kern_ntptime.c revision 1.44.2.1 1 1.44.2.1 mjf /* $NetBSD: kern_ntptime.c,v 1.44.2.1 2008/02/18 21:06:46 mjf Exp $ */
2 1.33 kardel
3 1.33 kardel /*-
4 1.33 kardel ***********************************************************************
5 1.33 kardel * *
6 1.33 kardel * Copyright (c) David L. Mills 1993-2001 *
7 1.33 kardel * *
8 1.33 kardel * Permission to use, copy, modify, and distribute this software and *
9 1.33 kardel * its documentation for any purpose and without fee is hereby *
10 1.33 kardel * granted, provided that the above copyright notice appears in all *
11 1.33 kardel * copies and that both the copyright notice and this permission *
12 1.33 kardel * notice appear in supporting documentation, and that the name *
13 1.33 kardel * University of Delaware not be used in advertising or publicity *
14 1.33 kardel * pertaining to distribution of the software without specific, *
15 1.33 kardel * written prior permission. The University of Delaware makes no *
16 1.33 kardel * representations about the suitability this software for any *
17 1.33 kardel * purpose. It is provided "as is" without express or implied *
18 1.33 kardel * warranty. *
19 1.33 kardel * *
20 1.33 kardel **********************************************************************/
21 1.1 jonathan
22 1.33 kardel /*
23 1.33 kardel * Adapted from the original sources for FreeBSD and timecounters by:
24 1.33 kardel * Poul-Henning Kamp <phk (at) FreeBSD.org>.
25 1.33 kardel *
26 1.33 kardel * The 32bit version of the "LP" macros seems a bit past its "sell by"
27 1.33 kardel * date so I have retained only the 64bit version and included it directly
28 1.33 kardel * in this file.
29 1.33 kardel *
30 1.33 kardel * Only minor changes done to interface with the timecounters over in
31 1.33 kardel * sys/kern/kern_clock.c. Some of the comments below may be (even more)
32 1.33 kardel * confusing and/or plain wrong in that context.
33 1.33 kardel */
34 1.33 kardel
35 1.33 kardel #include <sys/cdefs.h>
36 1.33 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
37 1.44.2.1 mjf __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.44.2.1 2008/02/18 21:06:46 mjf Exp $");
38 1.33 kardel
39 1.33 kardel #include "opt_ntp.h"
40 1.33 kardel #include "opt_compat_netbsd.h"
41 1.33 kardel
42 1.33 kardel #include <sys/param.h>
43 1.33 kardel #include <sys/resourcevar.h>
44 1.33 kardel #include <sys/systm.h>
45 1.33 kardel #include <sys/kernel.h>
46 1.33 kardel #include <sys/proc.h>
47 1.33 kardel #include <sys/sysctl.h>
48 1.33 kardel #include <sys/timex.h>
49 1.33 kardel #ifdef COMPAT_30
50 1.33 kardel #include <compat/sys/timex.h>
51 1.33 kardel #endif
52 1.33 kardel #include <sys/vnode.h>
53 1.33 kardel #include <sys/kauth.h>
54 1.33 kardel
55 1.33 kardel #include <sys/mount.h>
56 1.33 kardel #include <sys/syscallargs.h>
57 1.33 kardel
58 1.44 ad #include <sys/cpu.h>
59 1.33 kardel
60 1.33 kardel /*
61 1.33 kardel * Single-precision macros for 64-bit machines
62 1.33 kardel */
63 1.33 kardel typedef int64_t l_fp;
64 1.33 kardel #define L_ADD(v, u) ((v) += (u))
65 1.33 kardel #define L_SUB(v, u) ((v) -= (u))
66 1.33 kardel #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
67 1.33 kardel #define L_NEG(v) ((v) = -(v))
68 1.33 kardel #define L_RSHIFT(v, n) \
69 1.33 kardel do { \
70 1.33 kardel if ((v) < 0) \
71 1.33 kardel (v) = -(-(v) >> (n)); \
72 1.33 kardel else \
73 1.33 kardel (v) = (v) >> (n); \
74 1.33 kardel } while (0)
75 1.33 kardel #define L_MPY(v, a) ((v) *= (a))
76 1.33 kardel #define L_CLR(v) ((v) = 0)
77 1.33 kardel #define L_ISNEG(v) ((v) < 0)
78 1.33 kardel #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
79 1.33 kardel #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
80 1.33 kardel
81 1.33 kardel #ifdef NTP
82 1.33 kardel /*
83 1.33 kardel * Generic NTP kernel interface
84 1.33 kardel *
85 1.33 kardel * These routines constitute the Network Time Protocol (NTP) interfaces
86 1.33 kardel * for user and daemon application programs. The ntp_gettime() routine
87 1.33 kardel * provides the time, maximum error (synch distance) and estimated error
88 1.33 kardel * (dispersion) to client user application programs. The ntp_adjtime()
89 1.33 kardel * routine is used by the NTP daemon to adjust the system clock to an
90 1.33 kardel * externally derived time. The time offset and related variables set by
91 1.33 kardel * this routine are used by other routines in this module to adjust the
92 1.33 kardel * phase and frequency of the clock discipline loop which controls the
93 1.33 kardel * system clock.
94 1.33 kardel *
95 1.33 kardel * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
96 1.33 kardel * defined), the time at each tick interrupt is derived directly from
97 1.33 kardel * the kernel time variable. When the kernel time is reckoned in
98 1.33 kardel * microseconds, (NTP_NANO undefined), the time is derived from the
99 1.33 kardel * kernel time variable together with a variable representing the
100 1.33 kardel * leftover nanoseconds at the last tick interrupt. In either case, the
101 1.33 kardel * current nanosecond time is reckoned from these values plus an
102 1.33 kardel * interpolated value derived by the clock routines in another
103 1.33 kardel * architecture-specific module. The interpolation can use either a
104 1.33 kardel * dedicated counter or a processor cycle counter (PCC) implemented in
105 1.33 kardel * some architectures.
106 1.33 kardel *
107 1.33 kardel * Note that all routines must run at priority splclock or higher.
108 1.33 kardel */
109 1.33 kardel /*
110 1.33 kardel * Phase/frequency-lock loop (PLL/FLL) definitions
111 1.33 kardel *
112 1.33 kardel * The nanosecond clock discipline uses two variable types, time
113 1.33 kardel * variables and frequency variables. Both types are represented as 64-
114 1.33 kardel * bit fixed-point quantities with the decimal point between two 32-bit
115 1.33 kardel * halves. On a 32-bit machine, each half is represented as a single
116 1.33 kardel * word and mathematical operations are done using multiple-precision
117 1.33 kardel * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
118 1.33 kardel * used.
119 1.33 kardel *
120 1.33 kardel * A time variable is a signed 64-bit fixed-point number in ns and
121 1.33 kardel * fraction. It represents the remaining time offset to be amortized
122 1.33 kardel * over succeeding tick interrupts. The maximum time offset is about
123 1.33 kardel * 0.5 s and the resolution is about 2.3e-10 ns.
124 1.33 kardel *
125 1.33 kardel * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
126 1.33 kardel * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
127 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
128 1.33 kardel * |s s s| ns |
129 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130 1.33 kardel * | fraction |
131 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132 1.33 kardel *
133 1.33 kardel * A frequency variable is a signed 64-bit fixed-point number in ns/s
134 1.33 kardel * and fraction. It represents the ns and fraction to be added to the
135 1.33 kardel * kernel time variable at each second. The maximum frequency offset is
136 1.33 kardel * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
137 1.33 kardel *
138 1.33 kardel * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
139 1.33 kardel * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
140 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
141 1.33 kardel * |s s s s s s s s s s s s s| ns/s |
142 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
143 1.33 kardel * | fraction |
144 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
145 1.33 kardel */
146 1.33 kardel /*
147 1.33 kardel * The following variables establish the state of the PLL/FLL and the
148 1.33 kardel * residual time and frequency offset of the local clock.
149 1.33 kardel */
150 1.33 kardel #define SHIFT_PLL 4 /* PLL loop gain (shift) */
151 1.33 kardel #define SHIFT_FLL 2 /* FLL loop gain (shift) */
152 1.33 kardel
153 1.33 kardel static int time_state = TIME_OK; /* clock state */
154 1.33 kardel static int time_status = STA_UNSYNC; /* clock status bits */
155 1.33 kardel static long time_tai; /* TAI offset (s) */
156 1.33 kardel static long time_monitor; /* last time offset scaled (ns) */
157 1.33 kardel static long time_constant; /* poll interval (shift) (s) */
158 1.33 kardel static long time_precision = 1; /* clock precision (ns) */
159 1.33 kardel static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
160 1.33 kardel static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
161 1.33 kardel static long time_reftime; /* time at last adjustment (s) */
162 1.33 kardel static l_fp time_offset; /* time offset (ns) */
163 1.33 kardel static l_fp time_freq; /* frequency offset (ns/s) */
164 1.33 kardel #endif /* NTP */
165 1.33 kardel
166 1.33 kardel static l_fp time_adj; /* tick adjust (ns/s) */
167 1.33 kardel int64_t time_adjtime; /* correction from adjtime(2) (usec) */
168 1.33 kardel
169 1.33 kardel extern int time_adjusted; /* ntp might have changed the system time */
170 1.33 kardel
171 1.33 kardel #ifdef NTP
172 1.33 kardel #ifdef PPS_SYNC
173 1.33 kardel /*
174 1.33 kardel * The following variables are used when a pulse-per-second (PPS) signal
175 1.33 kardel * is available and connected via a modem control lead. They establish
176 1.33 kardel * the engineering parameters of the clock discipline loop when
177 1.33 kardel * controlled by the PPS signal.
178 1.33 kardel */
179 1.33 kardel #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
180 1.33 kardel #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
181 1.33 kardel #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
182 1.33 kardel #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
183 1.33 kardel #define PPS_VALID 120 /* PPS signal watchdog max (s) */
184 1.33 kardel #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
185 1.33 kardel #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
186 1.33 kardel
187 1.33 kardel static struct timespec pps_tf[3]; /* phase median filter */
188 1.33 kardel static l_fp pps_freq; /* scaled frequency offset (ns/s) */
189 1.33 kardel static long pps_fcount; /* frequency accumulator */
190 1.33 kardel static long pps_jitter; /* nominal jitter (ns) */
191 1.33 kardel static long pps_stabil; /* nominal stability (scaled ns/s) */
192 1.33 kardel static long pps_lastsec; /* time at last calibration (s) */
193 1.33 kardel static int pps_valid; /* signal watchdog counter */
194 1.33 kardel static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
195 1.33 kardel static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
196 1.33 kardel static int pps_intcnt; /* wander counter */
197 1.33 kardel
198 1.33 kardel /*
199 1.33 kardel * PPS signal quality monitors
200 1.33 kardel */
201 1.33 kardel static long pps_calcnt; /* calibration intervals */
202 1.33 kardel static long pps_jitcnt; /* jitter limit exceeded */
203 1.33 kardel static long pps_stbcnt; /* stability limit exceeded */
204 1.33 kardel static long pps_errcnt; /* calibration errors */
205 1.33 kardel #endif /* PPS_SYNC */
206 1.33 kardel /*
207 1.33 kardel * End of phase/frequency-lock loop (PLL/FLL) definitions
208 1.33 kardel */
209 1.33 kardel
210 1.33 kardel static void hardupdate(long offset);
211 1.33 kardel
212 1.33 kardel /*
213 1.33 kardel * ntp_gettime() - NTP user application interface
214 1.33 kardel */
215 1.33 kardel void
216 1.33 kardel ntp_gettime(ntv)
217 1.33 kardel struct ntptimeval *ntv;
218 1.33 kardel {
219 1.33 kardel nanotime(&ntv->time);
220 1.33 kardel ntv->maxerror = time_maxerror;
221 1.33 kardel ntv->esterror = time_esterror;
222 1.33 kardel ntv->tai = time_tai;
223 1.33 kardel ntv->time_state = time_state;
224 1.33 kardel }
225 1.33 kardel
226 1.33 kardel /* ARGSUSED */
227 1.33 kardel /*
228 1.33 kardel * ntp_adjtime() - NTP daemon application interface
229 1.33 kardel */
230 1.33 kardel int
231 1.33 kardel sys_ntp_adjtime(l, v, retval)
232 1.33 kardel struct lwp *l;
233 1.33 kardel void *v;
234 1.33 kardel register_t *retval;
235 1.33 kardel {
236 1.33 kardel struct sys_ntp_adjtime_args /* {
237 1.33 kardel syscallarg(struct timex *) tp;
238 1.33 kardel } */ *uap = v;
239 1.33 kardel struct timex ntv;
240 1.33 kardel int error = 0;
241 1.33 kardel
242 1.43 christos error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
243 1.35 ad if (error != 0)
244 1.33 kardel return (error);
245 1.33 kardel
246 1.37 elad if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
247 1.37 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
248 1.36 elad NULL, NULL)) != 0)
249 1.33 kardel return (error);
250 1.33 kardel
251 1.33 kardel ntp_adjtime1(&ntv);
252 1.33 kardel
253 1.43 christos error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
254 1.35 ad if (!error)
255 1.33 kardel *retval = ntp_timestatus();
256 1.35 ad
257 1.33 kardel return error;
258 1.33 kardel }
259 1.33 kardel
260 1.33 kardel void
261 1.33 kardel ntp_adjtime1(ntv)
262 1.33 kardel struct timex *ntv;
263 1.33 kardel {
264 1.33 kardel long freq;
265 1.33 kardel int modes;
266 1.33 kardel int s;
267 1.33 kardel
268 1.33 kardel /*
269 1.33 kardel * Update selected clock variables - only the superuser can
270 1.33 kardel * change anything. Note that there is no error checking here on
271 1.33 kardel * the assumption the superuser should know what it is doing.
272 1.33 kardel * Note that either the time constant or TAI offset are loaded
273 1.33 kardel * from the ntv.constant member, depending on the mode bits. If
274 1.33 kardel * the STA_PLL bit in the status word is cleared, the state and
275 1.33 kardel * status words are reset to the initial values at boot.
276 1.33 kardel */
277 1.33 kardel modes = ntv->modes;
278 1.33 kardel if (modes != 0)
279 1.33 kardel /* We need to save the system time during shutdown */
280 1.33 kardel time_adjusted |= 2;
281 1.33 kardel s = splclock();
282 1.33 kardel if (modes & MOD_MAXERROR)
283 1.33 kardel time_maxerror = ntv->maxerror;
284 1.33 kardel if (modes & MOD_ESTERROR)
285 1.33 kardel time_esterror = ntv->esterror;
286 1.33 kardel if (modes & MOD_STATUS) {
287 1.33 kardel if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
288 1.33 kardel time_state = TIME_OK;
289 1.33 kardel time_status = STA_UNSYNC;
290 1.33 kardel #ifdef PPS_SYNC
291 1.33 kardel pps_shift = PPS_FAVG;
292 1.33 kardel #endif /* PPS_SYNC */
293 1.33 kardel }
294 1.33 kardel time_status &= STA_RONLY;
295 1.33 kardel time_status |= ntv->status & ~STA_RONLY;
296 1.33 kardel }
297 1.33 kardel if (modes & MOD_TIMECONST) {
298 1.33 kardel if (ntv->constant < 0)
299 1.33 kardel time_constant = 0;
300 1.33 kardel else if (ntv->constant > MAXTC)
301 1.33 kardel time_constant = MAXTC;
302 1.33 kardel else
303 1.33 kardel time_constant = ntv->constant;
304 1.33 kardel }
305 1.33 kardel if (modes & MOD_TAI) {
306 1.33 kardel if (ntv->constant > 0) /* XXX zero & negative numbers ? */
307 1.33 kardel time_tai = ntv->constant;
308 1.33 kardel }
309 1.33 kardel #ifdef PPS_SYNC
310 1.33 kardel if (modes & MOD_PPSMAX) {
311 1.33 kardel if (ntv->shift < PPS_FAVG)
312 1.33 kardel pps_shiftmax = PPS_FAVG;
313 1.33 kardel else if (ntv->shift > PPS_FAVGMAX)
314 1.33 kardel pps_shiftmax = PPS_FAVGMAX;
315 1.33 kardel else
316 1.33 kardel pps_shiftmax = ntv->shift;
317 1.33 kardel }
318 1.33 kardel #endif /* PPS_SYNC */
319 1.33 kardel if (modes & MOD_NANO)
320 1.33 kardel time_status |= STA_NANO;
321 1.33 kardel if (modes & MOD_MICRO)
322 1.33 kardel time_status &= ~STA_NANO;
323 1.33 kardel if (modes & MOD_CLKB)
324 1.33 kardel time_status |= STA_CLK;
325 1.33 kardel if (modes & MOD_CLKA)
326 1.33 kardel time_status &= ~STA_CLK;
327 1.33 kardel if (modes & MOD_FREQUENCY) {
328 1.33 kardel freq = (ntv->freq * 1000LL) >> 16;
329 1.33 kardel if (freq > MAXFREQ)
330 1.33 kardel L_LINT(time_freq, MAXFREQ);
331 1.33 kardel else if (freq < -MAXFREQ)
332 1.33 kardel L_LINT(time_freq, -MAXFREQ);
333 1.33 kardel else {
334 1.33 kardel /*
335 1.33 kardel * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
336 1.33 kardel * time_freq is [ns/s * 2^32]
337 1.33 kardel */
338 1.33 kardel time_freq = ntv->freq * 1000LL * 65536LL;
339 1.33 kardel }
340 1.33 kardel #ifdef PPS_SYNC
341 1.33 kardel pps_freq = time_freq;
342 1.33 kardel #endif /* PPS_SYNC */
343 1.33 kardel }
344 1.33 kardel if (modes & MOD_OFFSET) {
345 1.33 kardel if (time_status & STA_NANO)
346 1.33 kardel hardupdate(ntv->offset);
347 1.33 kardel else
348 1.33 kardel hardupdate(ntv->offset * 1000);
349 1.33 kardel }
350 1.33 kardel
351 1.33 kardel /*
352 1.33 kardel * Retrieve all clock variables. Note that the TAI offset is
353 1.33 kardel * returned only by ntp_gettime();
354 1.33 kardel */
355 1.33 kardel if (time_status & STA_NANO)
356 1.33 kardel ntv->offset = L_GINT(time_offset);
357 1.33 kardel else
358 1.33 kardel ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
359 1.33 kardel ntv->freq = L_GINT((time_freq / 1000LL) << 16);
360 1.33 kardel ntv->maxerror = time_maxerror;
361 1.33 kardel ntv->esterror = time_esterror;
362 1.33 kardel ntv->status = time_status;
363 1.33 kardel ntv->constant = time_constant;
364 1.33 kardel if (time_status & STA_NANO)
365 1.33 kardel ntv->precision = time_precision;
366 1.33 kardel else
367 1.33 kardel ntv->precision = time_precision / 1000;
368 1.33 kardel ntv->tolerance = MAXFREQ * SCALE_PPM;
369 1.33 kardel #ifdef PPS_SYNC
370 1.33 kardel ntv->shift = pps_shift;
371 1.33 kardel ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
372 1.33 kardel if (time_status & STA_NANO)
373 1.33 kardel ntv->jitter = pps_jitter;
374 1.33 kardel else
375 1.33 kardel ntv->jitter = pps_jitter / 1000;
376 1.33 kardel ntv->stabil = pps_stabil;
377 1.33 kardel ntv->calcnt = pps_calcnt;
378 1.33 kardel ntv->errcnt = pps_errcnt;
379 1.33 kardel ntv->jitcnt = pps_jitcnt;
380 1.33 kardel ntv->stbcnt = pps_stbcnt;
381 1.33 kardel #endif /* PPS_SYNC */
382 1.33 kardel splx(s);
383 1.33 kardel }
384 1.33 kardel #endif /* NTP */
385 1.33 kardel
386 1.33 kardel /*
387 1.33 kardel * second_overflow() - called after ntp_tick_adjust()
388 1.33 kardel *
389 1.33 kardel * This routine is ordinarily called immediately following the above
390 1.33 kardel * routine ntp_tick_adjust(). While these two routines are normally
391 1.33 kardel * combined, they are separated here only for the purposes of
392 1.33 kardel * simulation.
393 1.33 kardel */
394 1.33 kardel void
395 1.33 kardel ntp_update_second(int64_t *adjustment, time_t *newsec)
396 1.33 kardel {
397 1.33 kardel int tickrate;
398 1.33 kardel l_fp ftemp; /* 32/64-bit temporary */
399 1.33 kardel
400 1.33 kardel #ifdef NTP
401 1.33 kardel
402 1.33 kardel /*
403 1.33 kardel * On rollover of the second both the nanosecond and microsecond
404 1.33 kardel * clocks are updated and the state machine cranked as
405 1.33 kardel * necessary. The phase adjustment to be used for the next
406 1.33 kardel * second is calculated and the maximum error is increased by
407 1.33 kardel * the tolerance.
408 1.33 kardel */
409 1.33 kardel time_maxerror += MAXFREQ / 1000;
410 1.33 kardel
411 1.33 kardel /*
412 1.33 kardel * Leap second processing. If in leap-insert state at
413 1.33 kardel * the end of the day, the system clock is set back one
414 1.33 kardel * second; if in leap-delete state, the system clock is
415 1.33 kardel * set ahead one second. The nano_time() routine or
416 1.33 kardel * external clock driver will insure that reported time
417 1.33 kardel * is always monotonic.
418 1.33 kardel */
419 1.33 kardel switch (time_state) {
420 1.33 kardel
421 1.33 kardel /*
422 1.33 kardel * No warning.
423 1.33 kardel */
424 1.33 kardel case TIME_OK:
425 1.33 kardel if (time_status & STA_INS)
426 1.33 kardel time_state = TIME_INS;
427 1.33 kardel else if (time_status & STA_DEL)
428 1.33 kardel time_state = TIME_DEL;
429 1.33 kardel break;
430 1.33 kardel
431 1.33 kardel /*
432 1.33 kardel * Insert second 23:59:60 following second
433 1.33 kardel * 23:59:59.
434 1.33 kardel */
435 1.33 kardel case TIME_INS:
436 1.33 kardel if (!(time_status & STA_INS))
437 1.33 kardel time_state = TIME_OK;
438 1.33 kardel else if ((*newsec) % 86400 == 0) {
439 1.33 kardel (*newsec)--;
440 1.33 kardel time_state = TIME_OOP;
441 1.33 kardel time_tai++;
442 1.33 kardel }
443 1.33 kardel break;
444 1.33 kardel
445 1.33 kardel /*
446 1.33 kardel * Delete second 23:59:59.
447 1.33 kardel */
448 1.33 kardel case TIME_DEL:
449 1.33 kardel if (!(time_status & STA_DEL))
450 1.33 kardel time_state = TIME_OK;
451 1.33 kardel else if (((*newsec) + 1) % 86400 == 0) {
452 1.33 kardel (*newsec)++;
453 1.33 kardel time_tai--;
454 1.33 kardel time_state = TIME_WAIT;
455 1.33 kardel }
456 1.33 kardel break;
457 1.33 kardel
458 1.33 kardel /*
459 1.33 kardel * Insert second in progress.
460 1.33 kardel */
461 1.33 kardel case TIME_OOP:
462 1.33 kardel time_state = TIME_WAIT;
463 1.33 kardel break;
464 1.33 kardel
465 1.33 kardel /*
466 1.33 kardel * Wait for status bits to clear.
467 1.33 kardel */
468 1.33 kardel case TIME_WAIT:
469 1.33 kardel if (!(time_status & (STA_INS | STA_DEL)))
470 1.33 kardel time_state = TIME_OK;
471 1.33 kardel }
472 1.33 kardel
473 1.33 kardel /*
474 1.33 kardel * Compute the total time adjustment for the next second
475 1.33 kardel * in ns. The offset is reduced by a factor depending on
476 1.33 kardel * whether the PPS signal is operating. Note that the
477 1.33 kardel * value is in effect scaled by the clock frequency,
478 1.33 kardel * since the adjustment is added at each tick interrupt.
479 1.33 kardel */
480 1.33 kardel ftemp = time_offset;
481 1.33 kardel #ifdef PPS_SYNC
482 1.33 kardel /* XXX even if PPS signal dies we should finish adjustment ? */
483 1.33 kardel if (time_status & STA_PPSTIME && time_status &
484 1.33 kardel STA_PPSSIGNAL)
485 1.33 kardel L_RSHIFT(ftemp, pps_shift);
486 1.33 kardel else
487 1.33 kardel L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
488 1.33 kardel #else
489 1.33 kardel L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
490 1.33 kardel #endif /* PPS_SYNC */
491 1.33 kardel time_adj = ftemp;
492 1.33 kardel L_SUB(time_offset, ftemp);
493 1.33 kardel L_ADD(time_adj, time_freq);
494 1.33 kardel
495 1.33 kardel #ifdef PPS_SYNC
496 1.33 kardel if (pps_valid > 0)
497 1.33 kardel pps_valid--;
498 1.33 kardel else
499 1.33 kardel time_status &= ~STA_PPSSIGNAL;
500 1.33 kardel #endif /* PPS_SYNC */
501 1.34 kardel #else /* !NTP */
502 1.34 kardel L_CLR(time_adj);
503 1.34 kardel #endif /* !NTP */
504 1.33 kardel
505 1.33 kardel /*
506 1.33 kardel * Apply any correction from adjtime(2). If more than one second
507 1.33 kardel * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
508 1.33 kardel * until the last second is slewed the final < 500 usecs.
509 1.33 kardel */
510 1.33 kardel if (time_adjtime != 0) {
511 1.33 kardel if (time_adjtime > 1000000)
512 1.33 kardel tickrate = 5000;
513 1.33 kardel else if (time_adjtime < -1000000)
514 1.33 kardel tickrate = -5000;
515 1.33 kardel else if (time_adjtime > 500)
516 1.33 kardel tickrate = 500;
517 1.33 kardel else if (time_adjtime < -500)
518 1.33 kardel tickrate = -500;
519 1.33 kardel else
520 1.33 kardel tickrate = time_adjtime;
521 1.33 kardel time_adjtime -= tickrate;
522 1.33 kardel L_LINT(ftemp, tickrate * 1000);
523 1.33 kardel L_ADD(time_adj, ftemp);
524 1.33 kardel }
525 1.33 kardel *adjustment = time_adj;
526 1.33 kardel }
527 1.33 kardel
528 1.33 kardel /*
529 1.33 kardel * ntp_init() - initialize variables and structures
530 1.33 kardel *
531 1.33 kardel * This routine must be called after the kernel variables hz and tick
532 1.33 kardel * are set or changed and before the next tick interrupt. In this
533 1.33 kardel * particular implementation, these values are assumed set elsewhere in
534 1.33 kardel * the kernel. The design allows the clock frequency and tick interval
535 1.33 kardel * to be changed while the system is running. So, this routine should
536 1.33 kardel * probably be integrated with the code that does that.
537 1.33 kardel */
538 1.33 kardel void
539 1.33 kardel ntp_init(void)
540 1.33 kardel {
541 1.33 kardel
542 1.33 kardel /*
543 1.33 kardel * The following variables are initialized only at startup. Only
544 1.33 kardel * those structures not cleared by the compiler need to be
545 1.33 kardel * initialized, and these only in the simulator. In the actual
546 1.33 kardel * kernel, any nonzero values here will quickly evaporate.
547 1.33 kardel */
548 1.33 kardel L_CLR(time_adj);
549 1.33 kardel #ifdef NTP
550 1.33 kardel L_CLR(time_offset);
551 1.33 kardel L_CLR(time_freq);
552 1.33 kardel #ifdef PPS_SYNC
553 1.33 kardel pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
554 1.33 kardel pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
555 1.33 kardel pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
556 1.33 kardel pps_fcount = 0;
557 1.33 kardel L_CLR(pps_freq);
558 1.33 kardel #endif /* PPS_SYNC */
559 1.33 kardel #endif
560 1.33 kardel }
561 1.33 kardel
562 1.33 kardel #ifdef NTP
563 1.33 kardel /*
564 1.33 kardel * hardupdate() - local clock update
565 1.33 kardel *
566 1.33 kardel * This routine is called by ntp_adjtime() to update the local clock
567 1.33 kardel * phase and frequency. The implementation is of an adaptive-parameter,
568 1.33 kardel * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
569 1.33 kardel * time and frequency offset estimates for each call. If the kernel PPS
570 1.33 kardel * discipline code is configured (PPS_SYNC), the PPS signal itself
571 1.33 kardel * determines the new time offset, instead of the calling argument.
572 1.33 kardel * Presumably, calls to ntp_adjtime() occur only when the caller
573 1.33 kardel * believes the local clock is valid within some bound (+-128 ms with
574 1.33 kardel * NTP). If the caller's time is far different than the PPS time, an
575 1.33 kardel * argument will ensue, and it's not clear who will lose.
576 1.33 kardel *
577 1.33 kardel * For uncompensated quartz crystal oscillators and nominal update
578 1.33 kardel * intervals less than 256 s, operation should be in phase-lock mode,
579 1.33 kardel * where the loop is disciplined to phase. For update intervals greater
580 1.33 kardel * than 1024 s, operation should be in frequency-lock mode, where the
581 1.33 kardel * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
582 1.33 kardel * is selected by the STA_MODE status bit.
583 1.33 kardel *
584 1.33 kardel * Note: splclock() is in effect.
585 1.33 kardel */
586 1.33 kardel void
587 1.33 kardel hardupdate(long offset)
588 1.33 kardel {
589 1.33 kardel long mtemp;
590 1.33 kardel l_fp ftemp;
591 1.33 kardel
592 1.33 kardel /*
593 1.33 kardel * Select how the phase is to be controlled and from which
594 1.33 kardel * source. If the PPS signal is present and enabled to
595 1.33 kardel * discipline the time, the PPS offset is used; otherwise, the
596 1.33 kardel * argument offset is used.
597 1.33 kardel */
598 1.33 kardel if (!(time_status & STA_PLL))
599 1.33 kardel return;
600 1.33 kardel if (!(time_status & STA_PPSTIME && time_status &
601 1.33 kardel STA_PPSSIGNAL)) {
602 1.33 kardel if (offset > MAXPHASE)
603 1.33 kardel time_monitor = MAXPHASE;
604 1.33 kardel else if (offset < -MAXPHASE)
605 1.33 kardel time_monitor = -MAXPHASE;
606 1.33 kardel else
607 1.33 kardel time_monitor = offset;
608 1.33 kardel L_LINT(time_offset, time_monitor);
609 1.33 kardel }
610 1.33 kardel
611 1.33 kardel /*
612 1.33 kardel * Select how the frequency is to be controlled and in which
613 1.33 kardel * mode (PLL or FLL). If the PPS signal is present and enabled
614 1.33 kardel * to discipline the frequency, the PPS frequency is used;
615 1.33 kardel * otherwise, the argument offset is used to compute it.
616 1.33 kardel */
617 1.33 kardel if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
618 1.33 kardel time_reftime = time_second;
619 1.33 kardel return;
620 1.33 kardel }
621 1.33 kardel if (time_status & STA_FREQHOLD || time_reftime == 0)
622 1.33 kardel time_reftime = time_second;
623 1.33 kardel mtemp = time_second - time_reftime;
624 1.33 kardel L_LINT(ftemp, time_monitor);
625 1.33 kardel L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
626 1.33 kardel L_MPY(ftemp, mtemp);
627 1.33 kardel L_ADD(time_freq, ftemp);
628 1.33 kardel time_status &= ~STA_MODE;
629 1.33 kardel if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
630 1.33 kardel MAXSEC)) {
631 1.33 kardel L_LINT(ftemp, (time_monitor << 4) / mtemp);
632 1.33 kardel L_RSHIFT(ftemp, SHIFT_FLL + 4);
633 1.33 kardel L_ADD(time_freq, ftemp);
634 1.33 kardel time_status |= STA_MODE;
635 1.33 kardel }
636 1.33 kardel time_reftime = time_second;
637 1.33 kardel if (L_GINT(time_freq) > MAXFREQ)
638 1.33 kardel L_LINT(time_freq, MAXFREQ);
639 1.33 kardel else if (L_GINT(time_freq) < -MAXFREQ)
640 1.33 kardel L_LINT(time_freq, -MAXFREQ);
641 1.33 kardel }
642 1.33 kardel
643 1.33 kardel #ifdef PPS_SYNC
644 1.33 kardel /*
645 1.33 kardel * hardpps() - discipline CPU clock oscillator to external PPS signal
646 1.33 kardel *
647 1.33 kardel * This routine is called at each PPS interrupt in order to discipline
648 1.33 kardel * the CPU clock oscillator to the PPS signal. It measures the PPS phase
649 1.33 kardel * and leaves it in a handy spot for the hardclock() routine. It
650 1.33 kardel * integrates successive PPS phase differences and calculates the
651 1.33 kardel * frequency offset. This is used in hardclock() to discipline the CPU
652 1.33 kardel * clock oscillator so that intrinsic frequency error is cancelled out.
653 1.33 kardel * The code requires the caller to capture the time and hardware counter
654 1.33 kardel * value at the on-time PPS signal transition.
655 1.33 kardel *
656 1.33 kardel * Note that, on some Unix systems, this routine runs at an interrupt
657 1.33 kardel * priority level higher than the timer interrupt routine hardclock().
658 1.33 kardel * Therefore, the variables used are distinct from the hardclock()
659 1.33 kardel * variables, except for certain exceptions: The PPS frequency pps_freq
660 1.33 kardel * and phase pps_offset variables are determined by this routine and
661 1.33 kardel * updated atomically. The time_tolerance variable can be considered a
662 1.33 kardel * constant, since it is infrequently changed, and then only when the
663 1.33 kardel * PPS signal is disabled. The watchdog counter pps_valid is updated
664 1.33 kardel * once per second by hardclock() and is atomically cleared in this
665 1.33 kardel * routine.
666 1.33 kardel */
667 1.33 kardel void
668 1.33 kardel hardpps(struct timespec *tsp, /* time at PPS */
669 1.33 kardel long nsec /* hardware counter at PPS */)
670 1.33 kardel {
671 1.33 kardel long u_sec, u_nsec, v_nsec; /* temps */
672 1.33 kardel l_fp ftemp;
673 1.33 kardel
674 1.33 kardel /*
675 1.33 kardel * The signal is first processed by a range gate and frequency
676 1.33 kardel * discriminator. The range gate rejects noise spikes outside
677 1.33 kardel * the range +-500 us. The frequency discriminator rejects input
678 1.33 kardel * signals with apparent frequency outside the range 1 +-500
679 1.33 kardel * PPM. If two hits occur in the same second, we ignore the
680 1.33 kardel * later hit; if not and a hit occurs outside the range gate,
681 1.33 kardel * keep the later hit for later comparison, but do not process
682 1.33 kardel * it.
683 1.33 kardel */
684 1.33 kardel time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
685 1.33 kardel time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
686 1.33 kardel pps_valid = PPS_VALID;
687 1.33 kardel u_sec = tsp->tv_sec;
688 1.33 kardel u_nsec = tsp->tv_nsec;
689 1.33 kardel if (u_nsec >= (NANOSECOND >> 1)) {
690 1.33 kardel u_nsec -= NANOSECOND;
691 1.33 kardel u_sec++;
692 1.33 kardel }
693 1.33 kardel v_nsec = u_nsec - pps_tf[0].tv_nsec;
694 1.33 kardel if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
695 1.33 kardel MAXFREQ)
696 1.33 kardel return;
697 1.33 kardel pps_tf[2] = pps_tf[1];
698 1.33 kardel pps_tf[1] = pps_tf[0];
699 1.33 kardel pps_tf[0].tv_sec = u_sec;
700 1.33 kardel pps_tf[0].tv_nsec = u_nsec;
701 1.33 kardel
702 1.33 kardel /*
703 1.33 kardel * Compute the difference between the current and previous
704 1.33 kardel * counter values. If the difference exceeds 0.5 s, assume it
705 1.33 kardel * has wrapped around, so correct 1.0 s. If the result exceeds
706 1.33 kardel * the tick interval, the sample point has crossed a tick
707 1.33 kardel * boundary during the last second, so correct the tick. Very
708 1.33 kardel * intricate.
709 1.33 kardel */
710 1.33 kardel u_nsec = nsec;
711 1.33 kardel if (u_nsec > (NANOSECOND >> 1))
712 1.33 kardel u_nsec -= NANOSECOND;
713 1.33 kardel else if (u_nsec < -(NANOSECOND >> 1))
714 1.33 kardel u_nsec += NANOSECOND;
715 1.33 kardel pps_fcount += u_nsec;
716 1.33 kardel if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
717 1.33 kardel return;
718 1.33 kardel time_status &= ~STA_PPSJITTER;
719 1.33 kardel
720 1.33 kardel /*
721 1.33 kardel * A three-stage median filter is used to help denoise the PPS
722 1.33 kardel * time. The median sample becomes the time offset estimate; the
723 1.33 kardel * difference between the other two samples becomes the time
724 1.33 kardel * dispersion (jitter) estimate.
725 1.33 kardel */
726 1.33 kardel if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
727 1.33 kardel if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
728 1.33 kardel v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
729 1.33 kardel u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
730 1.33 kardel } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
731 1.33 kardel v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
732 1.33 kardel u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
733 1.33 kardel } else {
734 1.33 kardel v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
735 1.33 kardel u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
736 1.33 kardel }
737 1.33 kardel } else {
738 1.33 kardel if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
739 1.33 kardel v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
740 1.33 kardel u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
741 1.33 kardel } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
742 1.33 kardel v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
743 1.33 kardel u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
744 1.33 kardel } else {
745 1.33 kardel v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
746 1.33 kardel u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
747 1.33 kardel }
748 1.33 kardel }
749 1.33 kardel
750 1.33 kardel /*
751 1.33 kardel * Nominal jitter is due to PPS signal noise and interrupt
752 1.33 kardel * latency. If it exceeds the popcorn threshold, the sample is
753 1.33 kardel * discarded. otherwise, if so enabled, the time offset is
754 1.33 kardel * updated. We can tolerate a modest loss of data here without
755 1.33 kardel * much degrading time accuracy.
756 1.33 kardel */
757 1.33 kardel if (u_nsec > (pps_jitter << PPS_POPCORN)) {
758 1.33 kardel time_status |= STA_PPSJITTER;
759 1.33 kardel pps_jitcnt++;
760 1.33 kardel } else if (time_status & STA_PPSTIME) {
761 1.33 kardel time_monitor = -v_nsec;
762 1.33 kardel L_LINT(time_offset, time_monitor);
763 1.33 kardel }
764 1.33 kardel pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
765 1.33 kardel u_sec = pps_tf[0].tv_sec - pps_lastsec;
766 1.33 kardel if (u_sec < (1 << pps_shift))
767 1.33 kardel return;
768 1.33 kardel
769 1.33 kardel /*
770 1.33 kardel * At the end of the calibration interval the difference between
771 1.33 kardel * the first and last counter values becomes the scaled
772 1.33 kardel * frequency. It will later be divided by the length of the
773 1.33 kardel * interval to determine the frequency update. If the frequency
774 1.33 kardel * exceeds a sanity threshold, or if the actual calibration
775 1.33 kardel * interval is not equal to the expected length, the data are
776 1.33 kardel * discarded. We can tolerate a modest loss of data here without
777 1.33 kardel * much degrading frequency accuracy.
778 1.33 kardel */
779 1.33 kardel pps_calcnt++;
780 1.33 kardel v_nsec = -pps_fcount;
781 1.33 kardel pps_lastsec = pps_tf[0].tv_sec;
782 1.33 kardel pps_fcount = 0;
783 1.33 kardel u_nsec = MAXFREQ << pps_shift;
784 1.33 kardel if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
785 1.33 kardel pps_shift)) {
786 1.33 kardel time_status |= STA_PPSERROR;
787 1.33 kardel pps_errcnt++;
788 1.33 kardel return;
789 1.33 kardel }
790 1.33 kardel
791 1.33 kardel /*
792 1.33 kardel * Here the raw frequency offset and wander (stability) is
793 1.33 kardel * calculated. If the wander is less than the wander threshold
794 1.33 kardel * for four consecutive averaging intervals, the interval is
795 1.33 kardel * doubled; if it is greater than the threshold for four
796 1.33 kardel * consecutive intervals, the interval is halved. The scaled
797 1.33 kardel * frequency offset is converted to frequency offset. The
798 1.33 kardel * stability metric is calculated as the average of recent
799 1.33 kardel * frequency changes, but is used only for performance
800 1.33 kardel * monitoring.
801 1.33 kardel */
802 1.33 kardel L_LINT(ftemp, v_nsec);
803 1.33 kardel L_RSHIFT(ftemp, pps_shift);
804 1.33 kardel L_SUB(ftemp, pps_freq);
805 1.33 kardel u_nsec = L_GINT(ftemp);
806 1.33 kardel if (u_nsec > PPS_MAXWANDER) {
807 1.33 kardel L_LINT(ftemp, PPS_MAXWANDER);
808 1.33 kardel pps_intcnt--;
809 1.33 kardel time_status |= STA_PPSWANDER;
810 1.33 kardel pps_stbcnt++;
811 1.33 kardel } else if (u_nsec < -PPS_MAXWANDER) {
812 1.33 kardel L_LINT(ftemp, -PPS_MAXWANDER);
813 1.33 kardel pps_intcnt--;
814 1.33 kardel time_status |= STA_PPSWANDER;
815 1.33 kardel pps_stbcnt++;
816 1.33 kardel } else {
817 1.33 kardel pps_intcnt++;
818 1.33 kardel }
819 1.33 kardel if (pps_intcnt >= 4) {
820 1.33 kardel pps_intcnt = 4;
821 1.33 kardel if (pps_shift < pps_shiftmax) {
822 1.33 kardel pps_shift++;
823 1.33 kardel pps_intcnt = 0;
824 1.33 kardel }
825 1.33 kardel } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
826 1.33 kardel pps_intcnt = -4;
827 1.33 kardel if (pps_shift > PPS_FAVG) {
828 1.33 kardel pps_shift--;
829 1.33 kardel pps_intcnt = 0;
830 1.33 kardel }
831 1.33 kardel }
832 1.33 kardel if (u_nsec < 0)
833 1.33 kardel u_nsec = -u_nsec;
834 1.33 kardel pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
835 1.33 kardel
836 1.33 kardel /*
837 1.33 kardel * The PPS frequency is recalculated and clamped to the maximum
838 1.33 kardel * MAXFREQ. If enabled, the system clock frequency is updated as
839 1.33 kardel * well.
840 1.33 kardel */
841 1.33 kardel L_ADD(pps_freq, ftemp);
842 1.33 kardel u_nsec = L_GINT(pps_freq);
843 1.33 kardel if (u_nsec > MAXFREQ)
844 1.33 kardel L_LINT(pps_freq, MAXFREQ);
845 1.33 kardel else if (u_nsec < -MAXFREQ)
846 1.33 kardel L_LINT(pps_freq, -MAXFREQ);
847 1.33 kardel if (time_status & STA_PPSFREQ)
848 1.33 kardel time_freq = pps_freq;
849 1.33 kardel }
850 1.33 kardel #endif /* PPS_SYNC */
851 1.33 kardel #endif /* NTP */
852 1.33 kardel
853 1.33 kardel #ifdef NTP
854 1.33 kardel int
855 1.33 kardel ntp_timestatus()
856 1.33 kardel {
857 1.33 kardel /*
858 1.33 kardel * Status word error decode. If any of these conditions
859 1.33 kardel * occur, an error is returned, instead of the status
860 1.33 kardel * word. Most applications will care only about the fact
861 1.33 kardel * the system clock may not be trusted, not about the
862 1.33 kardel * details.
863 1.33 kardel *
864 1.33 kardel * Hardware or software error
865 1.33 kardel */
866 1.33 kardel if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
867 1.33 kardel
868 1.33 kardel /*
869 1.33 kardel * PPS signal lost when either time or frequency
870 1.33 kardel * synchronization requested
871 1.33 kardel */
872 1.33 kardel (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
873 1.33 kardel !(time_status & STA_PPSSIGNAL)) ||
874 1.33 kardel
875 1.33 kardel /*
876 1.33 kardel * PPS jitter exceeded when time synchronization
877 1.33 kardel * requested
878 1.33 kardel */
879 1.33 kardel (time_status & STA_PPSTIME &&
880 1.33 kardel time_status & STA_PPSJITTER) ||
881 1.33 kardel
882 1.33 kardel /*
883 1.33 kardel * PPS wander exceeded or calibration error when
884 1.33 kardel * frequency synchronization requested
885 1.33 kardel */
886 1.33 kardel (time_status & STA_PPSFREQ &&
887 1.33 kardel time_status & (STA_PPSWANDER | STA_PPSERROR)))
888 1.33 kardel return (TIME_ERROR);
889 1.33 kardel else
890 1.33 kardel return (time_state);
891 1.33 kardel }
892 1.1 jonathan
893 1.33 kardel /*ARGSUSED*/
894 1.33 kardel /*
895 1.33 kardel * ntp_gettime() - NTP user application interface
896 1.33 kardel */
897 1.33 kardel int
898 1.41 yamt sys___ntp_gettime30(struct lwp *l, void *v, register_t *retval)
899 1.33 kardel {
900 1.33 kardel struct sys___ntp_gettime30_args /* {
901 1.33 kardel syscallarg(struct ntptimeval *) ntvp;
902 1.33 kardel } */ *uap = v;
903 1.33 kardel struct ntptimeval ntv;
904 1.33 kardel int error = 0;
905 1.33 kardel
906 1.33 kardel if (SCARG(uap, ntvp)) {
907 1.33 kardel ntp_gettime(&ntv);
908 1.33 kardel
909 1.43 christos error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
910 1.33 kardel sizeof(ntv));
911 1.33 kardel }
912 1.1 jonathan if (!error) {
913 1.33 kardel *retval = ntp_timestatus();
914 1.33 kardel }
915 1.33 kardel return(error);
916 1.33 kardel }
917 1.1 jonathan
918 1.33 kardel #ifdef COMPAT_30
919 1.33 kardel int
920 1.41 yamt compat_30_sys_ntp_gettime(struct lwp *l, void *v, register_t *retval)
921 1.33 kardel {
922 1.33 kardel struct compat_30_sys_ntp_gettime_args /* {
923 1.33 kardel syscallarg(struct ntptimeval30 *) ontvp;
924 1.33 kardel } */ *uap = v;
925 1.33 kardel struct ntptimeval ntv;
926 1.33 kardel struct ntptimeval30 ontv;
927 1.33 kardel int error = 0;
928 1.33 kardel
929 1.33 kardel if (SCARG(uap, ntvp)) {
930 1.33 kardel ntp_gettime(&ntv);
931 1.33 kardel TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
932 1.33 kardel ontv.maxerror = ntv.maxerror;
933 1.33 kardel ontv.esterror = ntv.esterror;
934 1.33 kardel
935 1.43 christos error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
936 1.33 kardel sizeof(ontv));
937 1.33 kardel }
938 1.33 kardel if (!error)
939 1.33 kardel *retval = ntp_timestatus();
940 1.33 kardel
941 1.33 kardel return (error);
942 1.1 jonathan }
943 1.33 kardel #endif
944 1.1 jonathan
945 1.1 jonathan /*
946 1.1 jonathan * return information about kernel precision timekeeping
947 1.1 jonathan */
948 1.25 atatat static int
949 1.25 atatat sysctl_kern_ntptime(SYSCTLFN_ARGS)
950 1.1 jonathan {
951 1.25 atatat struct sysctlnode node;
952 1.1 jonathan struct ntptimeval ntv;
953 1.1 jonathan
954 1.31 drochner ntp_gettime(&ntv);
955 1.25 atatat
956 1.25 atatat node = *rnode;
957 1.25 atatat node.sysctl_data = &ntv;
958 1.25 atatat node.sysctl_size = sizeof(ntv);
959 1.25 atatat return (sysctl_lookup(SYSCTLFN_CALL(&node)));
960 1.25 atatat }
961 1.25 atatat
962 1.25 atatat SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
963 1.25 atatat {
964 1.25 atatat
965 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
966 1.26 atatat CTLFLAG_PERMANENT,
967 1.25 atatat CTLTYPE_NODE, "kern", NULL,
968 1.25 atatat NULL, 0, NULL, 0,
969 1.25 atatat CTL_KERN, CTL_EOL);
970 1.25 atatat
971 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
972 1.26 atatat CTLFLAG_PERMANENT,
973 1.27 atatat CTLTYPE_STRUCT, "ntptime",
974 1.27 atatat SYSCTL_DESCR("Kernel clock values for NTP"),
975 1.25 atatat sysctl_kern_ntptime, 0, NULL,
976 1.25 atatat sizeof(struct ntptimeval),
977 1.25 atatat CTL_KERN, KERN_NTPTIME, CTL_EOL);
978 1.1 jonathan }
979 1.4 thorpej #else /* !NTP */
980 1.13 bjh21 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
981 1.13 bjh21
982 1.4 thorpej int
983 1.41 yamt sys___ntp_gettime30(struct lwp *l, void *v, register_t *retval)
984 1.31 drochner {
985 1.31 drochner
986 1.31 drochner return(ENOSYS);
987 1.31 drochner }
988 1.31 drochner
989 1.31 drochner #ifdef COMPAT_30
990 1.31 drochner int
991 1.41 yamt compat_30_sys_ntp_gettime(struct lwp *l, void *v, register_t *retval)
992 1.4 thorpej {
993 1.19 simonb
994 1.33 kardel return(ENOSYS);
995 1.4 thorpej }
996 1.31 drochner #endif
997 1.13 bjh21 #endif /* !NTP */
998