Home | History | Annotate | Line # | Download | only in kern
kern_ntptime.c revision 1.43.16.2
      1  1.43.16.2      matt /*	$NetBSD: kern_ntptime.c,v 1.43.16.2 2008/01/09 01:56:05 matt Exp $	*/
      2       1.33    kardel #include <sys/types.h> 	/* XXX to get __HAVE_TIMECOUNTER, remove
      3       1.33    kardel 			   after all ports are converted. */
      4       1.33    kardel #ifdef __HAVE_TIMECOUNTER
      5       1.33    kardel 
      6       1.33    kardel /*-
      7       1.33    kardel  ***********************************************************************
      8       1.33    kardel  *								       *
      9       1.33    kardel  * Copyright (c) David L. Mills 1993-2001			       *
     10       1.33    kardel  *								       *
     11       1.33    kardel  * Permission to use, copy, modify, and distribute this software and   *
     12       1.33    kardel  * its documentation for any purpose and without fee is hereby	       *
     13       1.33    kardel  * granted, provided that the above copyright notice appears in all    *
     14       1.33    kardel  * copies and that both the copyright notice and this permission       *
     15       1.33    kardel  * notice appear in supporting documentation, and that the name	       *
     16       1.33    kardel  * University of Delaware not be used in advertising or publicity      *
     17       1.33    kardel  * pertaining to distribution of the software without specific,	       *
     18       1.33    kardel  * written prior permission. The University of Delaware makes no       *
     19       1.33    kardel  * representations about the suitability this software for any	       *
     20       1.33    kardel  * purpose. It is provided "as is" without express or implied	       *
     21       1.33    kardel  * warranty.							       *
     22       1.33    kardel  *								       *
     23       1.33    kardel  **********************************************************************/
     24        1.1  jonathan 
     25       1.33    kardel /*
     26       1.33    kardel  * Adapted from the original sources for FreeBSD and timecounters by:
     27       1.33    kardel  * Poul-Henning Kamp <phk (at) FreeBSD.org>.
     28       1.33    kardel  *
     29       1.33    kardel  * The 32bit version of the "LP" macros seems a bit past its "sell by"
     30       1.33    kardel  * date so I have retained only the 64bit version and included it directly
     31       1.33    kardel  * in this file.
     32       1.33    kardel  *
     33       1.33    kardel  * Only minor changes done to interface with the timecounters over in
     34       1.33    kardel  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
     35       1.33    kardel  * confusing and/or plain wrong in that context.
     36       1.33    kardel  */
     37       1.33    kardel 
     38       1.33    kardel #include <sys/cdefs.h>
     39       1.33    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
     40  1.43.16.2      matt __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.43.16.2 2008/01/09 01:56:05 matt Exp $");
     41       1.33    kardel 
     42       1.33    kardel #include "opt_ntp.h"
     43       1.33    kardel #include "opt_compat_netbsd.h"
     44       1.33    kardel 
     45       1.33    kardel #include <sys/param.h>
     46       1.33    kardel #include <sys/resourcevar.h>
     47       1.33    kardel #include <sys/systm.h>
     48       1.33    kardel #include <sys/kernel.h>
     49       1.33    kardel #include <sys/proc.h>
     50       1.33    kardel #include <sys/sysctl.h>
     51       1.33    kardel #include <sys/timex.h>
     52       1.33    kardel #ifdef COMPAT_30
     53       1.33    kardel #include <compat/sys/timex.h>
     54       1.33    kardel #endif
     55       1.33    kardel #include <sys/vnode.h>
     56       1.33    kardel #include <sys/kauth.h>
     57       1.33    kardel 
     58       1.33    kardel #include <sys/mount.h>
     59       1.33    kardel #include <sys/syscallargs.h>
     60       1.33    kardel 
     61  1.43.16.1      matt #include <sys/cpu.h>
     62       1.33    kardel 
     63       1.33    kardel /*
     64       1.33    kardel  * Single-precision macros for 64-bit machines
     65       1.33    kardel  */
     66       1.33    kardel typedef int64_t l_fp;
     67       1.33    kardel #define L_ADD(v, u)	((v) += (u))
     68       1.33    kardel #define L_SUB(v, u)	((v) -= (u))
     69       1.33    kardel #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
     70       1.33    kardel #define L_NEG(v)	((v) = -(v))
     71       1.33    kardel #define L_RSHIFT(v, n) \
     72       1.33    kardel 	do { \
     73       1.33    kardel 		if ((v) < 0) \
     74       1.33    kardel 			(v) = -(-(v) >> (n)); \
     75       1.33    kardel 		else \
     76       1.33    kardel 			(v) = (v) >> (n); \
     77       1.33    kardel 	} while (0)
     78       1.33    kardel #define L_MPY(v, a)	((v) *= (a))
     79       1.33    kardel #define L_CLR(v)	((v) = 0)
     80       1.33    kardel #define L_ISNEG(v)	((v) < 0)
     81       1.33    kardel #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
     82       1.33    kardel #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
     83       1.33    kardel 
     84       1.33    kardel #ifdef NTP
     85       1.33    kardel /*
     86       1.33    kardel  * Generic NTP kernel interface
     87       1.33    kardel  *
     88       1.33    kardel  * These routines constitute the Network Time Protocol (NTP) interfaces
     89       1.33    kardel  * for user and daemon application programs. The ntp_gettime() routine
     90       1.33    kardel  * provides the time, maximum error (synch distance) and estimated error
     91       1.33    kardel  * (dispersion) to client user application programs. The ntp_adjtime()
     92       1.33    kardel  * routine is used by the NTP daemon to adjust the system clock to an
     93       1.33    kardel  * externally derived time. The time offset and related variables set by
     94       1.33    kardel  * this routine are used by other routines in this module to adjust the
     95       1.33    kardel  * phase and frequency of the clock discipline loop which controls the
     96       1.33    kardel  * system clock.
     97       1.33    kardel  *
     98       1.33    kardel  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
     99       1.33    kardel  * defined), the time at each tick interrupt is derived directly from
    100       1.33    kardel  * the kernel time variable. When the kernel time is reckoned in
    101       1.33    kardel  * microseconds, (NTP_NANO undefined), the time is derived from the
    102       1.33    kardel  * kernel time variable together with a variable representing the
    103       1.33    kardel  * leftover nanoseconds at the last tick interrupt. In either case, the
    104       1.33    kardel  * current nanosecond time is reckoned from these values plus an
    105       1.33    kardel  * interpolated value derived by the clock routines in another
    106       1.33    kardel  * architecture-specific module. The interpolation can use either a
    107       1.33    kardel  * dedicated counter or a processor cycle counter (PCC) implemented in
    108       1.33    kardel  * some architectures.
    109       1.33    kardel  *
    110       1.33    kardel  * Note that all routines must run at priority splclock or higher.
    111       1.33    kardel  */
    112       1.33    kardel /*
    113       1.33    kardel  * Phase/frequency-lock loop (PLL/FLL) definitions
    114       1.33    kardel  *
    115       1.33    kardel  * The nanosecond clock discipline uses two variable types, time
    116       1.33    kardel  * variables and frequency variables. Both types are represented as 64-
    117       1.33    kardel  * bit fixed-point quantities with the decimal point between two 32-bit
    118       1.33    kardel  * halves. On a 32-bit machine, each half is represented as a single
    119       1.33    kardel  * word and mathematical operations are done using multiple-precision
    120       1.33    kardel  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
    121       1.33    kardel  * used.
    122       1.33    kardel  *
    123       1.33    kardel  * A time variable is a signed 64-bit fixed-point number in ns and
    124       1.33    kardel  * fraction. It represents the remaining time offset to be amortized
    125       1.33    kardel  * over succeeding tick interrupts. The maximum time offset is about
    126       1.33    kardel  * 0.5 s and the resolution is about 2.3e-10 ns.
    127       1.33    kardel  *
    128       1.33    kardel  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    129       1.33    kardel  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    130       1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    131       1.33    kardel  * |s s s|			 ns				   |
    132       1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    133       1.33    kardel  * |			    fraction				   |
    134       1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    135       1.33    kardel  *
    136       1.33    kardel  * A frequency variable is a signed 64-bit fixed-point number in ns/s
    137       1.33    kardel  * and fraction. It represents the ns and fraction to be added to the
    138       1.33    kardel  * kernel time variable at each second. The maximum frequency offset is
    139       1.33    kardel  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
    140       1.33    kardel  *
    141       1.33    kardel  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    142       1.33    kardel  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    143       1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    144       1.33    kardel  * |s s s s s s s s s s s s s|	          ns/s			   |
    145       1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    146       1.33    kardel  * |			    fraction				   |
    147       1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    148       1.33    kardel  */
    149       1.33    kardel /*
    150       1.33    kardel  * The following variables establish the state of the PLL/FLL and the
    151       1.33    kardel  * residual time and frequency offset of the local clock.
    152       1.33    kardel  */
    153       1.33    kardel #define SHIFT_PLL	4		/* PLL loop gain (shift) */
    154       1.33    kardel #define SHIFT_FLL	2		/* FLL loop gain (shift) */
    155       1.33    kardel 
    156       1.33    kardel static int time_state = TIME_OK;	/* clock state */
    157       1.33    kardel static int time_status = STA_UNSYNC;	/* clock status bits */
    158       1.33    kardel static long time_tai;			/* TAI offset (s) */
    159       1.33    kardel static long time_monitor;		/* last time offset scaled (ns) */
    160       1.33    kardel static long time_constant;		/* poll interval (shift) (s) */
    161       1.33    kardel static long time_precision = 1;		/* clock precision (ns) */
    162       1.33    kardel static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
    163       1.33    kardel static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
    164       1.33    kardel static long time_reftime;		/* time at last adjustment (s) */
    165       1.33    kardel static l_fp time_offset;		/* time offset (ns) */
    166       1.33    kardel static l_fp time_freq;			/* frequency offset (ns/s) */
    167       1.33    kardel #endif /* NTP */
    168       1.33    kardel 
    169       1.33    kardel static l_fp time_adj;			/* tick adjust (ns/s) */
    170       1.33    kardel int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
    171       1.33    kardel 
    172       1.33    kardel extern int time_adjusted;	/* ntp might have changed the system time */
    173       1.33    kardel 
    174       1.33    kardel #ifdef NTP
    175       1.33    kardel #ifdef PPS_SYNC
    176       1.33    kardel /*
    177       1.33    kardel  * The following variables are used when a pulse-per-second (PPS) signal
    178       1.33    kardel  * is available and connected via a modem control lead. They establish
    179       1.33    kardel  * the engineering parameters of the clock discipline loop when
    180       1.33    kardel  * controlled by the PPS signal.
    181       1.33    kardel  */
    182       1.33    kardel #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
    183       1.33    kardel #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
    184       1.33    kardel #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
    185       1.33    kardel #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
    186       1.33    kardel #define PPS_VALID	120		/* PPS signal watchdog max (s) */
    187       1.33    kardel #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
    188       1.33    kardel #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
    189       1.33    kardel 
    190       1.33    kardel static struct timespec pps_tf[3];	/* phase median filter */
    191       1.33    kardel static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
    192       1.33    kardel static long pps_fcount;			/* frequency accumulator */
    193       1.33    kardel static long pps_jitter;			/* nominal jitter (ns) */
    194       1.33    kardel static long pps_stabil;			/* nominal stability (scaled ns/s) */
    195       1.33    kardel static long pps_lastsec;		/* time at last calibration (s) */
    196       1.33    kardel static int pps_valid;			/* signal watchdog counter */
    197       1.33    kardel static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
    198       1.33    kardel static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
    199       1.33    kardel static int pps_intcnt;			/* wander counter */
    200       1.33    kardel 
    201       1.33    kardel /*
    202       1.33    kardel  * PPS signal quality monitors
    203       1.33    kardel  */
    204       1.33    kardel static long pps_calcnt;			/* calibration intervals */
    205       1.33    kardel static long pps_jitcnt;			/* jitter limit exceeded */
    206       1.33    kardel static long pps_stbcnt;			/* stability limit exceeded */
    207       1.33    kardel static long pps_errcnt;			/* calibration errors */
    208       1.33    kardel #endif /* PPS_SYNC */
    209       1.33    kardel /*
    210       1.33    kardel  * End of phase/frequency-lock loop (PLL/FLL) definitions
    211       1.33    kardel  */
    212       1.33    kardel 
    213       1.33    kardel static void hardupdate(long offset);
    214       1.33    kardel 
    215       1.33    kardel /*
    216       1.33    kardel  * ntp_gettime() - NTP user application interface
    217       1.33    kardel  */
    218       1.33    kardel void
    219  1.43.16.2      matt ntp_gettime(struct ntptimeval *ntv)
    220       1.33    kardel {
    221       1.33    kardel 	nanotime(&ntv->time);
    222       1.33    kardel 	ntv->maxerror = time_maxerror;
    223       1.33    kardel 	ntv->esterror = time_esterror;
    224       1.33    kardel 	ntv->tai = time_tai;
    225       1.33    kardel 	ntv->time_state = time_state;
    226       1.33    kardel }
    227       1.33    kardel 
    228       1.33    kardel /* ARGSUSED */
    229       1.33    kardel /*
    230       1.33    kardel  * ntp_adjtime() - NTP daemon application interface
    231       1.33    kardel  */
    232       1.33    kardel int
    233  1.43.16.2      matt sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
    234       1.33    kardel {
    235  1.43.16.2      matt 	/* {
    236       1.33    kardel 		syscallarg(struct timex *) tp;
    237  1.43.16.2      matt 	} */
    238       1.33    kardel 	struct timex ntv;
    239       1.33    kardel 	int error = 0;
    240       1.33    kardel 
    241       1.43  christos 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
    242       1.35        ad 	if (error != 0)
    243       1.33    kardel 		return (error);
    244       1.33    kardel 
    245       1.37      elad 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
    246       1.37      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
    247       1.36      elad 	    NULL, NULL)) != 0)
    248       1.33    kardel 		return (error);
    249       1.33    kardel 
    250       1.33    kardel 	ntp_adjtime1(&ntv);
    251       1.33    kardel 
    252       1.43  christos 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
    253       1.35        ad 	if (!error)
    254       1.33    kardel 		*retval = ntp_timestatus();
    255       1.35        ad 
    256       1.33    kardel 	return error;
    257       1.33    kardel }
    258       1.33    kardel 
    259       1.33    kardel void
    260  1.43.16.2      matt ntp_adjtime1(struct timex *ntv)
    261       1.33    kardel {
    262       1.33    kardel 	long freq;
    263       1.33    kardel 	int modes;
    264       1.33    kardel 	int s;
    265       1.33    kardel 
    266       1.33    kardel 	/*
    267       1.33    kardel 	 * Update selected clock variables - only the superuser can
    268       1.33    kardel 	 * change anything. Note that there is no error checking here on
    269       1.33    kardel 	 * the assumption the superuser should know what it is doing.
    270       1.33    kardel 	 * Note that either the time constant or TAI offset are loaded
    271       1.33    kardel 	 * from the ntv.constant member, depending on the mode bits. If
    272       1.33    kardel 	 * the STA_PLL bit in the status word is cleared, the state and
    273       1.33    kardel 	 * status words are reset to the initial values at boot.
    274       1.33    kardel 	 */
    275       1.33    kardel 	modes = ntv->modes;
    276       1.33    kardel 	if (modes != 0)
    277       1.33    kardel 		/* We need to save the system time during shutdown */
    278       1.33    kardel 		time_adjusted |= 2;
    279       1.33    kardel 	s = splclock();
    280       1.33    kardel 	if (modes & MOD_MAXERROR)
    281       1.33    kardel 		time_maxerror = ntv->maxerror;
    282       1.33    kardel 	if (modes & MOD_ESTERROR)
    283       1.33    kardel 		time_esterror = ntv->esterror;
    284       1.33    kardel 	if (modes & MOD_STATUS) {
    285       1.33    kardel 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
    286       1.33    kardel 			time_state = TIME_OK;
    287       1.33    kardel 			time_status = STA_UNSYNC;
    288       1.33    kardel #ifdef PPS_SYNC
    289       1.33    kardel 			pps_shift = PPS_FAVG;
    290       1.33    kardel #endif /* PPS_SYNC */
    291       1.33    kardel 		}
    292       1.33    kardel 		time_status &= STA_RONLY;
    293       1.33    kardel 		time_status |= ntv->status & ~STA_RONLY;
    294       1.33    kardel 	}
    295       1.33    kardel 	if (modes & MOD_TIMECONST) {
    296       1.33    kardel 		if (ntv->constant < 0)
    297       1.33    kardel 			time_constant = 0;
    298       1.33    kardel 		else if (ntv->constant > MAXTC)
    299       1.33    kardel 			time_constant = MAXTC;
    300       1.33    kardel 		else
    301       1.33    kardel 			time_constant = ntv->constant;
    302       1.33    kardel 	}
    303       1.33    kardel 	if (modes & MOD_TAI) {
    304       1.33    kardel 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
    305       1.33    kardel 			time_tai = ntv->constant;
    306       1.33    kardel 	}
    307       1.33    kardel #ifdef PPS_SYNC
    308       1.33    kardel 	if (modes & MOD_PPSMAX) {
    309       1.33    kardel 		if (ntv->shift < PPS_FAVG)
    310       1.33    kardel 			pps_shiftmax = PPS_FAVG;
    311       1.33    kardel 		else if (ntv->shift > PPS_FAVGMAX)
    312       1.33    kardel 			pps_shiftmax = PPS_FAVGMAX;
    313       1.33    kardel 		else
    314       1.33    kardel 			pps_shiftmax = ntv->shift;
    315       1.33    kardel 	}
    316       1.33    kardel #endif /* PPS_SYNC */
    317       1.33    kardel 	if (modes & MOD_NANO)
    318       1.33    kardel 		time_status |= STA_NANO;
    319       1.33    kardel 	if (modes & MOD_MICRO)
    320       1.33    kardel 		time_status &= ~STA_NANO;
    321       1.33    kardel 	if (modes & MOD_CLKB)
    322       1.33    kardel 		time_status |= STA_CLK;
    323       1.33    kardel 	if (modes & MOD_CLKA)
    324       1.33    kardel 		time_status &= ~STA_CLK;
    325       1.33    kardel 	if (modes & MOD_FREQUENCY) {
    326       1.33    kardel 		freq = (ntv->freq * 1000LL) >> 16;
    327       1.33    kardel 		if (freq > MAXFREQ)
    328       1.33    kardel 			L_LINT(time_freq, MAXFREQ);
    329       1.33    kardel 		else if (freq < -MAXFREQ)
    330       1.33    kardel 			L_LINT(time_freq, -MAXFREQ);
    331       1.33    kardel 		else {
    332       1.33    kardel 			/*
    333       1.33    kardel 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
    334       1.33    kardel 			 * time_freq is [ns/s * 2^32]
    335       1.33    kardel 			 */
    336       1.33    kardel 			time_freq = ntv->freq * 1000LL * 65536LL;
    337       1.33    kardel 		}
    338       1.33    kardel #ifdef PPS_SYNC
    339       1.33    kardel 		pps_freq = time_freq;
    340       1.33    kardel #endif /* PPS_SYNC */
    341       1.33    kardel 	}
    342       1.33    kardel 	if (modes & MOD_OFFSET) {
    343       1.33    kardel 		if (time_status & STA_NANO)
    344       1.33    kardel 			hardupdate(ntv->offset);
    345       1.33    kardel 		else
    346       1.33    kardel 			hardupdate(ntv->offset * 1000);
    347       1.33    kardel 	}
    348       1.33    kardel 
    349       1.33    kardel 	/*
    350       1.33    kardel 	 * Retrieve all clock variables. Note that the TAI offset is
    351       1.33    kardel 	 * returned only by ntp_gettime();
    352       1.33    kardel 	 */
    353       1.33    kardel 	if (time_status & STA_NANO)
    354       1.33    kardel 		ntv->offset = L_GINT(time_offset);
    355       1.33    kardel 	else
    356       1.33    kardel 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
    357       1.33    kardel 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
    358       1.33    kardel 	ntv->maxerror = time_maxerror;
    359       1.33    kardel 	ntv->esterror = time_esterror;
    360       1.33    kardel 	ntv->status = time_status;
    361       1.33    kardel 	ntv->constant = time_constant;
    362       1.33    kardel 	if (time_status & STA_NANO)
    363       1.33    kardel 		ntv->precision = time_precision;
    364       1.33    kardel 	else
    365       1.33    kardel 		ntv->precision = time_precision / 1000;
    366       1.33    kardel 	ntv->tolerance = MAXFREQ * SCALE_PPM;
    367       1.33    kardel #ifdef PPS_SYNC
    368       1.33    kardel 	ntv->shift = pps_shift;
    369       1.33    kardel 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
    370       1.33    kardel 	if (time_status & STA_NANO)
    371       1.33    kardel 		ntv->jitter = pps_jitter;
    372       1.33    kardel 	else
    373       1.33    kardel 		ntv->jitter = pps_jitter / 1000;
    374       1.33    kardel 	ntv->stabil = pps_stabil;
    375       1.33    kardel 	ntv->calcnt = pps_calcnt;
    376       1.33    kardel 	ntv->errcnt = pps_errcnt;
    377       1.33    kardel 	ntv->jitcnt = pps_jitcnt;
    378       1.33    kardel 	ntv->stbcnt = pps_stbcnt;
    379       1.33    kardel #endif /* PPS_SYNC */
    380       1.33    kardel 	splx(s);
    381       1.33    kardel }
    382       1.33    kardel #endif /* NTP */
    383       1.33    kardel 
    384       1.33    kardel /*
    385       1.33    kardel  * second_overflow() - called after ntp_tick_adjust()
    386       1.33    kardel  *
    387       1.33    kardel  * This routine is ordinarily called immediately following the above
    388       1.33    kardel  * routine ntp_tick_adjust(). While these two routines are normally
    389       1.33    kardel  * combined, they are separated here only for the purposes of
    390       1.33    kardel  * simulation.
    391       1.33    kardel  */
    392       1.33    kardel void
    393       1.33    kardel ntp_update_second(int64_t *adjustment, time_t *newsec)
    394       1.33    kardel {
    395       1.33    kardel 	int tickrate;
    396       1.33    kardel 	l_fp ftemp;		/* 32/64-bit temporary */
    397       1.33    kardel 
    398       1.33    kardel #ifdef NTP
    399       1.33    kardel 
    400       1.33    kardel 	/*
    401       1.33    kardel 	 * On rollover of the second both the nanosecond and microsecond
    402       1.33    kardel 	 * clocks are updated and the state machine cranked as
    403       1.33    kardel 	 * necessary. The phase adjustment to be used for the next
    404       1.33    kardel 	 * second is calculated and the maximum error is increased by
    405       1.33    kardel 	 * the tolerance.
    406       1.33    kardel 	 */
    407       1.33    kardel 	time_maxerror += MAXFREQ / 1000;
    408       1.33    kardel 
    409       1.33    kardel 	/*
    410       1.33    kardel 	 * Leap second processing. If in leap-insert state at
    411       1.33    kardel 	 * the end of the day, the system clock is set back one
    412       1.33    kardel 	 * second; if in leap-delete state, the system clock is
    413       1.33    kardel 	 * set ahead one second. The nano_time() routine or
    414       1.33    kardel 	 * external clock driver will insure that reported time
    415       1.33    kardel 	 * is always monotonic.
    416       1.33    kardel 	 */
    417       1.33    kardel 	switch (time_state) {
    418       1.33    kardel 
    419       1.33    kardel 		/*
    420       1.33    kardel 		 * No warning.
    421       1.33    kardel 		 */
    422       1.33    kardel 		case TIME_OK:
    423       1.33    kardel 		if (time_status & STA_INS)
    424       1.33    kardel 			time_state = TIME_INS;
    425       1.33    kardel 		else if (time_status & STA_DEL)
    426       1.33    kardel 			time_state = TIME_DEL;
    427       1.33    kardel 		break;
    428       1.33    kardel 
    429       1.33    kardel 		/*
    430       1.33    kardel 		 * Insert second 23:59:60 following second
    431       1.33    kardel 		 * 23:59:59.
    432       1.33    kardel 		 */
    433       1.33    kardel 		case TIME_INS:
    434       1.33    kardel 		if (!(time_status & STA_INS))
    435       1.33    kardel 			time_state = TIME_OK;
    436       1.33    kardel 		else if ((*newsec) % 86400 == 0) {
    437       1.33    kardel 			(*newsec)--;
    438       1.33    kardel 			time_state = TIME_OOP;
    439       1.33    kardel 			time_tai++;
    440       1.33    kardel 		}
    441       1.33    kardel 		break;
    442       1.33    kardel 
    443       1.33    kardel 		/*
    444       1.33    kardel 		 * Delete second 23:59:59.
    445       1.33    kardel 		 */
    446       1.33    kardel 		case TIME_DEL:
    447       1.33    kardel 		if (!(time_status & STA_DEL))
    448       1.33    kardel 			time_state = TIME_OK;
    449       1.33    kardel 		else if (((*newsec) + 1) % 86400 == 0) {
    450       1.33    kardel 			(*newsec)++;
    451       1.33    kardel 			time_tai--;
    452       1.33    kardel 			time_state = TIME_WAIT;
    453       1.33    kardel 		}
    454       1.33    kardel 		break;
    455       1.33    kardel 
    456       1.33    kardel 		/*
    457       1.33    kardel 		 * Insert second in progress.
    458       1.33    kardel 		 */
    459       1.33    kardel 		case TIME_OOP:
    460       1.33    kardel 			time_state = TIME_WAIT;
    461       1.33    kardel 		break;
    462       1.33    kardel 
    463       1.33    kardel 		/*
    464       1.33    kardel 		 * Wait for status bits to clear.
    465       1.33    kardel 		 */
    466       1.33    kardel 		case TIME_WAIT:
    467       1.33    kardel 		if (!(time_status & (STA_INS | STA_DEL)))
    468       1.33    kardel 			time_state = TIME_OK;
    469       1.33    kardel 	}
    470       1.33    kardel 
    471       1.33    kardel 	/*
    472       1.33    kardel 	 * Compute the total time adjustment for the next second
    473       1.33    kardel 	 * in ns. The offset is reduced by a factor depending on
    474       1.33    kardel 	 * whether the PPS signal is operating. Note that the
    475       1.33    kardel 	 * value is in effect scaled by the clock frequency,
    476       1.33    kardel 	 * since the adjustment is added at each tick interrupt.
    477       1.33    kardel 	 */
    478       1.33    kardel 	ftemp = time_offset;
    479       1.33    kardel #ifdef PPS_SYNC
    480       1.33    kardel 	/* XXX even if PPS signal dies we should finish adjustment ? */
    481       1.33    kardel 	if (time_status & STA_PPSTIME && time_status &
    482       1.33    kardel 	    STA_PPSSIGNAL)
    483       1.33    kardel 		L_RSHIFT(ftemp, pps_shift);
    484       1.33    kardel 	else
    485       1.33    kardel 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    486       1.33    kardel #else
    487       1.33    kardel 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    488       1.33    kardel #endif /* PPS_SYNC */
    489       1.33    kardel 	time_adj = ftemp;
    490       1.33    kardel 	L_SUB(time_offset, ftemp);
    491       1.33    kardel 	L_ADD(time_adj, time_freq);
    492       1.33    kardel 
    493       1.33    kardel #ifdef PPS_SYNC
    494       1.33    kardel 	if (pps_valid > 0)
    495       1.33    kardel 		pps_valid--;
    496       1.33    kardel 	else
    497       1.33    kardel 		time_status &= ~STA_PPSSIGNAL;
    498       1.33    kardel #endif /* PPS_SYNC */
    499       1.34    kardel #else  /* !NTP */
    500       1.34    kardel 	L_CLR(time_adj);
    501       1.34    kardel #endif /* !NTP */
    502       1.33    kardel 
    503       1.33    kardel 	/*
    504       1.33    kardel 	 * Apply any correction from adjtime(2).  If more than one second
    505       1.33    kardel 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
    506       1.33    kardel 	 * until the last second is slewed the final < 500 usecs.
    507       1.33    kardel 	 */
    508       1.33    kardel 	if (time_adjtime != 0) {
    509       1.33    kardel 		if (time_adjtime > 1000000)
    510       1.33    kardel 			tickrate = 5000;
    511       1.33    kardel 		else if (time_adjtime < -1000000)
    512       1.33    kardel 			tickrate = -5000;
    513       1.33    kardel 		else if (time_adjtime > 500)
    514       1.33    kardel 			tickrate = 500;
    515       1.33    kardel 		else if (time_adjtime < -500)
    516       1.33    kardel 			tickrate = -500;
    517       1.33    kardel 		else
    518       1.33    kardel 			tickrate = time_adjtime;
    519       1.33    kardel 		time_adjtime -= tickrate;
    520       1.33    kardel 		L_LINT(ftemp, tickrate * 1000);
    521       1.33    kardel 		L_ADD(time_adj, ftemp);
    522       1.33    kardel 	}
    523       1.33    kardel 	*adjustment = time_adj;
    524       1.33    kardel }
    525       1.33    kardel 
    526       1.33    kardel /*
    527       1.33    kardel  * ntp_init() - initialize variables and structures
    528       1.33    kardel  *
    529       1.33    kardel  * This routine must be called after the kernel variables hz and tick
    530       1.33    kardel  * are set or changed and before the next tick interrupt. In this
    531       1.33    kardel  * particular implementation, these values are assumed set elsewhere in
    532       1.33    kardel  * the kernel. The design allows the clock frequency and tick interval
    533       1.33    kardel  * to be changed while the system is running. So, this routine should
    534       1.33    kardel  * probably be integrated with the code that does that.
    535       1.33    kardel  */
    536       1.33    kardel void
    537       1.33    kardel ntp_init(void)
    538       1.33    kardel {
    539       1.33    kardel 
    540       1.33    kardel 	/*
    541       1.33    kardel 	 * The following variables are initialized only at startup. Only
    542       1.33    kardel 	 * those structures not cleared by the compiler need to be
    543       1.33    kardel 	 * initialized, and these only in the simulator. In the actual
    544       1.33    kardel 	 * kernel, any nonzero values here will quickly evaporate.
    545       1.33    kardel 	 */
    546       1.33    kardel 	L_CLR(time_adj);
    547       1.33    kardel #ifdef NTP
    548       1.33    kardel 	L_CLR(time_offset);
    549       1.33    kardel 	L_CLR(time_freq);
    550       1.33    kardel #ifdef PPS_SYNC
    551       1.33    kardel 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
    552       1.33    kardel 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
    553       1.33    kardel 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
    554       1.33    kardel 	pps_fcount = 0;
    555       1.33    kardel 	L_CLR(pps_freq);
    556       1.33    kardel #endif /* PPS_SYNC */
    557       1.33    kardel #endif
    558       1.33    kardel }
    559       1.33    kardel 
    560       1.33    kardel #ifdef NTP
    561       1.33    kardel /*
    562       1.33    kardel  * hardupdate() - local clock update
    563       1.33    kardel  *
    564       1.33    kardel  * This routine is called by ntp_adjtime() to update the local clock
    565       1.33    kardel  * phase and frequency. The implementation is of an adaptive-parameter,
    566       1.33    kardel  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    567       1.33    kardel  * time and frequency offset estimates for each call. If the kernel PPS
    568       1.33    kardel  * discipline code is configured (PPS_SYNC), the PPS signal itself
    569       1.33    kardel  * determines the new time offset, instead of the calling argument.
    570       1.33    kardel  * Presumably, calls to ntp_adjtime() occur only when the caller
    571       1.33    kardel  * believes the local clock is valid within some bound (+-128 ms with
    572       1.33    kardel  * NTP). If the caller's time is far different than the PPS time, an
    573       1.33    kardel  * argument will ensue, and it's not clear who will lose.
    574       1.33    kardel  *
    575       1.33    kardel  * For uncompensated quartz crystal oscillators and nominal update
    576       1.33    kardel  * intervals less than 256 s, operation should be in phase-lock mode,
    577       1.33    kardel  * where the loop is disciplined to phase. For update intervals greater
    578       1.33    kardel  * than 1024 s, operation should be in frequency-lock mode, where the
    579       1.33    kardel  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
    580       1.33    kardel  * is selected by the STA_MODE status bit.
    581       1.33    kardel  *
    582       1.33    kardel  * Note: splclock() is in effect.
    583       1.33    kardel  */
    584       1.33    kardel void
    585       1.33    kardel hardupdate(long offset)
    586       1.33    kardel {
    587       1.33    kardel 	long mtemp;
    588       1.33    kardel 	l_fp ftemp;
    589       1.33    kardel 
    590       1.33    kardel 	/*
    591       1.33    kardel 	 * Select how the phase is to be controlled and from which
    592       1.33    kardel 	 * source. If the PPS signal is present and enabled to
    593       1.33    kardel 	 * discipline the time, the PPS offset is used; otherwise, the
    594       1.33    kardel 	 * argument offset is used.
    595       1.33    kardel 	 */
    596       1.33    kardel 	if (!(time_status & STA_PLL))
    597       1.33    kardel 		return;
    598       1.33    kardel 	if (!(time_status & STA_PPSTIME && time_status &
    599       1.33    kardel 	    STA_PPSSIGNAL)) {
    600       1.33    kardel 		if (offset > MAXPHASE)
    601       1.33    kardel 			time_monitor = MAXPHASE;
    602       1.33    kardel 		else if (offset < -MAXPHASE)
    603       1.33    kardel 			time_monitor = -MAXPHASE;
    604       1.33    kardel 		else
    605       1.33    kardel 			time_monitor = offset;
    606       1.33    kardel 		L_LINT(time_offset, time_monitor);
    607       1.33    kardel 	}
    608       1.33    kardel 
    609       1.33    kardel 	/*
    610       1.33    kardel 	 * Select how the frequency is to be controlled and in which
    611       1.33    kardel 	 * mode (PLL or FLL). If the PPS signal is present and enabled
    612       1.33    kardel 	 * to discipline the frequency, the PPS frequency is used;
    613       1.33    kardel 	 * otherwise, the argument offset is used to compute it.
    614       1.33    kardel 	 */
    615       1.33    kardel 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
    616       1.33    kardel 		time_reftime = time_second;
    617       1.33    kardel 		return;
    618       1.33    kardel 	}
    619       1.33    kardel 	if (time_status & STA_FREQHOLD || time_reftime == 0)
    620       1.33    kardel 		time_reftime = time_second;
    621       1.33    kardel 	mtemp = time_second - time_reftime;
    622       1.33    kardel 	L_LINT(ftemp, time_monitor);
    623       1.33    kardel 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
    624       1.33    kardel 	L_MPY(ftemp, mtemp);
    625       1.33    kardel 	L_ADD(time_freq, ftemp);
    626       1.33    kardel 	time_status &= ~STA_MODE;
    627       1.33    kardel 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
    628       1.33    kardel 	    MAXSEC)) {
    629       1.33    kardel 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
    630       1.33    kardel 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
    631       1.33    kardel 		L_ADD(time_freq, ftemp);
    632       1.33    kardel 		time_status |= STA_MODE;
    633       1.33    kardel 	}
    634       1.33    kardel 	time_reftime = time_second;
    635       1.33    kardel 	if (L_GINT(time_freq) > MAXFREQ)
    636       1.33    kardel 		L_LINT(time_freq, MAXFREQ);
    637       1.33    kardel 	else if (L_GINT(time_freq) < -MAXFREQ)
    638       1.33    kardel 		L_LINT(time_freq, -MAXFREQ);
    639       1.33    kardel }
    640       1.33    kardel 
    641       1.33    kardel #ifdef PPS_SYNC
    642       1.33    kardel /*
    643       1.33    kardel  * hardpps() - discipline CPU clock oscillator to external PPS signal
    644       1.33    kardel  *
    645       1.33    kardel  * This routine is called at each PPS interrupt in order to discipline
    646       1.33    kardel  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
    647       1.33    kardel  * and leaves it in a handy spot for the hardclock() routine. It
    648       1.33    kardel  * integrates successive PPS phase differences and calculates the
    649       1.33    kardel  * frequency offset. This is used in hardclock() to discipline the CPU
    650       1.33    kardel  * clock oscillator so that intrinsic frequency error is cancelled out.
    651       1.33    kardel  * The code requires the caller to capture the time and hardware counter
    652       1.33    kardel  * value at the on-time PPS signal transition.
    653       1.33    kardel  *
    654       1.33    kardel  * Note that, on some Unix systems, this routine runs at an interrupt
    655       1.33    kardel  * priority level higher than the timer interrupt routine hardclock().
    656       1.33    kardel  * Therefore, the variables used are distinct from the hardclock()
    657       1.33    kardel  * variables, except for certain exceptions: The PPS frequency pps_freq
    658       1.33    kardel  * and phase pps_offset variables are determined by this routine and
    659       1.33    kardel  * updated atomically. The time_tolerance variable can be considered a
    660       1.33    kardel  * constant, since it is infrequently changed, and then only when the
    661       1.33    kardel  * PPS signal is disabled. The watchdog counter pps_valid is updated
    662       1.33    kardel  * once per second by hardclock() and is atomically cleared in this
    663       1.33    kardel  * routine.
    664       1.33    kardel  */
    665       1.33    kardel void
    666       1.33    kardel hardpps(struct timespec *tsp,		/* time at PPS */
    667       1.33    kardel 	long nsec			/* hardware counter at PPS */)
    668       1.33    kardel {
    669       1.33    kardel 	long u_sec, u_nsec, v_nsec; /* temps */
    670       1.33    kardel 	l_fp ftemp;
    671       1.33    kardel 
    672       1.33    kardel 	/*
    673       1.33    kardel 	 * The signal is first processed by a range gate and frequency
    674       1.33    kardel 	 * discriminator. The range gate rejects noise spikes outside
    675       1.33    kardel 	 * the range +-500 us. The frequency discriminator rejects input
    676       1.33    kardel 	 * signals with apparent frequency outside the range 1 +-500
    677       1.33    kardel 	 * PPM. If two hits occur in the same second, we ignore the
    678       1.33    kardel 	 * later hit; if not and a hit occurs outside the range gate,
    679       1.33    kardel 	 * keep the later hit for later comparison, but do not process
    680       1.33    kardel 	 * it.
    681       1.33    kardel 	 */
    682       1.33    kardel 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
    683       1.33    kardel 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
    684       1.33    kardel 	pps_valid = PPS_VALID;
    685       1.33    kardel 	u_sec = tsp->tv_sec;
    686       1.33    kardel 	u_nsec = tsp->tv_nsec;
    687       1.33    kardel 	if (u_nsec >= (NANOSECOND >> 1)) {
    688       1.33    kardel 		u_nsec -= NANOSECOND;
    689       1.33    kardel 		u_sec++;
    690       1.33    kardel 	}
    691       1.33    kardel 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
    692       1.33    kardel 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
    693       1.33    kardel 	    MAXFREQ)
    694       1.33    kardel 		return;
    695       1.33    kardel 	pps_tf[2] = pps_tf[1];
    696       1.33    kardel 	pps_tf[1] = pps_tf[0];
    697       1.33    kardel 	pps_tf[0].tv_sec = u_sec;
    698       1.33    kardel 	pps_tf[0].tv_nsec = u_nsec;
    699       1.33    kardel 
    700       1.33    kardel 	/*
    701       1.33    kardel 	 * Compute the difference between the current and previous
    702       1.33    kardel 	 * counter values. If the difference exceeds 0.5 s, assume it
    703       1.33    kardel 	 * has wrapped around, so correct 1.0 s. If the result exceeds
    704       1.33    kardel 	 * the tick interval, the sample point has crossed a tick
    705       1.33    kardel 	 * boundary during the last second, so correct the tick. Very
    706       1.33    kardel 	 * intricate.
    707       1.33    kardel 	 */
    708       1.33    kardel 	u_nsec = nsec;
    709       1.33    kardel 	if (u_nsec > (NANOSECOND >> 1))
    710       1.33    kardel 		u_nsec -= NANOSECOND;
    711       1.33    kardel 	else if (u_nsec < -(NANOSECOND >> 1))
    712       1.33    kardel 		u_nsec += NANOSECOND;
    713       1.33    kardel 	pps_fcount += u_nsec;
    714       1.33    kardel 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
    715       1.33    kardel 		return;
    716       1.33    kardel 	time_status &= ~STA_PPSJITTER;
    717       1.33    kardel 
    718       1.33    kardel 	/*
    719       1.33    kardel 	 * A three-stage median filter is used to help denoise the PPS
    720       1.33    kardel 	 * time. The median sample becomes the time offset estimate; the
    721       1.33    kardel 	 * difference between the other two samples becomes the time
    722       1.33    kardel 	 * dispersion (jitter) estimate.
    723       1.33    kardel 	 */
    724       1.33    kardel 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
    725       1.33    kardel 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
    726       1.33    kardel 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
    727       1.33    kardel 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
    728       1.33    kardel 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
    729       1.33    kardel 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
    730       1.33    kardel 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
    731       1.33    kardel 		} else {
    732       1.33    kardel 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
    733       1.33    kardel 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
    734       1.33    kardel 		}
    735       1.33    kardel 	} else {
    736       1.33    kardel 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
    737       1.33    kardel 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
    738       1.33    kardel 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
    739       1.33    kardel 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
    740       1.33    kardel 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
    741       1.33    kardel 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
    742       1.33    kardel 		} else {
    743       1.33    kardel 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
    744       1.33    kardel 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
    745       1.33    kardel 		}
    746       1.33    kardel 	}
    747       1.33    kardel 
    748       1.33    kardel 	/*
    749       1.33    kardel 	 * Nominal jitter is due to PPS signal noise and interrupt
    750       1.33    kardel 	 * latency. If it exceeds the popcorn threshold, the sample is
    751       1.33    kardel 	 * discarded. otherwise, if so enabled, the time offset is
    752       1.33    kardel 	 * updated. We can tolerate a modest loss of data here without
    753       1.33    kardel 	 * much degrading time accuracy.
    754       1.33    kardel 	 */
    755       1.33    kardel 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
    756       1.33    kardel 		time_status |= STA_PPSJITTER;
    757       1.33    kardel 		pps_jitcnt++;
    758       1.33    kardel 	} else if (time_status & STA_PPSTIME) {
    759       1.33    kardel 		time_monitor = -v_nsec;
    760       1.33    kardel 		L_LINT(time_offset, time_monitor);
    761       1.33    kardel 	}
    762       1.33    kardel 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
    763       1.33    kardel 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
    764       1.33    kardel 	if (u_sec < (1 << pps_shift))
    765       1.33    kardel 		return;
    766       1.33    kardel 
    767       1.33    kardel 	/*
    768       1.33    kardel 	 * At the end of the calibration interval the difference between
    769       1.33    kardel 	 * the first and last counter values becomes the scaled
    770       1.33    kardel 	 * frequency. It will later be divided by the length of the
    771       1.33    kardel 	 * interval to determine the frequency update. If the frequency
    772       1.33    kardel 	 * exceeds a sanity threshold, or if the actual calibration
    773       1.33    kardel 	 * interval is not equal to the expected length, the data are
    774       1.33    kardel 	 * discarded. We can tolerate a modest loss of data here without
    775       1.33    kardel 	 * much degrading frequency accuracy.
    776       1.33    kardel 	 */
    777       1.33    kardel 	pps_calcnt++;
    778       1.33    kardel 	v_nsec = -pps_fcount;
    779       1.33    kardel 	pps_lastsec = pps_tf[0].tv_sec;
    780       1.33    kardel 	pps_fcount = 0;
    781       1.33    kardel 	u_nsec = MAXFREQ << pps_shift;
    782       1.33    kardel 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
    783       1.33    kardel 	    pps_shift)) {
    784       1.33    kardel 		time_status |= STA_PPSERROR;
    785       1.33    kardel 		pps_errcnt++;
    786       1.33    kardel 		return;
    787       1.33    kardel 	}
    788       1.33    kardel 
    789       1.33    kardel 	/*
    790       1.33    kardel 	 * Here the raw frequency offset and wander (stability) is
    791       1.33    kardel 	 * calculated. If the wander is less than the wander threshold
    792       1.33    kardel 	 * for four consecutive averaging intervals, the interval is
    793       1.33    kardel 	 * doubled; if it is greater than the threshold for four
    794       1.33    kardel 	 * consecutive intervals, the interval is halved. The scaled
    795       1.33    kardel 	 * frequency offset is converted to frequency offset. The
    796       1.33    kardel 	 * stability metric is calculated as the average of recent
    797       1.33    kardel 	 * frequency changes, but is used only for performance
    798       1.33    kardel 	 * monitoring.
    799       1.33    kardel 	 */
    800       1.33    kardel 	L_LINT(ftemp, v_nsec);
    801       1.33    kardel 	L_RSHIFT(ftemp, pps_shift);
    802       1.33    kardel 	L_SUB(ftemp, pps_freq);
    803       1.33    kardel 	u_nsec = L_GINT(ftemp);
    804       1.33    kardel 	if (u_nsec > PPS_MAXWANDER) {
    805       1.33    kardel 		L_LINT(ftemp, PPS_MAXWANDER);
    806       1.33    kardel 		pps_intcnt--;
    807       1.33    kardel 		time_status |= STA_PPSWANDER;
    808       1.33    kardel 		pps_stbcnt++;
    809       1.33    kardel 	} else if (u_nsec < -PPS_MAXWANDER) {
    810       1.33    kardel 		L_LINT(ftemp, -PPS_MAXWANDER);
    811       1.33    kardel 		pps_intcnt--;
    812       1.33    kardel 		time_status |= STA_PPSWANDER;
    813       1.33    kardel 		pps_stbcnt++;
    814       1.33    kardel 	} else {
    815       1.33    kardel 		pps_intcnt++;
    816       1.33    kardel 	}
    817       1.33    kardel 	if (pps_intcnt >= 4) {
    818       1.33    kardel 		pps_intcnt = 4;
    819       1.33    kardel 		if (pps_shift < pps_shiftmax) {
    820       1.33    kardel 			pps_shift++;
    821       1.33    kardel 			pps_intcnt = 0;
    822       1.33    kardel 		}
    823       1.33    kardel 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
    824       1.33    kardel 		pps_intcnt = -4;
    825       1.33    kardel 		if (pps_shift > PPS_FAVG) {
    826       1.33    kardel 			pps_shift--;
    827       1.33    kardel 			pps_intcnt = 0;
    828       1.33    kardel 		}
    829       1.33    kardel 	}
    830       1.33    kardel 	if (u_nsec < 0)
    831       1.33    kardel 		u_nsec = -u_nsec;
    832       1.33    kardel 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
    833       1.33    kardel 
    834       1.33    kardel 	/*
    835       1.33    kardel 	 * The PPS frequency is recalculated and clamped to the maximum
    836       1.33    kardel 	 * MAXFREQ. If enabled, the system clock frequency is updated as
    837       1.33    kardel 	 * well.
    838       1.33    kardel 	 */
    839       1.33    kardel 	L_ADD(pps_freq, ftemp);
    840       1.33    kardel 	u_nsec = L_GINT(pps_freq);
    841       1.33    kardel 	if (u_nsec > MAXFREQ)
    842       1.33    kardel 		L_LINT(pps_freq, MAXFREQ);
    843       1.33    kardel 	else if (u_nsec < -MAXFREQ)
    844       1.33    kardel 		L_LINT(pps_freq, -MAXFREQ);
    845       1.33    kardel 	if (time_status & STA_PPSFREQ)
    846       1.33    kardel 		time_freq = pps_freq;
    847       1.33    kardel }
    848       1.33    kardel #endif /* PPS_SYNC */
    849       1.33    kardel #endif /* NTP */
    850       1.33    kardel #else /* !__HAVE_TIMECOUNTER */
    851        1.1  jonathan /******************************************************************************
    852        1.1  jonathan  *                                                                            *
    853        1.1  jonathan  * Copyright (c) David L. Mills 1993, 1994                                    *
    854        1.1  jonathan  *                                                                            *
    855        1.1  jonathan  * Permission to use, copy, modify, and distribute this software and its      *
    856        1.1  jonathan  * documentation for any purpose and without fee is hereby granted, provided  *
    857        1.1  jonathan  * that the above copyright notice appears in all copies and that both the    *
    858        1.1  jonathan  * copyright notice and this permission notice appear in supporting           *
    859        1.1  jonathan  * documentation, and that the name University of Delaware not be used in     *
    860        1.1  jonathan  * advertising or publicity pertaining to distribution of the software        *
    861        1.1  jonathan  * without specific, written prior permission.  The University of Delaware    *
    862        1.1  jonathan  * makes no representations about the suitability this software for any       *
    863        1.1  jonathan  * purpose.  It is provided "as is" without express or implied warranty.      *
    864        1.1  jonathan  *                                                                            *
    865        1.1  jonathan  ******************************************************************************/
    866        1.1  jonathan 
    867        1.1  jonathan /*
    868        1.1  jonathan  * Modification history kern_ntptime.c
    869        1.1  jonathan  *
    870        1.1  jonathan  * 24 Sep 94	David L. Mills
    871        1.1  jonathan  *	Tightened code at exits.
    872        1.1  jonathan  *
    873        1.1  jonathan  * 24 Mar 94	David L. Mills
    874        1.1  jonathan  *	Revised syscall interface to include new variables for PPS
    875        1.1  jonathan  *	time discipline.
    876        1.1  jonathan  *
    877        1.1  jonathan  * 14 Feb 94	David L. Mills
    878        1.1  jonathan  *	Added code for external clock
    879        1.1  jonathan  *
    880        1.1  jonathan  * 28 Nov 93	David L. Mills
    881        1.1  jonathan  *	Revised frequency scaling to conform with adjusted parameters
    882        1.1  jonathan  *
    883        1.1  jonathan  * 17 Sep 93	David L. Mills
    884        1.1  jonathan  *	Created file
    885        1.1  jonathan  */
    886        1.1  jonathan /*
    887        1.1  jonathan  * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
    888        1.1  jonathan  * V4.1.1 and V4.1.3
    889        1.1  jonathan  *
    890        1.1  jonathan  * These routines consitute the Network Time Protocol (NTP) interfaces
    891        1.1  jonathan  * for user and daemon application programs. The ntp_gettime() routine
    892        1.1  jonathan  * provides the time, maximum error (synch distance) and estimated error
    893        1.1  jonathan  * (dispersion) to client user application programs. The ntp_adjtime()
    894        1.1  jonathan  * routine is used by the NTP daemon to adjust the system clock to an
    895        1.1  jonathan  * externally derived time. The time offset and related variables set by
    896        1.1  jonathan  * this routine are used by hardclock() to adjust the phase and
    897        1.1  jonathan  * frequency of the phase-lock loop which controls the system clock.
    898        1.1  jonathan  */
    899       1.16     lukem 
    900       1.16     lukem #include <sys/cdefs.h>
    901  1.43.16.2      matt __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.43.16.2 2008/01/09 01:56:05 matt Exp $");
    902       1.16     lukem 
    903        1.6  jonathan #include "opt_ntp.h"
    904       1.31  drochner #include "opt_compat_netbsd.h"
    905        1.6  jonathan 
    906        1.1  jonathan #include <sys/param.h>
    907        1.1  jonathan #include <sys/resourcevar.h>
    908        1.1  jonathan #include <sys/systm.h>
    909        1.1  jonathan #include <sys/kernel.h>
    910        1.1  jonathan #include <sys/proc.h>
    911       1.18    simonb #include <sys/sysctl.h>
    912        1.1  jonathan #include <sys/timex.h>
    913       1.31  drochner #ifdef COMPAT_30
    914       1.31  drochner #include <compat/sys/timex.h>
    915       1.31  drochner #endif
    916        1.1  jonathan #include <sys/vnode.h>
    917       1.30      elad #include <sys/kauth.h>
    918        1.1  jonathan 
    919        1.1  jonathan #include <sys/mount.h>
    920        1.1  jonathan #include <sys/syscallargs.h>
    921        1.1  jonathan 
    922  1.43.16.1      matt #include <sys/cpu.h>
    923        1.2  christos 
    924        1.4   thorpej #ifdef NTP
    925        1.1  jonathan /*
    926        1.1  jonathan  * The following variables are used by the hardclock() routine in the
    927       1.28     perry  * kern_clock.c module and are described in that module.
    928        1.1  jonathan  */
    929        1.1  jonathan extern int time_state;		/* clock state */
    930        1.1  jonathan extern int time_status;		/* clock status bits */
    931        1.1  jonathan extern long time_offset;	/* time adjustment (us) */
    932        1.1  jonathan extern long time_freq;		/* frequency offset (scaled ppm) */
    933        1.1  jonathan extern long time_maxerror;	/* maximum error (us) */
    934        1.1  jonathan extern long time_esterror;	/* estimated error (us) */
    935        1.1  jonathan extern long time_constant;	/* pll time constant */
    936        1.1  jonathan extern long time_precision;	/* clock precision (us) */
    937        1.1  jonathan extern long time_tolerance;	/* frequency tolerance (scaled ppm) */
    938       1.24  drochner extern int time_adjusted;	/* ntp might have changed the system time */
    939        1.1  jonathan 
    940        1.1  jonathan #ifdef PPS_SYNC
    941        1.1  jonathan /*
    942        1.1  jonathan  * The following variables are used only if the PPS signal discipline
    943        1.1  jonathan  * is configured in the kernel.
    944        1.1  jonathan  */
    945        1.1  jonathan extern int pps_shift;		/* interval duration (s) (shift) */
    946        1.1  jonathan extern long pps_freq;		/* pps frequency offset (scaled ppm) */
    947        1.1  jonathan extern long pps_jitter;		/* pps jitter (us) */
    948        1.1  jonathan extern long pps_stabil;		/* pps stability (scaled ppm) */
    949        1.1  jonathan extern long pps_jitcnt;		/* jitter limit exceeded */
    950        1.1  jonathan extern long pps_calcnt;		/* calibration intervals */
    951        1.1  jonathan extern long pps_errcnt;		/* calibration errors */
    952        1.1  jonathan extern long pps_stbcnt;		/* stability limit exceeded */
    953        1.1  jonathan #endif /* PPS_SYNC */
    954        1.1  jonathan 
    955        1.1  jonathan /*ARGSUSED*/
    956        1.1  jonathan /*
    957        1.1  jonathan  * ntp_gettime() - NTP user application interface
    958        1.1  jonathan  */
    959       1.32  drochner void
    960  1.43.16.2      matt ntp_gettime(struct ntptimeval *ntvp)
    961       1.31  drochner {
    962       1.31  drochner 	struct timeval atv;
    963       1.31  drochner 	int s;
    964       1.31  drochner 
    965       1.31  drochner 	memset(ntvp, 0, sizeof(struct ntptimeval));
    966       1.31  drochner 
    967       1.31  drochner 	s = splclock();
    968       1.31  drochner #ifdef EXT_CLOCK
    969       1.31  drochner 	/*
    970       1.31  drochner 	 * The microtime() external clock routine returns a
    971       1.31  drochner 	 * status code. If less than zero, we declare an error
    972       1.31  drochner 	 * in the clock status word and return the kernel
    973       1.31  drochner 	 * (software) time variable. While there are other
    974       1.31  drochner 	 * places that call microtime(), this is the only place
    975       1.31  drochner 	 * that matters from an application point of view.
    976       1.31  drochner 	 */
    977       1.31  drochner 	if (microtime(&atv) < 0) {
    978       1.31  drochner 		time_status |= STA_CLOCKERR;
    979       1.31  drochner 		ntvp->time = time;
    980       1.31  drochner 	} else
    981       1.31  drochner 		time_status &= ~STA_CLOCKERR;
    982       1.31  drochner #else /* EXT_CLOCK */
    983       1.31  drochner 	microtime(&atv);
    984       1.31  drochner #endif /* EXT_CLOCK */
    985       1.31  drochner 	ntvp->maxerror = time_maxerror;
    986       1.31  drochner 	ntvp->esterror = time_esterror;
    987       1.31  drochner 	(void) splx(s);
    988       1.31  drochner 	TIMEVAL_TO_TIMESPEC(&atv, &ntvp->time);
    989       1.31  drochner }
    990       1.33    kardel 
    991        1.1  jonathan 
    992        1.1  jonathan /* ARGSUSED */
    993        1.1  jonathan /*
    994        1.1  jonathan  * ntp_adjtime() - NTP daemon application interface
    995        1.1  jonathan  */
    996        1.1  jonathan int
    997  1.43.16.2      matt sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
    998        1.1  jonathan {
    999  1.43.16.2      matt 	/* {
   1000        1.1  jonathan 		syscallarg(struct timex *) tp;
   1001  1.43.16.2      matt 	} */
   1002        1.1  jonathan 	struct timex ntv;
   1003        1.1  jonathan 	int error = 0;
   1004        1.1  jonathan 
   1005       1.43  christos 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
   1006       1.35        ad 	if (error != 0)
   1007       1.14      manu 		return (error);
   1008       1.14      manu 
   1009       1.37      elad 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
   1010       1.37      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
   1011       1.36      elad 	    NULL, NULL)) != 0)
   1012        1.1  jonathan 		return (error);
   1013        1.1  jonathan 
   1014       1.33    kardel 	ntp_adjtime1(&ntv);
   1015       1.33    kardel 
   1016       1.43  christos 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
   1017       1.35        ad 	if (error == 0)
   1018       1.33    kardel 		*retval = ntp_timestatus();
   1019       1.33    kardel 
   1020       1.33    kardel 	return error;
   1021       1.14      manu }
   1022       1.14      manu 
   1023       1.33    kardel void
   1024  1.43.16.2      matt ntp_adjtime1(struct timex *ntv)
   1025       1.14      manu {
   1026       1.14      manu 	int modes;
   1027       1.14      manu 	int s;
   1028       1.14      manu 
   1029        1.1  jonathan 	/*
   1030       1.28     perry 	 * Update selected clock variables. Note that there is no error
   1031       1.28     perry 	 * checking here on the assumption the superuser should know
   1032       1.14      manu 	 * what it is doing.
   1033        1.1  jonathan 	 */
   1034       1.15       jmc 	modes = ntv->modes;
   1035       1.23       dsl 	if (modes != 0)
   1036       1.23       dsl 		/* We need to save the system time during shutdown */
   1037       1.23       dsl 		time_adjusted |= 2;
   1038        1.1  jonathan 	s = splclock();
   1039        1.1  jonathan 	if (modes & MOD_FREQUENCY)
   1040        1.1  jonathan #ifdef PPS_SYNC
   1041       1.15       jmc 		time_freq = ntv->freq - pps_freq;
   1042        1.1  jonathan #else /* PPS_SYNC */
   1043       1.15       jmc 		time_freq = ntv->freq;
   1044        1.1  jonathan #endif /* PPS_SYNC */
   1045        1.1  jonathan 	if (modes & MOD_MAXERROR)
   1046       1.15       jmc 		time_maxerror = ntv->maxerror;
   1047        1.1  jonathan 	if (modes & MOD_ESTERROR)
   1048       1.15       jmc 		time_esterror = ntv->esterror;
   1049        1.1  jonathan 	if (modes & MOD_STATUS) {
   1050        1.1  jonathan 		time_status &= STA_RONLY;
   1051       1.15       jmc 		time_status |= ntv->status & ~STA_RONLY;
   1052        1.1  jonathan 	}
   1053        1.1  jonathan 	if (modes & MOD_TIMECONST)
   1054       1.15       jmc 		time_constant = ntv->constant;
   1055        1.1  jonathan 	if (modes & MOD_OFFSET)
   1056       1.15       jmc 		hardupdate(ntv->offset);
   1057        1.1  jonathan 
   1058        1.1  jonathan 	/*
   1059        1.1  jonathan 	 * Retrieve all clock variables
   1060        1.1  jonathan 	 */
   1061        1.1  jonathan 	if (time_offset < 0)
   1062       1.15       jmc 		ntv->offset = -(-time_offset >> SHIFT_UPDATE);
   1063        1.1  jonathan 	else
   1064       1.15       jmc 		ntv->offset = time_offset >> SHIFT_UPDATE;
   1065        1.1  jonathan #ifdef PPS_SYNC
   1066       1.15       jmc 	ntv->freq = time_freq + pps_freq;
   1067        1.1  jonathan #else /* PPS_SYNC */
   1068       1.15       jmc 	ntv->freq = time_freq;
   1069        1.1  jonathan #endif /* PPS_SYNC */
   1070       1.15       jmc 	ntv->maxerror = time_maxerror;
   1071       1.15       jmc 	ntv->esterror = time_esterror;
   1072       1.15       jmc 	ntv->status = time_status;
   1073       1.15       jmc 	ntv->constant = time_constant;
   1074       1.15       jmc 	ntv->precision = time_precision;
   1075       1.15       jmc 	ntv->tolerance = time_tolerance;
   1076        1.1  jonathan #ifdef PPS_SYNC
   1077       1.15       jmc 	ntv->shift = pps_shift;
   1078       1.15       jmc 	ntv->ppsfreq = pps_freq;
   1079       1.15       jmc 	ntv->jitter = pps_jitter >> PPS_AVG;
   1080       1.15       jmc 	ntv->stabil = pps_stabil;
   1081       1.15       jmc 	ntv->calcnt = pps_calcnt;
   1082       1.15       jmc 	ntv->errcnt = pps_errcnt;
   1083       1.15       jmc 	ntv->jitcnt = pps_jitcnt;
   1084       1.15       jmc 	ntv->stbcnt = pps_stbcnt;
   1085        1.1  jonathan #endif /* PPS_SYNC */
   1086        1.1  jonathan 	(void)splx(s);
   1087       1.33    kardel }
   1088       1.33    kardel #endif /* NTP */
   1089       1.33    kardel #endif /* !__HAVE_TIMECOUNTER */
   1090       1.33    kardel 
   1091       1.33    kardel #ifdef NTP
   1092       1.33    kardel int
   1093       1.33    kardel ntp_timestatus()
   1094       1.33    kardel {
   1095       1.33    kardel 	/*
   1096       1.33    kardel 	 * Status word error decode. If any of these conditions
   1097       1.33    kardel 	 * occur, an error is returned, instead of the status
   1098       1.33    kardel 	 * word. Most applications will care only about the fact
   1099       1.33    kardel 	 * the system clock may not be trusted, not about the
   1100       1.33    kardel 	 * details.
   1101       1.33    kardel 	 *
   1102       1.33    kardel 	 * Hardware or software error
   1103       1.33    kardel 	 */
   1104       1.33    kardel 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
   1105       1.33    kardel 
   1106       1.33    kardel 	/*
   1107       1.33    kardel 	 * PPS signal lost when either time or frequency
   1108       1.33    kardel 	 * synchronization requested
   1109       1.33    kardel 	 */
   1110       1.33    kardel 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
   1111       1.33    kardel 	     !(time_status & STA_PPSSIGNAL)) ||
   1112       1.33    kardel 
   1113       1.33    kardel 	/*
   1114       1.33    kardel 	 * PPS jitter exceeded when time synchronization
   1115       1.33    kardel 	 * requested
   1116       1.33    kardel 	 */
   1117       1.33    kardel 	    (time_status & STA_PPSTIME &&
   1118       1.33    kardel 	     time_status & STA_PPSJITTER) ||
   1119       1.33    kardel 
   1120       1.33    kardel 	/*
   1121       1.33    kardel 	 * PPS wander exceeded or calibration error when
   1122       1.33    kardel 	 * frequency synchronization requested
   1123       1.33    kardel 	 */
   1124       1.33    kardel 	    (time_status & STA_PPSFREQ &&
   1125       1.33    kardel 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
   1126       1.33    kardel 		return (TIME_ERROR);
   1127       1.33    kardel 	else
   1128       1.33    kardel 		return (time_state);
   1129       1.33    kardel }
   1130        1.1  jonathan 
   1131       1.33    kardel /*ARGSUSED*/
   1132       1.33    kardel /*
   1133       1.33    kardel  * ntp_gettime() - NTP user application interface
   1134       1.33    kardel  */
   1135       1.33    kardel int
   1136  1.43.16.2      matt sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
   1137       1.33    kardel {
   1138  1.43.16.2      matt 	/* {
   1139       1.33    kardel 		syscallarg(struct ntptimeval *) ntvp;
   1140  1.43.16.2      matt 	} */
   1141       1.33    kardel 	struct ntptimeval ntv;
   1142       1.33    kardel 	int error = 0;
   1143       1.33    kardel 
   1144       1.33    kardel 	if (SCARG(uap, ntvp)) {
   1145       1.33    kardel 		ntp_gettime(&ntv);
   1146       1.33    kardel 
   1147       1.43  christos 		error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
   1148       1.33    kardel 				sizeof(ntv));
   1149       1.33    kardel 	}
   1150        1.1  jonathan 	if (!error) {
   1151       1.33    kardel 		*retval = ntp_timestatus();
   1152       1.33    kardel 	}
   1153       1.33    kardel 	return(error);
   1154       1.33    kardel }
   1155        1.1  jonathan 
   1156       1.33    kardel #ifdef COMPAT_30
   1157       1.33    kardel int
   1158  1.43.16.2      matt compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
   1159       1.33    kardel {
   1160  1.43.16.2      matt 	/* {
   1161       1.33    kardel 		syscallarg(struct ntptimeval30 *) ontvp;
   1162  1.43.16.2      matt 	} */
   1163       1.33    kardel 	struct ntptimeval ntv;
   1164       1.33    kardel 	struct ntptimeval30 ontv;
   1165       1.33    kardel 	int error = 0;
   1166       1.33    kardel 
   1167       1.33    kardel 	if (SCARG(uap, ntvp)) {
   1168       1.33    kardel 		ntp_gettime(&ntv);
   1169       1.33    kardel 		TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
   1170       1.33    kardel 		ontv.maxerror = ntv.maxerror;
   1171       1.33    kardel 		ontv.esterror = ntv.esterror;
   1172       1.33    kardel 
   1173       1.43  christos 		error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
   1174       1.33    kardel 				sizeof(ontv));
   1175       1.33    kardel  	}
   1176       1.33    kardel 	if (!error)
   1177       1.33    kardel 		*retval = ntp_timestatus();
   1178       1.33    kardel 
   1179       1.33    kardel 	return (error);
   1180        1.1  jonathan }
   1181       1.33    kardel #endif
   1182        1.1  jonathan 
   1183        1.1  jonathan /*
   1184        1.1  jonathan  * return information about kernel precision timekeeping
   1185        1.1  jonathan  */
   1186       1.25    atatat static int
   1187       1.25    atatat sysctl_kern_ntptime(SYSCTLFN_ARGS)
   1188        1.1  jonathan {
   1189       1.25    atatat 	struct sysctlnode node;
   1190        1.1  jonathan 	struct ntptimeval ntv;
   1191        1.1  jonathan 
   1192       1.31  drochner 	ntp_gettime(&ntv);
   1193       1.25    atatat 
   1194       1.25    atatat 	node = *rnode;
   1195       1.25    atatat 	node.sysctl_data = &ntv;
   1196       1.25    atatat 	node.sysctl_size = sizeof(ntv);
   1197       1.25    atatat 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
   1198       1.25    atatat }
   1199       1.25    atatat 
   1200       1.25    atatat SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
   1201       1.25    atatat {
   1202       1.25    atatat 
   1203       1.26    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1204       1.26    atatat 		       CTLFLAG_PERMANENT,
   1205       1.25    atatat 		       CTLTYPE_NODE, "kern", NULL,
   1206       1.25    atatat 		       NULL, 0, NULL, 0,
   1207       1.25    atatat 		       CTL_KERN, CTL_EOL);
   1208       1.25    atatat 
   1209       1.26    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1210       1.26    atatat 		       CTLFLAG_PERMANENT,
   1211       1.27    atatat 		       CTLTYPE_STRUCT, "ntptime",
   1212       1.27    atatat 		       SYSCTL_DESCR("Kernel clock values for NTP"),
   1213       1.25    atatat 		       sysctl_kern_ntptime, 0, NULL,
   1214       1.25    atatat 		       sizeof(struct ntptimeval),
   1215       1.25    atatat 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
   1216        1.1  jonathan }
   1217        1.4   thorpej #else /* !NTP */
   1218       1.13     bjh21 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
   1219       1.13     bjh21 
   1220        1.4   thorpej int
   1221  1.43.16.2      matt sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
   1222       1.31  drochner {
   1223       1.31  drochner 
   1224       1.31  drochner 	return(ENOSYS);
   1225       1.31  drochner }
   1226       1.31  drochner 
   1227       1.31  drochner #ifdef COMPAT_30
   1228       1.31  drochner int
   1229  1.43.16.2      matt compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
   1230        1.4   thorpej {
   1231       1.19    simonb 
   1232       1.33    kardel  	return(ENOSYS);
   1233        1.4   thorpej }
   1234       1.31  drochner #endif
   1235       1.13     bjh21 #endif /* !NTP */
   1236