kern_ntptime.c revision 1.37 1 1.37 elad /* $NetBSD: kern_ntptime.c,v 1.37 2006/09/09 11:52:56 elad Exp $ */
2 1.33 kardel #include <sys/types.h> /* XXX to get __HAVE_TIMECOUNTER, remove
3 1.33 kardel after all ports are converted. */
4 1.33 kardel #ifdef __HAVE_TIMECOUNTER
5 1.33 kardel
6 1.33 kardel /*-
7 1.33 kardel ***********************************************************************
8 1.33 kardel * *
9 1.33 kardel * Copyright (c) David L. Mills 1993-2001 *
10 1.33 kardel * *
11 1.33 kardel * Permission to use, copy, modify, and distribute this software and *
12 1.33 kardel * its documentation for any purpose and without fee is hereby *
13 1.33 kardel * granted, provided that the above copyright notice appears in all *
14 1.33 kardel * copies and that both the copyright notice and this permission *
15 1.33 kardel * notice appear in supporting documentation, and that the name *
16 1.33 kardel * University of Delaware not be used in advertising or publicity *
17 1.33 kardel * pertaining to distribution of the software without specific, *
18 1.33 kardel * written prior permission. The University of Delaware makes no *
19 1.33 kardel * representations about the suitability this software for any *
20 1.33 kardel * purpose. It is provided "as is" without express or implied *
21 1.33 kardel * warranty. *
22 1.33 kardel * *
23 1.33 kardel **********************************************************************/
24 1.1 jonathan
25 1.33 kardel /*
26 1.33 kardel * Adapted from the original sources for FreeBSD and timecounters by:
27 1.33 kardel * Poul-Henning Kamp <phk (at) FreeBSD.org>.
28 1.33 kardel *
29 1.33 kardel * The 32bit version of the "LP" macros seems a bit past its "sell by"
30 1.33 kardel * date so I have retained only the 64bit version and included it directly
31 1.33 kardel * in this file.
32 1.33 kardel *
33 1.33 kardel * Only minor changes done to interface with the timecounters over in
34 1.33 kardel * sys/kern/kern_clock.c. Some of the comments below may be (even more)
35 1.33 kardel * confusing and/or plain wrong in that context.
36 1.33 kardel */
37 1.33 kardel
38 1.33 kardel #include <sys/cdefs.h>
39 1.33 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
40 1.37 elad __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.37 2006/09/09 11:52:56 elad Exp $");
41 1.33 kardel
42 1.33 kardel #include "opt_ntp.h"
43 1.33 kardel #include "opt_compat_netbsd.h"
44 1.33 kardel
45 1.33 kardel #include <sys/param.h>
46 1.33 kardel #include <sys/resourcevar.h>
47 1.33 kardel #include <sys/systm.h>
48 1.33 kardel #include <sys/kernel.h>
49 1.33 kardel #include <sys/proc.h>
50 1.33 kardel #include <sys/sysctl.h>
51 1.33 kardel #include <sys/timex.h>
52 1.33 kardel #ifdef COMPAT_30
53 1.33 kardel #include <compat/sys/timex.h>
54 1.33 kardel #endif
55 1.33 kardel #include <sys/vnode.h>
56 1.33 kardel #include <sys/kauth.h>
57 1.33 kardel
58 1.33 kardel #include <sys/mount.h>
59 1.33 kardel #include <sys/sa.h>
60 1.33 kardel #include <sys/syscallargs.h>
61 1.33 kardel
62 1.33 kardel #include <machine/cpu.h>
63 1.33 kardel
64 1.33 kardel /*
65 1.33 kardel * Single-precision macros for 64-bit machines
66 1.33 kardel */
67 1.33 kardel typedef int64_t l_fp;
68 1.33 kardel #define L_ADD(v, u) ((v) += (u))
69 1.33 kardel #define L_SUB(v, u) ((v) -= (u))
70 1.33 kardel #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
71 1.33 kardel #define L_NEG(v) ((v) = -(v))
72 1.33 kardel #define L_RSHIFT(v, n) \
73 1.33 kardel do { \
74 1.33 kardel if ((v) < 0) \
75 1.33 kardel (v) = -(-(v) >> (n)); \
76 1.33 kardel else \
77 1.33 kardel (v) = (v) >> (n); \
78 1.33 kardel } while (0)
79 1.33 kardel #define L_MPY(v, a) ((v) *= (a))
80 1.33 kardel #define L_CLR(v) ((v) = 0)
81 1.33 kardel #define L_ISNEG(v) ((v) < 0)
82 1.33 kardel #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
83 1.33 kardel #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
84 1.33 kardel
85 1.33 kardel #ifdef NTP
86 1.33 kardel /*
87 1.33 kardel * Generic NTP kernel interface
88 1.33 kardel *
89 1.33 kardel * These routines constitute the Network Time Protocol (NTP) interfaces
90 1.33 kardel * for user and daemon application programs. The ntp_gettime() routine
91 1.33 kardel * provides the time, maximum error (synch distance) and estimated error
92 1.33 kardel * (dispersion) to client user application programs. The ntp_adjtime()
93 1.33 kardel * routine is used by the NTP daemon to adjust the system clock to an
94 1.33 kardel * externally derived time. The time offset and related variables set by
95 1.33 kardel * this routine are used by other routines in this module to adjust the
96 1.33 kardel * phase and frequency of the clock discipline loop which controls the
97 1.33 kardel * system clock.
98 1.33 kardel *
99 1.33 kardel * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
100 1.33 kardel * defined), the time at each tick interrupt is derived directly from
101 1.33 kardel * the kernel time variable. When the kernel time is reckoned in
102 1.33 kardel * microseconds, (NTP_NANO undefined), the time is derived from the
103 1.33 kardel * kernel time variable together with a variable representing the
104 1.33 kardel * leftover nanoseconds at the last tick interrupt. In either case, the
105 1.33 kardel * current nanosecond time is reckoned from these values plus an
106 1.33 kardel * interpolated value derived by the clock routines in another
107 1.33 kardel * architecture-specific module. The interpolation can use either a
108 1.33 kardel * dedicated counter or a processor cycle counter (PCC) implemented in
109 1.33 kardel * some architectures.
110 1.33 kardel *
111 1.33 kardel * Note that all routines must run at priority splclock or higher.
112 1.33 kardel */
113 1.33 kardel /*
114 1.33 kardel * Phase/frequency-lock loop (PLL/FLL) definitions
115 1.33 kardel *
116 1.33 kardel * The nanosecond clock discipline uses two variable types, time
117 1.33 kardel * variables and frequency variables. Both types are represented as 64-
118 1.33 kardel * bit fixed-point quantities with the decimal point between two 32-bit
119 1.33 kardel * halves. On a 32-bit machine, each half is represented as a single
120 1.33 kardel * word and mathematical operations are done using multiple-precision
121 1.33 kardel * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
122 1.33 kardel * used.
123 1.33 kardel *
124 1.33 kardel * A time variable is a signed 64-bit fixed-point number in ns and
125 1.33 kardel * fraction. It represents the remaining time offset to be amortized
126 1.33 kardel * over succeeding tick interrupts. The maximum time offset is about
127 1.33 kardel * 0.5 s and the resolution is about 2.3e-10 ns.
128 1.33 kardel *
129 1.33 kardel * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
130 1.33 kardel * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
131 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132 1.33 kardel * |s s s| ns |
133 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134 1.33 kardel * | fraction |
135 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
136 1.33 kardel *
137 1.33 kardel * A frequency variable is a signed 64-bit fixed-point number in ns/s
138 1.33 kardel * and fraction. It represents the ns and fraction to be added to the
139 1.33 kardel * kernel time variable at each second. The maximum frequency offset is
140 1.33 kardel * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
141 1.33 kardel *
142 1.33 kardel * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
143 1.33 kardel * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
144 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
145 1.33 kardel * |s s s s s s s s s s s s s| ns/s |
146 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
147 1.33 kardel * | fraction |
148 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
149 1.33 kardel */
150 1.33 kardel /*
151 1.33 kardel * The following variables establish the state of the PLL/FLL and the
152 1.33 kardel * residual time and frequency offset of the local clock.
153 1.33 kardel */
154 1.33 kardel #define SHIFT_PLL 4 /* PLL loop gain (shift) */
155 1.33 kardel #define SHIFT_FLL 2 /* FLL loop gain (shift) */
156 1.33 kardel
157 1.33 kardel static int time_state = TIME_OK; /* clock state */
158 1.33 kardel static int time_status = STA_UNSYNC; /* clock status bits */
159 1.33 kardel static long time_tai; /* TAI offset (s) */
160 1.33 kardel static long time_monitor; /* last time offset scaled (ns) */
161 1.33 kardel static long time_constant; /* poll interval (shift) (s) */
162 1.33 kardel static long time_precision = 1; /* clock precision (ns) */
163 1.33 kardel static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
164 1.33 kardel static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
165 1.33 kardel static long time_reftime; /* time at last adjustment (s) */
166 1.33 kardel static l_fp time_offset; /* time offset (ns) */
167 1.33 kardel static l_fp time_freq; /* frequency offset (ns/s) */
168 1.33 kardel #endif /* NTP */
169 1.33 kardel
170 1.33 kardel static l_fp time_adj; /* tick adjust (ns/s) */
171 1.33 kardel int64_t time_adjtime; /* correction from adjtime(2) (usec) */
172 1.33 kardel
173 1.33 kardel extern int time_adjusted; /* ntp might have changed the system time */
174 1.33 kardel
175 1.33 kardel #ifdef NTP
176 1.33 kardel #ifdef PPS_SYNC
177 1.33 kardel /*
178 1.33 kardel * The following variables are used when a pulse-per-second (PPS) signal
179 1.33 kardel * is available and connected via a modem control lead. They establish
180 1.33 kardel * the engineering parameters of the clock discipline loop when
181 1.33 kardel * controlled by the PPS signal.
182 1.33 kardel */
183 1.33 kardel #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
184 1.33 kardel #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
185 1.33 kardel #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
186 1.33 kardel #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
187 1.33 kardel #define PPS_VALID 120 /* PPS signal watchdog max (s) */
188 1.33 kardel #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
189 1.33 kardel #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
190 1.33 kardel
191 1.33 kardel static struct timespec pps_tf[3]; /* phase median filter */
192 1.33 kardel static l_fp pps_freq; /* scaled frequency offset (ns/s) */
193 1.33 kardel static long pps_fcount; /* frequency accumulator */
194 1.33 kardel static long pps_jitter; /* nominal jitter (ns) */
195 1.33 kardel static long pps_stabil; /* nominal stability (scaled ns/s) */
196 1.33 kardel static long pps_lastsec; /* time at last calibration (s) */
197 1.33 kardel static int pps_valid; /* signal watchdog counter */
198 1.33 kardel static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
199 1.33 kardel static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
200 1.33 kardel static int pps_intcnt; /* wander counter */
201 1.33 kardel
202 1.33 kardel /*
203 1.33 kardel * PPS signal quality monitors
204 1.33 kardel */
205 1.33 kardel static long pps_calcnt; /* calibration intervals */
206 1.33 kardel static long pps_jitcnt; /* jitter limit exceeded */
207 1.33 kardel static long pps_stbcnt; /* stability limit exceeded */
208 1.33 kardel static long pps_errcnt; /* calibration errors */
209 1.33 kardel #endif /* PPS_SYNC */
210 1.33 kardel /*
211 1.33 kardel * End of phase/frequency-lock loop (PLL/FLL) definitions
212 1.33 kardel */
213 1.33 kardel
214 1.33 kardel static void hardupdate(long offset);
215 1.33 kardel
216 1.33 kardel /*
217 1.33 kardel * ntp_gettime() - NTP user application interface
218 1.33 kardel */
219 1.33 kardel void
220 1.33 kardel ntp_gettime(ntv)
221 1.33 kardel struct ntptimeval *ntv;
222 1.33 kardel {
223 1.33 kardel nanotime(&ntv->time);
224 1.33 kardel ntv->maxerror = time_maxerror;
225 1.33 kardel ntv->esterror = time_esterror;
226 1.33 kardel ntv->tai = time_tai;
227 1.33 kardel ntv->time_state = time_state;
228 1.33 kardel }
229 1.33 kardel
230 1.33 kardel /* ARGSUSED */
231 1.33 kardel /*
232 1.33 kardel * ntp_adjtime() - NTP daemon application interface
233 1.33 kardel */
234 1.33 kardel int
235 1.33 kardel sys_ntp_adjtime(l, v, retval)
236 1.33 kardel struct lwp *l;
237 1.33 kardel void *v;
238 1.33 kardel register_t *retval;
239 1.33 kardel {
240 1.33 kardel struct sys_ntp_adjtime_args /* {
241 1.33 kardel syscallarg(struct timex *) tp;
242 1.33 kardel } */ *uap = v;
243 1.33 kardel struct timex ntv;
244 1.33 kardel int error = 0;
245 1.33 kardel
246 1.35 ad error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv, sizeof(ntv));
247 1.35 ad if (error != 0)
248 1.33 kardel return (error);
249 1.33 kardel
250 1.37 elad if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
251 1.37 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
252 1.36 elad NULL, NULL)) != 0)
253 1.33 kardel return (error);
254 1.33 kardel
255 1.33 kardel ntp_adjtime1(&ntv);
256 1.33 kardel
257 1.33 kardel error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
258 1.35 ad if (!error)
259 1.33 kardel *retval = ntp_timestatus();
260 1.35 ad
261 1.33 kardel return error;
262 1.33 kardel }
263 1.33 kardel
264 1.33 kardel void
265 1.33 kardel ntp_adjtime1(ntv)
266 1.33 kardel struct timex *ntv;
267 1.33 kardel {
268 1.33 kardel long freq;
269 1.33 kardel int modes;
270 1.33 kardel int s;
271 1.33 kardel
272 1.33 kardel /*
273 1.33 kardel * Update selected clock variables - only the superuser can
274 1.33 kardel * change anything. Note that there is no error checking here on
275 1.33 kardel * the assumption the superuser should know what it is doing.
276 1.33 kardel * Note that either the time constant or TAI offset are loaded
277 1.33 kardel * from the ntv.constant member, depending on the mode bits. If
278 1.33 kardel * the STA_PLL bit in the status word is cleared, the state and
279 1.33 kardel * status words are reset to the initial values at boot.
280 1.33 kardel */
281 1.33 kardel modes = ntv->modes;
282 1.33 kardel if (modes != 0)
283 1.33 kardel /* We need to save the system time during shutdown */
284 1.33 kardel time_adjusted |= 2;
285 1.33 kardel s = splclock();
286 1.33 kardel if (modes & MOD_MAXERROR)
287 1.33 kardel time_maxerror = ntv->maxerror;
288 1.33 kardel if (modes & MOD_ESTERROR)
289 1.33 kardel time_esterror = ntv->esterror;
290 1.33 kardel if (modes & MOD_STATUS) {
291 1.33 kardel if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
292 1.33 kardel time_state = TIME_OK;
293 1.33 kardel time_status = STA_UNSYNC;
294 1.33 kardel #ifdef PPS_SYNC
295 1.33 kardel pps_shift = PPS_FAVG;
296 1.33 kardel #endif /* PPS_SYNC */
297 1.33 kardel }
298 1.33 kardel time_status &= STA_RONLY;
299 1.33 kardel time_status |= ntv->status & ~STA_RONLY;
300 1.33 kardel }
301 1.33 kardel if (modes & MOD_TIMECONST) {
302 1.33 kardel if (ntv->constant < 0)
303 1.33 kardel time_constant = 0;
304 1.33 kardel else if (ntv->constant > MAXTC)
305 1.33 kardel time_constant = MAXTC;
306 1.33 kardel else
307 1.33 kardel time_constant = ntv->constant;
308 1.33 kardel }
309 1.33 kardel if (modes & MOD_TAI) {
310 1.33 kardel if (ntv->constant > 0) /* XXX zero & negative numbers ? */
311 1.33 kardel time_tai = ntv->constant;
312 1.33 kardel }
313 1.33 kardel #ifdef PPS_SYNC
314 1.33 kardel if (modes & MOD_PPSMAX) {
315 1.33 kardel if (ntv->shift < PPS_FAVG)
316 1.33 kardel pps_shiftmax = PPS_FAVG;
317 1.33 kardel else if (ntv->shift > PPS_FAVGMAX)
318 1.33 kardel pps_shiftmax = PPS_FAVGMAX;
319 1.33 kardel else
320 1.33 kardel pps_shiftmax = ntv->shift;
321 1.33 kardel }
322 1.33 kardel #endif /* PPS_SYNC */
323 1.33 kardel if (modes & MOD_NANO)
324 1.33 kardel time_status |= STA_NANO;
325 1.33 kardel if (modes & MOD_MICRO)
326 1.33 kardel time_status &= ~STA_NANO;
327 1.33 kardel if (modes & MOD_CLKB)
328 1.33 kardel time_status |= STA_CLK;
329 1.33 kardel if (modes & MOD_CLKA)
330 1.33 kardel time_status &= ~STA_CLK;
331 1.33 kardel if (modes & MOD_FREQUENCY) {
332 1.33 kardel freq = (ntv->freq * 1000LL) >> 16;
333 1.33 kardel if (freq > MAXFREQ)
334 1.33 kardel L_LINT(time_freq, MAXFREQ);
335 1.33 kardel else if (freq < -MAXFREQ)
336 1.33 kardel L_LINT(time_freq, -MAXFREQ);
337 1.33 kardel else {
338 1.33 kardel /*
339 1.33 kardel * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
340 1.33 kardel * time_freq is [ns/s * 2^32]
341 1.33 kardel */
342 1.33 kardel time_freq = ntv->freq * 1000LL * 65536LL;
343 1.33 kardel }
344 1.33 kardel #ifdef PPS_SYNC
345 1.33 kardel pps_freq = time_freq;
346 1.33 kardel #endif /* PPS_SYNC */
347 1.33 kardel }
348 1.33 kardel if (modes & MOD_OFFSET) {
349 1.33 kardel if (time_status & STA_NANO)
350 1.33 kardel hardupdate(ntv->offset);
351 1.33 kardel else
352 1.33 kardel hardupdate(ntv->offset * 1000);
353 1.33 kardel }
354 1.33 kardel
355 1.33 kardel /*
356 1.33 kardel * Retrieve all clock variables. Note that the TAI offset is
357 1.33 kardel * returned only by ntp_gettime();
358 1.33 kardel */
359 1.33 kardel if (time_status & STA_NANO)
360 1.33 kardel ntv->offset = L_GINT(time_offset);
361 1.33 kardel else
362 1.33 kardel ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
363 1.33 kardel ntv->freq = L_GINT((time_freq / 1000LL) << 16);
364 1.33 kardel ntv->maxerror = time_maxerror;
365 1.33 kardel ntv->esterror = time_esterror;
366 1.33 kardel ntv->status = time_status;
367 1.33 kardel ntv->constant = time_constant;
368 1.33 kardel if (time_status & STA_NANO)
369 1.33 kardel ntv->precision = time_precision;
370 1.33 kardel else
371 1.33 kardel ntv->precision = time_precision / 1000;
372 1.33 kardel ntv->tolerance = MAXFREQ * SCALE_PPM;
373 1.33 kardel #ifdef PPS_SYNC
374 1.33 kardel ntv->shift = pps_shift;
375 1.33 kardel ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
376 1.33 kardel if (time_status & STA_NANO)
377 1.33 kardel ntv->jitter = pps_jitter;
378 1.33 kardel else
379 1.33 kardel ntv->jitter = pps_jitter / 1000;
380 1.33 kardel ntv->stabil = pps_stabil;
381 1.33 kardel ntv->calcnt = pps_calcnt;
382 1.33 kardel ntv->errcnt = pps_errcnt;
383 1.33 kardel ntv->jitcnt = pps_jitcnt;
384 1.33 kardel ntv->stbcnt = pps_stbcnt;
385 1.33 kardel #endif /* PPS_SYNC */
386 1.33 kardel splx(s);
387 1.33 kardel }
388 1.33 kardel #endif /* NTP */
389 1.33 kardel
390 1.33 kardel /*
391 1.33 kardel * second_overflow() - called after ntp_tick_adjust()
392 1.33 kardel *
393 1.33 kardel * This routine is ordinarily called immediately following the above
394 1.33 kardel * routine ntp_tick_adjust(). While these two routines are normally
395 1.33 kardel * combined, they are separated here only for the purposes of
396 1.33 kardel * simulation.
397 1.33 kardel */
398 1.33 kardel void
399 1.33 kardel ntp_update_second(int64_t *adjustment, time_t *newsec)
400 1.33 kardel {
401 1.33 kardel int tickrate;
402 1.33 kardel l_fp ftemp; /* 32/64-bit temporary */
403 1.33 kardel
404 1.33 kardel #ifdef NTP
405 1.33 kardel
406 1.33 kardel /*
407 1.33 kardel * On rollover of the second both the nanosecond and microsecond
408 1.33 kardel * clocks are updated and the state machine cranked as
409 1.33 kardel * necessary. The phase adjustment to be used for the next
410 1.33 kardel * second is calculated and the maximum error is increased by
411 1.33 kardel * the tolerance.
412 1.33 kardel */
413 1.33 kardel time_maxerror += MAXFREQ / 1000;
414 1.33 kardel
415 1.33 kardel /*
416 1.33 kardel * Leap second processing. If in leap-insert state at
417 1.33 kardel * the end of the day, the system clock is set back one
418 1.33 kardel * second; if in leap-delete state, the system clock is
419 1.33 kardel * set ahead one second. The nano_time() routine or
420 1.33 kardel * external clock driver will insure that reported time
421 1.33 kardel * is always monotonic.
422 1.33 kardel */
423 1.33 kardel switch (time_state) {
424 1.33 kardel
425 1.33 kardel /*
426 1.33 kardel * No warning.
427 1.33 kardel */
428 1.33 kardel case TIME_OK:
429 1.33 kardel if (time_status & STA_INS)
430 1.33 kardel time_state = TIME_INS;
431 1.33 kardel else if (time_status & STA_DEL)
432 1.33 kardel time_state = TIME_DEL;
433 1.33 kardel break;
434 1.33 kardel
435 1.33 kardel /*
436 1.33 kardel * Insert second 23:59:60 following second
437 1.33 kardel * 23:59:59.
438 1.33 kardel */
439 1.33 kardel case TIME_INS:
440 1.33 kardel if (!(time_status & STA_INS))
441 1.33 kardel time_state = TIME_OK;
442 1.33 kardel else if ((*newsec) % 86400 == 0) {
443 1.33 kardel (*newsec)--;
444 1.33 kardel time_state = TIME_OOP;
445 1.33 kardel time_tai++;
446 1.33 kardel }
447 1.33 kardel break;
448 1.33 kardel
449 1.33 kardel /*
450 1.33 kardel * Delete second 23:59:59.
451 1.33 kardel */
452 1.33 kardel case TIME_DEL:
453 1.33 kardel if (!(time_status & STA_DEL))
454 1.33 kardel time_state = TIME_OK;
455 1.33 kardel else if (((*newsec) + 1) % 86400 == 0) {
456 1.33 kardel (*newsec)++;
457 1.33 kardel time_tai--;
458 1.33 kardel time_state = TIME_WAIT;
459 1.33 kardel }
460 1.33 kardel break;
461 1.33 kardel
462 1.33 kardel /*
463 1.33 kardel * Insert second in progress.
464 1.33 kardel */
465 1.33 kardel case TIME_OOP:
466 1.33 kardel time_state = TIME_WAIT;
467 1.33 kardel break;
468 1.33 kardel
469 1.33 kardel /*
470 1.33 kardel * Wait for status bits to clear.
471 1.33 kardel */
472 1.33 kardel case TIME_WAIT:
473 1.33 kardel if (!(time_status & (STA_INS | STA_DEL)))
474 1.33 kardel time_state = TIME_OK;
475 1.33 kardel }
476 1.33 kardel
477 1.33 kardel /*
478 1.33 kardel * Compute the total time adjustment for the next second
479 1.33 kardel * in ns. The offset is reduced by a factor depending on
480 1.33 kardel * whether the PPS signal is operating. Note that the
481 1.33 kardel * value is in effect scaled by the clock frequency,
482 1.33 kardel * since the adjustment is added at each tick interrupt.
483 1.33 kardel */
484 1.33 kardel ftemp = time_offset;
485 1.33 kardel #ifdef PPS_SYNC
486 1.33 kardel /* XXX even if PPS signal dies we should finish adjustment ? */
487 1.33 kardel if (time_status & STA_PPSTIME && time_status &
488 1.33 kardel STA_PPSSIGNAL)
489 1.33 kardel L_RSHIFT(ftemp, pps_shift);
490 1.33 kardel else
491 1.33 kardel L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
492 1.33 kardel #else
493 1.33 kardel L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
494 1.33 kardel #endif /* PPS_SYNC */
495 1.33 kardel time_adj = ftemp;
496 1.33 kardel L_SUB(time_offset, ftemp);
497 1.33 kardel L_ADD(time_adj, time_freq);
498 1.33 kardel
499 1.33 kardel #ifdef PPS_SYNC
500 1.33 kardel if (pps_valid > 0)
501 1.33 kardel pps_valid--;
502 1.33 kardel else
503 1.33 kardel time_status &= ~STA_PPSSIGNAL;
504 1.33 kardel #endif /* PPS_SYNC */
505 1.34 kardel #else /* !NTP */
506 1.34 kardel L_CLR(time_adj);
507 1.34 kardel #endif /* !NTP */
508 1.33 kardel
509 1.33 kardel /*
510 1.33 kardel * Apply any correction from adjtime(2). If more than one second
511 1.33 kardel * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
512 1.33 kardel * until the last second is slewed the final < 500 usecs.
513 1.33 kardel */
514 1.33 kardel if (time_adjtime != 0) {
515 1.33 kardel if (time_adjtime > 1000000)
516 1.33 kardel tickrate = 5000;
517 1.33 kardel else if (time_adjtime < -1000000)
518 1.33 kardel tickrate = -5000;
519 1.33 kardel else if (time_adjtime > 500)
520 1.33 kardel tickrate = 500;
521 1.33 kardel else if (time_adjtime < -500)
522 1.33 kardel tickrate = -500;
523 1.33 kardel else
524 1.33 kardel tickrate = time_adjtime;
525 1.33 kardel time_adjtime -= tickrate;
526 1.33 kardel L_LINT(ftemp, tickrate * 1000);
527 1.33 kardel L_ADD(time_adj, ftemp);
528 1.33 kardel }
529 1.33 kardel *adjustment = time_adj;
530 1.33 kardel }
531 1.33 kardel
532 1.33 kardel /*
533 1.33 kardel * ntp_init() - initialize variables and structures
534 1.33 kardel *
535 1.33 kardel * This routine must be called after the kernel variables hz and tick
536 1.33 kardel * are set or changed and before the next tick interrupt. In this
537 1.33 kardel * particular implementation, these values are assumed set elsewhere in
538 1.33 kardel * the kernel. The design allows the clock frequency and tick interval
539 1.33 kardel * to be changed while the system is running. So, this routine should
540 1.33 kardel * probably be integrated with the code that does that.
541 1.33 kardel */
542 1.33 kardel void
543 1.33 kardel ntp_init(void)
544 1.33 kardel {
545 1.33 kardel
546 1.33 kardel /*
547 1.33 kardel * The following variables are initialized only at startup. Only
548 1.33 kardel * those structures not cleared by the compiler need to be
549 1.33 kardel * initialized, and these only in the simulator. In the actual
550 1.33 kardel * kernel, any nonzero values here will quickly evaporate.
551 1.33 kardel */
552 1.33 kardel L_CLR(time_adj);
553 1.33 kardel #ifdef NTP
554 1.33 kardel L_CLR(time_offset);
555 1.33 kardel L_CLR(time_freq);
556 1.33 kardel #ifdef PPS_SYNC
557 1.33 kardel pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
558 1.33 kardel pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
559 1.33 kardel pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
560 1.33 kardel pps_fcount = 0;
561 1.33 kardel L_CLR(pps_freq);
562 1.33 kardel #endif /* PPS_SYNC */
563 1.33 kardel #endif
564 1.33 kardel }
565 1.33 kardel
566 1.33 kardel #ifdef NTP
567 1.33 kardel /*
568 1.33 kardel * hardupdate() - local clock update
569 1.33 kardel *
570 1.33 kardel * This routine is called by ntp_adjtime() to update the local clock
571 1.33 kardel * phase and frequency. The implementation is of an adaptive-parameter,
572 1.33 kardel * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
573 1.33 kardel * time and frequency offset estimates for each call. If the kernel PPS
574 1.33 kardel * discipline code is configured (PPS_SYNC), the PPS signal itself
575 1.33 kardel * determines the new time offset, instead of the calling argument.
576 1.33 kardel * Presumably, calls to ntp_adjtime() occur only when the caller
577 1.33 kardel * believes the local clock is valid within some bound (+-128 ms with
578 1.33 kardel * NTP). If the caller's time is far different than the PPS time, an
579 1.33 kardel * argument will ensue, and it's not clear who will lose.
580 1.33 kardel *
581 1.33 kardel * For uncompensated quartz crystal oscillators and nominal update
582 1.33 kardel * intervals less than 256 s, operation should be in phase-lock mode,
583 1.33 kardel * where the loop is disciplined to phase. For update intervals greater
584 1.33 kardel * than 1024 s, operation should be in frequency-lock mode, where the
585 1.33 kardel * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
586 1.33 kardel * is selected by the STA_MODE status bit.
587 1.33 kardel *
588 1.33 kardel * Note: splclock() is in effect.
589 1.33 kardel */
590 1.33 kardel void
591 1.33 kardel hardupdate(long offset)
592 1.33 kardel {
593 1.33 kardel long mtemp;
594 1.33 kardel l_fp ftemp;
595 1.33 kardel
596 1.33 kardel /*
597 1.33 kardel * Select how the phase is to be controlled and from which
598 1.33 kardel * source. If the PPS signal is present and enabled to
599 1.33 kardel * discipline the time, the PPS offset is used; otherwise, the
600 1.33 kardel * argument offset is used.
601 1.33 kardel */
602 1.33 kardel if (!(time_status & STA_PLL))
603 1.33 kardel return;
604 1.33 kardel if (!(time_status & STA_PPSTIME && time_status &
605 1.33 kardel STA_PPSSIGNAL)) {
606 1.33 kardel if (offset > MAXPHASE)
607 1.33 kardel time_monitor = MAXPHASE;
608 1.33 kardel else if (offset < -MAXPHASE)
609 1.33 kardel time_monitor = -MAXPHASE;
610 1.33 kardel else
611 1.33 kardel time_monitor = offset;
612 1.33 kardel L_LINT(time_offset, time_monitor);
613 1.33 kardel }
614 1.33 kardel
615 1.33 kardel /*
616 1.33 kardel * Select how the frequency is to be controlled and in which
617 1.33 kardel * mode (PLL or FLL). If the PPS signal is present and enabled
618 1.33 kardel * to discipline the frequency, the PPS frequency is used;
619 1.33 kardel * otherwise, the argument offset is used to compute it.
620 1.33 kardel */
621 1.33 kardel if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
622 1.33 kardel time_reftime = time_second;
623 1.33 kardel return;
624 1.33 kardel }
625 1.33 kardel if (time_status & STA_FREQHOLD || time_reftime == 0)
626 1.33 kardel time_reftime = time_second;
627 1.33 kardel mtemp = time_second - time_reftime;
628 1.33 kardel L_LINT(ftemp, time_monitor);
629 1.33 kardel L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
630 1.33 kardel L_MPY(ftemp, mtemp);
631 1.33 kardel L_ADD(time_freq, ftemp);
632 1.33 kardel time_status &= ~STA_MODE;
633 1.33 kardel if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
634 1.33 kardel MAXSEC)) {
635 1.33 kardel L_LINT(ftemp, (time_monitor << 4) / mtemp);
636 1.33 kardel L_RSHIFT(ftemp, SHIFT_FLL + 4);
637 1.33 kardel L_ADD(time_freq, ftemp);
638 1.33 kardel time_status |= STA_MODE;
639 1.33 kardel }
640 1.33 kardel time_reftime = time_second;
641 1.33 kardel if (L_GINT(time_freq) > MAXFREQ)
642 1.33 kardel L_LINT(time_freq, MAXFREQ);
643 1.33 kardel else if (L_GINT(time_freq) < -MAXFREQ)
644 1.33 kardel L_LINT(time_freq, -MAXFREQ);
645 1.33 kardel }
646 1.33 kardel
647 1.33 kardel #ifdef PPS_SYNC
648 1.33 kardel /*
649 1.33 kardel * hardpps() - discipline CPU clock oscillator to external PPS signal
650 1.33 kardel *
651 1.33 kardel * This routine is called at each PPS interrupt in order to discipline
652 1.33 kardel * the CPU clock oscillator to the PPS signal. It measures the PPS phase
653 1.33 kardel * and leaves it in a handy spot for the hardclock() routine. It
654 1.33 kardel * integrates successive PPS phase differences and calculates the
655 1.33 kardel * frequency offset. This is used in hardclock() to discipline the CPU
656 1.33 kardel * clock oscillator so that intrinsic frequency error is cancelled out.
657 1.33 kardel * The code requires the caller to capture the time and hardware counter
658 1.33 kardel * value at the on-time PPS signal transition.
659 1.33 kardel *
660 1.33 kardel * Note that, on some Unix systems, this routine runs at an interrupt
661 1.33 kardel * priority level higher than the timer interrupt routine hardclock().
662 1.33 kardel * Therefore, the variables used are distinct from the hardclock()
663 1.33 kardel * variables, except for certain exceptions: The PPS frequency pps_freq
664 1.33 kardel * and phase pps_offset variables are determined by this routine and
665 1.33 kardel * updated atomically. The time_tolerance variable can be considered a
666 1.33 kardel * constant, since it is infrequently changed, and then only when the
667 1.33 kardel * PPS signal is disabled. The watchdog counter pps_valid is updated
668 1.33 kardel * once per second by hardclock() and is atomically cleared in this
669 1.33 kardel * routine.
670 1.33 kardel */
671 1.33 kardel void
672 1.33 kardel hardpps(struct timespec *tsp, /* time at PPS */
673 1.33 kardel long nsec /* hardware counter at PPS */)
674 1.33 kardel {
675 1.33 kardel long u_sec, u_nsec, v_nsec; /* temps */
676 1.33 kardel l_fp ftemp;
677 1.33 kardel
678 1.33 kardel /*
679 1.33 kardel * The signal is first processed by a range gate and frequency
680 1.33 kardel * discriminator. The range gate rejects noise spikes outside
681 1.33 kardel * the range +-500 us. The frequency discriminator rejects input
682 1.33 kardel * signals with apparent frequency outside the range 1 +-500
683 1.33 kardel * PPM. If two hits occur in the same second, we ignore the
684 1.33 kardel * later hit; if not and a hit occurs outside the range gate,
685 1.33 kardel * keep the later hit for later comparison, but do not process
686 1.33 kardel * it.
687 1.33 kardel */
688 1.33 kardel time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
689 1.33 kardel time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
690 1.33 kardel pps_valid = PPS_VALID;
691 1.33 kardel u_sec = tsp->tv_sec;
692 1.33 kardel u_nsec = tsp->tv_nsec;
693 1.33 kardel if (u_nsec >= (NANOSECOND >> 1)) {
694 1.33 kardel u_nsec -= NANOSECOND;
695 1.33 kardel u_sec++;
696 1.33 kardel }
697 1.33 kardel v_nsec = u_nsec - pps_tf[0].tv_nsec;
698 1.33 kardel if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
699 1.33 kardel MAXFREQ)
700 1.33 kardel return;
701 1.33 kardel pps_tf[2] = pps_tf[1];
702 1.33 kardel pps_tf[1] = pps_tf[0];
703 1.33 kardel pps_tf[0].tv_sec = u_sec;
704 1.33 kardel pps_tf[0].tv_nsec = u_nsec;
705 1.33 kardel
706 1.33 kardel /*
707 1.33 kardel * Compute the difference between the current and previous
708 1.33 kardel * counter values. If the difference exceeds 0.5 s, assume it
709 1.33 kardel * has wrapped around, so correct 1.0 s. If the result exceeds
710 1.33 kardel * the tick interval, the sample point has crossed a tick
711 1.33 kardel * boundary during the last second, so correct the tick. Very
712 1.33 kardel * intricate.
713 1.33 kardel */
714 1.33 kardel u_nsec = nsec;
715 1.33 kardel if (u_nsec > (NANOSECOND >> 1))
716 1.33 kardel u_nsec -= NANOSECOND;
717 1.33 kardel else if (u_nsec < -(NANOSECOND >> 1))
718 1.33 kardel u_nsec += NANOSECOND;
719 1.33 kardel pps_fcount += u_nsec;
720 1.33 kardel if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
721 1.33 kardel return;
722 1.33 kardel time_status &= ~STA_PPSJITTER;
723 1.33 kardel
724 1.33 kardel /*
725 1.33 kardel * A three-stage median filter is used to help denoise the PPS
726 1.33 kardel * time. The median sample becomes the time offset estimate; the
727 1.33 kardel * difference between the other two samples becomes the time
728 1.33 kardel * dispersion (jitter) estimate.
729 1.33 kardel */
730 1.33 kardel if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
731 1.33 kardel if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
732 1.33 kardel v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
733 1.33 kardel u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
734 1.33 kardel } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
735 1.33 kardel v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
736 1.33 kardel u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
737 1.33 kardel } else {
738 1.33 kardel v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
739 1.33 kardel u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
740 1.33 kardel }
741 1.33 kardel } else {
742 1.33 kardel if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
743 1.33 kardel v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
744 1.33 kardel u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
745 1.33 kardel } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
746 1.33 kardel v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
747 1.33 kardel u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
748 1.33 kardel } else {
749 1.33 kardel v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
750 1.33 kardel u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
751 1.33 kardel }
752 1.33 kardel }
753 1.33 kardel
754 1.33 kardel /*
755 1.33 kardel * Nominal jitter is due to PPS signal noise and interrupt
756 1.33 kardel * latency. If it exceeds the popcorn threshold, the sample is
757 1.33 kardel * discarded. otherwise, if so enabled, the time offset is
758 1.33 kardel * updated. We can tolerate a modest loss of data here without
759 1.33 kardel * much degrading time accuracy.
760 1.33 kardel */
761 1.33 kardel if (u_nsec > (pps_jitter << PPS_POPCORN)) {
762 1.33 kardel time_status |= STA_PPSJITTER;
763 1.33 kardel pps_jitcnt++;
764 1.33 kardel } else if (time_status & STA_PPSTIME) {
765 1.33 kardel time_monitor = -v_nsec;
766 1.33 kardel L_LINT(time_offset, time_monitor);
767 1.33 kardel }
768 1.33 kardel pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
769 1.33 kardel u_sec = pps_tf[0].tv_sec - pps_lastsec;
770 1.33 kardel if (u_sec < (1 << pps_shift))
771 1.33 kardel return;
772 1.33 kardel
773 1.33 kardel /*
774 1.33 kardel * At the end of the calibration interval the difference between
775 1.33 kardel * the first and last counter values becomes the scaled
776 1.33 kardel * frequency. It will later be divided by the length of the
777 1.33 kardel * interval to determine the frequency update. If the frequency
778 1.33 kardel * exceeds a sanity threshold, or if the actual calibration
779 1.33 kardel * interval is not equal to the expected length, the data are
780 1.33 kardel * discarded. We can tolerate a modest loss of data here without
781 1.33 kardel * much degrading frequency accuracy.
782 1.33 kardel */
783 1.33 kardel pps_calcnt++;
784 1.33 kardel v_nsec = -pps_fcount;
785 1.33 kardel pps_lastsec = pps_tf[0].tv_sec;
786 1.33 kardel pps_fcount = 0;
787 1.33 kardel u_nsec = MAXFREQ << pps_shift;
788 1.33 kardel if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
789 1.33 kardel pps_shift)) {
790 1.33 kardel time_status |= STA_PPSERROR;
791 1.33 kardel pps_errcnt++;
792 1.33 kardel return;
793 1.33 kardel }
794 1.33 kardel
795 1.33 kardel /*
796 1.33 kardel * Here the raw frequency offset and wander (stability) is
797 1.33 kardel * calculated. If the wander is less than the wander threshold
798 1.33 kardel * for four consecutive averaging intervals, the interval is
799 1.33 kardel * doubled; if it is greater than the threshold for four
800 1.33 kardel * consecutive intervals, the interval is halved. The scaled
801 1.33 kardel * frequency offset is converted to frequency offset. The
802 1.33 kardel * stability metric is calculated as the average of recent
803 1.33 kardel * frequency changes, but is used only for performance
804 1.33 kardel * monitoring.
805 1.33 kardel */
806 1.33 kardel L_LINT(ftemp, v_nsec);
807 1.33 kardel L_RSHIFT(ftemp, pps_shift);
808 1.33 kardel L_SUB(ftemp, pps_freq);
809 1.33 kardel u_nsec = L_GINT(ftemp);
810 1.33 kardel if (u_nsec > PPS_MAXWANDER) {
811 1.33 kardel L_LINT(ftemp, PPS_MAXWANDER);
812 1.33 kardel pps_intcnt--;
813 1.33 kardel time_status |= STA_PPSWANDER;
814 1.33 kardel pps_stbcnt++;
815 1.33 kardel } else if (u_nsec < -PPS_MAXWANDER) {
816 1.33 kardel L_LINT(ftemp, -PPS_MAXWANDER);
817 1.33 kardel pps_intcnt--;
818 1.33 kardel time_status |= STA_PPSWANDER;
819 1.33 kardel pps_stbcnt++;
820 1.33 kardel } else {
821 1.33 kardel pps_intcnt++;
822 1.33 kardel }
823 1.33 kardel if (pps_intcnt >= 4) {
824 1.33 kardel pps_intcnt = 4;
825 1.33 kardel if (pps_shift < pps_shiftmax) {
826 1.33 kardel pps_shift++;
827 1.33 kardel pps_intcnt = 0;
828 1.33 kardel }
829 1.33 kardel } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
830 1.33 kardel pps_intcnt = -4;
831 1.33 kardel if (pps_shift > PPS_FAVG) {
832 1.33 kardel pps_shift--;
833 1.33 kardel pps_intcnt = 0;
834 1.33 kardel }
835 1.33 kardel }
836 1.33 kardel if (u_nsec < 0)
837 1.33 kardel u_nsec = -u_nsec;
838 1.33 kardel pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
839 1.33 kardel
840 1.33 kardel /*
841 1.33 kardel * The PPS frequency is recalculated and clamped to the maximum
842 1.33 kardel * MAXFREQ. If enabled, the system clock frequency is updated as
843 1.33 kardel * well.
844 1.33 kardel */
845 1.33 kardel L_ADD(pps_freq, ftemp);
846 1.33 kardel u_nsec = L_GINT(pps_freq);
847 1.33 kardel if (u_nsec > MAXFREQ)
848 1.33 kardel L_LINT(pps_freq, MAXFREQ);
849 1.33 kardel else if (u_nsec < -MAXFREQ)
850 1.33 kardel L_LINT(pps_freq, -MAXFREQ);
851 1.33 kardel if (time_status & STA_PPSFREQ)
852 1.33 kardel time_freq = pps_freq;
853 1.33 kardel }
854 1.33 kardel #endif /* PPS_SYNC */
855 1.33 kardel #endif /* NTP */
856 1.33 kardel #else /* !__HAVE_TIMECOUNTER */
857 1.1 jonathan /******************************************************************************
858 1.1 jonathan * *
859 1.1 jonathan * Copyright (c) David L. Mills 1993, 1994 *
860 1.1 jonathan * *
861 1.1 jonathan * Permission to use, copy, modify, and distribute this software and its *
862 1.1 jonathan * documentation for any purpose and without fee is hereby granted, provided *
863 1.1 jonathan * that the above copyright notice appears in all copies and that both the *
864 1.1 jonathan * copyright notice and this permission notice appear in supporting *
865 1.1 jonathan * documentation, and that the name University of Delaware not be used in *
866 1.1 jonathan * advertising or publicity pertaining to distribution of the software *
867 1.1 jonathan * without specific, written prior permission. The University of Delaware *
868 1.1 jonathan * makes no representations about the suitability this software for any *
869 1.1 jonathan * purpose. It is provided "as is" without express or implied warranty. *
870 1.1 jonathan * *
871 1.1 jonathan ******************************************************************************/
872 1.1 jonathan
873 1.1 jonathan /*
874 1.1 jonathan * Modification history kern_ntptime.c
875 1.1 jonathan *
876 1.1 jonathan * 24 Sep 94 David L. Mills
877 1.1 jonathan * Tightened code at exits.
878 1.1 jonathan *
879 1.1 jonathan * 24 Mar 94 David L. Mills
880 1.1 jonathan * Revised syscall interface to include new variables for PPS
881 1.1 jonathan * time discipline.
882 1.1 jonathan *
883 1.1 jonathan * 14 Feb 94 David L. Mills
884 1.1 jonathan * Added code for external clock
885 1.1 jonathan *
886 1.1 jonathan * 28 Nov 93 David L. Mills
887 1.1 jonathan * Revised frequency scaling to conform with adjusted parameters
888 1.1 jonathan *
889 1.1 jonathan * 17 Sep 93 David L. Mills
890 1.1 jonathan * Created file
891 1.1 jonathan */
892 1.1 jonathan /*
893 1.1 jonathan * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
894 1.1 jonathan * V4.1.1 and V4.1.3
895 1.1 jonathan *
896 1.1 jonathan * These routines consitute the Network Time Protocol (NTP) interfaces
897 1.1 jonathan * for user and daemon application programs. The ntp_gettime() routine
898 1.1 jonathan * provides the time, maximum error (synch distance) and estimated error
899 1.1 jonathan * (dispersion) to client user application programs. The ntp_adjtime()
900 1.1 jonathan * routine is used by the NTP daemon to adjust the system clock to an
901 1.1 jonathan * externally derived time. The time offset and related variables set by
902 1.1 jonathan * this routine are used by hardclock() to adjust the phase and
903 1.1 jonathan * frequency of the phase-lock loop which controls the system clock.
904 1.1 jonathan */
905 1.16 lukem
906 1.16 lukem #include <sys/cdefs.h>
907 1.37 elad __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.37 2006/09/09 11:52:56 elad Exp $");
908 1.16 lukem
909 1.6 jonathan #include "opt_ntp.h"
910 1.31 drochner #include "opt_compat_netbsd.h"
911 1.6 jonathan
912 1.1 jonathan #include <sys/param.h>
913 1.1 jonathan #include <sys/resourcevar.h>
914 1.1 jonathan #include <sys/systm.h>
915 1.1 jonathan #include <sys/kernel.h>
916 1.1 jonathan #include <sys/proc.h>
917 1.18 simonb #include <sys/sysctl.h>
918 1.1 jonathan #include <sys/timex.h>
919 1.31 drochner #ifdef COMPAT_30
920 1.31 drochner #include <compat/sys/timex.h>
921 1.31 drochner #endif
922 1.1 jonathan #include <sys/vnode.h>
923 1.30 elad #include <sys/kauth.h>
924 1.1 jonathan
925 1.1 jonathan #include <sys/mount.h>
926 1.22 thorpej #include <sys/sa.h>
927 1.1 jonathan #include <sys/syscallargs.h>
928 1.1 jonathan
929 1.1 jonathan #include <machine/cpu.h>
930 1.2 christos
931 1.4 thorpej #ifdef NTP
932 1.1 jonathan /*
933 1.1 jonathan * The following variables are used by the hardclock() routine in the
934 1.28 perry * kern_clock.c module and are described in that module.
935 1.1 jonathan */
936 1.1 jonathan extern int time_state; /* clock state */
937 1.1 jonathan extern int time_status; /* clock status bits */
938 1.1 jonathan extern long time_offset; /* time adjustment (us) */
939 1.1 jonathan extern long time_freq; /* frequency offset (scaled ppm) */
940 1.1 jonathan extern long time_maxerror; /* maximum error (us) */
941 1.1 jonathan extern long time_esterror; /* estimated error (us) */
942 1.1 jonathan extern long time_constant; /* pll time constant */
943 1.1 jonathan extern long time_precision; /* clock precision (us) */
944 1.1 jonathan extern long time_tolerance; /* frequency tolerance (scaled ppm) */
945 1.24 drochner extern int time_adjusted; /* ntp might have changed the system time */
946 1.1 jonathan
947 1.1 jonathan #ifdef PPS_SYNC
948 1.1 jonathan /*
949 1.1 jonathan * The following variables are used only if the PPS signal discipline
950 1.1 jonathan * is configured in the kernel.
951 1.1 jonathan */
952 1.1 jonathan extern int pps_shift; /* interval duration (s) (shift) */
953 1.1 jonathan extern long pps_freq; /* pps frequency offset (scaled ppm) */
954 1.1 jonathan extern long pps_jitter; /* pps jitter (us) */
955 1.1 jonathan extern long pps_stabil; /* pps stability (scaled ppm) */
956 1.1 jonathan extern long pps_jitcnt; /* jitter limit exceeded */
957 1.1 jonathan extern long pps_calcnt; /* calibration intervals */
958 1.1 jonathan extern long pps_errcnt; /* calibration errors */
959 1.1 jonathan extern long pps_stbcnt; /* stability limit exceeded */
960 1.1 jonathan #endif /* PPS_SYNC */
961 1.1 jonathan
962 1.1 jonathan /*ARGSUSED*/
963 1.1 jonathan /*
964 1.1 jonathan * ntp_gettime() - NTP user application interface
965 1.1 jonathan */
966 1.32 drochner void
967 1.31 drochner ntp_gettime(ntvp)
968 1.31 drochner struct ntptimeval *ntvp;
969 1.31 drochner {
970 1.31 drochner struct timeval atv;
971 1.31 drochner int s;
972 1.31 drochner
973 1.31 drochner memset(ntvp, 0, sizeof(struct ntptimeval));
974 1.31 drochner
975 1.31 drochner s = splclock();
976 1.31 drochner #ifdef EXT_CLOCK
977 1.31 drochner /*
978 1.31 drochner * The microtime() external clock routine returns a
979 1.31 drochner * status code. If less than zero, we declare an error
980 1.31 drochner * in the clock status word and return the kernel
981 1.31 drochner * (software) time variable. While there are other
982 1.31 drochner * places that call microtime(), this is the only place
983 1.31 drochner * that matters from an application point of view.
984 1.31 drochner */
985 1.31 drochner if (microtime(&atv) < 0) {
986 1.31 drochner time_status |= STA_CLOCKERR;
987 1.31 drochner ntvp->time = time;
988 1.31 drochner } else
989 1.31 drochner time_status &= ~STA_CLOCKERR;
990 1.31 drochner #else /* EXT_CLOCK */
991 1.31 drochner microtime(&atv);
992 1.31 drochner #endif /* EXT_CLOCK */
993 1.31 drochner ntvp->maxerror = time_maxerror;
994 1.31 drochner ntvp->esterror = time_esterror;
995 1.31 drochner (void) splx(s);
996 1.31 drochner TIMEVAL_TO_TIMESPEC(&atv, &ntvp->time);
997 1.31 drochner }
998 1.33 kardel
999 1.1 jonathan
1000 1.1 jonathan /* ARGSUSED */
1001 1.1 jonathan /*
1002 1.1 jonathan * ntp_adjtime() - NTP daemon application interface
1003 1.1 jonathan */
1004 1.1 jonathan int
1005 1.22 thorpej sys_ntp_adjtime(l, v, retval)
1006 1.22 thorpej struct lwp *l;
1007 1.1 jonathan void *v;
1008 1.1 jonathan register_t *retval;
1009 1.1 jonathan {
1010 1.3 thorpej struct sys_ntp_adjtime_args /* {
1011 1.1 jonathan syscallarg(struct timex *) tp;
1012 1.1 jonathan } */ *uap = v;
1013 1.1 jonathan struct timex ntv;
1014 1.1 jonathan int error = 0;
1015 1.1 jonathan
1016 1.35 ad error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv, sizeof(ntv));
1017 1.35 ad if (error != 0)
1018 1.14 manu return (error);
1019 1.14 manu
1020 1.37 elad if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
1021 1.37 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
1022 1.36 elad NULL, NULL)) != 0)
1023 1.1 jonathan return (error);
1024 1.1 jonathan
1025 1.33 kardel ntp_adjtime1(&ntv);
1026 1.33 kardel
1027 1.33 kardel error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
1028 1.35 ad if (error == 0)
1029 1.33 kardel *retval = ntp_timestatus();
1030 1.33 kardel
1031 1.33 kardel return error;
1032 1.14 manu }
1033 1.14 manu
1034 1.33 kardel void
1035 1.33 kardel ntp_adjtime1(ntv)
1036 1.14 manu struct timex *ntv;
1037 1.14 manu {
1038 1.14 manu int modes;
1039 1.14 manu int s;
1040 1.14 manu
1041 1.1 jonathan /*
1042 1.28 perry * Update selected clock variables. Note that there is no error
1043 1.28 perry * checking here on the assumption the superuser should know
1044 1.14 manu * what it is doing.
1045 1.1 jonathan */
1046 1.15 jmc modes = ntv->modes;
1047 1.23 dsl if (modes != 0)
1048 1.23 dsl /* We need to save the system time during shutdown */
1049 1.23 dsl time_adjusted |= 2;
1050 1.1 jonathan s = splclock();
1051 1.1 jonathan if (modes & MOD_FREQUENCY)
1052 1.1 jonathan #ifdef PPS_SYNC
1053 1.15 jmc time_freq = ntv->freq - pps_freq;
1054 1.1 jonathan #else /* PPS_SYNC */
1055 1.15 jmc time_freq = ntv->freq;
1056 1.1 jonathan #endif /* PPS_SYNC */
1057 1.1 jonathan if (modes & MOD_MAXERROR)
1058 1.15 jmc time_maxerror = ntv->maxerror;
1059 1.1 jonathan if (modes & MOD_ESTERROR)
1060 1.15 jmc time_esterror = ntv->esterror;
1061 1.1 jonathan if (modes & MOD_STATUS) {
1062 1.1 jonathan time_status &= STA_RONLY;
1063 1.15 jmc time_status |= ntv->status & ~STA_RONLY;
1064 1.1 jonathan }
1065 1.1 jonathan if (modes & MOD_TIMECONST)
1066 1.15 jmc time_constant = ntv->constant;
1067 1.1 jonathan if (modes & MOD_OFFSET)
1068 1.15 jmc hardupdate(ntv->offset);
1069 1.1 jonathan
1070 1.1 jonathan /*
1071 1.1 jonathan * Retrieve all clock variables
1072 1.1 jonathan */
1073 1.1 jonathan if (time_offset < 0)
1074 1.15 jmc ntv->offset = -(-time_offset >> SHIFT_UPDATE);
1075 1.1 jonathan else
1076 1.15 jmc ntv->offset = time_offset >> SHIFT_UPDATE;
1077 1.1 jonathan #ifdef PPS_SYNC
1078 1.15 jmc ntv->freq = time_freq + pps_freq;
1079 1.1 jonathan #else /* PPS_SYNC */
1080 1.15 jmc ntv->freq = time_freq;
1081 1.1 jonathan #endif /* PPS_SYNC */
1082 1.15 jmc ntv->maxerror = time_maxerror;
1083 1.15 jmc ntv->esterror = time_esterror;
1084 1.15 jmc ntv->status = time_status;
1085 1.15 jmc ntv->constant = time_constant;
1086 1.15 jmc ntv->precision = time_precision;
1087 1.15 jmc ntv->tolerance = time_tolerance;
1088 1.1 jonathan #ifdef PPS_SYNC
1089 1.15 jmc ntv->shift = pps_shift;
1090 1.15 jmc ntv->ppsfreq = pps_freq;
1091 1.15 jmc ntv->jitter = pps_jitter >> PPS_AVG;
1092 1.15 jmc ntv->stabil = pps_stabil;
1093 1.15 jmc ntv->calcnt = pps_calcnt;
1094 1.15 jmc ntv->errcnt = pps_errcnt;
1095 1.15 jmc ntv->jitcnt = pps_jitcnt;
1096 1.15 jmc ntv->stbcnt = pps_stbcnt;
1097 1.1 jonathan #endif /* PPS_SYNC */
1098 1.1 jonathan (void)splx(s);
1099 1.33 kardel }
1100 1.33 kardel #endif /* NTP */
1101 1.33 kardel #endif /* !__HAVE_TIMECOUNTER */
1102 1.33 kardel
1103 1.33 kardel #ifdef NTP
1104 1.33 kardel int
1105 1.33 kardel ntp_timestatus()
1106 1.33 kardel {
1107 1.33 kardel /*
1108 1.33 kardel * Status word error decode. If any of these conditions
1109 1.33 kardel * occur, an error is returned, instead of the status
1110 1.33 kardel * word. Most applications will care only about the fact
1111 1.33 kardel * the system clock may not be trusted, not about the
1112 1.33 kardel * details.
1113 1.33 kardel *
1114 1.33 kardel * Hardware or software error
1115 1.33 kardel */
1116 1.33 kardel if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1117 1.33 kardel
1118 1.33 kardel /*
1119 1.33 kardel * PPS signal lost when either time or frequency
1120 1.33 kardel * synchronization requested
1121 1.33 kardel */
1122 1.33 kardel (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1123 1.33 kardel !(time_status & STA_PPSSIGNAL)) ||
1124 1.33 kardel
1125 1.33 kardel /*
1126 1.33 kardel * PPS jitter exceeded when time synchronization
1127 1.33 kardel * requested
1128 1.33 kardel */
1129 1.33 kardel (time_status & STA_PPSTIME &&
1130 1.33 kardel time_status & STA_PPSJITTER) ||
1131 1.33 kardel
1132 1.33 kardel /*
1133 1.33 kardel * PPS wander exceeded or calibration error when
1134 1.33 kardel * frequency synchronization requested
1135 1.33 kardel */
1136 1.33 kardel (time_status & STA_PPSFREQ &&
1137 1.33 kardel time_status & (STA_PPSWANDER | STA_PPSERROR)))
1138 1.33 kardel return (TIME_ERROR);
1139 1.33 kardel else
1140 1.33 kardel return (time_state);
1141 1.33 kardel }
1142 1.1 jonathan
1143 1.33 kardel /*ARGSUSED*/
1144 1.33 kardel /*
1145 1.33 kardel * ntp_gettime() - NTP user application interface
1146 1.33 kardel */
1147 1.33 kardel int
1148 1.33 kardel sys___ntp_gettime30(l, v, retval)
1149 1.33 kardel struct lwp *l;
1150 1.33 kardel void *v;
1151 1.33 kardel register_t *retval;
1152 1.33 kardel {
1153 1.33 kardel struct sys___ntp_gettime30_args /* {
1154 1.33 kardel syscallarg(struct ntptimeval *) ntvp;
1155 1.33 kardel } */ *uap = v;
1156 1.33 kardel struct ntptimeval ntv;
1157 1.33 kardel int error = 0;
1158 1.33 kardel
1159 1.33 kardel if (SCARG(uap, ntvp)) {
1160 1.33 kardel ntp_gettime(&ntv);
1161 1.33 kardel
1162 1.33 kardel error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
1163 1.33 kardel sizeof(ntv));
1164 1.33 kardel }
1165 1.1 jonathan if (!error) {
1166 1.33 kardel *retval = ntp_timestatus();
1167 1.33 kardel }
1168 1.33 kardel return(error);
1169 1.33 kardel }
1170 1.1 jonathan
1171 1.33 kardel #ifdef COMPAT_30
1172 1.33 kardel int
1173 1.33 kardel compat_30_sys_ntp_gettime(l, v, retval)
1174 1.33 kardel struct lwp *l;
1175 1.33 kardel void *v;
1176 1.33 kardel register_t *retval;
1177 1.33 kardel {
1178 1.33 kardel struct compat_30_sys_ntp_gettime_args /* {
1179 1.33 kardel syscallarg(struct ntptimeval30 *) ontvp;
1180 1.33 kardel } */ *uap = v;
1181 1.33 kardel struct ntptimeval ntv;
1182 1.33 kardel struct ntptimeval30 ontv;
1183 1.33 kardel int error = 0;
1184 1.33 kardel
1185 1.33 kardel if (SCARG(uap, ntvp)) {
1186 1.33 kardel ntp_gettime(&ntv);
1187 1.33 kardel TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
1188 1.33 kardel ontv.maxerror = ntv.maxerror;
1189 1.33 kardel ontv.esterror = ntv.esterror;
1190 1.33 kardel
1191 1.33 kardel error = copyout((caddr_t)&ontv, (caddr_t)SCARG(uap, ntvp),
1192 1.33 kardel sizeof(ontv));
1193 1.33 kardel }
1194 1.33 kardel if (!error)
1195 1.33 kardel *retval = ntp_timestatus();
1196 1.33 kardel
1197 1.33 kardel return (error);
1198 1.1 jonathan }
1199 1.33 kardel #endif
1200 1.1 jonathan
1201 1.1 jonathan /*
1202 1.1 jonathan * return information about kernel precision timekeeping
1203 1.1 jonathan */
1204 1.25 atatat static int
1205 1.25 atatat sysctl_kern_ntptime(SYSCTLFN_ARGS)
1206 1.1 jonathan {
1207 1.25 atatat struct sysctlnode node;
1208 1.1 jonathan struct ntptimeval ntv;
1209 1.1 jonathan
1210 1.31 drochner ntp_gettime(&ntv);
1211 1.25 atatat
1212 1.25 atatat node = *rnode;
1213 1.25 atatat node.sysctl_data = &ntv;
1214 1.25 atatat node.sysctl_size = sizeof(ntv);
1215 1.25 atatat return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1216 1.25 atatat }
1217 1.25 atatat
1218 1.25 atatat SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
1219 1.25 atatat {
1220 1.25 atatat
1221 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
1222 1.26 atatat CTLFLAG_PERMANENT,
1223 1.25 atatat CTLTYPE_NODE, "kern", NULL,
1224 1.25 atatat NULL, 0, NULL, 0,
1225 1.25 atatat CTL_KERN, CTL_EOL);
1226 1.25 atatat
1227 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
1228 1.26 atatat CTLFLAG_PERMANENT,
1229 1.27 atatat CTLTYPE_STRUCT, "ntptime",
1230 1.27 atatat SYSCTL_DESCR("Kernel clock values for NTP"),
1231 1.25 atatat sysctl_kern_ntptime, 0, NULL,
1232 1.25 atatat sizeof(struct ntptimeval),
1233 1.25 atatat CTL_KERN, KERN_NTPTIME, CTL_EOL);
1234 1.1 jonathan }
1235 1.4 thorpej #else /* !NTP */
1236 1.13 bjh21 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
1237 1.13 bjh21
1238 1.4 thorpej int
1239 1.31 drochner sys___ntp_gettime30(l, v, retval)
1240 1.31 drochner struct lwp *l;
1241 1.31 drochner void *v;
1242 1.31 drochner register_t *retval;
1243 1.31 drochner {
1244 1.31 drochner
1245 1.31 drochner return(ENOSYS);
1246 1.31 drochner }
1247 1.31 drochner
1248 1.31 drochner #ifdef COMPAT_30
1249 1.31 drochner int
1250 1.31 drochner compat_30_sys_ntp_gettime(l, v, retval)
1251 1.33 kardel struct lwp *l;
1252 1.33 kardel void *v;
1253 1.33 kardel register_t *retval;
1254 1.4 thorpej {
1255 1.19 simonb
1256 1.33 kardel return(ENOSYS);
1257 1.4 thorpej }
1258 1.31 drochner #endif
1259 1.13 bjh21 #endif /* !NTP */
1260