathan
1142 1.5 cgd if (SCARG(uap, ntvp)) {
1143 1.1 jonathan s = splclock();
1144 1.1 jonathan #ifdef EXT_CLOCK
1145 1.1 jonathan /*
1146 1.1 jonathan * The microtime() external clock routine returns a
1147 1.1 jonathan * status code. If less than zero, we declare an error
1148 1.1 jonathan * in the clock status word and return the kernel
1149 1.1 jonathan * (software) time variable. While there are other
1150 1.1 jonathan * places that call microtime(), this is the only place
1151 1.1 jonathan * that matters from an application point of view.
1152 1.1 jonathan */
1153 1.1 jonathan if (microtime(&atv) < 0) {
1154 1.1 jonathan time_status |= STA_CLOCKERR;
1155 1.1 jonathan ntv.time = time;
1156 1.1 jonathan } else
1157 1.1 jonathan time_status &= ~STA_CLOCKERR;
1158 1.1 jonathan #else /* EXT_CLOCK */
1159 1.1 jonathan microtime(&atv);
1160 1.1 jonathan #endif /* EXT_CLOCK */
1161 1.1 jonathan ntv.time = atv;
1162 1.1 jonathan ntv.maxerror = time_maxerror;
1163 1.1 jonathan ntv.esterror = time_esterror;
1164 1.1 jonathan (void) splx(s);
1165 1.1 jonathan
1166 1.5 cgd error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
1167 1.7 perry sizeof(ntv));
1168 1.1 jonathan }
1169 1.1 jonathan if (!error) {
1170 1.1 jonathan
1171 1.1 jonathan /*
1172 1.1 jonathan * Status word error decode. If any of these conditions
1173 1.1 jonathan * occur, an error is returned, instead of the status
1174 1.1 jonathan * word. Most applications will care only about the fact
1175 1.1 jonathan * the system clock may not be trusted, not about the
1176 1.1 jonathan * details.
1177 1.1 jonathan *
1178 1.1 jonathan * Hardware or software error
1179 1.1 jonathan */
1180 1.1 jonathan if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1181 1.1 jonathan
1182 1.1 jonathan /*
1183 1.1 jonathan * PPS signal lost when either time or frequency
1184 1.1 jonathan * synchronization requested
1185 1.1 jonathan */
1186 1.1 jonathan (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1187 1.1 jonathan !(time_status & STA_PPSSIGNAL)) ||
1188 1.1 jonathan
1189 1.1 jonathan /*
1190 1.1 jonathan * PPS jitter exceeded when time synchronization
1191 1.1 jonathan * requested
1192 1.1 jonathan */
1193 1.1 jonathan (time_status & STA_PPSTIME &&
1194 1.1 jonathan time_status & STA_PPSJITTER) ||
1195 1.1 jonathan
1196 1.1 jonathan /*
1197 1.1 jonathan * PPS wander exceeded or calibration error when
1198 1.1 jonathan * frequency synchronization requested
1199 1.1 jonathan */
1200 1.1 jonathan (time_status & STA_PPSFREQ &&
1201 1.1 jonathan time_status & (STA_PPSWANDER | STA_PPSERROR)))
1202 1.1 jonathan *retval = TIME_ERROR;
1203 1.1 jonathan else
1204 1.1 jonathan *retval = (register_t)time_state;
1205 1.1 jonathan }
1206 1.1 jonathan return(error);
1207 1.1 jonathan }
1208 1.1 jonathan
1209 1.1 jonathan /* ARGSUSED */
1210 1.1 jonathan /*
1211 1.1 jonathan * ntp_adjtime() - NTP daemon application interface
1212 1.1 jonathan */
1213 1.1 jonathan int
1214 1.22 thorpej sys_ntp_adjtime(l, v, retval)
1215 1.22 thorpej struct lwp *l;
1216 1.1 jonathan void *v;
1217 1.1 jonathan register_t *retval;
1218 1.1 jonathan {
1219 1.3 thorpej struct sys_ntp_adjtime_args /* {
1220 1.1 jonathan syscallarg(struct timex *) tp;
1221 1.1 jonathan } */ *uap = v;
1222 1.22 thorpej struct proc *p = l->l_proc;
1223 1.1 jonathan struct timex ntv;
1224 1.29.6.4 kardel register_t retval1 = TIME_ERROR;
1225 1.1 jonathan int error = 0;
1226 1.1 jonathan
1227 1.1 jonathan if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
1228 1.14 manu sizeof(ntv))) != 0)
1229 1.14 manu return (error);
1230 1.14 manu
1231 1.14 manu if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
1232 1.1 jonathan return (error);
1233 1.1 jonathan
1234 1.29.6.4 kardel ntp_adjtime1(&ntv, &retval1);
1235 1.29.6.4 kardel
1236 1.29.6.4 kardel error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
1237 1.29.6.4 kardel
1238 1.29.6.4 kardel if (error == 0) {
1239 1.29.6.4 kardel *retval = retval1;
1240 1.29.6.4 kardel }
1241 1.29.6.4 kardel
1242 1.29.6.4 kardel return error;
1243 1.14 manu }
1244 1.14 manu
1245 1.29.6.4 kardel void
1246 1.29.6.4 kardel ntp_adjtime1(ntv, retval)
1247 1.14 manu struct timex *ntv;
1248 1.14 manu register_t *retval;
1249 1.14 manu {
1250 1.14 manu int modes;
1251 1.14 manu int s;
1252 1.14 manu
1253 1.1 jonathan /*
1254 1.28 perry * Update selected clock variables. Note that there is no error
1255 1.28 perry * checking here on the assumption the superuser should know
1256 1.14 manu * what it is doing.
1257 1.1 jonathan */
1258 1.15 jmc modes = ntv->modes;
1259 1.23 dsl if (modes != 0)
1260 1.23 dsl /* We need to save the system time during shutdown */
1261 1.23 dsl time_adjusted |= 2;
1262 1.1 jonathan s = splclock();
1263 1.1 jonathan if (modes & MOD_FREQUENCY)
1264 1.1 jonathan #ifdef PPS_SYNC
1265 1.15 jmc time_freq = ntv->freq - pps_freq;
1266 1.1 jonathan #else /* PPS_SYNC */
1267 1.15 jmc time_freq = ntv->freq;
1268 1.1 jonathan #endif /* PPS_SYNC */
1269 1.1 jonathan if (modes & MOD_MAXERROR)
1270 1.15 jmc time_maxerror = ntv->maxerror;
1271 1.1 jonathan if (modes & MOD_ESTERROR)
1272 1.15 jmc time_esterror = ntv->esterror;
1273 1.1 jonathan if (modes & MOD_STATUS) {
1274 1.1 jonathan time_status &= STA_RONLY;
1275 1.15 jmc time_status |= ntv->status & ~STA_RONLY;
1276 1.1 jonathan }
1277 1.1 jonathan if (modes & MOD_TIMECONST)
1278 1.15 jmc time_constant = ntv->constant;
1279 1.1 jonathan if (modes & MOD_OFFSET)
1280 1.15 jmc hardupdate(ntv->offset);
1281 1.1 jonathan
1282 1.1 jonathan /*
1283 1.1 jonathan * Retrieve all clock variables
1284 1.1 jonathan */
1285 1.1 jonathan if (time_offset < 0)
1286 1.15 jmc ntv->offset = -(-time_offset >> SHIFT_UPDATE);
1287 1.1 jonathan else
1288 1.15 jmc ntv->offset = time_offset >> SHIFT_UPDATE;
1289 1.1 jonathan #ifdef PPS_SYNC
1290 1.15 jmc ntv->freq = time_freq + pps_freq;
1291 1.1 jonathan #else /* PPS_SYNC */
1292 1.15 jmc ntv->freq = time_freq;
1293 1.1 jonathan #endif /* PPS_SYNC */
1294 1.15 jmc ntv->maxerror = time_maxerror;
1295 1.15 jmc ntv->esterror = time_esterror;
1296 1.15 jmc ntv->status = time_status;
1297 1.15 jmc ntv->constant = time_constant;
1298 1.15 jmc ntv->precision = time_precision;
1299 1.15 jmc ntv->tolerance = time_tolerance;
1300 1.1 jonathan #ifdef PPS_SYNC
1301 1.15 jmc ntv->shift = pps_shift;
1302 1.15 jmc ntv->ppsfreq = pps_freq;
1303 1.15 jmc ntv->jitter = pps_jitter >> PPS_AVG;
1304 1.15 jmc ntv->stabil = pps_stabil;
1305 1.15 jmc ntv->calcnt = pps_calcnt;
1306 1.15 jmc ntv->errcnt = pps_errcnt;
1307 1.15 jmc ntv->jitcnt = pps_jitcnt;
1308 1.15 jmc ntv->stbcnt = pps_stbcnt;
1309 1.1 jonathan #endif /* PPS_SYNC */
1310 1.1 jonathan (void)splx(s);
1311 1.1 jonathan
1312 1.29.6.4 kardel /*
1313 1.29.6.4 kardel * Status word error decode. See comments in
1314 1.29.6.4 kardel * ntp_gettime() routine.
1315 1.29.6.4 kardel */
1316 1.29.6.4 kardel if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1317 1.29.6.4 kardel (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1318 1.29.6.4 kardel !(time_status & STA_PPSSIGNAL)) ||
1319 1.29.6.4 kardel (time_status & STA_PPSTIME &&
1320 1.29.6.4 kardel time_status & STA_PPSJITTER) ||
1321 1.29.6.4 kardel (time_status & STA_PPSFREQ &&
1322 1.29.6.4 kardel time_status & (STA_PPSWANDER | STA_PPSERROR)))
1323 1.29.6.4 kardel *retval = TIME_ERROR;
1324 1.29.6.4 kardel else
1325 1.29.6.4 kardel *retval = (register_t)time_state;
1326 1.1 jonathan }
1327 1.1 jonathan
1328 1.1 jonathan /*
1329 1.1 jonathan * return information about kernel precision timekeeping
1330 1.1 jonathan */
1331 1.25 atatat static int
1332 1.25 atatat sysctl_kern_ntptime(SYSCTLFN_ARGS)
1333 1.1 jonathan {
1334 1.25 atatat struct sysctlnode node;
1335 1.1 jonathan struct timeval atv;
1336 1.1 jonathan struct ntptimeval ntv;
1337 1.1 jonathan int s;
1338 1.1 jonathan
1339 1.1 jonathan /*
1340 1.1 jonathan * Construct ntp_timeval.
1341 1.1 jonathan */
1342 1.1 jonathan
1343 1.1 jonathan s = splclock();
1344 1.1 jonathan #ifdef EXT_CLOCK
1345 1.1 jonathan /*
1346 1.1 jonathan * The microtime() external clock routine returns a
1347 1.1 jonathan * status code. If less than zero, we declare an error
1348 1.1 jonathan * in the clock status word and return the kernel
1349 1.1 jonathan * (software) time variable. While there are other
1350 1.1 jonathan * places that call microtime(), this is the only place
1351 1.1 jonathan * that matters from an application point of view.
1352 1.1 jonathan */
1353 1.1 jonathan if (microtime(&atv) < 0) {
1354 1.1 jonathan time_status |= STA_CLOCKERR;
1355 1.1 jonathan ntv.time = time;
1356 1.1 jonathan } else {
1357 1.1 jonathan time_status &= ~STA_CLOCKERR;
1358 1.1 jonathan }
1359 1.1 jonathan #else /* EXT_CLOCK */
1360 1.1 jonathan microtime(&atv);
1361 1.1 jonathan #endif /* EXT_CLOCK */
1362 1.1 jonathan ntv.time = atv;
1363 1.1 jonathan ntv.maxerror = time_maxerror;
1364 1.1 jonathan ntv.esterror = time_esterror;
1365 1.1 jonathan splx(s);
1366 1.1 jonathan
1367 1.1 jonathan #ifdef notyet
1368 1.1 jonathan /*
1369 1.1 jonathan * Status word error decode. If any of these conditions
1370 1.1 jonathan * occur, an error is returned, instead of the status
1371 1.1 jonathan * word. Most applications will care only about the fact
1372 1.1 jonathan * the system clock may not be trusted, not about the
1373 1.1 jonathan * details.
1374 1.1 jonathan *
1375 1.1 jonathan * Hardware or software error
1376 1.1 jonathan */
1377 1.1 jonathan if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1378 1.1 jonathan ntv.time_state = TIME_ERROR;
1379 1.1 jonathan
1380 1.1 jonathan /*
1381 1.1 jonathan * PPS signal lost when either time or frequency
1382 1.1 jonathan * synchronization requested
1383 1.1 jonathan */
1384 1.1 jonathan (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1385 1.1 jonathan !(time_status & STA_PPSSIGNAL)) ||
1386 1.1 jonathan
1387 1.1 jonathan /*
1388 1.1 jonathan * PPS jitter exceeded when time synchronization
1389 1.1 jonathan * requested
1390 1.1 jonathan */
1391 1.1 jonathan (time_status & STA_PPSTIME &&
1392 1.1 jonathan time_status & STA_PPSJITTER) ||
1393 1.1 jonathan
1394 1.1 jonathan /*
1395 1.1 jonathan * PPS wander exceeded or calibration error when
1396 1.1 jonathan * frequency synchronization requested
1397 1.1 jonathan */
1398 1.1 jonathan (time_status & STA_PPSFREQ &&
1399 1.1 jonathan time_status & (STA_PPSWANDER | STA_PPSERROR)))
1400 1.1 jonathan ntv.time_state = TIME_ERROR;
1401 1.1 jonathan else
1402 1.1 jonathan ntv.time_state = time_state;
1403 1.1 jonathan #endif /* notyet */
1404 1.25 atatat
1405 1.25 atatat node = *rnode;
1406 1.25 atatat node.sysctl_data = &ntv;
1407 1.25 atatat node.sysctl_size = sizeof(ntv);
1408 1.25 atatat return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1409 1.25 atatat }
1410 1.25 atatat
1411 1.25 atatat SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
1412 1.25 atatat {
1413 1.25 atatat
1414 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
1415 1.26 atatat CTLFLAG_PERMANENT,
1416 1.25 atatat CTLTYPE_NODE, "kern", NULL,
1417 1.25 atatat NULL, 0, NULL, 0,
1418 1.25 atatat CTL_KERN, CTL_EOL);
1419 1.25 atatat
1420 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
1421 1.26 atatat CTLFLAG_PERMANENT,
1422 1.27 atatat CTLTYPE_STRUCT, "ntptime",
1423 1.27 atatat SYSCTL_DESCR("Kernel clock values for NTP"),
1424 1.25 atatat sysctl_kern_ntptime, 0, NULL,
1425 1.25 atatat sizeof(struct ntptimeval),
1426 1.25 atatat CTL_KERN, KERN_NTPTIME, CTL_EOL);
1427 1.1 jonathan }
1428 1.4 thorpej #else /* !NTP */
1429 1.13 bjh21 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
1430 1.13 bjh21
1431 1.4 thorpej int
1432 1.22 thorpej sys_ntp_gettime(l, v, retval)
1433 1.22 thorpej struct lwp *l;
1434 1.4 thorpej void *v;
1435 1.4 thorpej register_t *retval;
1436 1.4 thorpej {
1437 1.19 simonb
1438 1.4 thorpej return(ENOSYS);
1439 1.4 thorpej }
1440 1.13 bjh21 #endif /* !NTP */
1441 1.29.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
1442