kern_ntptime.c revision 1.47 1 1.47 matt /* $NetBSD: kern_ntptime.c,v 1.47 2008/02/27 19:55:59 matt Exp $ */
2 1.33 kardel
3 1.33 kardel /*-
4 1.33 kardel ***********************************************************************
5 1.33 kardel * *
6 1.33 kardel * Copyright (c) David L. Mills 1993-2001 *
7 1.33 kardel * *
8 1.33 kardel * Permission to use, copy, modify, and distribute this software and *
9 1.33 kardel * its documentation for any purpose and without fee is hereby *
10 1.33 kardel * granted, provided that the above copyright notice appears in all *
11 1.33 kardel * copies and that both the copyright notice and this permission *
12 1.33 kardel * notice appear in supporting documentation, and that the name *
13 1.33 kardel * University of Delaware not be used in advertising or publicity *
14 1.33 kardel * pertaining to distribution of the software without specific, *
15 1.33 kardel * written prior permission. The University of Delaware makes no *
16 1.33 kardel * representations about the suitability this software for any *
17 1.33 kardel * purpose. It is provided "as is" without express or implied *
18 1.33 kardel * warranty. *
19 1.33 kardel * *
20 1.33 kardel **********************************************************************/
21 1.1 jonathan
22 1.33 kardel /*
23 1.33 kardel * Adapted from the original sources for FreeBSD and timecounters by:
24 1.33 kardel * Poul-Henning Kamp <phk (at) FreeBSD.org>.
25 1.33 kardel *
26 1.33 kardel * The 32bit version of the "LP" macros seems a bit past its "sell by"
27 1.33 kardel * date so I have retained only the 64bit version and included it directly
28 1.33 kardel * in this file.
29 1.33 kardel *
30 1.33 kardel * Only minor changes done to interface with the timecounters over in
31 1.33 kardel * sys/kern/kern_clock.c. Some of the comments below may be (even more)
32 1.33 kardel * confusing and/or plain wrong in that context.
33 1.33 kardel */
34 1.33 kardel
35 1.33 kardel #include <sys/cdefs.h>
36 1.33 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
37 1.47 matt __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.47 2008/02/27 19:55:59 matt Exp $");
38 1.33 kardel
39 1.33 kardel #include "opt_ntp.h"
40 1.33 kardel #include "opt_compat_netbsd.h"
41 1.33 kardel
42 1.33 kardel #include <sys/param.h>
43 1.33 kardel #include <sys/resourcevar.h>
44 1.33 kardel #include <sys/systm.h>
45 1.33 kardel #include <sys/kernel.h>
46 1.33 kardel #include <sys/proc.h>
47 1.33 kardel #include <sys/sysctl.h>
48 1.33 kardel #include <sys/timex.h>
49 1.33 kardel #ifdef COMPAT_30
50 1.33 kardel #include <compat/sys/timex.h>
51 1.33 kardel #endif
52 1.33 kardel #include <sys/vnode.h>
53 1.33 kardel #include <sys/kauth.h>
54 1.33 kardel
55 1.33 kardel #include <sys/mount.h>
56 1.33 kardel #include <sys/syscallargs.h>
57 1.33 kardel
58 1.44 ad #include <sys/cpu.h>
59 1.33 kardel
60 1.33 kardel /*
61 1.33 kardel * Single-precision macros for 64-bit machines
62 1.33 kardel */
63 1.33 kardel typedef int64_t l_fp;
64 1.33 kardel #define L_ADD(v, u) ((v) += (u))
65 1.33 kardel #define L_SUB(v, u) ((v) -= (u))
66 1.33 kardel #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
67 1.33 kardel #define L_NEG(v) ((v) = -(v))
68 1.33 kardel #define L_RSHIFT(v, n) \
69 1.33 kardel do { \
70 1.33 kardel if ((v) < 0) \
71 1.33 kardel (v) = -(-(v) >> (n)); \
72 1.33 kardel else \
73 1.33 kardel (v) = (v) >> (n); \
74 1.33 kardel } while (0)
75 1.33 kardel #define L_MPY(v, a) ((v) *= (a))
76 1.33 kardel #define L_CLR(v) ((v) = 0)
77 1.33 kardel #define L_ISNEG(v) ((v) < 0)
78 1.33 kardel #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
79 1.33 kardel #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
80 1.33 kardel
81 1.33 kardel #ifdef NTP
82 1.33 kardel /*
83 1.33 kardel * Generic NTP kernel interface
84 1.33 kardel *
85 1.33 kardel * These routines constitute the Network Time Protocol (NTP) interfaces
86 1.33 kardel * for user and daemon application programs. The ntp_gettime() routine
87 1.33 kardel * provides the time, maximum error (synch distance) and estimated error
88 1.33 kardel * (dispersion) to client user application programs. The ntp_adjtime()
89 1.33 kardel * routine is used by the NTP daemon to adjust the system clock to an
90 1.33 kardel * externally derived time. The time offset and related variables set by
91 1.33 kardel * this routine are used by other routines in this module to adjust the
92 1.33 kardel * phase and frequency of the clock discipline loop which controls the
93 1.33 kardel * system clock.
94 1.33 kardel *
95 1.33 kardel * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
96 1.33 kardel * defined), the time at each tick interrupt is derived directly from
97 1.33 kardel * the kernel time variable. When the kernel time is reckoned in
98 1.33 kardel * microseconds, (NTP_NANO undefined), the time is derived from the
99 1.33 kardel * kernel time variable together with a variable representing the
100 1.33 kardel * leftover nanoseconds at the last tick interrupt. In either case, the
101 1.33 kardel * current nanosecond time is reckoned from these values plus an
102 1.33 kardel * interpolated value derived by the clock routines in another
103 1.33 kardel * architecture-specific module. The interpolation can use either a
104 1.33 kardel * dedicated counter or a processor cycle counter (PCC) implemented in
105 1.33 kardel * some architectures.
106 1.33 kardel *
107 1.33 kardel * Note that all routines must run at priority splclock or higher.
108 1.33 kardel */
109 1.33 kardel /*
110 1.33 kardel * Phase/frequency-lock loop (PLL/FLL) definitions
111 1.33 kardel *
112 1.33 kardel * The nanosecond clock discipline uses two variable types, time
113 1.33 kardel * variables and frequency variables. Both types are represented as 64-
114 1.33 kardel * bit fixed-point quantities with the decimal point between two 32-bit
115 1.33 kardel * halves. On a 32-bit machine, each half is represented as a single
116 1.33 kardel * word and mathematical operations are done using multiple-precision
117 1.33 kardel * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
118 1.33 kardel * used.
119 1.33 kardel *
120 1.33 kardel * A time variable is a signed 64-bit fixed-point number in ns and
121 1.33 kardel * fraction. It represents the remaining time offset to be amortized
122 1.33 kardel * over succeeding tick interrupts. The maximum time offset is about
123 1.33 kardel * 0.5 s and the resolution is about 2.3e-10 ns.
124 1.33 kardel *
125 1.33 kardel * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
126 1.33 kardel * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
127 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
128 1.33 kardel * |s s s| ns |
129 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130 1.33 kardel * | fraction |
131 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132 1.33 kardel *
133 1.33 kardel * A frequency variable is a signed 64-bit fixed-point number in ns/s
134 1.33 kardel * and fraction. It represents the ns and fraction to be added to the
135 1.33 kardel * kernel time variable at each second. The maximum frequency offset is
136 1.33 kardel * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
137 1.33 kardel *
138 1.33 kardel * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
139 1.33 kardel * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
140 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
141 1.33 kardel * |s s s s s s s s s s s s s| ns/s |
142 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
143 1.33 kardel * | fraction |
144 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
145 1.33 kardel */
146 1.33 kardel /*
147 1.33 kardel * The following variables establish the state of the PLL/FLL and the
148 1.33 kardel * residual time and frequency offset of the local clock.
149 1.33 kardel */
150 1.33 kardel #define SHIFT_PLL 4 /* PLL loop gain (shift) */
151 1.33 kardel #define SHIFT_FLL 2 /* FLL loop gain (shift) */
152 1.33 kardel
153 1.33 kardel static int time_state = TIME_OK; /* clock state */
154 1.33 kardel static int time_status = STA_UNSYNC; /* clock status bits */
155 1.33 kardel static long time_tai; /* TAI offset (s) */
156 1.33 kardel static long time_monitor; /* last time offset scaled (ns) */
157 1.33 kardel static long time_constant; /* poll interval (shift) (s) */
158 1.33 kardel static long time_precision = 1; /* clock precision (ns) */
159 1.33 kardel static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
160 1.33 kardel static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
161 1.33 kardel static long time_reftime; /* time at last adjustment (s) */
162 1.33 kardel static l_fp time_offset; /* time offset (ns) */
163 1.33 kardel static l_fp time_freq; /* frequency offset (ns/s) */
164 1.33 kardel #endif /* NTP */
165 1.33 kardel
166 1.33 kardel static l_fp time_adj; /* tick adjust (ns/s) */
167 1.33 kardel int64_t time_adjtime; /* correction from adjtime(2) (usec) */
168 1.33 kardel
169 1.33 kardel extern int time_adjusted; /* ntp might have changed the system time */
170 1.33 kardel
171 1.33 kardel #ifdef NTP
172 1.33 kardel #ifdef PPS_SYNC
173 1.33 kardel /*
174 1.33 kardel * The following variables are used when a pulse-per-second (PPS) signal
175 1.33 kardel * is available and connected via a modem control lead. They establish
176 1.33 kardel * the engineering parameters of the clock discipline loop when
177 1.33 kardel * controlled by the PPS signal.
178 1.33 kardel */
179 1.33 kardel #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
180 1.33 kardel #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
181 1.33 kardel #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
182 1.33 kardel #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
183 1.33 kardel #define PPS_VALID 120 /* PPS signal watchdog max (s) */
184 1.33 kardel #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
185 1.33 kardel #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
186 1.33 kardel
187 1.33 kardel static struct timespec pps_tf[3]; /* phase median filter */
188 1.33 kardel static l_fp pps_freq; /* scaled frequency offset (ns/s) */
189 1.33 kardel static long pps_fcount; /* frequency accumulator */
190 1.33 kardel static long pps_jitter; /* nominal jitter (ns) */
191 1.33 kardel static long pps_stabil; /* nominal stability (scaled ns/s) */
192 1.33 kardel static long pps_lastsec; /* time at last calibration (s) */
193 1.33 kardel static int pps_valid; /* signal watchdog counter */
194 1.33 kardel static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
195 1.33 kardel static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
196 1.33 kardel static int pps_intcnt; /* wander counter */
197 1.33 kardel
198 1.33 kardel /*
199 1.33 kardel * PPS signal quality monitors
200 1.33 kardel */
201 1.33 kardel static long pps_calcnt; /* calibration intervals */
202 1.33 kardel static long pps_jitcnt; /* jitter limit exceeded */
203 1.33 kardel static long pps_stbcnt; /* stability limit exceeded */
204 1.33 kardel static long pps_errcnt; /* calibration errors */
205 1.33 kardel #endif /* PPS_SYNC */
206 1.33 kardel /*
207 1.33 kardel * End of phase/frequency-lock loop (PLL/FLL) definitions
208 1.33 kardel */
209 1.33 kardel
210 1.33 kardel static void hardupdate(long offset);
211 1.33 kardel
212 1.33 kardel /*
213 1.33 kardel * ntp_gettime() - NTP user application interface
214 1.33 kardel */
215 1.33 kardel void
216 1.45 dsl ntp_gettime(struct ntptimeval *ntv)
217 1.33 kardel {
218 1.33 kardel nanotime(&ntv->time);
219 1.33 kardel ntv->maxerror = time_maxerror;
220 1.33 kardel ntv->esterror = time_esterror;
221 1.33 kardel ntv->tai = time_tai;
222 1.33 kardel ntv->time_state = time_state;
223 1.33 kardel }
224 1.33 kardel
225 1.33 kardel /* ARGSUSED */
226 1.33 kardel /*
227 1.33 kardel * ntp_adjtime() - NTP daemon application interface
228 1.33 kardel */
229 1.33 kardel int
230 1.45 dsl sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
231 1.33 kardel {
232 1.45 dsl /* {
233 1.33 kardel syscallarg(struct timex *) tp;
234 1.45 dsl } */
235 1.33 kardel struct timex ntv;
236 1.33 kardel int error = 0;
237 1.33 kardel
238 1.43 christos error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
239 1.35 ad if (error != 0)
240 1.33 kardel return (error);
241 1.33 kardel
242 1.37 elad if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
243 1.37 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
244 1.36 elad NULL, NULL)) != 0)
245 1.33 kardel return (error);
246 1.33 kardel
247 1.33 kardel ntp_adjtime1(&ntv);
248 1.33 kardel
249 1.43 christos error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
250 1.35 ad if (!error)
251 1.33 kardel *retval = ntp_timestatus();
252 1.35 ad
253 1.33 kardel return error;
254 1.33 kardel }
255 1.33 kardel
256 1.33 kardel void
257 1.45 dsl ntp_adjtime1(struct timex *ntv)
258 1.33 kardel {
259 1.33 kardel long freq;
260 1.33 kardel int modes;
261 1.33 kardel int s;
262 1.33 kardel
263 1.33 kardel /*
264 1.33 kardel * Update selected clock variables - only the superuser can
265 1.33 kardel * change anything. Note that there is no error checking here on
266 1.33 kardel * the assumption the superuser should know what it is doing.
267 1.33 kardel * Note that either the time constant or TAI offset are loaded
268 1.33 kardel * from the ntv.constant member, depending on the mode bits. If
269 1.33 kardel * the STA_PLL bit in the status word is cleared, the state and
270 1.33 kardel * status words are reset to the initial values at boot.
271 1.33 kardel */
272 1.33 kardel modes = ntv->modes;
273 1.33 kardel if (modes != 0)
274 1.33 kardel /* We need to save the system time during shutdown */
275 1.33 kardel time_adjusted |= 2;
276 1.33 kardel s = splclock();
277 1.33 kardel if (modes & MOD_MAXERROR)
278 1.33 kardel time_maxerror = ntv->maxerror;
279 1.33 kardel if (modes & MOD_ESTERROR)
280 1.33 kardel time_esterror = ntv->esterror;
281 1.33 kardel if (modes & MOD_STATUS) {
282 1.33 kardel if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
283 1.33 kardel time_state = TIME_OK;
284 1.33 kardel time_status = STA_UNSYNC;
285 1.33 kardel #ifdef PPS_SYNC
286 1.33 kardel pps_shift = PPS_FAVG;
287 1.33 kardel #endif /* PPS_SYNC */
288 1.33 kardel }
289 1.33 kardel time_status &= STA_RONLY;
290 1.33 kardel time_status |= ntv->status & ~STA_RONLY;
291 1.33 kardel }
292 1.33 kardel if (modes & MOD_TIMECONST) {
293 1.33 kardel if (ntv->constant < 0)
294 1.33 kardel time_constant = 0;
295 1.33 kardel else if (ntv->constant > MAXTC)
296 1.33 kardel time_constant = MAXTC;
297 1.33 kardel else
298 1.33 kardel time_constant = ntv->constant;
299 1.33 kardel }
300 1.33 kardel if (modes & MOD_TAI) {
301 1.33 kardel if (ntv->constant > 0) /* XXX zero & negative numbers ? */
302 1.33 kardel time_tai = ntv->constant;
303 1.33 kardel }
304 1.33 kardel #ifdef PPS_SYNC
305 1.33 kardel if (modes & MOD_PPSMAX) {
306 1.33 kardel if (ntv->shift < PPS_FAVG)
307 1.33 kardel pps_shiftmax = PPS_FAVG;
308 1.33 kardel else if (ntv->shift > PPS_FAVGMAX)
309 1.33 kardel pps_shiftmax = PPS_FAVGMAX;
310 1.33 kardel else
311 1.33 kardel pps_shiftmax = ntv->shift;
312 1.33 kardel }
313 1.33 kardel #endif /* PPS_SYNC */
314 1.33 kardel if (modes & MOD_NANO)
315 1.33 kardel time_status |= STA_NANO;
316 1.33 kardel if (modes & MOD_MICRO)
317 1.33 kardel time_status &= ~STA_NANO;
318 1.33 kardel if (modes & MOD_CLKB)
319 1.33 kardel time_status |= STA_CLK;
320 1.33 kardel if (modes & MOD_CLKA)
321 1.33 kardel time_status &= ~STA_CLK;
322 1.33 kardel if (modes & MOD_FREQUENCY) {
323 1.33 kardel freq = (ntv->freq * 1000LL) >> 16;
324 1.33 kardel if (freq > MAXFREQ)
325 1.33 kardel L_LINT(time_freq, MAXFREQ);
326 1.33 kardel else if (freq < -MAXFREQ)
327 1.33 kardel L_LINT(time_freq, -MAXFREQ);
328 1.33 kardel else {
329 1.33 kardel /*
330 1.33 kardel * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
331 1.33 kardel * time_freq is [ns/s * 2^32]
332 1.33 kardel */
333 1.33 kardel time_freq = ntv->freq * 1000LL * 65536LL;
334 1.33 kardel }
335 1.33 kardel #ifdef PPS_SYNC
336 1.33 kardel pps_freq = time_freq;
337 1.33 kardel #endif /* PPS_SYNC */
338 1.33 kardel }
339 1.33 kardel if (modes & MOD_OFFSET) {
340 1.33 kardel if (time_status & STA_NANO)
341 1.33 kardel hardupdate(ntv->offset);
342 1.33 kardel else
343 1.33 kardel hardupdate(ntv->offset * 1000);
344 1.33 kardel }
345 1.33 kardel
346 1.33 kardel /*
347 1.33 kardel * Retrieve all clock variables. Note that the TAI offset is
348 1.33 kardel * returned only by ntp_gettime();
349 1.33 kardel */
350 1.33 kardel if (time_status & STA_NANO)
351 1.33 kardel ntv->offset = L_GINT(time_offset);
352 1.33 kardel else
353 1.33 kardel ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
354 1.33 kardel ntv->freq = L_GINT((time_freq / 1000LL) << 16);
355 1.33 kardel ntv->maxerror = time_maxerror;
356 1.33 kardel ntv->esterror = time_esterror;
357 1.33 kardel ntv->status = time_status;
358 1.33 kardel ntv->constant = time_constant;
359 1.33 kardel if (time_status & STA_NANO)
360 1.33 kardel ntv->precision = time_precision;
361 1.33 kardel else
362 1.33 kardel ntv->precision = time_precision / 1000;
363 1.33 kardel ntv->tolerance = MAXFREQ * SCALE_PPM;
364 1.33 kardel #ifdef PPS_SYNC
365 1.33 kardel ntv->shift = pps_shift;
366 1.33 kardel ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
367 1.33 kardel if (time_status & STA_NANO)
368 1.33 kardel ntv->jitter = pps_jitter;
369 1.33 kardel else
370 1.33 kardel ntv->jitter = pps_jitter / 1000;
371 1.33 kardel ntv->stabil = pps_stabil;
372 1.33 kardel ntv->calcnt = pps_calcnt;
373 1.33 kardel ntv->errcnt = pps_errcnt;
374 1.33 kardel ntv->jitcnt = pps_jitcnt;
375 1.33 kardel ntv->stbcnt = pps_stbcnt;
376 1.33 kardel #endif /* PPS_SYNC */
377 1.33 kardel splx(s);
378 1.33 kardel }
379 1.33 kardel #endif /* NTP */
380 1.33 kardel
381 1.33 kardel /*
382 1.33 kardel * second_overflow() - called after ntp_tick_adjust()
383 1.33 kardel *
384 1.33 kardel * This routine is ordinarily called immediately following the above
385 1.33 kardel * routine ntp_tick_adjust(). While these two routines are normally
386 1.33 kardel * combined, they are separated here only for the purposes of
387 1.33 kardel * simulation.
388 1.33 kardel */
389 1.33 kardel void
390 1.33 kardel ntp_update_second(int64_t *adjustment, time_t *newsec)
391 1.33 kardel {
392 1.33 kardel int tickrate;
393 1.33 kardel l_fp ftemp; /* 32/64-bit temporary */
394 1.33 kardel
395 1.33 kardel #ifdef NTP
396 1.33 kardel
397 1.33 kardel /*
398 1.33 kardel * On rollover of the second both the nanosecond and microsecond
399 1.33 kardel * clocks are updated and the state machine cranked as
400 1.33 kardel * necessary. The phase adjustment to be used for the next
401 1.33 kardel * second is calculated and the maximum error is increased by
402 1.33 kardel * the tolerance.
403 1.33 kardel */
404 1.33 kardel time_maxerror += MAXFREQ / 1000;
405 1.33 kardel
406 1.33 kardel /*
407 1.33 kardel * Leap second processing. If in leap-insert state at
408 1.33 kardel * the end of the day, the system clock is set back one
409 1.33 kardel * second; if in leap-delete state, the system clock is
410 1.33 kardel * set ahead one second. The nano_time() routine or
411 1.33 kardel * external clock driver will insure that reported time
412 1.33 kardel * is always monotonic.
413 1.33 kardel */
414 1.33 kardel switch (time_state) {
415 1.33 kardel
416 1.33 kardel /*
417 1.33 kardel * No warning.
418 1.33 kardel */
419 1.33 kardel case TIME_OK:
420 1.33 kardel if (time_status & STA_INS)
421 1.33 kardel time_state = TIME_INS;
422 1.33 kardel else if (time_status & STA_DEL)
423 1.33 kardel time_state = TIME_DEL;
424 1.33 kardel break;
425 1.33 kardel
426 1.33 kardel /*
427 1.33 kardel * Insert second 23:59:60 following second
428 1.33 kardel * 23:59:59.
429 1.33 kardel */
430 1.33 kardel case TIME_INS:
431 1.33 kardel if (!(time_status & STA_INS))
432 1.33 kardel time_state = TIME_OK;
433 1.33 kardel else if ((*newsec) % 86400 == 0) {
434 1.33 kardel (*newsec)--;
435 1.33 kardel time_state = TIME_OOP;
436 1.33 kardel time_tai++;
437 1.33 kardel }
438 1.33 kardel break;
439 1.33 kardel
440 1.33 kardel /*
441 1.33 kardel * Delete second 23:59:59.
442 1.33 kardel */
443 1.33 kardel case TIME_DEL:
444 1.33 kardel if (!(time_status & STA_DEL))
445 1.33 kardel time_state = TIME_OK;
446 1.33 kardel else if (((*newsec) + 1) % 86400 == 0) {
447 1.33 kardel (*newsec)++;
448 1.33 kardel time_tai--;
449 1.33 kardel time_state = TIME_WAIT;
450 1.33 kardel }
451 1.33 kardel break;
452 1.33 kardel
453 1.33 kardel /*
454 1.33 kardel * Insert second in progress.
455 1.33 kardel */
456 1.33 kardel case TIME_OOP:
457 1.33 kardel time_state = TIME_WAIT;
458 1.33 kardel break;
459 1.33 kardel
460 1.33 kardel /*
461 1.33 kardel * Wait for status bits to clear.
462 1.33 kardel */
463 1.33 kardel case TIME_WAIT:
464 1.33 kardel if (!(time_status & (STA_INS | STA_DEL)))
465 1.33 kardel time_state = TIME_OK;
466 1.33 kardel }
467 1.33 kardel
468 1.33 kardel /*
469 1.33 kardel * Compute the total time adjustment for the next second
470 1.33 kardel * in ns. The offset is reduced by a factor depending on
471 1.33 kardel * whether the PPS signal is operating. Note that the
472 1.33 kardel * value is in effect scaled by the clock frequency,
473 1.33 kardel * since the adjustment is added at each tick interrupt.
474 1.33 kardel */
475 1.33 kardel ftemp = time_offset;
476 1.33 kardel #ifdef PPS_SYNC
477 1.33 kardel /* XXX even if PPS signal dies we should finish adjustment ? */
478 1.33 kardel if (time_status & STA_PPSTIME && time_status &
479 1.33 kardel STA_PPSSIGNAL)
480 1.33 kardel L_RSHIFT(ftemp, pps_shift);
481 1.33 kardel else
482 1.33 kardel L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
483 1.33 kardel #else
484 1.33 kardel L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
485 1.33 kardel #endif /* PPS_SYNC */
486 1.33 kardel time_adj = ftemp;
487 1.33 kardel L_SUB(time_offset, ftemp);
488 1.33 kardel L_ADD(time_adj, time_freq);
489 1.33 kardel
490 1.33 kardel #ifdef PPS_SYNC
491 1.33 kardel if (pps_valid > 0)
492 1.33 kardel pps_valid--;
493 1.33 kardel else
494 1.33 kardel time_status &= ~STA_PPSSIGNAL;
495 1.33 kardel #endif /* PPS_SYNC */
496 1.34 kardel #else /* !NTP */
497 1.34 kardel L_CLR(time_adj);
498 1.34 kardel #endif /* !NTP */
499 1.33 kardel
500 1.33 kardel /*
501 1.33 kardel * Apply any correction from adjtime(2). If more than one second
502 1.33 kardel * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
503 1.33 kardel * until the last second is slewed the final < 500 usecs.
504 1.33 kardel */
505 1.33 kardel if (time_adjtime != 0) {
506 1.33 kardel if (time_adjtime > 1000000)
507 1.33 kardel tickrate = 5000;
508 1.33 kardel else if (time_adjtime < -1000000)
509 1.33 kardel tickrate = -5000;
510 1.33 kardel else if (time_adjtime > 500)
511 1.33 kardel tickrate = 500;
512 1.33 kardel else if (time_adjtime < -500)
513 1.33 kardel tickrate = -500;
514 1.33 kardel else
515 1.33 kardel tickrate = time_adjtime;
516 1.33 kardel time_adjtime -= tickrate;
517 1.33 kardel L_LINT(ftemp, tickrate * 1000);
518 1.33 kardel L_ADD(time_adj, ftemp);
519 1.33 kardel }
520 1.33 kardel *adjustment = time_adj;
521 1.33 kardel }
522 1.33 kardel
523 1.33 kardel /*
524 1.33 kardel * ntp_init() - initialize variables and structures
525 1.33 kardel *
526 1.33 kardel * This routine must be called after the kernel variables hz and tick
527 1.33 kardel * are set or changed and before the next tick interrupt. In this
528 1.33 kardel * particular implementation, these values are assumed set elsewhere in
529 1.33 kardel * the kernel. The design allows the clock frequency and tick interval
530 1.33 kardel * to be changed while the system is running. So, this routine should
531 1.33 kardel * probably be integrated with the code that does that.
532 1.33 kardel */
533 1.33 kardel void
534 1.33 kardel ntp_init(void)
535 1.33 kardel {
536 1.33 kardel
537 1.33 kardel /*
538 1.33 kardel * The following variables are initialized only at startup. Only
539 1.33 kardel * those structures not cleared by the compiler need to be
540 1.33 kardel * initialized, and these only in the simulator. In the actual
541 1.33 kardel * kernel, any nonzero values here will quickly evaporate.
542 1.33 kardel */
543 1.33 kardel L_CLR(time_adj);
544 1.33 kardel #ifdef NTP
545 1.33 kardel L_CLR(time_offset);
546 1.33 kardel L_CLR(time_freq);
547 1.33 kardel #ifdef PPS_SYNC
548 1.33 kardel pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
549 1.33 kardel pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
550 1.33 kardel pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
551 1.33 kardel pps_fcount = 0;
552 1.33 kardel L_CLR(pps_freq);
553 1.33 kardel #endif /* PPS_SYNC */
554 1.33 kardel #endif
555 1.33 kardel }
556 1.33 kardel
557 1.33 kardel #ifdef NTP
558 1.33 kardel /*
559 1.33 kardel * hardupdate() - local clock update
560 1.33 kardel *
561 1.33 kardel * This routine is called by ntp_adjtime() to update the local clock
562 1.33 kardel * phase and frequency. The implementation is of an adaptive-parameter,
563 1.33 kardel * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
564 1.33 kardel * time and frequency offset estimates for each call. If the kernel PPS
565 1.33 kardel * discipline code is configured (PPS_SYNC), the PPS signal itself
566 1.33 kardel * determines the new time offset, instead of the calling argument.
567 1.33 kardel * Presumably, calls to ntp_adjtime() occur only when the caller
568 1.33 kardel * believes the local clock is valid within some bound (+-128 ms with
569 1.33 kardel * NTP). If the caller's time is far different than the PPS time, an
570 1.33 kardel * argument will ensue, and it's not clear who will lose.
571 1.33 kardel *
572 1.33 kardel * For uncompensated quartz crystal oscillators and nominal update
573 1.33 kardel * intervals less than 256 s, operation should be in phase-lock mode,
574 1.33 kardel * where the loop is disciplined to phase. For update intervals greater
575 1.33 kardel * than 1024 s, operation should be in frequency-lock mode, where the
576 1.33 kardel * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
577 1.33 kardel * is selected by the STA_MODE status bit.
578 1.33 kardel *
579 1.33 kardel * Note: splclock() is in effect.
580 1.33 kardel */
581 1.33 kardel void
582 1.33 kardel hardupdate(long offset)
583 1.33 kardel {
584 1.33 kardel long mtemp;
585 1.33 kardel l_fp ftemp;
586 1.33 kardel
587 1.33 kardel /*
588 1.33 kardel * Select how the phase is to be controlled and from which
589 1.33 kardel * source. If the PPS signal is present and enabled to
590 1.33 kardel * discipline the time, the PPS offset is used; otherwise, the
591 1.33 kardel * argument offset is used.
592 1.33 kardel */
593 1.33 kardel if (!(time_status & STA_PLL))
594 1.33 kardel return;
595 1.33 kardel if (!(time_status & STA_PPSTIME && time_status &
596 1.33 kardel STA_PPSSIGNAL)) {
597 1.33 kardel if (offset > MAXPHASE)
598 1.33 kardel time_monitor = MAXPHASE;
599 1.33 kardel else if (offset < -MAXPHASE)
600 1.33 kardel time_monitor = -MAXPHASE;
601 1.33 kardel else
602 1.33 kardel time_monitor = offset;
603 1.33 kardel L_LINT(time_offset, time_monitor);
604 1.33 kardel }
605 1.33 kardel
606 1.33 kardel /*
607 1.33 kardel * Select how the frequency is to be controlled and in which
608 1.33 kardel * mode (PLL or FLL). If the PPS signal is present and enabled
609 1.33 kardel * to discipline the frequency, the PPS frequency is used;
610 1.33 kardel * otherwise, the argument offset is used to compute it.
611 1.33 kardel */
612 1.33 kardel if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
613 1.33 kardel time_reftime = time_second;
614 1.33 kardel return;
615 1.33 kardel }
616 1.33 kardel if (time_status & STA_FREQHOLD || time_reftime == 0)
617 1.33 kardel time_reftime = time_second;
618 1.33 kardel mtemp = time_second - time_reftime;
619 1.33 kardel L_LINT(ftemp, time_monitor);
620 1.33 kardel L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
621 1.33 kardel L_MPY(ftemp, mtemp);
622 1.33 kardel L_ADD(time_freq, ftemp);
623 1.33 kardel time_status &= ~STA_MODE;
624 1.33 kardel if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
625 1.33 kardel MAXSEC)) {
626 1.33 kardel L_LINT(ftemp, (time_monitor << 4) / mtemp);
627 1.33 kardel L_RSHIFT(ftemp, SHIFT_FLL + 4);
628 1.33 kardel L_ADD(time_freq, ftemp);
629 1.33 kardel time_status |= STA_MODE;
630 1.33 kardel }
631 1.33 kardel time_reftime = time_second;
632 1.33 kardel if (L_GINT(time_freq) > MAXFREQ)
633 1.33 kardel L_LINT(time_freq, MAXFREQ);
634 1.33 kardel else if (L_GINT(time_freq) < -MAXFREQ)
635 1.33 kardel L_LINT(time_freq, -MAXFREQ);
636 1.33 kardel }
637 1.33 kardel
638 1.33 kardel #ifdef PPS_SYNC
639 1.33 kardel /*
640 1.33 kardel * hardpps() - discipline CPU clock oscillator to external PPS signal
641 1.33 kardel *
642 1.33 kardel * This routine is called at each PPS interrupt in order to discipline
643 1.33 kardel * the CPU clock oscillator to the PPS signal. It measures the PPS phase
644 1.33 kardel * and leaves it in a handy spot for the hardclock() routine. It
645 1.33 kardel * integrates successive PPS phase differences and calculates the
646 1.33 kardel * frequency offset. This is used in hardclock() to discipline the CPU
647 1.33 kardel * clock oscillator so that intrinsic frequency error is cancelled out.
648 1.33 kardel * The code requires the caller to capture the time and hardware counter
649 1.33 kardel * value at the on-time PPS signal transition.
650 1.33 kardel *
651 1.33 kardel * Note that, on some Unix systems, this routine runs at an interrupt
652 1.33 kardel * priority level higher than the timer interrupt routine hardclock().
653 1.33 kardel * Therefore, the variables used are distinct from the hardclock()
654 1.33 kardel * variables, except for certain exceptions: The PPS frequency pps_freq
655 1.33 kardel * and phase pps_offset variables are determined by this routine and
656 1.33 kardel * updated atomically. The time_tolerance variable can be considered a
657 1.33 kardel * constant, since it is infrequently changed, and then only when the
658 1.33 kardel * PPS signal is disabled. The watchdog counter pps_valid is updated
659 1.33 kardel * once per second by hardclock() and is atomically cleared in this
660 1.33 kardel * routine.
661 1.33 kardel */
662 1.33 kardel void
663 1.33 kardel hardpps(struct timespec *tsp, /* time at PPS */
664 1.33 kardel long nsec /* hardware counter at PPS */)
665 1.33 kardel {
666 1.33 kardel long u_sec, u_nsec, v_nsec; /* temps */
667 1.33 kardel l_fp ftemp;
668 1.33 kardel
669 1.33 kardel /*
670 1.33 kardel * The signal is first processed by a range gate and frequency
671 1.33 kardel * discriminator. The range gate rejects noise spikes outside
672 1.33 kardel * the range +-500 us. The frequency discriminator rejects input
673 1.33 kardel * signals with apparent frequency outside the range 1 +-500
674 1.33 kardel * PPM. If two hits occur in the same second, we ignore the
675 1.33 kardel * later hit; if not and a hit occurs outside the range gate,
676 1.33 kardel * keep the later hit for later comparison, but do not process
677 1.33 kardel * it.
678 1.33 kardel */
679 1.33 kardel time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
680 1.33 kardel time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
681 1.33 kardel pps_valid = PPS_VALID;
682 1.33 kardel u_sec = tsp->tv_sec;
683 1.33 kardel u_nsec = tsp->tv_nsec;
684 1.33 kardel if (u_nsec >= (NANOSECOND >> 1)) {
685 1.33 kardel u_nsec -= NANOSECOND;
686 1.33 kardel u_sec++;
687 1.33 kardel }
688 1.33 kardel v_nsec = u_nsec - pps_tf[0].tv_nsec;
689 1.33 kardel if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
690 1.33 kardel MAXFREQ)
691 1.33 kardel return;
692 1.33 kardel pps_tf[2] = pps_tf[1];
693 1.33 kardel pps_tf[1] = pps_tf[0];
694 1.33 kardel pps_tf[0].tv_sec = u_sec;
695 1.33 kardel pps_tf[0].tv_nsec = u_nsec;
696 1.33 kardel
697 1.33 kardel /*
698 1.33 kardel * Compute the difference between the current and previous
699 1.33 kardel * counter values. If the difference exceeds 0.5 s, assume it
700 1.33 kardel * has wrapped around, so correct 1.0 s. If the result exceeds
701 1.33 kardel * the tick interval, the sample point has crossed a tick
702 1.33 kardel * boundary during the last second, so correct the tick. Very
703 1.33 kardel * intricate.
704 1.33 kardel */
705 1.33 kardel u_nsec = nsec;
706 1.33 kardel if (u_nsec > (NANOSECOND >> 1))
707 1.33 kardel u_nsec -= NANOSECOND;
708 1.33 kardel else if (u_nsec < -(NANOSECOND >> 1))
709 1.33 kardel u_nsec += NANOSECOND;
710 1.33 kardel pps_fcount += u_nsec;
711 1.33 kardel if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
712 1.33 kardel return;
713 1.33 kardel time_status &= ~STA_PPSJITTER;
714 1.33 kardel
715 1.33 kardel /*
716 1.33 kardel * A three-stage median filter is used to help denoise the PPS
717 1.33 kardel * time. The median sample becomes the time offset estimate; the
718 1.33 kardel * difference between the other two samples becomes the time
719 1.33 kardel * dispersion (jitter) estimate.
720 1.33 kardel */
721 1.33 kardel if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
722 1.33 kardel if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
723 1.33 kardel v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
724 1.33 kardel u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
725 1.33 kardel } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
726 1.33 kardel v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
727 1.33 kardel u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
728 1.33 kardel } else {
729 1.33 kardel v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
730 1.33 kardel u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
731 1.33 kardel }
732 1.33 kardel } else {
733 1.33 kardel if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
734 1.33 kardel v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
735 1.33 kardel u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
736 1.33 kardel } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
737 1.33 kardel v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
738 1.33 kardel u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
739 1.33 kardel } else {
740 1.33 kardel v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
741 1.33 kardel u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
742 1.33 kardel }
743 1.33 kardel }
744 1.33 kardel
745 1.33 kardel /*
746 1.33 kardel * Nominal jitter is due to PPS signal noise and interrupt
747 1.33 kardel * latency. If it exceeds the popcorn threshold, the sample is
748 1.33 kardel * discarded. otherwise, if so enabled, the time offset is
749 1.33 kardel * updated. We can tolerate a modest loss of data here without
750 1.33 kardel * much degrading time accuracy.
751 1.33 kardel */
752 1.33 kardel if (u_nsec > (pps_jitter << PPS_POPCORN)) {
753 1.33 kardel time_status |= STA_PPSJITTER;
754 1.33 kardel pps_jitcnt++;
755 1.33 kardel } else if (time_status & STA_PPSTIME) {
756 1.33 kardel time_monitor = -v_nsec;
757 1.33 kardel L_LINT(time_offset, time_monitor);
758 1.33 kardel }
759 1.33 kardel pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
760 1.33 kardel u_sec = pps_tf[0].tv_sec - pps_lastsec;
761 1.33 kardel if (u_sec < (1 << pps_shift))
762 1.33 kardel return;
763 1.33 kardel
764 1.33 kardel /*
765 1.33 kardel * At the end of the calibration interval the difference between
766 1.33 kardel * the first and last counter values becomes the scaled
767 1.33 kardel * frequency. It will later be divided by the length of the
768 1.33 kardel * interval to determine the frequency update. If the frequency
769 1.33 kardel * exceeds a sanity threshold, or if the actual calibration
770 1.33 kardel * interval is not equal to the expected length, the data are
771 1.33 kardel * discarded. We can tolerate a modest loss of data here without
772 1.33 kardel * much degrading frequency accuracy.
773 1.33 kardel */
774 1.33 kardel pps_calcnt++;
775 1.33 kardel v_nsec = -pps_fcount;
776 1.33 kardel pps_lastsec = pps_tf[0].tv_sec;
777 1.33 kardel pps_fcount = 0;
778 1.33 kardel u_nsec = MAXFREQ << pps_shift;
779 1.33 kardel if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
780 1.33 kardel pps_shift)) {
781 1.33 kardel time_status |= STA_PPSERROR;
782 1.33 kardel pps_errcnt++;
783 1.33 kardel return;
784 1.33 kardel }
785 1.33 kardel
786 1.33 kardel /*
787 1.33 kardel * Here the raw frequency offset and wander (stability) is
788 1.33 kardel * calculated. If the wander is less than the wander threshold
789 1.33 kardel * for four consecutive averaging intervals, the interval is
790 1.33 kardel * doubled; if it is greater than the threshold for four
791 1.33 kardel * consecutive intervals, the interval is halved. The scaled
792 1.33 kardel * frequency offset is converted to frequency offset. The
793 1.33 kardel * stability metric is calculated as the average of recent
794 1.33 kardel * frequency changes, but is used only for performance
795 1.33 kardel * monitoring.
796 1.33 kardel */
797 1.33 kardel L_LINT(ftemp, v_nsec);
798 1.33 kardel L_RSHIFT(ftemp, pps_shift);
799 1.33 kardel L_SUB(ftemp, pps_freq);
800 1.33 kardel u_nsec = L_GINT(ftemp);
801 1.33 kardel if (u_nsec > PPS_MAXWANDER) {
802 1.33 kardel L_LINT(ftemp, PPS_MAXWANDER);
803 1.33 kardel pps_intcnt--;
804 1.33 kardel time_status |= STA_PPSWANDER;
805 1.33 kardel pps_stbcnt++;
806 1.33 kardel } else if (u_nsec < -PPS_MAXWANDER) {
807 1.33 kardel L_LINT(ftemp, -PPS_MAXWANDER);
808 1.33 kardel pps_intcnt--;
809 1.33 kardel time_status |= STA_PPSWANDER;
810 1.33 kardel pps_stbcnt++;
811 1.33 kardel } else {
812 1.33 kardel pps_intcnt++;
813 1.33 kardel }
814 1.33 kardel if (pps_intcnt >= 4) {
815 1.33 kardel pps_intcnt = 4;
816 1.33 kardel if (pps_shift < pps_shiftmax) {
817 1.33 kardel pps_shift++;
818 1.33 kardel pps_intcnt = 0;
819 1.33 kardel }
820 1.33 kardel } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
821 1.33 kardel pps_intcnt = -4;
822 1.33 kardel if (pps_shift > PPS_FAVG) {
823 1.33 kardel pps_shift--;
824 1.33 kardel pps_intcnt = 0;
825 1.33 kardel }
826 1.33 kardel }
827 1.33 kardel if (u_nsec < 0)
828 1.33 kardel u_nsec = -u_nsec;
829 1.33 kardel pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
830 1.33 kardel
831 1.33 kardel /*
832 1.33 kardel * The PPS frequency is recalculated and clamped to the maximum
833 1.33 kardel * MAXFREQ. If enabled, the system clock frequency is updated as
834 1.33 kardel * well.
835 1.33 kardel */
836 1.33 kardel L_ADD(pps_freq, ftemp);
837 1.33 kardel u_nsec = L_GINT(pps_freq);
838 1.33 kardel if (u_nsec > MAXFREQ)
839 1.33 kardel L_LINT(pps_freq, MAXFREQ);
840 1.33 kardel else if (u_nsec < -MAXFREQ)
841 1.33 kardel L_LINT(pps_freq, -MAXFREQ);
842 1.33 kardel if (time_status & STA_PPSFREQ)
843 1.33 kardel time_freq = pps_freq;
844 1.33 kardel }
845 1.33 kardel #endif /* PPS_SYNC */
846 1.33 kardel #endif /* NTP */
847 1.33 kardel
848 1.33 kardel #ifdef NTP
849 1.33 kardel int
850 1.47 matt ntp_timestatus(void)
851 1.33 kardel {
852 1.33 kardel /*
853 1.33 kardel * Status word error decode. If any of these conditions
854 1.33 kardel * occur, an error is returned, instead of the status
855 1.33 kardel * word. Most applications will care only about the fact
856 1.33 kardel * the system clock may not be trusted, not about the
857 1.33 kardel * details.
858 1.33 kardel *
859 1.33 kardel * Hardware or software error
860 1.33 kardel */
861 1.33 kardel if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
862 1.33 kardel
863 1.33 kardel /*
864 1.33 kardel * PPS signal lost when either time or frequency
865 1.33 kardel * synchronization requested
866 1.33 kardel */
867 1.33 kardel (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
868 1.33 kardel !(time_status & STA_PPSSIGNAL)) ||
869 1.33 kardel
870 1.33 kardel /*
871 1.33 kardel * PPS jitter exceeded when time synchronization
872 1.33 kardel * requested
873 1.33 kardel */
874 1.33 kardel (time_status & STA_PPSTIME &&
875 1.33 kardel time_status & STA_PPSJITTER) ||
876 1.33 kardel
877 1.33 kardel /*
878 1.33 kardel * PPS wander exceeded or calibration error when
879 1.33 kardel * frequency synchronization requested
880 1.33 kardel */
881 1.33 kardel (time_status & STA_PPSFREQ &&
882 1.33 kardel time_status & (STA_PPSWANDER | STA_PPSERROR)))
883 1.33 kardel return (TIME_ERROR);
884 1.33 kardel else
885 1.33 kardel return (time_state);
886 1.33 kardel }
887 1.1 jonathan
888 1.33 kardel /*ARGSUSED*/
889 1.33 kardel /*
890 1.33 kardel * ntp_gettime() - NTP user application interface
891 1.33 kardel */
892 1.33 kardel int
893 1.45 dsl sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
894 1.33 kardel {
895 1.45 dsl /* {
896 1.33 kardel syscallarg(struct ntptimeval *) ntvp;
897 1.45 dsl } */
898 1.33 kardel struct ntptimeval ntv;
899 1.33 kardel int error = 0;
900 1.33 kardel
901 1.33 kardel if (SCARG(uap, ntvp)) {
902 1.33 kardel ntp_gettime(&ntv);
903 1.33 kardel
904 1.43 christos error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
905 1.33 kardel sizeof(ntv));
906 1.33 kardel }
907 1.1 jonathan if (!error) {
908 1.33 kardel *retval = ntp_timestatus();
909 1.33 kardel }
910 1.33 kardel return(error);
911 1.33 kardel }
912 1.1 jonathan
913 1.33 kardel #ifdef COMPAT_30
914 1.33 kardel int
915 1.45 dsl compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
916 1.33 kardel {
917 1.45 dsl /* {
918 1.33 kardel syscallarg(struct ntptimeval30 *) ontvp;
919 1.45 dsl } */
920 1.33 kardel struct ntptimeval ntv;
921 1.33 kardel struct ntptimeval30 ontv;
922 1.33 kardel int error = 0;
923 1.33 kardel
924 1.33 kardel if (SCARG(uap, ntvp)) {
925 1.33 kardel ntp_gettime(&ntv);
926 1.33 kardel TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
927 1.33 kardel ontv.maxerror = ntv.maxerror;
928 1.33 kardel ontv.esterror = ntv.esterror;
929 1.33 kardel
930 1.43 christos error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
931 1.33 kardel sizeof(ontv));
932 1.33 kardel }
933 1.33 kardel if (!error)
934 1.33 kardel *retval = ntp_timestatus();
935 1.33 kardel
936 1.33 kardel return (error);
937 1.1 jonathan }
938 1.33 kardel #endif
939 1.1 jonathan
940 1.1 jonathan /*
941 1.1 jonathan * return information about kernel precision timekeeping
942 1.1 jonathan */
943 1.25 atatat static int
944 1.25 atatat sysctl_kern_ntptime(SYSCTLFN_ARGS)
945 1.1 jonathan {
946 1.25 atatat struct sysctlnode node;
947 1.1 jonathan struct ntptimeval ntv;
948 1.1 jonathan
949 1.31 drochner ntp_gettime(&ntv);
950 1.25 atatat
951 1.25 atatat node = *rnode;
952 1.25 atatat node.sysctl_data = &ntv;
953 1.25 atatat node.sysctl_size = sizeof(ntv);
954 1.25 atatat return (sysctl_lookup(SYSCTLFN_CALL(&node)));
955 1.25 atatat }
956 1.25 atatat
957 1.25 atatat SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
958 1.25 atatat {
959 1.25 atatat
960 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
961 1.26 atatat CTLFLAG_PERMANENT,
962 1.25 atatat CTLTYPE_NODE, "kern", NULL,
963 1.25 atatat NULL, 0, NULL, 0,
964 1.25 atatat CTL_KERN, CTL_EOL);
965 1.25 atatat
966 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
967 1.26 atatat CTLFLAG_PERMANENT,
968 1.27 atatat CTLTYPE_STRUCT, "ntptime",
969 1.27 atatat SYSCTL_DESCR("Kernel clock values for NTP"),
970 1.25 atatat sysctl_kern_ntptime, 0, NULL,
971 1.25 atatat sizeof(struct ntptimeval),
972 1.25 atatat CTL_KERN, KERN_NTPTIME, CTL_EOL);
973 1.1 jonathan }
974 1.4 thorpej #else /* !NTP */
975 1.13 bjh21 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
976 1.13 bjh21
977 1.4 thorpej int
978 1.45 dsl sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
979 1.31 drochner {
980 1.31 drochner
981 1.31 drochner return(ENOSYS);
982 1.31 drochner }
983 1.31 drochner
984 1.31 drochner #ifdef COMPAT_30
985 1.31 drochner int
986 1.45 dsl compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
987 1.4 thorpej {
988 1.19 simonb
989 1.33 kardel return(ENOSYS);
990 1.4 thorpej }
991 1.31 drochner #endif
992 1.13 bjh21 #endif /* !NTP */
993