kern_ntptime.c revision 1.29.6.6 1 1.29.6.5 kardel /* $NetBSD: kern_ntptime.c,v 1.29.6.6 2006/06/02 00:13:12 kardel Exp $ */
2 1.29.6.1 simonb #include <sys/types.h> /* XXX to get __HAVE_TIMECOUNTER, remove
3 1.29.6.1 simonb after all ports are converted. */
4 1.29.6.1 simonb #ifdef __HAVE_TIMECOUNTER
5 1.29.6.1 simonb
6 1.29.6.1 simonb /*-
7 1.29.6.1 simonb ***********************************************************************
8 1.29.6.1 simonb * *
9 1.29.6.1 simonb * Copyright (c) David L. Mills 1993-2001 *
10 1.29.6.1 simonb * *
11 1.29.6.1 simonb * Permission to use, copy, modify, and distribute this software and *
12 1.29.6.1 simonb * its documentation for any purpose and without fee is hereby *
13 1.29.6.1 simonb * granted, provided that the above copyright notice appears in all *
14 1.29.6.1 simonb * copies and that both the copyright notice and this permission *
15 1.29.6.1 simonb * notice appear in supporting documentation, and that the name *
16 1.29.6.1 simonb * University of Delaware not be used in advertising or publicity *
17 1.29.6.1 simonb * pertaining to distribution of the software without specific, *
18 1.29.6.1 simonb * written prior permission. The University of Delaware makes no *
19 1.29.6.1 simonb * representations about the suitability this software for any *
20 1.29.6.1 simonb * purpose. It is provided "as is" without express or implied *
21 1.29.6.1 simonb * warranty. *
22 1.29.6.1 simonb * *
23 1.29.6.1 simonb **********************************************************************/
24 1.1 jonathan
25 1.29.6.1 simonb /*
26 1.29.6.1 simonb * Adapted from the original sources for FreeBSD and timecounters by:
27 1.29.6.1 simonb * Poul-Henning Kamp <phk (at) FreeBSD.org>.
28 1.29.6.1 simonb *
29 1.29.6.1 simonb * The 32bit version of the "LP" macros seems a bit past its "sell by"
30 1.29.6.1 simonb * date so I have retained only the 64bit version and included it directly
31 1.29.6.1 simonb * in this file.
32 1.29.6.1 simonb *
33 1.29.6.1 simonb * Only minor changes done to interface with the timecounters over in
34 1.29.6.1 simonb * sys/kern/kern_clock.c. Some of the comments below may be (even more)
35 1.29.6.1 simonb * confusing and/or plain wrong in that context.
36 1.29.6.1 simonb */
37 1.29.6.1 simonb
38 1.29.6.1 simonb #include <sys/cdefs.h>
39 1.29.6.1 simonb /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
40 1.29.6.5 kardel __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.6 2006/06/02 00:13:12 kardel Exp $");
41 1.29.6.1 simonb
42 1.29.6.1 simonb #include "opt_ntp.h"
43 1.29.6.6 kardel #include "opt_compat_netbsd.h"
44 1.29.6.1 simonb
45 1.29.6.1 simonb #include <sys/param.h>
46 1.29.6.1 simonb #include <sys/resourcevar.h>
47 1.29.6.1 simonb #include <sys/systm.h>
48 1.29.6.1 simonb #include <sys/kernel.h>
49 1.29.6.1 simonb #include <sys/proc.h>
50 1.29.6.1 simonb #include <sys/sysctl.h>
51 1.29.6.1 simonb #include <sys/timex.h>
52 1.29.6.6 kardel #ifdef COMPAT_30
53 1.29.6.6 kardel #include <compat/sys/timex.h>
54 1.29.6.6 kardel #endif
55 1.29.6.1 simonb #include <sys/vnode.h>
56 1.29.6.6 kardel #include <sys/kauth.h>
57 1.29.6.1 simonb
58 1.29.6.1 simonb #include <sys/mount.h>
59 1.29.6.1 simonb #include <sys/sa.h>
60 1.29.6.1 simonb #include <sys/syscallargs.h>
61 1.29.6.1 simonb
62 1.29.6.1 simonb #include <machine/cpu.h>
63 1.29.6.1 simonb
64 1.29.6.1 simonb /*
65 1.29.6.1 simonb * Single-precision macros for 64-bit machines
66 1.29.6.1 simonb */
67 1.29.6.1 simonb typedef int64_t l_fp;
68 1.29.6.1 simonb #define L_ADD(v, u) ((v) += (u))
69 1.29.6.1 simonb #define L_SUB(v, u) ((v) -= (u))
70 1.29.6.1 simonb #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
71 1.29.6.1 simonb #define L_NEG(v) ((v) = -(v))
72 1.29.6.1 simonb #define L_RSHIFT(v, n) \
73 1.29.6.1 simonb do { \
74 1.29.6.1 simonb if ((v) < 0) \
75 1.29.6.1 simonb (v) = -(-(v) >> (n)); \
76 1.29.6.1 simonb else \
77 1.29.6.1 simonb (v) = (v) >> (n); \
78 1.29.6.1 simonb } while (0)
79 1.29.6.1 simonb #define L_MPY(v, a) ((v) *= (a))
80 1.29.6.1 simonb #define L_CLR(v) ((v) = 0)
81 1.29.6.1 simonb #define L_ISNEG(v) ((v) < 0)
82 1.29.6.1 simonb #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
83 1.29.6.1 simonb #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
84 1.29.6.1 simonb
85 1.29.6.3 kardel #ifdef NTP
86 1.29.6.1 simonb /*
87 1.29.6.1 simonb * Generic NTP kernel interface
88 1.29.6.1 simonb *
89 1.29.6.1 simonb * These routines constitute the Network Time Protocol (NTP) interfaces
90 1.29.6.1 simonb * for user and daemon application programs. The ntp_gettime() routine
91 1.29.6.1 simonb * provides the time, maximum error (synch distance) and estimated error
92 1.29.6.1 simonb * (dispersion) to client user application programs. The ntp_adjtime()
93 1.29.6.1 simonb * routine is used by the NTP daemon to adjust the system clock to an
94 1.29.6.1 simonb * externally derived time. The time offset and related variables set by
95 1.29.6.1 simonb * this routine are used by other routines in this module to adjust the
96 1.29.6.1 simonb * phase and frequency of the clock discipline loop which controls the
97 1.29.6.1 simonb * system clock.
98 1.29.6.1 simonb *
99 1.29.6.1 simonb * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
100 1.29.6.1 simonb * defined), the time at each tick interrupt is derived directly from
101 1.29.6.1 simonb * the kernel time variable. When the kernel time is reckoned in
102 1.29.6.1 simonb * microseconds, (NTP_NANO undefined), the time is derived from the
103 1.29.6.1 simonb * kernel time variable together with a variable representing the
104 1.29.6.1 simonb * leftover nanoseconds at the last tick interrupt. In either case, the
105 1.29.6.1 simonb * current nanosecond time is reckoned from these values plus an
106 1.29.6.1 simonb * interpolated value derived by the clock routines in another
107 1.29.6.1 simonb * architecture-specific module. The interpolation can use either a
108 1.29.6.1 simonb * dedicated counter or a processor cycle counter (PCC) implemented in
109 1.29.6.1 simonb * some architectures.
110 1.29.6.1 simonb *
111 1.29.6.1 simonb * Note that all routines must run at priority splclock or higher.
112 1.29.6.1 simonb */
113 1.29.6.1 simonb /*
114 1.29.6.1 simonb * Phase/frequency-lock loop (PLL/FLL) definitions
115 1.29.6.1 simonb *
116 1.29.6.1 simonb * The nanosecond clock discipline uses two variable types, time
117 1.29.6.1 simonb * variables and frequency variables. Both types are represented as 64-
118 1.29.6.1 simonb * bit fixed-point quantities with the decimal point between two 32-bit
119 1.29.6.1 simonb * halves. On a 32-bit machine, each half is represented as a single
120 1.29.6.1 simonb * word and mathematical operations are done using multiple-precision
121 1.29.6.1 simonb * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
122 1.29.6.1 simonb * used.
123 1.29.6.1 simonb *
124 1.29.6.1 simonb * A time variable is a signed 64-bit fixed-point number in ns and
125 1.29.6.1 simonb * fraction. It represents the remaining time offset to be amortized
126 1.29.6.1 simonb * over succeeding tick interrupts. The maximum time offset is about
127 1.29.6.1 simonb * 0.5 s and the resolution is about 2.3e-10 ns.
128 1.29.6.1 simonb *
129 1.29.6.1 simonb * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
130 1.29.6.1 simonb * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
131 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132 1.29.6.1 simonb * |s s s| ns |
133 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134 1.29.6.1 simonb * | fraction |
135 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
136 1.29.6.1 simonb *
137 1.29.6.1 simonb * A frequency variable is a signed 64-bit fixed-point number in ns/s
138 1.29.6.1 simonb * and fraction. It represents the ns and fraction to be added to the
139 1.29.6.1 simonb * kernel time variable at each second. The maximum frequency offset is
140 1.29.6.1 simonb * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
141 1.29.6.1 simonb *
142 1.29.6.1 simonb * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
143 1.29.6.1 simonb * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
144 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
145 1.29.6.1 simonb * |s s s s s s s s s s s s s| ns/s |
146 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
147 1.29.6.1 simonb * | fraction |
148 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
149 1.29.6.1 simonb */
150 1.29.6.1 simonb /*
151 1.29.6.1 simonb * The following variables establish the state of the PLL/FLL and the
152 1.29.6.1 simonb * residual time and frequency offset of the local clock.
153 1.29.6.1 simonb */
154 1.29.6.1 simonb #define SHIFT_PLL 4 /* PLL loop gain (shift) */
155 1.29.6.1 simonb #define SHIFT_FLL 2 /* FLL loop gain (shift) */
156 1.29.6.1 simonb
157 1.29.6.1 simonb static int time_state = TIME_OK; /* clock state */
158 1.29.6.1 simonb static int time_status = STA_UNSYNC; /* clock status bits */
159 1.29.6.1 simonb static long time_tai; /* TAI offset (s) */
160 1.29.6.1 simonb static long time_monitor; /* last time offset scaled (ns) */
161 1.29.6.1 simonb static long time_constant; /* poll interval (shift) (s) */
162 1.29.6.1 simonb static long time_precision = 1; /* clock precision (ns) */
163 1.29.6.1 simonb static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
164 1.29.6.1 simonb static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
165 1.29.6.1 simonb static long time_reftime; /* time at last adjustment (s) */
166 1.29.6.1 simonb static l_fp time_offset; /* time offset (ns) */
167 1.29.6.1 simonb static l_fp time_freq; /* frequency offset (ns/s) */
168 1.29.6.2 kardel #endif /* NTP */
169 1.29.6.1 simonb
170 1.29.6.2 kardel static l_fp time_adj; /* tick adjust (ns/s) */
171 1.29.6.2 kardel int64_t time_adjtime; /* correction from adjtime(2) (usec) */
172 1.29.6.1 simonb
173 1.29.6.1 simonb extern int time_adjusted; /* ntp might have changed the system time */
174 1.29.6.1 simonb
175 1.29.6.2 kardel #ifdef NTP
176 1.29.6.1 simonb #ifdef PPS_SYNC
177 1.29.6.1 simonb /*
178 1.29.6.1 simonb * The following variables are used when a pulse-per-second (PPS) signal
179 1.29.6.1 simonb * is available and connected via a modem control lead. They establish
180 1.29.6.1 simonb * the engineering parameters of the clock discipline loop when
181 1.29.6.1 simonb * controlled by the PPS signal.
182 1.29.6.1 simonb */
183 1.29.6.1 simonb #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
184 1.29.6.1 simonb #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
185 1.29.6.1 simonb #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
186 1.29.6.1 simonb #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
187 1.29.6.1 simonb #define PPS_VALID 120 /* PPS signal watchdog max (s) */
188 1.29.6.1 simonb #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
189 1.29.6.1 simonb #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
190 1.29.6.1 simonb
191 1.29.6.1 simonb static struct timespec pps_tf[3]; /* phase median filter */
192 1.29.6.1 simonb static l_fp pps_freq; /* scaled frequency offset (ns/s) */
193 1.29.6.1 simonb static long pps_fcount; /* frequency accumulator */
194 1.29.6.1 simonb static long pps_jitter; /* nominal jitter (ns) */
195 1.29.6.1 simonb static long pps_stabil; /* nominal stability (scaled ns/s) */
196 1.29.6.1 simonb static long pps_lastsec; /* time at last calibration (s) */
197 1.29.6.1 simonb static int pps_valid; /* signal watchdog counter */
198 1.29.6.1 simonb static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
199 1.29.6.1 simonb static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
200 1.29.6.1 simonb static int pps_intcnt; /* wander counter */
201 1.29.6.1 simonb
202 1.29.6.1 simonb /*
203 1.29.6.1 simonb * PPS signal quality monitors
204 1.29.6.1 simonb */
205 1.29.6.1 simonb static long pps_calcnt; /* calibration intervals */
206 1.29.6.1 simonb static long pps_jitcnt; /* jitter limit exceeded */
207 1.29.6.1 simonb static long pps_stbcnt; /* stability limit exceeded */
208 1.29.6.1 simonb static long pps_errcnt; /* calibration errors */
209 1.29.6.1 simonb #endif /* PPS_SYNC */
210 1.29.6.1 simonb /*
211 1.29.6.1 simonb * End of phase/frequency-lock loop (PLL/FLL) definitions
212 1.29.6.1 simonb */
213 1.29.6.1 simonb
214 1.29.6.1 simonb static void hardupdate(long offset);
215 1.29.6.1 simonb
216 1.29.6.4 kardel /*
217 1.29.6.4 kardel * ntp_gettime() - NTP user application interface
218 1.29.6.4 kardel */
219 1.29.6.4 kardel void
220 1.29.6.6 kardel ntp_gettime(ntv)
221 1.29.6.4 kardel struct ntptimeval *ntv;
222 1.29.6.4 kardel {
223 1.29.6.4 kardel nanotime(&ntv->time);
224 1.29.6.4 kardel ntv->maxerror = time_maxerror;
225 1.29.6.4 kardel ntv->esterror = time_esterror;
226 1.29.6.4 kardel ntv->tai = time_tai;
227 1.29.6.4 kardel ntv->time_state = time_state;
228 1.29.6.4 kardel }
229 1.29.6.1 simonb
230 1.29.6.1 simonb /* ARGSUSED */
231 1.29.6.1 simonb /*
232 1.29.6.1 simonb * ntp_adjtime() - NTP daemon application interface
233 1.29.6.1 simonb */
234 1.29.6.1 simonb int
235 1.29.6.1 simonb sys_ntp_adjtime(l, v, retval)
236 1.29.6.1 simonb struct lwp *l;
237 1.29.6.1 simonb void *v;
238 1.29.6.1 simonb register_t *retval;
239 1.29.6.1 simonb {
240 1.29.6.1 simonb struct sys_ntp_adjtime_args /* {
241 1.29.6.1 simonb syscallarg(struct timex *) tp;
242 1.29.6.1 simonb } */ *uap = v;
243 1.29.6.1 simonb struct proc *p = l->l_proc;
244 1.29.6.1 simonb struct timex ntv;
245 1.29.6.1 simonb int error = 0;
246 1.29.6.1 simonb
247 1.29.6.1 simonb if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
248 1.29.6.1 simonb sizeof(ntv))) != 0)
249 1.29.6.1 simonb return (error);
250 1.29.6.1 simonb
251 1.29.6.6 kardel if (ntv.modes != 0 && (error = kauth_authorize_generic(p->p_cred,
252 1.29.6.6 kardel KAUTH_GENERIC_ISSUSER, &p->p_acflag)) != 0)
253 1.29.6.1 simonb
254 1.29.6.6 kardel ntp_adjtime1(&ntv);
255 1.29.6.4 kardel
256 1.29.6.4 kardel error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
257 1.29.6.4 kardel if (!error) {
258 1.29.6.6 kardel *retval = ntp_timestatus();
259 1.29.6.4 kardel }
260 1.29.6.4 kardel return error;
261 1.29.6.1 simonb }
262 1.29.6.1 simonb
263 1.29.6.4 kardel void
264 1.29.6.6 kardel ntp_adjtime1(ntv)
265 1.29.6.1 simonb struct timex *ntv;
266 1.29.6.1 simonb {
267 1.29.6.1 simonb long freq;
268 1.29.6.1 simonb int modes;
269 1.29.6.1 simonb int s;
270 1.29.6.1 simonb
271 1.29.6.1 simonb /*
272 1.29.6.1 simonb * Update selected clock variables - only the superuser can
273 1.29.6.1 simonb * change anything. Note that there is no error checking here on
274 1.29.6.1 simonb * the assumption the superuser should know what it is doing.
275 1.29.6.1 simonb * Note that either the time constant or TAI offset are loaded
276 1.29.6.1 simonb * from the ntv.constant member, depending on the mode bits. If
277 1.29.6.1 simonb * the STA_PLL bit in the status word is cleared, the state and
278 1.29.6.1 simonb * status words are reset to the initial values at boot.
279 1.29.6.1 simonb */
280 1.29.6.1 simonb modes = ntv->modes;
281 1.29.6.1 simonb if (modes != 0)
282 1.29.6.1 simonb /* We need to save the system time during shutdown */
283 1.29.6.1 simonb time_adjusted |= 2;
284 1.29.6.1 simonb s = splclock();
285 1.29.6.1 simonb if (modes & MOD_MAXERROR)
286 1.29.6.1 simonb time_maxerror = ntv->maxerror;
287 1.29.6.1 simonb if (modes & MOD_ESTERROR)
288 1.29.6.1 simonb time_esterror = ntv->esterror;
289 1.29.6.1 simonb if (modes & MOD_STATUS) {
290 1.29.6.1 simonb if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
291 1.29.6.1 simonb time_state = TIME_OK;
292 1.29.6.1 simonb time_status = STA_UNSYNC;
293 1.29.6.1 simonb #ifdef PPS_SYNC
294 1.29.6.1 simonb pps_shift = PPS_FAVG;
295 1.29.6.1 simonb #endif /* PPS_SYNC */
296 1.29.6.1 simonb }
297 1.29.6.1 simonb time_status &= STA_RONLY;
298 1.29.6.1 simonb time_status |= ntv->status & ~STA_RONLY;
299 1.29.6.1 simonb }
300 1.29.6.1 simonb if (modes & MOD_TIMECONST) {
301 1.29.6.1 simonb if (ntv->constant < 0)
302 1.29.6.1 simonb time_constant = 0;
303 1.29.6.1 simonb else if (ntv->constant > MAXTC)
304 1.29.6.1 simonb time_constant = MAXTC;
305 1.29.6.1 simonb else
306 1.29.6.1 simonb time_constant = ntv->constant;
307 1.29.6.1 simonb }
308 1.29.6.1 simonb if (modes & MOD_TAI) {
309 1.29.6.1 simonb if (ntv->constant > 0) /* XXX zero & negative numbers ? */
310 1.29.6.1 simonb time_tai = ntv->constant;
311 1.29.6.1 simonb }
312 1.29.6.1 simonb #ifdef PPS_SYNC
313 1.29.6.1 simonb if (modes & MOD_PPSMAX) {
314 1.29.6.1 simonb if (ntv->shift < PPS_FAVG)
315 1.29.6.1 simonb pps_shiftmax = PPS_FAVG;
316 1.29.6.1 simonb else if (ntv->shift > PPS_FAVGMAX)
317 1.29.6.1 simonb pps_shiftmax = PPS_FAVGMAX;
318 1.29.6.1 simonb else
319 1.29.6.2 kardel pps_shiftmax = ntv->shift;
320 1.29.6.1 simonb }
321 1.29.6.1 simonb #endif /* PPS_SYNC */
322 1.29.6.1 simonb if (modes & MOD_NANO)
323 1.29.6.1 simonb time_status |= STA_NANO;
324 1.29.6.1 simonb if (modes & MOD_MICRO)
325 1.29.6.1 simonb time_status &= ~STA_NANO;
326 1.29.6.1 simonb if (modes & MOD_CLKB)
327 1.29.6.1 simonb time_status |= STA_CLK;
328 1.29.6.1 simonb if (modes & MOD_CLKA)
329 1.29.6.1 simonb time_status &= ~STA_CLK;
330 1.29.6.1 simonb if (modes & MOD_FREQUENCY) {
331 1.29.6.1 simonb freq = (ntv->freq * 1000LL) >> 16;
332 1.29.6.1 simonb if (freq > MAXFREQ)
333 1.29.6.1 simonb L_LINT(time_freq, MAXFREQ);
334 1.29.6.1 simonb else if (freq < -MAXFREQ)
335 1.29.6.1 simonb L_LINT(time_freq, -MAXFREQ);
336 1.29.6.1 simonb else {
337 1.29.6.1 simonb /*
338 1.29.6.1 simonb * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
339 1.29.6.1 simonb * time_freq is [ns/s * 2^32]
340 1.29.6.1 simonb */
341 1.29.6.1 simonb time_freq = ntv->freq * 1000LL * 65536LL;
342 1.29.6.1 simonb }
343 1.29.6.1 simonb #ifdef PPS_SYNC
344 1.29.6.1 simonb pps_freq = time_freq;
345 1.29.6.1 simonb #endif /* PPS_SYNC */
346 1.29.6.1 simonb }
347 1.29.6.1 simonb if (modes & MOD_OFFSET) {
348 1.29.6.1 simonb if (time_status & STA_NANO)
349 1.29.6.1 simonb hardupdate(ntv->offset);
350 1.29.6.1 simonb else
351 1.29.6.1 simonb hardupdate(ntv->offset * 1000);
352 1.29.6.1 simonb }
353 1.29.6.1 simonb
354 1.29.6.1 simonb /*
355 1.29.6.1 simonb * Retrieve all clock variables. Note that the TAI offset is
356 1.29.6.1 simonb * returned only by ntp_gettime();
357 1.29.6.1 simonb */
358 1.29.6.1 simonb if (time_status & STA_NANO)
359 1.29.6.1 simonb ntv->offset = L_GINT(time_offset);
360 1.29.6.1 simonb else
361 1.29.6.1 simonb ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
362 1.29.6.1 simonb ntv->freq = L_GINT((time_freq / 1000LL) << 16);
363 1.29.6.1 simonb ntv->maxerror = time_maxerror;
364 1.29.6.1 simonb ntv->esterror = time_esterror;
365 1.29.6.1 simonb ntv->status = time_status;
366 1.29.6.1 simonb ntv->constant = time_constant;
367 1.29.6.1 simonb if (time_status & STA_NANO)
368 1.29.6.1 simonb ntv->precision = time_precision;
369 1.29.6.1 simonb else
370 1.29.6.1 simonb ntv->precision = time_precision / 1000;
371 1.29.6.1 simonb ntv->tolerance = MAXFREQ * SCALE_PPM;
372 1.29.6.1 simonb #ifdef PPS_SYNC
373 1.29.6.1 simonb ntv->shift = pps_shift;
374 1.29.6.1 simonb ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
375 1.29.6.1 simonb if (time_status & STA_NANO)
376 1.29.6.1 simonb ntv->jitter = pps_jitter;
377 1.29.6.1 simonb else
378 1.29.6.1 simonb ntv->jitter = pps_jitter / 1000;
379 1.29.6.1 simonb ntv->stabil = pps_stabil;
380 1.29.6.1 simonb ntv->calcnt = pps_calcnt;
381 1.29.6.1 simonb ntv->errcnt = pps_errcnt;
382 1.29.6.1 simonb ntv->jitcnt = pps_jitcnt;
383 1.29.6.1 simonb ntv->stbcnt = pps_stbcnt;
384 1.29.6.1 simonb #endif /* PPS_SYNC */
385 1.29.6.1 simonb splx(s);
386 1.29.6.1 simonb }
387 1.29.6.2 kardel #endif /* NTP */
388 1.29.6.1 simonb
389 1.29.6.1 simonb /*
390 1.29.6.1 simonb * second_overflow() - called after ntp_tick_adjust()
391 1.29.6.1 simonb *
392 1.29.6.1 simonb * This routine is ordinarily called immediately following the above
393 1.29.6.1 simonb * routine ntp_tick_adjust(). While these two routines are normally
394 1.29.6.1 simonb * combined, they are separated here only for the purposes of
395 1.29.6.1 simonb * simulation.
396 1.29.6.1 simonb */
397 1.29.6.1 simonb void
398 1.29.6.1 simonb ntp_update_second(int64_t *adjustment, time_t *newsec)
399 1.29.6.1 simonb {
400 1.29.6.1 simonb int tickrate;
401 1.29.6.1 simonb l_fp ftemp; /* 32/64-bit temporary */
402 1.29.6.1 simonb
403 1.29.6.2 kardel #ifdef NTP
404 1.29.6.2 kardel
405 1.29.6.1 simonb /*
406 1.29.6.1 simonb * On rollover of the second both the nanosecond and microsecond
407 1.29.6.1 simonb * clocks are updated and the state machine cranked as
408 1.29.6.1 simonb * necessary. The phase adjustment to be used for the next
409 1.29.6.1 simonb * second is calculated and the maximum error is increased by
410 1.29.6.1 simonb * the tolerance.
411 1.29.6.1 simonb */
412 1.29.6.1 simonb time_maxerror += MAXFREQ / 1000;
413 1.29.6.1 simonb
414 1.29.6.1 simonb /*
415 1.29.6.1 simonb * Leap second processing. If in leap-insert state at
416 1.29.6.1 simonb * the end of the day, the system clock is set back one
417 1.29.6.1 simonb * second; if in leap-delete state, the system clock is
418 1.29.6.1 simonb * set ahead one second. The nano_time() routine or
419 1.29.6.1 simonb * external clock driver will insure that reported time
420 1.29.6.1 simonb * is always monotonic.
421 1.29.6.1 simonb */
422 1.29.6.1 simonb switch (time_state) {
423 1.29.6.1 simonb
424 1.29.6.1 simonb /*
425 1.29.6.1 simonb * No warning.
426 1.29.6.1 simonb */
427 1.29.6.1 simonb case TIME_OK:
428 1.29.6.1 simonb if (time_status & STA_INS)
429 1.29.6.1 simonb time_state = TIME_INS;
430 1.29.6.1 simonb else if (time_status & STA_DEL)
431 1.29.6.1 simonb time_state = TIME_DEL;
432 1.29.6.1 simonb break;
433 1.29.6.1 simonb
434 1.29.6.1 simonb /*
435 1.29.6.1 simonb * Insert second 23:59:60 following second
436 1.29.6.1 simonb * 23:59:59.
437 1.29.6.1 simonb */
438 1.29.6.1 simonb case TIME_INS:
439 1.29.6.1 simonb if (!(time_status & STA_INS))
440 1.29.6.1 simonb time_state = TIME_OK;
441 1.29.6.1 simonb else if ((*newsec) % 86400 == 0) {
442 1.29.6.1 simonb (*newsec)--;
443 1.29.6.1 simonb time_state = TIME_OOP;
444 1.29.6.1 simonb time_tai++;
445 1.29.6.1 simonb }
446 1.29.6.1 simonb break;
447 1.29.6.1 simonb
448 1.29.6.1 simonb /*
449 1.29.6.1 simonb * Delete second 23:59:59.
450 1.29.6.1 simonb */
451 1.29.6.1 simonb case TIME_DEL:
452 1.29.6.1 simonb if (!(time_status & STA_DEL))
453 1.29.6.1 simonb time_state = TIME_OK;
454 1.29.6.1 simonb else if (((*newsec) + 1) % 86400 == 0) {
455 1.29.6.1 simonb (*newsec)++;
456 1.29.6.1 simonb time_tai--;
457 1.29.6.1 simonb time_state = TIME_WAIT;
458 1.29.6.1 simonb }
459 1.29.6.1 simonb break;
460 1.29.6.1 simonb
461 1.29.6.1 simonb /*
462 1.29.6.1 simonb * Insert second in progress.
463 1.29.6.1 simonb */
464 1.29.6.1 simonb case TIME_OOP:
465 1.29.6.1 simonb time_state = TIME_WAIT;
466 1.29.6.1 simonb break;
467 1.29.6.1 simonb
468 1.29.6.1 simonb /*
469 1.29.6.1 simonb * Wait for status bits to clear.
470 1.29.6.1 simonb */
471 1.29.6.1 simonb case TIME_WAIT:
472 1.29.6.1 simonb if (!(time_status & (STA_INS | STA_DEL)))
473 1.29.6.1 simonb time_state = TIME_OK;
474 1.29.6.1 simonb }
475 1.29.6.1 simonb
476 1.29.6.1 simonb /*
477 1.29.6.1 simonb * Compute the total time adjustment for the next second
478 1.29.6.1 simonb * in ns. The offset is reduced by a factor depending on
479 1.29.6.1 simonb * whether the PPS signal is operating. Note that the
480 1.29.6.1 simonb * value is in effect scaled by the clock frequency,
481 1.29.6.1 simonb * since the adjustment is added at each tick interrupt.
482 1.29.6.1 simonb */
483 1.29.6.1 simonb ftemp = time_offset;
484 1.29.6.1 simonb #ifdef PPS_SYNC
485 1.29.6.1 simonb /* XXX even if PPS signal dies we should finish adjustment ? */
486 1.29.6.1 simonb if (time_status & STA_PPSTIME && time_status &
487 1.29.6.1 simonb STA_PPSSIGNAL)
488 1.29.6.1 simonb L_RSHIFT(ftemp, pps_shift);
489 1.29.6.1 simonb else
490 1.29.6.1 simonb L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
491 1.29.6.1 simonb #else
492 1.29.6.1 simonb L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
493 1.29.6.1 simonb #endif /* PPS_SYNC */
494 1.29.6.1 simonb time_adj = ftemp;
495 1.29.6.1 simonb L_SUB(time_offset, ftemp);
496 1.29.6.1 simonb L_ADD(time_adj, time_freq);
497 1.29.6.1 simonb
498 1.29.6.2 kardel #ifdef PPS_SYNC
499 1.29.6.2 kardel if (pps_valid > 0)
500 1.29.6.2 kardel pps_valid--;
501 1.29.6.2 kardel else
502 1.29.6.2 kardel time_status &= ~STA_PPSSIGNAL;
503 1.29.6.2 kardel #endif /* PPS_SYNC */
504 1.29.6.2 kardel
505 1.29.6.2 kardel #endif /* NTP */
506 1.29.6.2 kardel
507 1.29.6.1 simonb /*
508 1.29.6.1 simonb * Apply any correction from adjtime(2). If more than one second
509 1.29.6.1 simonb * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
510 1.29.6.1 simonb * until the last second is slewed the final < 500 usecs.
511 1.29.6.1 simonb */
512 1.29.6.1 simonb if (time_adjtime != 0) {
513 1.29.6.1 simonb if (time_adjtime > 1000000)
514 1.29.6.1 simonb tickrate = 5000;
515 1.29.6.1 simonb else if (time_adjtime < -1000000)
516 1.29.6.1 simonb tickrate = -5000;
517 1.29.6.1 simonb else if (time_adjtime > 500)
518 1.29.6.1 simonb tickrate = 500;
519 1.29.6.1 simonb else if (time_adjtime < -500)
520 1.29.6.1 simonb tickrate = -500;
521 1.29.6.1 simonb else
522 1.29.6.1 simonb tickrate = time_adjtime;
523 1.29.6.1 simonb time_adjtime -= tickrate;
524 1.29.6.1 simonb L_LINT(ftemp, tickrate * 1000);
525 1.29.6.1 simonb L_ADD(time_adj, ftemp);
526 1.29.6.1 simonb }
527 1.29.6.1 simonb *adjustment = time_adj;
528 1.29.6.1 simonb }
529 1.29.6.1 simonb
530 1.29.6.1 simonb /*
531 1.29.6.1 simonb * ntp_init() - initialize variables and structures
532 1.29.6.1 simonb *
533 1.29.6.1 simonb * This routine must be called after the kernel variables hz and tick
534 1.29.6.1 simonb * are set or changed and before the next tick interrupt. In this
535 1.29.6.1 simonb * particular implementation, these values are assumed set elsewhere in
536 1.29.6.1 simonb * the kernel. The design allows the clock frequency and tick interval
537 1.29.6.1 simonb * to be changed while the system is running. So, this routine should
538 1.29.6.1 simonb * probably be integrated with the code that does that.
539 1.29.6.1 simonb */
540 1.29.6.1 simonb void
541 1.29.6.1 simonb ntp_init(void)
542 1.29.6.1 simonb {
543 1.29.6.1 simonb
544 1.29.6.1 simonb /*
545 1.29.6.1 simonb * The following variables are initialized only at startup. Only
546 1.29.6.1 simonb * those structures not cleared by the compiler need to be
547 1.29.6.1 simonb * initialized, and these only in the simulator. In the actual
548 1.29.6.1 simonb * kernel, any nonzero values here will quickly evaporate.
549 1.29.6.1 simonb */
550 1.29.6.2 kardel L_CLR(time_adj);
551 1.29.6.2 kardel #ifdef NTP
552 1.29.6.1 simonb L_CLR(time_offset);
553 1.29.6.1 simonb L_CLR(time_freq);
554 1.29.6.1 simonb #ifdef PPS_SYNC
555 1.29.6.1 simonb pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
556 1.29.6.1 simonb pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
557 1.29.6.1 simonb pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
558 1.29.6.1 simonb pps_fcount = 0;
559 1.29.6.1 simonb L_CLR(pps_freq);
560 1.29.6.2 kardel #endif /* PPS_SYNC */
561 1.29.6.2 kardel #endif
562 1.29.6.1 simonb }
563 1.29.6.1 simonb
564 1.29.6.2 kardel #ifdef NTP
565 1.29.6.1 simonb /*
566 1.29.6.1 simonb * hardupdate() - local clock update
567 1.29.6.1 simonb *
568 1.29.6.1 simonb * This routine is called by ntp_adjtime() to update the local clock
569 1.29.6.1 simonb * phase and frequency. The implementation is of an adaptive-parameter,
570 1.29.6.1 simonb * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
571 1.29.6.1 simonb * time and frequency offset estimates for each call. If the kernel PPS
572 1.29.6.1 simonb * discipline code is configured (PPS_SYNC), the PPS signal itself
573 1.29.6.1 simonb * determines the new time offset, instead of the calling argument.
574 1.29.6.1 simonb * Presumably, calls to ntp_adjtime() occur only when the caller
575 1.29.6.1 simonb * believes the local clock is valid within some bound (+-128 ms with
576 1.29.6.1 simonb * NTP). If the caller's time is far different than the PPS time, an
577 1.29.6.1 simonb * argument will ensue, and it's not clear who will lose.
578 1.29.6.1 simonb *
579 1.29.6.1 simonb * For uncompensated quartz crystal oscillators and nominal update
580 1.29.6.1 simonb * intervals less than 256 s, operation should be in phase-lock mode,
581 1.29.6.1 simonb * where the loop is disciplined to phase. For update intervals greater
582 1.29.6.1 simonb * than 1024 s, operation should be in frequency-lock mode, where the
583 1.29.6.1 simonb * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
584 1.29.6.1 simonb * is selected by the STA_MODE status bit.
585 1.29.6.1 simonb *
586 1.29.6.1 simonb * Note: splclock() is in effect.
587 1.29.6.1 simonb */
588 1.29.6.1 simonb void
589 1.29.6.1 simonb hardupdate(long offset)
590 1.29.6.1 simonb {
591 1.29.6.1 simonb long mtemp;
592 1.29.6.1 simonb l_fp ftemp;
593 1.29.6.1 simonb
594 1.29.6.1 simonb /*
595 1.29.6.1 simonb * Select how the phase is to be controlled and from which
596 1.29.6.1 simonb * source. If the PPS signal is present and enabled to
597 1.29.6.1 simonb * discipline the time, the PPS offset is used; otherwise, the
598 1.29.6.1 simonb * argument offset is used.
599 1.29.6.1 simonb */
600 1.29.6.1 simonb if (!(time_status & STA_PLL))
601 1.29.6.1 simonb return;
602 1.29.6.1 simonb if (!(time_status & STA_PPSTIME && time_status &
603 1.29.6.1 simonb STA_PPSSIGNAL)) {
604 1.29.6.1 simonb if (offset > MAXPHASE)
605 1.29.6.1 simonb time_monitor = MAXPHASE;
606 1.29.6.1 simonb else if (offset < -MAXPHASE)
607 1.29.6.1 simonb time_monitor = -MAXPHASE;
608 1.29.6.1 simonb else
609 1.29.6.1 simonb time_monitor = offset;
610 1.29.6.1 simonb L_LINT(time_offset, time_monitor);
611 1.29.6.1 simonb }
612 1.29.6.1 simonb
613 1.29.6.1 simonb /*
614 1.29.6.1 simonb * Select how the frequency is to be controlled and in which
615 1.29.6.1 simonb * mode (PLL or FLL). If the PPS signal is present and enabled
616 1.29.6.1 simonb * to discipline the frequency, the PPS frequency is used;
617 1.29.6.1 simonb * otherwise, the argument offset is used to compute it.
618 1.29.6.1 simonb */
619 1.29.6.1 simonb if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
620 1.29.6.1 simonb time_reftime = time_second;
621 1.29.6.1 simonb return;
622 1.29.6.1 simonb }
623 1.29.6.1 simonb if (time_status & STA_FREQHOLD || time_reftime == 0)
624 1.29.6.1 simonb time_reftime = time_second;
625 1.29.6.1 simonb mtemp = time_second - time_reftime;
626 1.29.6.1 simonb L_LINT(ftemp, time_monitor);
627 1.29.6.1 simonb L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
628 1.29.6.1 simonb L_MPY(ftemp, mtemp);
629 1.29.6.1 simonb L_ADD(time_freq, ftemp);
630 1.29.6.1 simonb time_status &= ~STA_MODE;
631 1.29.6.1 simonb if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
632 1.29.6.1 simonb MAXSEC)) {
633 1.29.6.1 simonb L_LINT(ftemp, (time_monitor << 4) / mtemp);
634 1.29.6.1 simonb L_RSHIFT(ftemp, SHIFT_FLL + 4);
635 1.29.6.1 simonb L_ADD(time_freq, ftemp);
636 1.29.6.1 simonb time_status |= STA_MODE;
637 1.29.6.1 simonb }
638 1.29.6.1 simonb time_reftime = time_second;
639 1.29.6.1 simonb if (L_GINT(time_freq) > MAXFREQ)
640 1.29.6.1 simonb L_LINT(time_freq, MAXFREQ);
641 1.29.6.1 simonb else if (L_GINT(time_freq) < -MAXFREQ)
642 1.29.6.1 simonb L_LINT(time_freq, -MAXFREQ);
643 1.29.6.1 simonb }
644 1.29.6.1 simonb
645 1.29.6.1 simonb #ifdef PPS_SYNC
646 1.29.6.1 simonb /*
647 1.29.6.1 simonb * hardpps() - discipline CPU clock oscillator to external PPS signal
648 1.29.6.1 simonb *
649 1.29.6.1 simonb * This routine is called at each PPS interrupt in order to discipline
650 1.29.6.1 simonb * the CPU clock oscillator to the PPS signal. It measures the PPS phase
651 1.29.6.1 simonb * and leaves it in a handy spot for the hardclock() routine. It
652 1.29.6.1 simonb * integrates successive PPS phase differences and calculates the
653 1.29.6.1 simonb * frequency offset. This is used in hardclock() to discipline the CPU
654 1.29.6.1 simonb * clock oscillator so that intrinsic frequency error is cancelled out.
655 1.29.6.1 simonb * The code requires the caller to capture the time and hardware counter
656 1.29.6.1 simonb * value at the on-time PPS signal transition.
657 1.29.6.1 simonb *
658 1.29.6.1 simonb * Note that, on some Unix systems, this routine runs at an interrupt
659 1.29.6.1 simonb * priority level higher than the timer interrupt routine hardclock().
660 1.29.6.1 simonb * Therefore, the variables used are distinct from the hardclock()
661 1.29.6.1 simonb * variables, except for certain exceptions: The PPS frequency pps_freq
662 1.29.6.1 simonb * and phase pps_offset variables are determined by this routine and
663 1.29.6.1 simonb * updated atomically. The time_tolerance variable can be considered a
664 1.29.6.1 simonb * constant, since it is infrequently changed, and then only when the
665 1.29.6.1 simonb * PPS signal is disabled. The watchdog counter pps_valid is updated
666 1.29.6.1 simonb * once per second by hardclock() and is atomically cleared in this
667 1.29.6.1 simonb * routine.
668 1.29.6.1 simonb */
669 1.29.6.1 simonb void
670 1.29.6.2 kardel hardpps(struct timespec *tsp, /* time at PPS */
671 1.29.6.2 kardel long nsec /* hardware counter at PPS */)
672 1.29.6.1 simonb {
673 1.29.6.1 simonb long u_sec, u_nsec, v_nsec; /* temps */
674 1.29.6.1 simonb l_fp ftemp;
675 1.29.6.1 simonb
676 1.29.6.1 simonb /*
677 1.29.6.1 simonb * The signal is first processed by a range gate and frequency
678 1.29.6.1 simonb * discriminator. The range gate rejects noise spikes outside
679 1.29.6.1 simonb * the range +-500 us. The frequency discriminator rejects input
680 1.29.6.1 simonb * signals with apparent frequency outside the range 1 +-500
681 1.29.6.1 simonb * PPM. If two hits occur in the same second, we ignore the
682 1.29.6.1 simonb * later hit; if not and a hit occurs outside the range gate,
683 1.29.6.1 simonb * keep the later hit for later comparison, but do not process
684 1.29.6.1 simonb * it.
685 1.29.6.1 simonb */
686 1.29.6.1 simonb time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
687 1.29.6.1 simonb time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
688 1.29.6.1 simonb pps_valid = PPS_VALID;
689 1.29.6.1 simonb u_sec = tsp->tv_sec;
690 1.29.6.1 simonb u_nsec = tsp->tv_nsec;
691 1.29.6.1 simonb if (u_nsec >= (NANOSECOND >> 1)) {
692 1.29.6.1 simonb u_nsec -= NANOSECOND;
693 1.29.6.1 simonb u_sec++;
694 1.29.6.1 simonb }
695 1.29.6.1 simonb v_nsec = u_nsec - pps_tf[0].tv_nsec;
696 1.29.6.1 simonb if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
697 1.29.6.1 simonb MAXFREQ)
698 1.29.6.1 simonb return;
699 1.29.6.1 simonb pps_tf[2] = pps_tf[1];
700 1.29.6.1 simonb pps_tf[1] = pps_tf[0];
701 1.29.6.1 simonb pps_tf[0].tv_sec = u_sec;
702 1.29.6.1 simonb pps_tf[0].tv_nsec = u_nsec;
703 1.29.6.1 simonb
704 1.29.6.1 simonb /*
705 1.29.6.1 simonb * Compute the difference between the current and previous
706 1.29.6.1 simonb * counter values. If the difference exceeds 0.5 s, assume it
707 1.29.6.1 simonb * has wrapped around, so correct 1.0 s. If the result exceeds
708 1.29.6.1 simonb * the tick interval, the sample point has crossed a tick
709 1.29.6.1 simonb * boundary during the last second, so correct the tick. Very
710 1.29.6.1 simonb * intricate.
711 1.29.6.1 simonb */
712 1.29.6.1 simonb u_nsec = nsec;
713 1.29.6.1 simonb if (u_nsec > (NANOSECOND >> 1))
714 1.29.6.1 simonb u_nsec -= NANOSECOND;
715 1.29.6.1 simonb else if (u_nsec < -(NANOSECOND >> 1))
716 1.29.6.1 simonb u_nsec += NANOSECOND;
717 1.29.6.1 simonb pps_fcount += u_nsec;
718 1.29.6.1 simonb if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
719 1.29.6.1 simonb return;
720 1.29.6.1 simonb time_status &= ~STA_PPSJITTER;
721 1.29.6.1 simonb
722 1.29.6.1 simonb /*
723 1.29.6.1 simonb * A three-stage median filter is used to help denoise the PPS
724 1.29.6.1 simonb * time. The median sample becomes the time offset estimate; the
725 1.29.6.1 simonb * difference between the other two samples becomes the time
726 1.29.6.1 simonb * dispersion (jitter) estimate.
727 1.29.6.1 simonb */
728 1.29.6.1 simonb if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
729 1.29.6.1 simonb if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
730 1.29.6.1 simonb v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
731 1.29.6.1 simonb u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
732 1.29.6.1 simonb } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
733 1.29.6.1 simonb v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
734 1.29.6.1 simonb u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
735 1.29.6.1 simonb } else {
736 1.29.6.1 simonb v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
737 1.29.6.1 simonb u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
738 1.29.6.1 simonb }
739 1.29.6.1 simonb } else {
740 1.29.6.1 simonb if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
741 1.29.6.1 simonb v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
742 1.29.6.1 simonb u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
743 1.29.6.1 simonb } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
744 1.29.6.1 simonb v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
745 1.29.6.1 simonb u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
746 1.29.6.1 simonb } else {
747 1.29.6.1 simonb v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
748 1.29.6.1 simonb u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
749 1.29.6.1 simonb }
750 1.29.6.1 simonb }
751 1.29.6.1 simonb
752 1.29.6.1 simonb /*
753 1.29.6.1 simonb * Nominal jitter is due to PPS signal noise and interrupt
754 1.29.6.1 simonb * latency. If it exceeds the popcorn threshold, the sample is
755 1.29.6.1 simonb * discarded. otherwise, if so enabled, the time offset is
756 1.29.6.1 simonb * updated. We can tolerate a modest loss of data here without
757 1.29.6.1 simonb * much degrading time accuracy.
758 1.29.6.1 simonb */
759 1.29.6.1 simonb if (u_nsec > (pps_jitter << PPS_POPCORN)) {
760 1.29.6.1 simonb time_status |= STA_PPSJITTER;
761 1.29.6.1 simonb pps_jitcnt++;
762 1.29.6.1 simonb } else if (time_status & STA_PPSTIME) {
763 1.29.6.1 simonb time_monitor = -v_nsec;
764 1.29.6.1 simonb L_LINT(time_offset, time_monitor);
765 1.29.6.1 simonb }
766 1.29.6.1 simonb pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
767 1.29.6.1 simonb u_sec = pps_tf[0].tv_sec - pps_lastsec;
768 1.29.6.1 simonb if (u_sec < (1 << pps_shift))
769 1.29.6.1 simonb return;
770 1.29.6.1 simonb
771 1.29.6.1 simonb /*
772 1.29.6.1 simonb * At the end of the calibration interval the difference between
773 1.29.6.1 simonb * the first and last counter values becomes the scaled
774 1.29.6.1 simonb * frequency. It will later be divided by the length of the
775 1.29.6.1 simonb * interval to determine the frequency update. If the frequency
776 1.29.6.1 simonb * exceeds a sanity threshold, or if the actual calibration
777 1.29.6.1 simonb * interval is not equal to the expected length, the data are
778 1.29.6.1 simonb * discarded. We can tolerate a modest loss of data here without
779 1.29.6.1 simonb * much degrading frequency accuracy.
780 1.29.6.1 simonb */
781 1.29.6.1 simonb pps_calcnt++;
782 1.29.6.1 simonb v_nsec = -pps_fcount;
783 1.29.6.1 simonb pps_lastsec = pps_tf[0].tv_sec;
784 1.29.6.1 simonb pps_fcount = 0;
785 1.29.6.1 simonb u_nsec = MAXFREQ << pps_shift;
786 1.29.6.1 simonb if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
787 1.29.6.1 simonb pps_shift)) {
788 1.29.6.1 simonb time_status |= STA_PPSERROR;
789 1.29.6.1 simonb pps_errcnt++;
790 1.29.6.1 simonb return;
791 1.29.6.1 simonb }
792 1.29.6.1 simonb
793 1.29.6.1 simonb /*
794 1.29.6.1 simonb * Here the raw frequency offset and wander (stability) is
795 1.29.6.1 simonb * calculated. If the wander is less than the wander threshold
796 1.29.6.1 simonb * for four consecutive averaging intervals, the interval is
797 1.29.6.1 simonb * doubled; if it is greater than the threshold for four
798 1.29.6.1 simonb * consecutive intervals, the interval is halved. The scaled
799 1.29.6.1 simonb * frequency offset is converted to frequency offset. The
800 1.29.6.1 simonb * stability metric is calculated as the average of recent
801 1.29.6.1 simonb * frequency changes, but is used only for performance
802 1.29.6.1 simonb * monitoring.
803 1.29.6.1 simonb */
804 1.29.6.1 simonb L_LINT(ftemp, v_nsec);
805 1.29.6.1 simonb L_RSHIFT(ftemp, pps_shift);
806 1.29.6.1 simonb L_SUB(ftemp, pps_freq);
807 1.29.6.1 simonb u_nsec = L_GINT(ftemp);
808 1.29.6.1 simonb if (u_nsec > PPS_MAXWANDER) {
809 1.29.6.1 simonb L_LINT(ftemp, PPS_MAXWANDER);
810 1.29.6.1 simonb pps_intcnt--;
811 1.29.6.1 simonb time_status |= STA_PPSWANDER;
812 1.29.6.1 simonb pps_stbcnt++;
813 1.29.6.1 simonb } else if (u_nsec < -PPS_MAXWANDER) {
814 1.29.6.1 simonb L_LINT(ftemp, -PPS_MAXWANDER);
815 1.29.6.1 simonb pps_intcnt--;
816 1.29.6.1 simonb time_status |= STA_PPSWANDER;
817 1.29.6.1 simonb pps_stbcnt++;
818 1.29.6.1 simonb } else {
819 1.29.6.1 simonb pps_intcnt++;
820 1.29.6.1 simonb }
821 1.29.6.1 simonb if (pps_intcnt >= 4) {
822 1.29.6.1 simonb pps_intcnt = 4;
823 1.29.6.1 simonb if (pps_shift < pps_shiftmax) {
824 1.29.6.1 simonb pps_shift++;
825 1.29.6.1 simonb pps_intcnt = 0;
826 1.29.6.1 simonb }
827 1.29.6.1 simonb } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
828 1.29.6.1 simonb pps_intcnt = -4;
829 1.29.6.1 simonb if (pps_shift > PPS_FAVG) {
830 1.29.6.1 simonb pps_shift--;
831 1.29.6.1 simonb pps_intcnt = 0;
832 1.29.6.1 simonb }
833 1.29.6.1 simonb }
834 1.29.6.1 simonb if (u_nsec < 0)
835 1.29.6.1 simonb u_nsec = -u_nsec;
836 1.29.6.1 simonb pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
837 1.29.6.1 simonb
838 1.29.6.1 simonb /*
839 1.29.6.1 simonb * The PPS frequency is recalculated and clamped to the maximum
840 1.29.6.1 simonb * MAXFREQ. If enabled, the system clock frequency is updated as
841 1.29.6.1 simonb * well.
842 1.29.6.1 simonb */
843 1.29.6.1 simonb L_ADD(pps_freq, ftemp);
844 1.29.6.1 simonb u_nsec = L_GINT(pps_freq);
845 1.29.6.1 simonb if (u_nsec > MAXFREQ)
846 1.29.6.1 simonb L_LINT(pps_freq, MAXFREQ);
847 1.29.6.1 simonb else if (u_nsec < -MAXFREQ)
848 1.29.6.1 simonb L_LINT(pps_freq, -MAXFREQ);
849 1.29.6.1 simonb if (time_status & STA_PPSFREQ)
850 1.29.6.1 simonb time_freq = pps_freq;
851 1.29.6.1 simonb }
852 1.29.6.1 simonb #endif /* PPS_SYNC */
853 1.29.6.6 kardel #endif /* NTP */
854 1.29.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
855 1.1 jonathan /******************************************************************************
856 1.1 jonathan * *
857 1.1 jonathan * Copyright (c) David L. Mills 1993, 1994 *
858 1.1 jonathan * *
859 1.1 jonathan * Permission to use, copy, modify, and distribute this software and its *
860 1.1 jonathan * documentation for any purpose and without fee is hereby granted, provided *
861 1.1 jonathan * that the above copyright notice appears in all copies and that both the *
862 1.1 jonathan * copyright notice and this permission notice appear in supporting *
863 1.1 jonathan * documentation, and that the name University of Delaware not be used in *
864 1.1 jonathan * advertising or publicity pertaining to distribution of the software *
865 1.1 jonathan * without specific, written prior permission. The University of Delaware *
866 1.1 jonathan * makes no representations about the suitability this software for any *
867 1.1 jonathan * purpose. It is provided "as is" without express or implied warranty. *
868 1.1 jonathan * *
869 1.1 jonathan ******************************************************************************/
870 1.1 jonathan
871 1.1 jonathan /*
872 1.1 jonathan * Modification history kern_ntptime.c
873 1.1 jonathan *
874 1.1 jonathan * 24 Sep 94 David L. Mills
875 1.1 jonathan * Tightened code at exits.
876 1.1 jonathan *
877 1.1 jonathan * 24 Mar 94 David L. Mills
878 1.1 jonathan * Revised syscall interface to include new variables for PPS
879 1.1 jonathan * time discipline.
880 1.1 jonathan *
881 1.1 jonathan * 14 Feb 94 David L. Mills
882 1.1 jonathan * Added code for external clock
883 1.1 jonathan *
884 1.1 jonathan * 28 Nov 93 David L. Mills
885 1.1 jonathan * Revised frequency scaling to conform with adjusted parameters
886 1.1 jonathan *
887 1.1 jonathan * 17 Sep 93 David L. Mills
888 1.1 jonathan * Created file
889 1.1 jonathan */
890 1.1 jonathan /*
891 1.1 jonathan * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
892 1.1 jonathan * V4.1.1 and V4.1.3
893 1.1 jonathan *
894 1.1 jonathan * These routines consitute the Network Time Protocol (NTP) interfaces
895 1.1 jonathan * for user and daemon application programs. The ntp_gettime() routine
896 1.1 jonathan * provides the time, maximum error (synch distance) and estimated error
897 1.1 jonathan * (dispersion) to client user application programs. The ntp_adjtime()
898 1.1 jonathan * routine is used by the NTP daemon to adjust the system clock to an
899 1.1 jonathan * externally derived time. The time offset and related variables set by
900 1.1 jonathan * this routine are used by hardclock() to adjust the phase and
901 1.1 jonathan * frequency of the phase-lock loop which controls the system clock.
902 1.1 jonathan */
903 1.16 lukem
904 1.16 lukem #include <sys/cdefs.h>
905 1.29.6.5 kardel __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.6 2006/06/02 00:13:12 kardel Exp $");
906 1.16 lukem
907 1.6 jonathan #include "opt_ntp.h"
908 1.29.6.5 kardel #include "opt_compat_netbsd.h"
909 1.6 jonathan
910 1.1 jonathan #include <sys/param.h>
911 1.1 jonathan #include <sys/resourcevar.h>
912 1.1 jonathan #include <sys/systm.h>
913 1.1 jonathan #include <sys/kernel.h>
914 1.1 jonathan #include <sys/proc.h>
915 1.18 simonb #include <sys/sysctl.h>
916 1.1 jonathan #include <sys/timex.h>
917 1.29.6.5 kardel #ifdef COMPAT_30
918 1.29.6.5 kardel #include <compat/sys/timex.h>
919 1.29.6.5 kardel #endif
920 1.1 jonathan #include <sys/vnode.h>
921 1.29.6.5 kardel #include <sys/kauth.h>
922 1.1 jonathan
923 1.1 jonathan #include <sys/mount.h>
924 1.22 thorpej #include <sys/sa.h>
925 1.1 jonathan #include <sys/syscallargs.h>
926 1.1 jonathan
927 1.1 jonathan #include <machine/cpu.h>
928 1.2 christos
929 1.4 thorpej #ifdef NTP
930 1.1 jonathan /*
931 1.1 jonathan * The following variables are used by the hardclock() routine in the
932 1.28 perry * kern_clock.c module and are described in that module.
933 1.1 jonathan */
934 1.1 jonathan extern int time_state; /* clock state */
935 1.1 jonathan extern int time_status; /* clock status bits */
936 1.1 jonathan extern long time_offset; /* time adjustment (us) */
937 1.1 jonathan extern long time_freq; /* frequency offset (scaled ppm) */
938 1.1 jonathan extern long time_maxerror; /* maximum error (us) */
939 1.1 jonathan extern long time_esterror; /* estimated error (us) */
940 1.1 jonathan extern long time_constant; /* pll time constant */
941 1.1 jonathan extern long time_precision; /* clock precision (us) */
942 1.1 jonathan extern long time_tolerance; /* frequency tolerance (scaled ppm) */
943 1.24 drochner extern int time_adjusted; /* ntp might have changed the system time */
944 1.1 jonathan
945 1.1 jonathan #ifdef PPS_SYNC
946 1.1 jonathan /*
947 1.1 jonathan * The following variables are used only if the PPS signal discipline
948 1.1 jonathan * is configured in the kernel.
949 1.1 jonathan */
950 1.1 jonathan extern int pps_shift; /* interval duration (s) (shift) */
951 1.1 jonathan extern long pps_freq; /* pps frequency offset (scaled ppm) */
952 1.1 jonathan extern long pps_jitter; /* pps jitter (us) */
953 1.1 jonathan extern long pps_stabil; /* pps stability (scaled ppm) */
954 1.1 jonathan extern long pps_jitcnt; /* jitter limit exceeded */
955 1.1 jonathan extern long pps_calcnt; /* calibration intervals */
956 1.1 jonathan extern long pps_errcnt; /* calibration errors */
957 1.1 jonathan extern long pps_stbcnt; /* stability limit exceeded */
958 1.1 jonathan #endif /* PPS_SYNC */
959 1.1 jonathan
960 1.1 jonathan /*ARGSUSED*/
961 1.1 jonathan /*
962 1.1 jonathan * ntp_gettime() - NTP user application interface
963 1.1 jonathan */
964 1.29.6.5 kardel void
965 1.29.6.5 kardel ntp_gettime(ntvp)
966 1.29.6.5 kardel struct ntptimeval *ntvp;
967 1.29.6.5 kardel {
968 1.29.6.5 kardel struct timeval atv;
969 1.29.6.5 kardel int s;
970 1.29.6.5 kardel
971 1.29.6.5 kardel memset(ntvp, 0, sizeof(struct ntptimeval));
972 1.29.6.5 kardel
973 1.29.6.5 kardel s = splclock();
974 1.29.6.5 kardel #ifdef EXT_CLOCK
975 1.29.6.5 kardel /*
976 1.29.6.5 kardel * The microtime() external clock routine returns a
977 1.29.6.5 kardel * status code. If less than zero, we declare an error
978 1.29.6.5 kardel * in the clock status word and return the kernel
979 1.29.6.5 kardel * (software) time variable. While there are other
980 1.29.6.5 kardel * places that call microtime(), this is the only place
981 1.29.6.5 kardel * that matters from an application point of view.
982 1.29.6.5 kardel */
983 1.29.6.5 kardel if (microtime(&atv) < 0) {
984 1.29.6.5 kardel time_status |= STA_CLOCKERR;
985 1.29.6.5 kardel ntvp->time = time;
986 1.29.6.5 kardel } else
987 1.29.6.5 kardel time_status &= ~STA_CLOCKERR;
988 1.29.6.5 kardel #else /* EXT_CLOCK */
989 1.29.6.5 kardel microtime(&atv);
990 1.29.6.5 kardel #endif /* EXT_CLOCK */
991 1.29.6.5 kardel ntvp->maxerror = time_maxerror;
992 1.29.6.5 kardel ntvp->esterror = time_esterror;
993 1.29.6.5 kardel (void) splx(s);
994 1.29.6.5 kardel TIMEVAL_TO_TIMESPEC(&atv, &ntvp->time);
995 1.29.6.5 kardel }
996 1.29.6.6 kardel
997 1.1 jonathan
998 1.1 jonathan /* ARGSUSED */
999 1.1 jonathan /*
1000 1.1 jonathan * ntp_adjtime() - NTP daemon application interface
1001 1.1 jonathan */
1002 1.1 jonathan int
1003 1.22 thorpej sys_ntp_adjtime(l, v, retval)
1004 1.22 thorpej struct lwp *l;
1005 1.1 jonathan void *v;
1006 1.1 jonathan register_t *retval;
1007 1.1 jonathan {
1008 1.3 thorpej struct sys_ntp_adjtime_args /* {
1009 1.1 jonathan syscallarg(struct timex *) tp;
1010 1.1 jonathan } */ *uap = v;
1011 1.22 thorpej struct proc *p = l->l_proc;
1012 1.1 jonathan struct timex ntv;
1013 1.1 jonathan int error = 0;
1014 1.1 jonathan
1015 1.1 jonathan if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
1016 1.14 manu sizeof(ntv))) != 0)
1017 1.14 manu return (error);
1018 1.14 manu
1019 1.29.6.5 kardel if (ntv.modes != 0 && (error = kauth_authorize_generic(p->p_cred,
1020 1.29.6.5 kardel KAUTH_GENERIC_ISSUSER, &p->p_acflag)) != 0)
1021 1.1 jonathan
1022 1.29.6.6 kardel ntp_adjtime1(&ntv);
1023 1.29.6.4 kardel
1024 1.29.6.4 kardel error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
1025 1.29.6.4 kardel
1026 1.29.6.4 kardel if (error == 0) {
1027 1.29.6.6 kardel *retval = ntp_timestatus();
1028 1.29.6.4 kardel }
1029 1.29.6.4 kardel
1030 1.29.6.4 kardel return error;
1031 1.14 manu }
1032 1.14 manu
1033 1.29.6.4 kardel void
1034 1.29.6.6 kardel ntp_adjtime1(ntv)
1035 1.14 manu struct timex *ntv;
1036 1.14 manu {
1037 1.14 manu int modes;
1038 1.14 manu int s;
1039 1.14 manu
1040 1.1 jonathan /*
1041 1.28 perry * Update selected clock variables. Note that there is no error
1042 1.28 perry * checking here on the assumption the superuser should know
1043 1.14 manu * what it is doing.
1044 1.1 jonathan */
1045 1.15 jmc modes = ntv->modes;
1046 1.23 dsl if (modes != 0)
1047 1.23 dsl /* We need to save the system time during shutdown */
1048 1.23 dsl time_adjusted |= 2;
1049 1.1 jonathan s = splclock();
1050 1.1 jonathan if (modes & MOD_FREQUENCY)
1051 1.1 jonathan #ifdef PPS_SYNC
1052 1.15 jmc time_freq = ntv->freq - pps_freq;
1053 1.1 jonathan #else /* PPS_SYNC */
1054 1.15 jmc time_freq = ntv->freq;
1055 1.1 jonathan #endif /* PPS_SYNC */
1056 1.1 jonathan if (modes & MOD_MAXERROR)
1057 1.15 jmc time_maxerror = ntv->maxerror;
1058 1.1 jonathan if (modes & MOD_ESTERROR)
1059 1.15 jmc time_esterror = ntv->esterror;
1060 1.1 jonathan if (modes & MOD_STATUS) {
1061 1.1 jonathan time_status &= STA_RONLY;
1062 1.15 jmc time_status |= ntv->status & ~STA_RONLY;
1063 1.1 jonathan }
1064 1.1 jonathan if (modes & MOD_TIMECONST)
1065 1.15 jmc time_constant = ntv->constant;
1066 1.1 jonathan if (modes & MOD_OFFSET)
1067 1.15 jmc hardupdate(ntv->offset);
1068 1.1 jonathan
1069 1.1 jonathan /*
1070 1.1 jonathan * Retrieve all clock variables
1071 1.1 jonathan */
1072 1.1 jonathan if (time_offset < 0)
1073 1.15 jmc ntv->offset = -(-time_offset >> SHIFT_UPDATE);
1074 1.1 jonathan else
1075 1.15 jmc ntv->offset = time_offset >> SHIFT_UPDATE;
1076 1.1 jonathan #ifdef PPS_SYNC
1077 1.15 jmc ntv->freq = time_freq + pps_freq;
1078 1.1 jonathan #else /* PPS_SYNC */
1079 1.15 jmc ntv->freq = time_freq;
1080 1.1 jonathan #endif /* PPS_SYNC */
1081 1.15 jmc ntv->maxerror = time_maxerror;
1082 1.15 jmc ntv->esterror = time_esterror;
1083 1.15 jmc ntv->status = time_status;
1084 1.15 jmc ntv->constant = time_constant;
1085 1.15 jmc ntv->precision = time_precision;
1086 1.15 jmc ntv->tolerance = time_tolerance;
1087 1.1 jonathan #ifdef PPS_SYNC
1088 1.15 jmc ntv->shift = pps_shift;
1089 1.15 jmc ntv->ppsfreq = pps_freq;
1090 1.15 jmc ntv->jitter = pps_jitter >> PPS_AVG;
1091 1.15 jmc ntv->stabil = pps_stabil;
1092 1.15 jmc ntv->calcnt = pps_calcnt;
1093 1.15 jmc ntv->errcnt = pps_errcnt;
1094 1.15 jmc ntv->jitcnt = pps_jitcnt;
1095 1.15 jmc ntv->stbcnt = pps_stbcnt;
1096 1.1 jonathan #endif /* PPS_SYNC */
1097 1.1 jonathan (void)splx(s);
1098 1.29.6.6 kardel }
1099 1.29.6.6 kardel #endif /* NTP */
1100 1.29.6.6 kardel #endif /* !__HAVE_TIMECOUNTER */
1101 1.1 jonathan
1102 1.29.6.6 kardel #ifdef NTP
1103 1.29.6.6 kardel register_t
1104 1.29.6.6 kardel ntp_timestatus()
1105 1.29.6.6 kardel {
1106 1.29.6.4 kardel /*
1107 1.29.6.6 kardel * Status word error decode. If any of these conditions
1108 1.29.6.6 kardel * occur, an error is returned, instead of the status
1109 1.29.6.6 kardel * word. Most applications will care only about the fact
1110 1.29.6.6 kardel * the system clock may not be trusted, not about the
1111 1.29.6.6 kardel * details.
1112 1.29.6.6 kardel *
1113 1.29.6.6 kardel * Hardware or software error
1114 1.29.6.4 kardel */
1115 1.29.6.4 kardel if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1116 1.29.6.6 kardel
1117 1.29.6.6 kardel /*
1118 1.29.6.6 kardel * PPS signal lost when either time or frequency
1119 1.29.6.6 kardel * synchronization requested
1120 1.29.6.6 kardel */
1121 1.29.6.4 kardel (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1122 1.29.6.4 kardel !(time_status & STA_PPSSIGNAL)) ||
1123 1.29.6.6 kardel
1124 1.29.6.6 kardel /*
1125 1.29.6.6 kardel * PPS jitter exceeded when time synchronization
1126 1.29.6.6 kardel * requested
1127 1.29.6.6 kardel */
1128 1.29.6.4 kardel (time_status & STA_PPSTIME &&
1129 1.29.6.4 kardel time_status & STA_PPSJITTER) ||
1130 1.29.6.6 kardel
1131 1.29.6.6 kardel /*
1132 1.29.6.6 kardel * PPS wander exceeded or calibration error when
1133 1.29.6.6 kardel * frequency synchronization requested
1134 1.29.6.6 kardel */
1135 1.29.6.4 kardel (time_status & STA_PPSFREQ &&
1136 1.29.6.4 kardel time_status & (STA_PPSWANDER | STA_PPSERROR)))
1137 1.29.6.6 kardel return (TIME_ERROR);
1138 1.29.6.4 kardel else
1139 1.29.6.6 kardel return ((register_t)time_state);
1140 1.1 jonathan }
1141 1.1 jonathan
1142 1.29.6.6 kardel /*ARGSUSED*/
1143 1.29.6.6 kardel /*
1144 1.29.6.6 kardel * ntp_gettime() - NTP user application interface
1145 1.29.6.6 kardel */
1146 1.29.6.6 kardel int
1147 1.29.6.6 kardel sys___ntp_gettime30(l, v, retval)
1148 1.29.6.6 kardel struct lwp *l;
1149 1.29.6.6 kardel void *v;
1150 1.29.6.6 kardel register_t *retval;
1151 1.29.6.6 kardel {
1152 1.29.6.6 kardel struct sys___ntp_gettime30_args /* {
1153 1.29.6.6 kardel syscallarg(struct ntptimeval *) ntvp;
1154 1.29.6.6 kardel } */ *uap = v;
1155 1.29.6.6 kardel struct ntptimeval ntv;
1156 1.29.6.6 kardel int error = 0;
1157 1.29.6.6 kardel
1158 1.29.6.6 kardel if (SCARG(uap, ntvp)) {
1159 1.29.6.6 kardel ntp_gettime(&ntv);
1160 1.29.6.6 kardel
1161 1.29.6.6 kardel error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
1162 1.29.6.6 kardel sizeof(ntv));
1163 1.29.6.6 kardel }
1164 1.29.6.6 kardel if (!error) {
1165 1.29.6.6 kardel *retval = ntp_timestatus();
1166 1.29.6.6 kardel }
1167 1.29.6.6 kardel return(error);
1168 1.29.6.6 kardel }
1169 1.29.6.6 kardel
1170 1.29.6.6 kardel #ifdef COMPAT_30
1171 1.29.6.6 kardel int
1172 1.29.6.6 kardel compat_30_sys_ntp_gettime(l, v, retval)
1173 1.29.6.6 kardel struct lwp *l;
1174 1.29.6.6 kardel void *v;
1175 1.29.6.6 kardel register_t *retval;
1176 1.29.6.6 kardel {
1177 1.29.6.6 kardel struct compat_30_sys_ntp_gettime_args /* {
1178 1.29.6.6 kardel syscallarg(struct ntptimeval30 *) ontvp;
1179 1.29.6.6 kardel } */ *uap = v;
1180 1.29.6.6 kardel struct ntptimeval ntv;
1181 1.29.6.6 kardel struct ntptimeval30 ontv;
1182 1.29.6.6 kardel int error = 0;
1183 1.29.6.6 kardel
1184 1.29.6.6 kardel if (SCARG(uap, ntvp)) {
1185 1.29.6.6 kardel ntp_gettime(&ntv);
1186 1.29.6.6 kardel TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
1187 1.29.6.6 kardel ontv.maxerror = ntv.maxerror;
1188 1.29.6.6 kardel ontv.esterror = ntv.esterror;
1189 1.29.6.6 kardel
1190 1.29.6.6 kardel error = copyout((caddr_t)&ontv, (caddr_t)SCARG(uap, ntvp),
1191 1.29.6.6 kardel sizeof(ontv));
1192 1.29.6.6 kardel }
1193 1.29.6.6 kardel if (!error)
1194 1.29.6.6 kardel *retval = ntp_timestatus();
1195 1.29.6.6 kardel
1196 1.29.6.6 kardel return (error);
1197 1.29.6.6 kardel }
1198 1.29.6.6 kardel #endif
1199 1.29.6.6 kardel
1200 1.1 jonathan /*
1201 1.1 jonathan * return information about kernel precision timekeeping
1202 1.1 jonathan */
1203 1.25 atatat static int
1204 1.25 atatat sysctl_kern_ntptime(SYSCTLFN_ARGS)
1205 1.1 jonathan {
1206 1.25 atatat struct sysctlnode node;
1207 1.1 jonathan struct ntptimeval ntv;
1208 1.1 jonathan
1209 1.29.6.5 kardel ntp_gettime(&ntv);
1210 1.25 atatat
1211 1.25 atatat node = *rnode;
1212 1.25 atatat node.sysctl_data = &ntv;
1213 1.25 atatat node.sysctl_size = sizeof(ntv);
1214 1.25 atatat return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1215 1.25 atatat }
1216 1.25 atatat
1217 1.25 atatat SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
1218 1.25 atatat {
1219 1.25 atatat
1220 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
1221 1.26 atatat CTLFLAG_PERMANENT,
1222 1.25 atatat CTLTYPE_NODE, "kern", NULL,
1223 1.25 atatat NULL, 0, NULL, 0,
1224 1.25 atatat CTL_KERN, CTL_EOL);
1225 1.25 atatat
1226 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
1227 1.26 atatat CTLFLAG_PERMANENT,
1228 1.27 atatat CTLTYPE_STRUCT, "ntptime",
1229 1.27 atatat SYSCTL_DESCR("Kernel clock values for NTP"),
1230 1.25 atatat sysctl_kern_ntptime, 0, NULL,
1231 1.25 atatat sizeof(struct ntptimeval),
1232 1.25 atatat CTL_KERN, KERN_NTPTIME, CTL_EOL);
1233 1.1 jonathan }
1234 1.4 thorpej #else /* !NTP */
1235 1.13 bjh21 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
1236 1.13 bjh21
1237 1.4 thorpej int
1238 1.29.6.5 kardel sys___ntp_gettime30(l, v, retval)
1239 1.22 thorpej struct lwp *l;
1240 1.4 thorpej void *v;
1241 1.4 thorpej register_t *retval;
1242 1.4 thorpej {
1243 1.19 simonb
1244 1.4 thorpej return(ENOSYS);
1245 1.4 thorpej }
1246 1.29.6.5 kardel
1247 1.29.6.5 kardel #ifdef COMPAT_30
1248 1.29.6.5 kardel int
1249 1.29.6.5 kardel compat_30_sys_ntp_gettime(l, v, retval)
1250 1.29.6.6 kardel struct lwp *l;
1251 1.29.6.6 kardel void *v;
1252 1.29.6.6 kardel register_t *retval;
1253 1.29.6.5 kardel {
1254 1.29.6.5 kardel
1255 1.29.6.6 kardel return(ENOSYS);
1256 1.29.6.5 kardel }
1257 1.29.6.5 kardel #endif
1258 1.13 bjh21 #endif /* !NTP */
1259