Home | History | Annotate | Line # | Download | only in kern
kern_ntptime.c revision 1.43.16.3
      1  1.43.16.3      matt /*	kern_ntptime.c,v 1.43.16.2 2008/01/09 01:56:05 matt Exp	*/
      2       1.33    kardel 
      3       1.33    kardel /*-
      4       1.33    kardel  ***********************************************************************
      5       1.33    kardel  *								       *
      6       1.33    kardel  * Copyright (c) David L. Mills 1993-2001			       *
      7       1.33    kardel  *								       *
      8       1.33    kardel  * Permission to use, copy, modify, and distribute this software and   *
      9       1.33    kardel  * its documentation for any purpose and without fee is hereby	       *
     10       1.33    kardel  * granted, provided that the above copyright notice appears in all    *
     11       1.33    kardel  * copies and that both the copyright notice and this permission       *
     12       1.33    kardel  * notice appear in supporting documentation, and that the name	       *
     13       1.33    kardel  * University of Delaware not be used in advertising or publicity      *
     14       1.33    kardel  * pertaining to distribution of the software without specific,	       *
     15       1.33    kardel  * written prior permission. The University of Delaware makes no       *
     16       1.33    kardel  * representations about the suitability this software for any	       *
     17       1.33    kardel  * purpose. It is provided "as is" without express or implied	       *
     18       1.33    kardel  * warranty.							       *
     19       1.33    kardel  *								       *
     20       1.33    kardel  **********************************************************************/
     21        1.1  jonathan 
     22       1.33    kardel /*
     23       1.33    kardel  * Adapted from the original sources for FreeBSD and timecounters by:
     24       1.33    kardel  * Poul-Henning Kamp <phk (at) FreeBSD.org>.
     25       1.33    kardel  *
     26       1.33    kardel  * The 32bit version of the "LP" macros seems a bit past its "sell by"
     27       1.33    kardel  * date so I have retained only the 64bit version and included it directly
     28       1.33    kardel  * in this file.
     29       1.33    kardel  *
     30       1.33    kardel  * Only minor changes done to interface with the timecounters over in
     31       1.33    kardel  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
     32       1.33    kardel  * confusing and/or plain wrong in that context.
     33       1.33    kardel  */
     34       1.33    kardel 
     35       1.33    kardel #include <sys/cdefs.h>
     36       1.33    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
     37  1.43.16.3      matt __KERNEL_RCSID(0, "kern_ntptime.c,v 1.43.16.2 2008/01/09 01:56:05 matt Exp");
     38       1.33    kardel 
     39       1.33    kardel #include "opt_ntp.h"
     40       1.33    kardel #include "opt_compat_netbsd.h"
     41       1.33    kardel 
     42       1.33    kardel #include <sys/param.h>
     43       1.33    kardel #include <sys/resourcevar.h>
     44       1.33    kardel #include <sys/systm.h>
     45       1.33    kardel #include <sys/kernel.h>
     46       1.33    kardel #include <sys/proc.h>
     47       1.33    kardel #include <sys/sysctl.h>
     48       1.33    kardel #include <sys/timex.h>
     49       1.33    kardel #ifdef COMPAT_30
     50       1.33    kardel #include <compat/sys/timex.h>
     51       1.33    kardel #endif
     52       1.33    kardel #include <sys/vnode.h>
     53       1.33    kardel #include <sys/kauth.h>
     54       1.33    kardel 
     55       1.33    kardel #include <sys/mount.h>
     56       1.33    kardel #include <sys/syscallargs.h>
     57       1.33    kardel 
     58  1.43.16.1      matt #include <sys/cpu.h>
     59       1.33    kardel 
     60       1.33    kardel /*
     61       1.33    kardel  * Single-precision macros for 64-bit machines
     62       1.33    kardel  */
     63       1.33    kardel typedef int64_t l_fp;
     64       1.33    kardel #define L_ADD(v, u)	((v) += (u))
     65       1.33    kardel #define L_SUB(v, u)	((v) -= (u))
     66       1.33    kardel #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
     67       1.33    kardel #define L_NEG(v)	((v) = -(v))
     68       1.33    kardel #define L_RSHIFT(v, n) \
     69       1.33    kardel 	do { \
     70       1.33    kardel 		if ((v) < 0) \
     71       1.33    kardel 			(v) = -(-(v) >> (n)); \
     72       1.33    kardel 		else \
     73       1.33    kardel 			(v) = (v) >> (n); \
     74       1.33    kardel 	} while (0)
     75       1.33    kardel #define L_MPY(v, a)	((v) *= (a))
     76       1.33    kardel #define L_CLR(v)	((v) = 0)
     77       1.33    kardel #define L_ISNEG(v)	((v) < 0)
     78       1.33    kardel #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
     79       1.33    kardel #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
     80       1.33    kardel 
     81       1.33    kardel #ifdef NTP
     82       1.33    kardel /*
     83       1.33    kardel  * Generic NTP kernel interface
     84       1.33    kardel  *
     85       1.33    kardel  * These routines constitute the Network Time Protocol (NTP) interfaces
     86       1.33    kardel  * for user and daemon application programs. The ntp_gettime() routine
     87       1.33    kardel  * provides the time, maximum error (synch distance) and estimated error
     88       1.33    kardel  * (dispersion) to client user application programs. The ntp_adjtime()
     89       1.33    kardel  * routine is used by the NTP daemon to adjust the system clock to an
     90       1.33    kardel  * externally derived time. The time offset and related variables set by
     91       1.33    kardel  * this routine are used by other routines in this module to adjust the
     92       1.33    kardel  * phase and frequency of the clock discipline loop which controls the
     93       1.33    kardel  * system clock.
     94       1.33    kardel  *
     95       1.33    kardel  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
     96       1.33    kardel  * defined), the time at each tick interrupt is derived directly from
     97       1.33    kardel  * the kernel time variable. When the kernel time is reckoned in
     98       1.33    kardel  * microseconds, (NTP_NANO undefined), the time is derived from the
     99       1.33    kardel  * kernel time variable together with a variable representing the
    100       1.33    kardel  * leftover nanoseconds at the last tick interrupt. In either case, the
    101       1.33    kardel  * current nanosecond time is reckoned from these values plus an
    102       1.33    kardel  * interpolated value derived by the clock routines in another
    103       1.33    kardel  * architecture-specific module. The interpolation can use either a
    104       1.33    kardel  * dedicated counter or a processor cycle counter (PCC) implemented in
    105       1.33    kardel  * some architectures.
    106       1.33    kardel  *
    107       1.33    kardel  * Note that all routines must run at priority splclock or higher.
    108       1.33    kardel  */
    109       1.33    kardel /*
    110       1.33    kardel  * Phase/frequency-lock loop (PLL/FLL) definitions
    111       1.33    kardel  *
    112       1.33    kardel  * The nanosecond clock discipline uses two variable types, time
    113       1.33    kardel  * variables and frequency variables. Both types are represented as 64-
    114       1.33    kardel  * bit fixed-point quantities with the decimal point between two 32-bit
    115       1.33    kardel  * halves. On a 32-bit machine, each half is represented as a single
    116       1.33    kardel  * word and mathematical operations are done using multiple-precision
    117       1.33    kardel  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
    118       1.33    kardel  * used.
    119       1.33    kardel  *
    120       1.33    kardel  * A time variable is a signed 64-bit fixed-point number in ns and
    121       1.33    kardel  * fraction. It represents the remaining time offset to be amortized
    122       1.33    kardel  * over succeeding tick interrupts. The maximum time offset is about
    123       1.33    kardel  * 0.5 s and the resolution is about 2.3e-10 ns.
    124       1.33    kardel  *
    125       1.33    kardel  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    126       1.33    kardel  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    127       1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    128       1.33    kardel  * |s s s|			 ns				   |
    129       1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    130       1.33    kardel  * |			    fraction				   |
    131       1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    132       1.33    kardel  *
    133       1.33    kardel  * A frequency variable is a signed 64-bit fixed-point number in ns/s
    134       1.33    kardel  * and fraction. It represents the ns and fraction to be added to the
    135       1.33    kardel  * kernel time variable at each second. The maximum frequency offset is
    136       1.33    kardel  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
    137       1.33    kardel  *
    138       1.33    kardel  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    139       1.33    kardel  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    140       1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    141       1.33    kardel  * |s s s s s s s s s s s s s|	          ns/s			   |
    142       1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    143       1.33    kardel  * |			    fraction				   |
    144       1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    145       1.33    kardel  */
    146       1.33    kardel /*
    147       1.33    kardel  * The following variables establish the state of the PLL/FLL and the
    148       1.33    kardel  * residual time and frequency offset of the local clock.
    149       1.33    kardel  */
    150       1.33    kardel #define SHIFT_PLL	4		/* PLL loop gain (shift) */
    151       1.33    kardel #define SHIFT_FLL	2		/* FLL loop gain (shift) */
    152       1.33    kardel 
    153       1.33    kardel static int time_state = TIME_OK;	/* clock state */
    154       1.33    kardel static int time_status = STA_UNSYNC;	/* clock status bits */
    155       1.33    kardel static long time_tai;			/* TAI offset (s) */
    156       1.33    kardel static long time_monitor;		/* last time offset scaled (ns) */
    157       1.33    kardel static long time_constant;		/* poll interval (shift) (s) */
    158       1.33    kardel static long time_precision = 1;		/* clock precision (ns) */
    159       1.33    kardel static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
    160       1.33    kardel static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
    161       1.33    kardel static long time_reftime;		/* time at last adjustment (s) */
    162       1.33    kardel static l_fp time_offset;		/* time offset (ns) */
    163       1.33    kardel static l_fp time_freq;			/* frequency offset (ns/s) */
    164       1.33    kardel #endif /* NTP */
    165       1.33    kardel 
    166       1.33    kardel static l_fp time_adj;			/* tick adjust (ns/s) */
    167       1.33    kardel int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
    168       1.33    kardel 
    169       1.33    kardel extern int time_adjusted;	/* ntp might have changed the system time */
    170       1.33    kardel 
    171       1.33    kardel #ifdef NTP
    172       1.33    kardel #ifdef PPS_SYNC
    173       1.33    kardel /*
    174       1.33    kardel  * The following variables are used when a pulse-per-second (PPS) signal
    175       1.33    kardel  * is available and connected via a modem control lead. They establish
    176       1.33    kardel  * the engineering parameters of the clock discipline loop when
    177       1.33    kardel  * controlled by the PPS signal.
    178       1.33    kardel  */
    179       1.33    kardel #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
    180       1.33    kardel #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
    181       1.33    kardel #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
    182       1.33    kardel #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
    183       1.33    kardel #define PPS_VALID	120		/* PPS signal watchdog max (s) */
    184       1.33    kardel #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
    185       1.33    kardel #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
    186       1.33    kardel 
    187       1.33    kardel static struct timespec pps_tf[3];	/* phase median filter */
    188       1.33    kardel static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
    189       1.33    kardel static long pps_fcount;			/* frequency accumulator */
    190       1.33    kardel static long pps_jitter;			/* nominal jitter (ns) */
    191       1.33    kardel static long pps_stabil;			/* nominal stability (scaled ns/s) */
    192       1.33    kardel static long pps_lastsec;		/* time at last calibration (s) */
    193       1.33    kardel static int pps_valid;			/* signal watchdog counter */
    194       1.33    kardel static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
    195       1.33    kardel static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
    196       1.33    kardel static int pps_intcnt;			/* wander counter */
    197       1.33    kardel 
    198       1.33    kardel /*
    199       1.33    kardel  * PPS signal quality monitors
    200       1.33    kardel  */
    201       1.33    kardel static long pps_calcnt;			/* calibration intervals */
    202       1.33    kardel static long pps_jitcnt;			/* jitter limit exceeded */
    203       1.33    kardel static long pps_stbcnt;			/* stability limit exceeded */
    204       1.33    kardel static long pps_errcnt;			/* calibration errors */
    205       1.33    kardel #endif /* PPS_SYNC */
    206       1.33    kardel /*
    207       1.33    kardel  * End of phase/frequency-lock loop (PLL/FLL) definitions
    208       1.33    kardel  */
    209       1.33    kardel 
    210       1.33    kardel static void hardupdate(long offset);
    211       1.33    kardel 
    212       1.33    kardel /*
    213       1.33    kardel  * ntp_gettime() - NTP user application interface
    214       1.33    kardel  */
    215       1.33    kardel void
    216  1.43.16.2      matt ntp_gettime(struct ntptimeval *ntv)
    217       1.33    kardel {
    218       1.33    kardel 	nanotime(&ntv->time);
    219       1.33    kardel 	ntv->maxerror = time_maxerror;
    220       1.33    kardel 	ntv->esterror = time_esterror;
    221       1.33    kardel 	ntv->tai = time_tai;
    222       1.33    kardel 	ntv->time_state = time_state;
    223       1.33    kardel }
    224       1.33    kardel 
    225       1.33    kardel /* ARGSUSED */
    226       1.33    kardel /*
    227       1.33    kardel  * ntp_adjtime() - NTP daemon application interface
    228       1.33    kardel  */
    229       1.33    kardel int
    230  1.43.16.2      matt sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
    231       1.33    kardel {
    232  1.43.16.2      matt 	/* {
    233       1.33    kardel 		syscallarg(struct timex *) tp;
    234  1.43.16.2      matt 	} */
    235       1.33    kardel 	struct timex ntv;
    236       1.33    kardel 	int error = 0;
    237       1.33    kardel 
    238       1.43  christos 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
    239       1.35        ad 	if (error != 0)
    240       1.33    kardel 		return (error);
    241       1.33    kardel 
    242       1.37      elad 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
    243       1.37      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
    244       1.36      elad 	    NULL, NULL)) != 0)
    245       1.33    kardel 		return (error);
    246       1.33    kardel 
    247       1.33    kardel 	ntp_adjtime1(&ntv);
    248       1.33    kardel 
    249       1.43  christos 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
    250       1.35        ad 	if (!error)
    251       1.33    kardel 		*retval = ntp_timestatus();
    252       1.35        ad 
    253       1.33    kardel 	return error;
    254       1.33    kardel }
    255       1.33    kardel 
    256       1.33    kardel void
    257  1.43.16.2      matt ntp_adjtime1(struct timex *ntv)
    258       1.33    kardel {
    259       1.33    kardel 	long freq;
    260       1.33    kardel 	int modes;
    261       1.33    kardel 	int s;
    262       1.33    kardel 
    263       1.33    kardel 	/*
    264       1.33    kardel 	 * Update selected clock variables - only the superuser can
    265       1.33    kardel 	 * change anything. Note that there is no error checking here on
    266       1.33    kardel 	 * the assumption the superuser should know what it is doing.
    267       1.33    kardel 	 * Note that either the time constant or TAI offset are loaded
    268       1.33    kardel 	 * from the ntv.constant member, depending on the mode bits. If
    269       1.33    kardel 	 * the STA_PLL bit in the status word is cleared, the state and
    270       1.33    kardel 	 * status words are reset to the initial values at boot.
    271       1.33    kardel 	 */
    272       1.33    kardel 	modes = ntv->modes;
    273       1.33    kardel 	if (modes != 0)
    274       1.33    kardel 		/* We need to save the system time during shutdown */
    275       1.33    kardel 		time_adjusted |= 2;
    276       1.33    kardel 	s = splclock();
    277       1.33    kardel 	if (modes & MOD_MAXERROR)
    278       1.33    kardel 		time_maxerror = ntv->maxerror;
    279       1.33    kardel 	if (modes & MOD_ESTERROR)
    280       1.33    kardel 		time_esterror = ntv->esterror;
    281       1.33    kardel 	if (modes & MOD_STATUS) {
    282       1.33    kardel 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
    283       1.33    kardel 			time_state = TIME_OK;
    284       1.33    kardel 			time_status = STA_UNSYNC;
    285       1.33    kardel #ifdef PPS_SYNC
    286       1.33    kardel 			pps_shift = PPS_FAVG;
    287       1.33    kardel #endif /* PPS_SYNC */
    288       1.33    kardel 		}
    289       1.33    kardel 		time_status &= STA_RONLY;
    290       1.33    kardel 		time_status |= ntv->status & ~STA_RONLY;
    291       1.33    kardel 	}
    292       1.33    kardel 	if (modes & MOD_TIMECONST) {
    293       1.33    kardel 		if (ntv->constant < 0)
    294       1.33    kardel 			time_constant = 0;
    295       1.33    kardel 		else if (ntv->constant > MAXTC)
    296       1.33    kardel 			time_constant = MAXTC;
    297       1.33    kardel 		else
    298       1.33    kardel 			time_constant = ntv->constant;
    299       1.33    kardel 	}
    300       1.33    kardel 	if (modes & MOD_TAI) {
    301       1.33    kardel 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
    302       1.33    kardel 			time_tai = ntv->constant;
    303       1.33    kardel 	}
    304       1.33    kardel #ifdef PPS_SYNC
    305       1.33    kardel 	if (modes & MOD_PPSMAX) {
    306       1.33    kardel 		if (ntv->shift < PPS_FAVG)
    307       1.33    kardel 			pps_shiftmax = PPS_FAVG;
    308       1.33    kardel 		else if (ntv->shift > PPS_FAVGMAX)
    309       1.33    kardel 			pps_shiftmax = PPS_FAVGMAX;
    310       1.33    kardel 		else
    311       1.33    kardel 			pps_shiftmax = ntv->shift;
    312       1.33    kardel 	}
    313       1.33    kardel #endif /* PPS_SYNC */
    314       1.33    kardel 	if (modes & MOD_NANO)
    315       1.33    kardel 		time_status |= STA_NANO;
    316       1.33    kardel 	if (modes & MOD_MICRO)
    317       1.33    kardel 		time_status &= ~STA_NANO;
    318       1.33    kardel 	if (modes & MOD_CLKB)
    319       1.33    kardel 		time_status |= STA_CLK;
    320       1.33    kardel 	if (modes & MOD_CLKA)
    321       1.33    kardel 		time_status &= ~STA_CLK;
    322       1.33    kardel 	if (modes & MOD_FREQUENCY) {
    323       1.33    kardel 		freq = (ntv->freq * 1000LL) >> 16;
    324       1.33    kardel 		if (freq > MAXFREQ)
    325       1.33    kardel 			L_LINT(time_freq, MAXFREQ);
    326       1.33    kardel 		else if (freq < -MAXFREQ)
    327       1.33    kardel 			L_LINT(time_freq, -MAXFREQ);
    328       1.33    kardel 		else {
    329       1.33    kardel 			/*
    330       1.33    kardel 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
    331       1.33    kardel 			 * time_freq is [ns/s * 2^32]
    332       1.33    kardel 			 */
    333       1.33    kardel 			time_freq = ntv->freq * 1000LL * 65536LL;
    334       1.33    kardel 		}
    335       1.33    kardel #ifdef PPS_SYNC
    336       1.33    kardel 		pps_freq = time_freq;
    337       1.33    kardel #endif /* PPS_SYNC */
    338       1.33    kardel 	}
    339       1.33    kardel 	if (modes & MOD_OFFSET) {
    340       1.33    kardel 		if (time_status & STA_NANO)
    341       1.33    kardel 			hardupdate(ntv->offset);
    342       1.33    kardel 		else
    343       1.33    kardel 			hardupdate(ntv->offset * 1000);
    344       1.33    kardel 	}
    345       1.33    kardel 
    346       1.33    kardel 	/*
    347       1.33    kardel 	 * Retrieve all clock variables. Note that the TAI offset is
    348       1.33    kardel 	 * returned only by ntp_gettime();
    349       1.33    kardel 	 */
    350       1.33    kardel 	if (time_status & STA_NANO)
    351       1.33    kardel 		ntv->offset = L_GINT(time_offset);
    352       1.33    kardel 	else
    353       1.33    kardel 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
    354       1.33    kardel 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
    355       1.33    kardel 	ntv->maxerror = time_maxerror;
    356       1.33    kardel 	ntv->esterror = time_esterror;
    357       1.33    kardel 	ntv->status = time_status;
    358       1.33    kardel 	ntv->constant = time_constant;
    359       1.33    kardel 	if (time_status & STA_NANO)
    360       1.33    kardel 		ntv->precision = time_precision;
    361       1.33    kardel 	else
    362       1.33    kardel 		ntv->precision = time_precision / 1000;
    363       1.33    kardel 	ntv->tolerance = MAXFREQ * SCALE_PPM;
    364       1.33    kardel #ifdef PPS_SYNC
    365       1.33    kardel 	ntv->shift = pps_shift;
    366       1.33    kardel 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
    367       1.33    kardel 	if (time_status & STA_NANO)
    368       1.33    kardel 		ntv->jitter = pps_jitter;
    369       1.33    kardel 	else
    370       1.33    kardel 		ntv->jitter = pps_jitter / 1000;
    371       1.33    kardel 	ntv->stabil = pps_stabil;
    372       1.33    kardel 	ntv->calcnt = pps_calcnt;
    373       1.33    kardel 	ntv->errcnt = pps_errcnt;
    374       1.33    kardel 	ntv->jitcnt = pps_jitcnt;
    375       1.33    kardel 	ntv->stbcnt = pps_stbcnt;
    376       1.33    kardel #endif /* PPS_SYNC */
    377       1.33    kardel 	splx(s);
    378       1.33    kardel }
    379       1.33    kardel #endif /* NTP */
    380       1.33    kardel 
    381       1.33    kardel /*
    382       1.33    kardel  * second_overflow() - called after ntp_tick_adjust()
    383       1.33    kardel  *
    384       1.33    kardel  * This routine is ordinarily called immediately following the above
    385       1.33    kardel  * routine ntp_tick_adjust(). While these two routines are normally
    386       1.33    kardel  * combined, they are separated here only for the purposes of
    387       1.33    kardel  * simulation.
    388       1.33    kardel  */
    389       1.33    kardel void
    390       1.33    kardel ntp_update_second(int64_t *adjustment, time_t *newsec)
    391       1.33    kardel {
    392       1.33    kardel 	int tickrate;
    393       1.33    kardel 	l_fp ftemp;		/* 32/64-bit temporary */
    394       1.33    kardel 
    395       1.33    kardel #ifdef NTP
    396       1.33    kardel 
    397       1.33    kardel 	/*
    398       1.33    kardel 	 * On rollover of the second both the nanosecond and microsecond
    399       1.33    kardel 	 * clocks are updated and the state machine cranked as
    400       1.33    kardel 	 * necessary. The phase adjustment to be used for the next
    401       1.33    kardel 	 * second is calculated and the maximum error is increased by
    402       1.33    kardel 	 * the tolerance.
    403       1.33    kardel 	 */
    404       1.33    kardel 	time_maxerror += MAXFREQ / 1000;
    405       1.33    kardel 
    406       1.33    kardel 	/*
    407       1.33    kardel 	 * Leap second processing. If in leap-insert state at
    408       1.33    kardel 	 * the end of the day, the system clock is set back one
    409       1.33    kardel 	 * second; if in leap-delete state, the system clock is
    410       1.33    kardel 	 * set ahead one second. The nano_time() routine or
    411       1.33    kardel 	 * external clock driver will insure that reported time
    412       1.33    kardel 	 * is always monotonic.
    413       1.33    kardel 	 */
    414       1.33    kardel 	switch (time_state) {
    415       1.33    kardel 
    416       1.33    kardel 		/*
    417       1.33    kardel 		 * No warning.
    418       1.33    kardel 		 */
    419       1.33    kardel 		case TIME_OK:
    420       1.33    kardel 		if (time_status & STA_INS)
    421       1.33    kardel 			time_state = TIME_INS;
    422       1.33    kardel 		else if (time_status & STA_DEL)
    423       1.33    kardel 			time_state = TIME_DEL;
    424       1.33    kardel 		break;
    425       1.33    kardel 
    426       1.33    kardel 		/*
    427       1.33    kardel 		 * Insert second 23:59:60 following second
    428       1.33    kardel 		 * 23:59:59.
    429       1.33    kardel 		 */
    430       1.33    kardel 		case TIME_INS:
    431       1.33    kardel 		if (!(time_status & STA_INS))
    432       1.33    kardel 			time_state = TIME_OK;
    433       1.33    kardel 		else if ((*newsec) % 86400 == 0) {
    434       1.33    kardel 			(*newsec)--;
    435       1.33    kardel 			time_state = TIME_OOP;
    436       1.33    kardel 			time_tai++;
    437       1.33    kardel 		}
    438       1.33    kardel 		break;
    439       1.33    kardel 
    440       1.33    kardel 		/*
    441       1.33    kardel 		 * Delete second 23:59:59.
    442       1.33    kardel 		 */
    443       1.33    kardel 		case TIME_DEL:
    444       1.33    kardel 		if (!(time_status & STA_DEL))
    445       1.33    kardel 			time_state = TIME_OK;
    446       1.33    kardel 		else if (((*newsec) + 1) % 86400 == 0) {
    447       1.33    kardel 			(*newsec)++;
    448       1.33    kardel 			time_tai--;
    449       1.33    kardel 			time_state = TIME_WAIT;
    450       1.33    kardel 		}
    451       1.33    kardel 		break;
    452       1.33    kardel 
    453       1.33    kardel 		/*
    454       1.33    kardel 		 * Insert second in progress.
    455       1.33    kardel 		 */
    456       1.33    kardel 		case TIME_OOP:
    457       1.33    kardel 			time_state = TIME_WAIT;
    458       1.33    kardel 		break;
    459       1.33    kardel 
    460       1.33    kardel 		/*
    461       1.33    kardel 		 * Wait for status bits to clear.
    462       1.33    kardel 		 */
    463       1.33    kardel 		case TIME_WAIT:
    464       1.33    kardel 		if (!(time_status & (STA_INS | STA_DEL)))
    465       1.33    kardel 			time_state = TIME_OK;
    466       1.33    kardel 	}
    467       1.33    kardel 
    468       1.33    kardel 	/*
    469       1.33    kardel 	 * Compute the total time adjustment for the next second
    470       1.33    kardel 	 * in ns. The offset is reduced by a factor depending on
    471       1.33    kardel 	 * whether the PPS signal is operating. Note that the
    472       1.33    kardel 	 * value is in effect scaled by the clock frequency,
    473       1.33    kardel 	 * since the adjustment is added at each tick interrupt.
    474       1.33    kardel 	 */
    475       1.33    kardel 	ftemp = time_offset;
    476       1.33    kardel #ifdef PPS_SYNC
    477       1.33    kardel 	/* XXX even if PPS signal dies we should finish adjustment ? */
    478       1.33    kardel 	if (time_status & STA_PPSTIME && time_status &
    479       1.33    kardel 	    STA_PPSSIGNAL)
    480       1.33    kardel 		L_RSHIFT(ftemp, pps_shift);
    481       1.33    kardel 	else
    482       1.33    kardel 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    483       1.33    kardel #else
    484       1.33    kardel 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    485       1.33    kardel #endif /* PPS_SYNC */
    486       1.33    kardel 	time_adj = ftemp;
    487       1.33    kardel 	L_SUB(time_offset, ftemp);
    488       1.33    kardel 	L_ADD(time_adj, time_freq);
    489       1.33    kardel 
    490       1.33    kardel #ifdef PPS_SYNC
    491       1.33    kardel 	if (pps_valid > 0)
    492       1.33    kardel 		pps_valid--;
    493       1.33    kardel 	else
    494       1.33    kardel 		time_status &= ~STA_PPSSIGNAL;
    495       1.33    kardel #endif /* PPS_SYNC */
    496       1.34    kardel #else  /* !NTP */
    497       1.34    kardel 	L_CLR(time_adj);
    498       1.34    kardel #endif /* !NTP */
    499       1.33    kardel 
    500       1.33    kardel 	/*
    501       1.33    kardel 	 * Apply any correction from adjtime(2).  If more than one second
    502       1.33    kardel 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
    503       1.33    kardel 	 * until the last second is slewed the final < 500 usecs.
    504       1.33    kardel 	 */
    505       1.33    kardel 	if (time_adjtime != 0) {
    506       1.33    kardel 		if (time_adjtime > 1000000)
    507       1.33    kardel 			tickrate = 5000;
    508       1.33    kardel 		else if (time_adjtime < -1000000)
    509       1.33    kardel 			tickrate = -5000;
    510       1.33    kardel 		else if (time_adjtime > 500)
    511       1.33    kardel 			tickrate = 500;
    512       1.33    kardel 		else if (time_adjtime < -500)
    513       1.33    kardel 			tickrate = -500;
    514       1.33    kardel 		else
    515       1.33    kardel 			tickrate = time_adjtime;
    516       1.33    kardel 		time_adjtime -= tickrate;
    517       1.33    kardel 		L_LINT(ftemp, tickrate * 1000);
    518       1.33    kardel 		L_ADD(time_adj, ftemp);
    519       1.33    kardel 	}
    520       1.33    kardel 	*adjustment = time_adj;
    521       1.33    kardel }
    522       1.33    kardel 
    523       1.33    kardel /*
    524       1.33    kardel  * ntp_init() - initialize variables and structures
    525       1.33    kardel  *
    526       1.33    kardel  * This routine must be called after the kernel variables hz and tick
    527       1.33    kardel  * are set or changed and before the next tick interrupt. In this
    528       1.33    kardel  * particular implementation, these values are assumed set elsewhere in
    529       1.33    kardel  * the kernel. The design allows the clock frequency and tick interval
    530       1.33    kardel  * to be changed while the system is running. So, this routine should
    531       1.33    kardel  * probably be integrated with the code that does that.
    532       1.33    kardel  */
    533       1.33    kardel void
    534       1.33    kardel ntp_init(void)
    535       1.33    kardel {
    536       1.33    kardel 
    537       1.33    kardel 	/*
    538       1.33    kardel 	 * The following variables are initialized only at startup. Only
    539       1.33    kardel 	 * those structures not cleared by the compiler need to be
    540       1.33    kardel 	 * initialized, and these only in the simulator. In the actual
    541       1.33    kardel 	 * kernel, any nonzero values here will quickly evaporate.
    542       1.33    kardel 	 */
    543       1.33    kardel 	L_CLR(time_adj);
    544       1.33    kardel #ifdef NTP
    545       1.33    kardel 	L_CLR(time_offset);
    546       1.33    kardel 	L_CLR(time_freq);
    547       1.33    kardel #ifdef PPS_SYNC
    548       1.33    kardel 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
    549       1.33    kardel 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
    550       1.33    kardel 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
    551       1.33    kardel 	pps_fcount = 0;
    552       1.33    kardel 	L_CLR(pps_freq);
    553       1.33    kardel #endif /* PPS_SYNC */
    554       1.33    kardel #endif
    555       1.33    kardel }
    556       1.33    kardel 
    557       1.33    kardel #ifdef NTP
    558       1.33    kardel /*
    559       1.33    kardel  * hardupdate() - local clock update
    560       1.33    kardel  *
    561       1.33    kardel  * This routine is called by ntp_adjtime() to update the local clock
    562       1.33    kardel  * phase and frequency. The implementation is of an adaptive-parameter,
    563       1.33    kardel  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    564       1.33    kardel  * time and frequency offset estimates for each call. If the kernel PPS
    565       1.33    kardel  * discipline code is configured (PPS_SYNC), the PPS signal itself
    566       1.33    kardel  * determines the new time offset, instead of the calling argument.
    567       1.33    kardel  * Presumably, calls to ntp_adjtime() occur only when the caller
    568       1.33    kardel  * believes the local clock is valid within some bound (+-128 ms with
    569       1.33    kardel  * NTP). If the caller's time is far different than the PPS time, an
    570       1.33    kardel  * argument will ensue, and it's not clear who will lose.
    571       1.33    kardel  *
    572       1.33    kardel  * For uncompensated quartz crystal oscillators and nominal update
    573       1.33    kardel  * intervals less than 256 s, operation should be in phase-lock mode,
    574       1.33    kardel  * where the loop is disciplined to phase. For update intervals greater
    575       1.33    kardel  * than 1024 s, operation should be in frequency-lock mode, where the
    576       1.33    kardel  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
    577       1.33    kardel  * is selected by the STA_MODE status bit.
    578       1.33    kardel  *
    579       1.33    kardel  * Note: splclock() is in effect.
    580       1.33    kardel  */
    581       1.33    kardel void
    582       1.33    kardel hardupdate(long offset)
    583       1.33    kardel {
    584       1.33    kardel 	long mtemp;
    585       1.33    kardel 	l_fp ftemp;
    586       1.33    kardel 
    587       1.33    kardel 	/*
    588       1.33    kardel 	 * Select how the phase is to be controlled and from which
    589       1.33    kardel 	 * source. If the PPS signal is present and enabled to
    590       1.33    kardel 	 * discipline the time, the PPS offset is used; otherwise, the
    591       1.33    kardel 	 * argument offset is used.
    592       1.33    kardel 	 */
    593       1.33    kardel 	if (!(time_status & STA_PLL))
    594       1.33    kardel 		return;
    595       1.33    kardel 	if (!(time_status & STA_PPSTIME && time_status &
    596       1.33    kardel 	    STA_PPSSIGNAL)) {
    597       1.33    kardel 		if (offset > MAXPHASE)
    598       1.33    kardel 			time_monitor = MAXPHASE;
    599       1.33    kardel 		else if (offset < -MAXPHASE)
    600       1.33    kardel 			time_monitor = -MAXPHASE;
    601       1.33    kardel 		else
    602       1.33    kardel 			time_monitor = offset;
    603       1.33    kardel 		L_LINT(time_offset, time_monitor);
    604       1.33    kardel 	}
    605       1.33    kardel 
    606       1.33    kardel 	/*
    607       1.33    kardel 	 * Select how the frequency is to be controlled and in which
    608       1.33    kardel 	 * mode (PLL or FLL). If the PPS signal is present and enabled
    609       1.33    kardel 	 * to discipline the frequency, the PPS frequency is used;
    610       1.33    kardel 	 * otherwise, the argument offset is used to compute it.
    611       1.33    kardel 	 */
    612       1.33    kardel 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
    613       1.33    kardel 		time_reftime = time_second;
    614       1.33    kardel 		return;
    615       1.33    kardel 	}
    616       1.33    kardel 	if (time_status & STA_FREQHOLD || time_reftime == 0)
    617       1.33    kardel 		time_reftime = time_second;
    618       1.33    kardel 	mtemp = time_second - time_reftime;
    619       1.33    kardel 	L_LINT(ftemp, time_monitor);
    620       1.33    kardel 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
    621       1.33    kardel 	L_MPY(ftemp, mtemp);
    622       1.33    kardel 	L_ADD(time_freq, ftemp);
    623       1.33    kardel 	time_status &= ~STA_MODE;
    624       1.33    kardel 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
    625       1.33    kardel 	    MAXSEC)) {
    626       1.33    kardel 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
    627       1.33    kardel 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
    628       1.33    kardel 		L_ADD(time_freq, ftemp);
    629       1.33    kardel 		time_status |= STA_MODE;
    630       1.33    kardel 	}
    631       1.33    kardel 	time_reftime = time_second;
    632       1.33    kardel 	if (L_GINT(time_freq) > MAXFREQ)
    633       1.33    kardel 		L_LINT(time_freq, MAXFREQ);
    634       1.33    kardel 	else if (L_GINT(time_freq) < -MAXFREQ)
    635       1.33    kardel 		L_LINT(time_freq, -MAXFREQ);
    636       1.33    kardel }
    637       1.33    kardel 
    638       1.33    kardel #ifdef PPS_SYNC
    639       1.33    kardel /*
    640       1.33    kardel  * hardpps() - discipline CPU clock oscillator to external PPS signal
    641       1.33    kardel  *
    642       1.33    kardel  * This routine is called at each PPS interrupt in order to discipline
    643       1.33    kardel  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
    644       1.33    kardel  * and leaves it in a handy spot for the hardclock() routine. It
    645       1.33    kardel  * integrates successive PPS phase differences and calculates the
    646       1.33    kardel  * frequency offset. This is used in hardclock() to discipline the CPU
    647       1.33    kardel  * clock oscillator so that intrinsic frequency error is cancelled out.
    648       1.33    kardel  * The code requires the caller to capture the time and hardware counter
    649       1.33    kardel  * value at the on-time PPS signal transition.
    650       1.33    kardel  *
    651       1.33    kardel  * Note that, on some Unix systems, this routine runs at an interrupt
    652       1.33    kardel  * priority level higher than the timer interrupt routine hardclock().
    653       1.33    kardel  * Therefore, the variables used are distinct from the hardclock()
    654       1.33    kardel  * variables, except for certain exceptions: The PPS frequency pps_freq
    655       1.33    kardel  * and phase pps_offset variables are determined by this routine and
    656       1.33    kardel  * updated atomically. The time_tolerance variable can be considered a
    657       1.33    kardel  * constant, since it is infrequently changed, and then only when the
    658       1.33    kardel  * PPS signal is disabled. The watchdog counter pps_valid is updated
    659       1.33    kardel  * once per second by hardclock() and is atomically cleared in this
    660       1.33    kardel  * routine.
    661       1.33    kardel  */
    662       1.33    kardel void
    663       1.33    kardel hardpps(struct timespec *tsp,		/* time at PPS */
    664       1.33    kardel 	long nsec			/* hardware counter at PPS */)
    665       1.33    kardel {
    666       1.33    kardel 	long u_sec, u_nsec, v_nsec; /* temps */
    667       1.33    kardel 	l_fp ftemp;
    668       1.33    kardel 
    669       1.33    kardel 	/*
    670       1.33    kardel 	 * The signal is first processed by a range gate and frequency
    671       1.33    kardel 	 * discriminator. The range gate rejects noise spikes outside
    672       1.33    kardel 	 * the range +-500 us. The frequency discriminator rejects input
    673       1.33    kardel 	 * signals with apparent frequency outside the range 1 +-500
    674       1.33    kardel 	 * PPM. If two hits occur in the same second, we ignore the
    675       1.33    kardel 	 * later hit; if not and a hit occurs outside the range gate,
    676       1.33    kardel 	 * keep the later hit for later comparison, but do not process
    677       1.33    kardel 	 * it.
    678       1.33    kardel 	 */
    679       1.33    kardel 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
    680       1.33    kardel 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
    681       1.33    kardel 	pps_valid = PPS_VALID;
    682       1.33    kardel 	u_sec = tsp->tv_sec;
    683       1.33    kardel 	u_nsec = tsp->tv_nsec;
    684       1.33    kardel 	if (u_nsec >= (NANOSECOND >> 1)) {
    685       1.33    kardel 		u_nsec -= NANOSECOND;
    686       1.33    kardel 		u_sec++;
    687       1.33    kardel 	}
    688       1.33    kardel 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
    689       1.33    kardel 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
    690       1.33    kardel 	    MAXFREQ)
    691       1.33    kardel 		return;
    692       1.33    kardel 	pps_tf[2] = pps_tf[1];
    693       1.33    kardel 	pps_tf[1] = pps_tf[0];
    694       1.33    kardel 	pps_tf[0].tv_sec = u_sec;
    695       1.33    kardel 	pps_tf[0].tv_nsec = u_nsec;
    696       1.33    kardel 
    697       1.33    kardel 	/*
    698       1.33    kardel 	 * Compute the difference between the current and previous
    699       1.33    kardel 	 * counter values. If the difference exceeds 0.5 s, assume it
    700       1.33    kardel 	 * has wrapped around, so correct 1.0 s. If the result exceeds
    701       1.33    kardel 	 * the tick interval, the sample point has crossed a tick
    702       1.33    kardel 	 * boundary during the last second, so correct the tick. Very
    703       1.33    kardel 	 * intricate.
    704       1.33    kardel 	 */
    705       1.33    kardel 	u_nsec = nsec;
    706       1.33    kardel 	if (u_nsec > (NANOSECOND >> 1))
    707       1.33    kardel 		u_nsec -= NANOSECOND;
    708       1.33    kardel 	else if (u_nsec < -(NANOSECOND >> 1))
    709       1.33    kardel 		u_nsec += NANOSECOND;
    710       1.33    kardel 	pps_fcount += u_nsec;
    711       1.33    kardel 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
    712       1.33    kardel 		return;
    713       1.33    kardel 	time_status &= ~STA_PPSJITTER;
    714       1.33    kardel 
    715       1.33    kardel 	/*
    716       1.33    kardel 	 * A three-stage median filter is used to help denoise the PPS
    717       1.33    kardel 	 * time. The median sample becomes the time offset estimate; the
    718       1.33    kardel 	 * difference between the other two samples becomes the time
    719       1.33    kardel 	 * dispersion (jitter) estimate.
    720       1.33    kardel 	 */
    721       1.33    kardel 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
    722       1.33    kardel 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
    723       1.33    kardel 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
    724       1.33    kardel 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
    725       1.33    kardel 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
    726       1.33    kardel 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
    727       1.33    kardel 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
    728       1.33    kardel 		} else {
    729       1.33    kardel 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
    730       1.33    kardel 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
    731       1.33    kardel 		}
    732       1.33    kardel 	} else {
    733       1.33    kardel 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
    734       1.33    kardel 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
    735       1.33    kardel 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
    736       1.33    kardel 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
    737       1.33    kardel 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
    738       1.33    kardel 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
    739       1.33    kardel 		} else {
    740       1.33    kardel 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
    741       1.33    kardel 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
    742       1.33    kardel 		}
    743       1.33    kardel 	}
    744       1.33    kardel 
    745       1.33    kardel 	/*
    746       1.33    kardel 	 * Nominal jitter is due to PPS signal noise and interrupt
    747       1.33    kardel 	 * latency. If it exceeds the popcorn threshold, the sample is
    748       1.33    kardel 	 * discarded. otherwise, if so enabled, the time offset is
    749       1.33    kardel 	 * updated. We can tolerate a modest loss of data here without
    750       1.33    kardel 	 * much degrading time accuracy.
    751       1.33    kardel 	 */
    752       1.33    kardel 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
    753       1.33    kardel 		time_status |= STA_PPSJITTER;
    754       1.33    kardel 		pps_jitcnt++;
    755       1.33    kardel 	} else if (time_status & STA_PPSTIME) {
    756       1.33    kardel 		time_monitor = -v_nsec;
    757       1.33    kardel 		L_LINT(time_offset, time_monitor);
    758       1.33    kardel 	}
    759       1.33    kardel 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
    760       1.33    kardel 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
    761       1.33    kardel 	if (u_sec < (1 << pps_shift))
    762       1.33    kardel 		return;
    763       1.33    kardel 
    764       1.33    kardel 	/*
    765       1.33    kardel 	 * At the end of the calibration interval the difference between
    766       1.33    kardel 	 * the first and last counter values becomes the scaled
    767       1.33    kardel 	 * frequency. It will later be divided by the length of the
    768       1.33    kardel 	 * interval to determine the frequency update. If the frequency
    769       1.33    kardel 	 * exceeds a sanity threshold, or if the actual calibration
    770       1.33    kardel 	 * interval is not equal to the expected length, the data are
    771       1.33    kardel 	 * discarded. We can tolerate a modest loss of data here without
    772       1.33    kardel 	 * much degrading frequency accuracy.
    773       1.33    kardel 	 */
    774       1.33    kardel 	pps_calcnt++;
    775       1.33    kardel 	v_nsec = -pps_fcount;
    776       1.33    kardel 	pps_lastsec = pps_tf[0].tv_sec;
    777       1.33    kardel 	pps_fcount = 0;
    778       1.33    kardel 	u_nsec = MAXFREQ << pps_shift;
    779       1.33    kardel 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
    780       1.33    kardel 	    pps_shift)) {
    781       1.33    kardel 		time_status |= STA_PPSERROR;
    782       1.33    kardel 		pps_errcnt++;
    783       1.33    kardel 		return;
    784       1.33    kardel 	}
    785       1.33    kardel 
    786       1.33    kardel 	/*
    787       1.33    kardel 	 * Here the raw frequency offset and wander (stability) is
    788       1.33    kardel 	 * calculated. If the wander is less than the wander threshold
    789       1.33    kardel 	 * for four consecutive averaging intervals, the interval is
    790       1.33    kardel 	 * doubled; if it is greater than the threshold for four
    791       1.33    kardel 	 * consecutive intervals, the interval is halved. The scaled
    792       1.33    kardel 	 * frequency offset is converted to frequency offset. The
    793       1.33    kardel 	 * stability metric is calculated as the average of recent
    794       1.33    kardel 	 * frequency changes, but is used only for performance
    795       1.33    kardel 	 * monitoring.
    796       1.33    kardel 	 */
    797       1.33    kardel 	L_LINT(ftemp, v_nsec);
    798       1.33    kardel 	L_RSHIFT(ftemp, pps_shift);
    799       1.33    kardel 	L_SUB(ftemp, pps_freq);
    800       1.33    kardel 	u_nsec = L_GINT(ftemp);
    801       1.33    kardel 	if (u_nsec > PPS_MAXWANDER) {
    802       1.33    kardel 		L_LINT(ftemp, PPS_MAXWANDER);
    803       1.33    kardel 		pps_intcnt--;
    804       1.33    kardel 		time_status |= STA_PPSWANDER;
    805       1.33    kardel 		pps_stbcnt++;
    806       1.33    kardel 	} else if (u_nsec < -PPS_MAXWANDER) {
    807       1.33    kardel 		L_LINT(ftemp, -PPS_MAXWANDER);
    808       1.33    kardel 		pps_intcnt--;
    809       1.33    kardel 		time_status |= STA_PPSWANDER;
    810       1.33    kardel 		pps_stbcnt++;
    811       1.33    kardel 	} else {
    812       1.33    kardel 		pps_intcnt++;
    813       1.33    kardel 	}
    814       1.33    kardel 	if (pps_intcnt >= 4) {
    815       1.33    kardel 		pps_intcnt = 4;
    816       1.33    kardel 		if (pps_shift < pps_shiftmax) {
    817       1.33    kardel 			pps_shift++;
    818       1.33    kardel 			pps_intcnt = 0;
    819       1.33    kardel 		}
    820       1.33    kardel 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
    821       1.33    kardel 		pps_intcnt = -4;
    822       1.33    kardel 		if (pps_shift > PPS_FAVG) {
    823       1.33    kardel 			pps_shift--;
    824       1.33    kardel 			pps_intcnt = 0;
    825       1.33    kardel 		}
    826       1.33    kardel 	}
    827       1.33    kardel 	if (u_nsec < 0)
    828       1.33    kardel 		u_nsec = -u_nsec;
    829       1.33    kardel 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
    830       1.33    kardel 
    831       1.33    kardel 	/*
    832       1.33    kardel 	 * The PPS frequency is recalculated and clamped to the maximum
    833       1.33    kardel 	 * MAXFREQ. If enabled, the system clock frequency is updated as
    834       1.33    kardel 	 * well.
    835       1.33    kardel 	 */
    836       1.33    kardel 	L_ADD(pps_freq, ftemp);
    837       1.33    kardel 	u_nsec = L_GINT(pps_freq);
    838       1.33    kardel 	if (u_nsec > MAXFREQ)
    839       1.33    kardel 		L_LINT(pps_freq, MAXFREQ);
    840       1.33    kardel 	else if (u_nsec < -MAXFREQ)
    841       1.33    kardel 		L_LINT(pps_freq, -MAXFREQ);
    842       1.33    kardel 	if (time_status & STA_PPSFREQ)
    843       1.33    kardel 		time_freq = pps_freq;
    844       1.33    kardel }
    845       1.33    kardel #endif /* PPS_SYNC */
    846       1.33    kardel #endif /* NTP */
    847       1.33    kardel 
    848       1.33    kardel #ifdef NTP
    849       1.33    kardel int
    850  1.43.16.3      matt ntp_timestatus(void)
    851       1.33    kardel {
    852       1.33    kardel 	/*
    853       1.33    kardel 	 * Status word error decode. If any of these conditions
    854       1.33    kardel 	 * occur, an error is returned, instead of the status
    855       1.33    kardel 	 * word. Most applications will care only about the fact
    856       1.33    kardel 	 * the system clock may not be trusted, not about the
    857       1.33    kardel 	 * details.
    858       1.33    kardel 	 *
    859       1.33    kardel 	 * Hardware or software error
    860       1.33    kardel 	 */
    861       1.33    kardel 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    862       1.33    kardel 
    863       1.33    kardel 	/*
    864       1.33    kardel 	 * PPS signal lost when either time or frequency
    865       1.33    kardel 	 * synchronization requested
    866       1.33    kardel 	 */
    867       1.33    kardel 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    868       1.33    kardel 	     !(time_status & STA_PPSSIGNAL)) ||
    869       1.33    kardel 
    870       1.33    kardel 	/*
    871       1.33    kardel 	 * PPS jitter exceeded when time synchronization
    872       1.33    kardel 	 * requested
    873       1.33    kardel 	 */
    874       1.33    kardel 	    (time_status & STA_PPSTIME &&
    875       1.33    kardel 	     time_status & STA_PPSJITTER) ||
    876       1.33    kardel 
    877       1.33    kardel 	/*
    878       1.33    kardel 	 * PPS wander exceeded or calibration error when
    879       1.33    kardel 	 * frequency synchronization requested
    880       1.33    kardel 	 */
    881       1.33    kardel 	    (time_status & STA_PPSFREQ &&
    882       1.33    kardel 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
    883       1.33    kardel 		return (TIME_ERROR);
    884       1.33    kardel 	else
    885       1.33    kardel 		return (time_state);
    886       1.33    kardel }
    887        1.1  jonathan 
    888       1.33    kardel /*ARGSUSED*/
    889       1.33    kardel /*
    890       1.33    kardel  * ntp_gettime() - NTP user application interface
    891       1.33    kardel  */
    892       1.33    kardel int
    893  1.43.16.2      matt sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
    894       1.33    kardel {
    895  1.43.16.2      matt 	/* {
    896       1.33    kardel 		syscallarg(struct ntptimeval *) ntvp;
    897  1.43.16.2      matt 	} */
    898       1.33    kardel 	struct ntptimeval ntv;
    899       1.33    kardel 	int error = 0;
    900       1.33    kardel 
    901       1.33    kardel 	if (SCARG(uap, ntvp)) {
    902       1.33    kardel 		ntp_gettime(&ntv);
    903       1.33    kardel 
    904       1.43  christos 		error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
    905       1.33    kardel 				sizeof(ntv));
    906       1.33    kardel 	}
    907        1.1  jonathan 	if (!error) {
    908       1.33    kardel 		*retval = ntp_timestatus();
    909       1.33    kardel 	}
    910       1.33    kardel 	return(error);
    911       1.33    kardel }
    912        1.1  jonathan 
    913       1.33    kardel #ifdef COMPAT_30
    914       1.33    kardel int
    915  1.43.16.2      matt compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
    916       1.33    kardel {
    917  1.43.16.2      matt 	/* {
    918       1.33    kardel 		syscallarg(struct ntptimeval30 *) ontvp;
    919  1.43.16.2      matt 	} */
    920       1.33    kardel 	struct ntptimeval ntv;
    921       1.33    kardel 	struct ntptimeval30 ontv;
    922       1.33    kardel 	int error = 0;
    923       1.33    kardel 
    924       1.33    kardel 	if (SCARG(uap, ntvp)) {
    925       1.33    kardel 		ntp_gettime(&ntv);
    926       1.33    kardel 		TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
    927       1.33    kardel 		ontv.maxerror = ntv.maxerror;
    928       1.33    kardel 		ontv.esterror = ntv.esterror;
    929       1.33    kardel 
    930       1.43  christos 		error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
    931       1.33    kardel 				sizeof(ontv));
    932       1.33    kardel  	}
    933       1.33    kardel 	if (!error)
    934       1.33    kardel 		*retval = ntp_timestatus();
    935       1.33    kardel 
    936       1.33    kardel 	return (error);
    937        1.1  jonathan }
    938       1.33    kardel #endif
    939        1.1  jonathan 
    940        1.1  jonathan /*
    941        1.1  jonathan  * return information about kernel precision timekeeping
    942        1.1  jonathan  */
    943       1.25    atatat static int
    944       1.25    atatat sysctl_kern_ntptime(SYSCTLFN_ARGS)
    945        1.1  jonathan {
    946       1.25    atatat 	struct sysctlnode node;
    947        1.1  jonathan 	struct ntptimeval ntv;
    948        1.1  jonathan 
    949       1.31  drochner 	ntp_gettime(&ntv);
    950       1.25    atatat 
    951       1.25    atatat 	node = *rnode;
    952       1.25    atatat 	node.sysctl_data = &ntv;
    953       1.25    atatat 	node.sysctl_size = sizeof(ntv);
    954       1.25    atatat 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
    955       1.25    atatat }
    956       1.25    atatat 
    957       1.25    atatat SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
    958       1.25    atatat {
    959       1.25    atatat 
    960       1.26    atatat 	sysctl_createv(clog, 0, NULL, NULL,
    961       1.26    atatat 		       CTLFLAG_PERMANENT,
    962       1.25    atatat 		       CTLTYPE_NODE, "kern", NULL,
    963       1.25    atatat 		       NULL, 0, NULL, 0,
    964       1.25    atatat 		       CTL_KERN, CTL_EOL);
    965       1.25    atatat 
    966       1.26    atatat 	sysctl_createv(clog, 0, NULL, NULL,
    967       1.26    atatat 		       CTLFLAG_PERMANENT,
    968       1.27    atatat 		       CTLTYPE_STRUCT, "ntptime",
    969       1.27    atatat 		       SYSCTL_DESCR("Kernel clock values for NTP"),
    970       1.25    atatat 		       sysctl_kern_ntptime, 0, NULL,
    971       1.25    atatat 		       sizeof(struct ntptimeval),
    972       1.25    atatat 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
    973        1.1  jonathan }
    974        1.4   thorpej #else /* !NTP */
    975       1.13     bjh21 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
    976       1.13     bjh21 
    977        1.4   thorpej int
    978  1.43.16.2      matt sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
    979       1.31  drochner {
    980       1.31  drochner 
    981       1.31  drochner 	return(ENOSYS);
    982       1.31  drochner }
    983       1.31  drochner 
    984       1.31  drochner #ifdef COMPAT_30
    985       1.31  drochner int
    986  1.43.16.2      matt compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
    987        1.4   thorpej {
    988       1.19    simonb 
    989       1.33    kardel  	return(ENOSYS);
    990        1.4   thorpej }
    991       1.31  drochner #endif
    992       1.13     bjh21 #endif /* !NTP */
    993