Home | History | Annotate | Line # | Download | only in kern
kern_ntptime.c revision 1.49.6.1
      1  1.49.6.1      haad /*	$NetBSD: kern_ntptime.c,v 1.49.6.1 2008/12/13 01:15:08 haad Exp $	*/
      2      1.48        ad 
      3      1.48        ad /*-
      4      1.48        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5      1.48        ad  * All rights reserved.
      6      1.48        ad  *
      7      1.48        ad  * Redistribution and use in source and binary forms, with or without
      8      1.48        ad  * modification, are permitted provided that the following conditions
      9      1.48        ad  * are met:
     10      1.48        ad  * 1. Redistributions of source code must retain the above copyright
     11      1.48        ad  *    notice, this list of conditions and the following disclaimer.
     12      1.48        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13      1.48        ad  *    notice, this list of conditions and the following disclaimer in the
     14      1.48        ad  *    documentation and/or other materials provided with the distribution.
     15      1.48        ad  *
     16      1.48        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17      1.48        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18      1.48        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19      1.48        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20      1.48        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21      1.48        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22      1.48        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23      1.48        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24      1.48        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25      1.48        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26      1.48        ad  * POSSIBILITY OF SUCH DAMAGE.
     27      1.48        ad  */
     28      1.33    kardel 
     29      1.33    kardel /*-
     30      1.33    kardel  ***********************************************************************
     31      1.33    kardel  *								       *
     32      1.33    kardel  * Copyright (c) David L. Mills 1993-2001			       *
     33      1.33    kardel  *								       *
     34      1.33    kardel  * Permission to use, copy, modify, and distribute this software and   *
     35      1.33    kardel  * its documentation for any purpose and without fee is hereby	       *
     36      1.33    kardel  * granted, provided that the above copyright notice appears in all    *
     37      1.33    kardel  * copies and that both the copyright notice and this permission       *
     38      1.33    kardel  * notice appear in supporting documentation, and that the name	       *
     39      1.33    kardel  * University of Delaware not be used in advertising or publicity      *
     40      1.33    kardel  * pertaining to distribution of the software without specific,	       *
     41      1.33    kardel  * written prior permission. The University of Delaware makes no       *
     42      1.33    kardel  * representations about the suitability this software for any	       *
     43      1.33    kardel  * purpose. It is provided "as is" without express or implied	       *
     44      1.33    kardel  * warranty.							       *
     45      1.33    kardel  *								       *
     46      1.33    kardel  **********************************************************************/
     47       1.1  jonathan 
     48      1.33    kardel /*
     49      1.33    kardel  * Adapted from the original sources for FreeBSD and timecounters by:
     50      1.33    kardel  * Poul-Henning Kamp <phk (at) FreeBSD.org>.
     51      1.33    kardel  *
     52      1.33    kardel  * The 32bit version of the "LP" macros seems a bit past its "sell by"
     53      1.33    kardel  * date so I have retained only the 64bit version and included it directly
     54      1.33    kardel  * in this file.
     55      1.33    kardel  *
     56      1.33    kardel  * Only minor changes done to interface with the timecounters over in
     57      1.33    kardel  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
     58      1.33    kardel  * confusing and/or plain wrong in that context.
     59      1.33    kardel  */
     60      1.33    kardel 
     61      1.33    kardel #include <sys/cdefs.h>
     62      1.33    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
     63  1.49.6.1      haad __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.49.6.1 2008/12/13 01:15:08 haad Exp $");
     64      1.33    kardel 
     65      1.33    kardel #include "opt_ntp.h"
     66      1.33    kardel 
     67      1.33    kardel #include <sys/param.h>
     68      1.33    kardel #include <sys/resourcevar.h>
     69      1.33    kardel #include <sys/systm.h>
     70      1.33    kardel #include <sys/kernel.h>
     71      1.33    kardel #include <sys/proc.h>
     72      1.33    kardel #include <sys/sysctl.h>
     73      1.33    kardel #include <sys/timex.h>
     74      1.33    kardel #include <sys/vnode.h>
     75      1.33    kardel #include <sys/kauth.h>
     76      1.33    kardel #include <sys/mount.h>
     77      1.33    kardel #include <sys/syscallargs.h>
     78      1.48        ad #include <sys/cpu.h>
     79      1.33    kardel 
     80      1.48        ad #include <compat/sys/timex.h>
     81      1.33    kardel 
     82      1.33    kardel /*
     83      1.33    kardel  * Single-precision macros for 64-bit machines
     84      1.33    kardel  */
     85      1.33    kardel typedef int64_t l_fp;
     86      1.33    kardel #define L_ADD(v, u)	((v) += (u))
     87      1.33    kardel #define L_SUB(v, u)	((v) -= (u))
     88      1.33    kardel #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
     89      1.33    kardel #define L_NEG(v)	((v) = -(v))
     90      1.33    kardel #define L_RSHIFT(v, n) \
     91      1.33    kardel 	do { \
     92      1.33    kardel 		if ((v) < 0) \
     93      1.33    kardel 			(v) = -(-(v) >> (n)); \
     94      1.33    kardel 		else \
     95      1.33    kardel 			(v) = (v) >> (n); \
     96      1.33    kardel 	} while (0)
     97      1.33    kardel #define L_MPY(v, a)	((v) *= (a))
     98      1.33    kardel #define L_CLR(v)	((v) = 0)
     99      1.33    kardel #define L_ISNEG(v)	((v) < 0)
    100      1.33    kardel #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
    101      1.33    kardel #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
    102      1.33    kardel 
    103      1.33    kardel #ifdef NTP
    104      1.33    kardel /*
    105      1.33    kardel  * Generic NTP kernel interface
    106      1.33    kardel  *
    107      1.33    kardel  * These routines constitute the Network Time Protocol (NTP) interfaces
    108      1.33    kardel  * for user and daemon application programs. The ntp_gettime() routine
    109      1.33    kardel  * provides the time, maximum error (synch distance) and estimated error
    110      1.33    kardel  * (dispersion) to client user application programs. The ntp_adjtime()
    111      1.33    kardel  * routine is used by the NTP daemon to adjust the system clock to an
    112      1.33    kardel  * externally derived time. The time offset and related variables set by
    113      1.33    kardel  * this routine are used by other routines in this module to adjust the
    114      1.33    kardel  * phase and frequency of the clock discipline loop which controls the
    115      1.33    kardel  * system clock.
    116      1.33    kardel  *
    117      1.33    kardel  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
    118      1.33    kardel  * defined), the time at each tick interrupt is derived directly from
    119      1.33    kardel  * the kernel time variable. When the kernel time is reckoned in
    120      1.33    kardel  * microseconds, (NTP_NANO undefined), the time is derived from the
    121      1.33    kardel  * kernel time variable together with a variable representing the
    122      1.33    kardel  * leftover nanoseconds at the last tick interrupt. In either case, the
    123      1.33    kardel  * current nanosecond time is reckoned from these values plus an
    124      1.33    kardel  * interpolated value derived by the clock routines in another
    125      1.33    kardel  * architecture-specific module. The interpolation can use either a
    126      1.33    kardel  * dedicated counter or a processor cycle counter (PCC) implemented in
    127      1.33    kardel  * some architectures.
    128      1.33    kardel  *
    129      1.33    kardel  * Note that all routines must run at priority splclock or higher.
    130      1.33    kardel  */
    131      1.33    kardel /*
    132      1.33    kardel  * Phase/frequency-lock loop (PLL/FLL) definitions
    133      1.33    kardel  *
    134      1.33    kardel  * The nanosecond clock discipline uses two variable types, time
    135      1.33    kardel  * variables and frequency variables. Both types are represented as 64-
    136      1.33    kardel  * bit fixed-point quantities with the decimal point between two 32-bit
    137      1.33    kardel  * halves. On a 32-bit machine, each half is represented as a single
    138      1.33    kardel  * word and mathematical operations are done using multiple-precision
    139      1.33    kardel  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
    140      1.33    kardel  * used.
    141      1.33    kardel  *
    142      1.33    kardel  * A time variable is a signed 64-bit fixed-point number in ns and
    143      1.33    kardel  * fraction. It represents the remaining time offset to be amortized
    144      1.33    kardel  * over succeeding tick interrupts. The maximum time offset is about
    145      1.33    kardel  * 0.5 s and the resolution is about 2.3e-10 ns.
    146      1.33    kardel  *
    147      1.33    kardel  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    148      1.33    kardel  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    149      1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    150      1.33    kardel  * |s s s|			 ns				   |
    151      1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    152      1.33    kardel  * |			    fraction				   |
    153      1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    154      1.33    kardel  *
    155      1.33    kardel  * A frequency variable is a signed 64-bit fixed-point number in ns/s
    156      1.33    kardel  * and fraction. It represents the ns and fraction to be added to the
    157      1.33    kardel  * kernel time variable at each second. The maximum frequency offset is
    158      1.33    kardel  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
    159      1.33    kardel  *
    160      1.33    kardel  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    161      1.33    kardel  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    162      1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    163      1.33    kardel  * |s s s s s s s s s s s s s|	          ns/s			   |
    164      1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    165      1.33    kardel  * |			    fraction				   |
    166      1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    167      1.33    kardel  */
    168      1.33    kardel /*
    169      1.33    kardel  * The following variables establish the state of the PLL/FLL and the
    170      1.33    kardel  * residual time and frequency offset of the local clock.
    171      1.33    kardel  */
    172      1.33    kardel #define SHIFT_PLL	4		/* PLL loop gain (shift) */
    173      1.33    kardel #define SHIFT_FLL	2		/* FLL loop gain (shift) */
    174      1.33    kardel 
    175      1.33    kardel static int time_state = TIME_OK;	/* clock state */
    176      1.33    kardel static int time_status = STA_UNSYNC;	/* clock status bits */
    177      1.33    kardel static long time_tai;			/* TAI offset (s) */
    178      1.33    kardel static long time_monitor;		/* last time offset scaled (ns) */
    179      1.33    kardel static long time_constant;		/* poll interval (shift) (s) */
    180      1.33    kardel static long time_precision = 1;		/* clock precision (ns) */
    181      1.33    kardel static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
    182      1.33    kardel static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
    183      1.33    kardel static long time_reftime;		/* time at last adjustment (s) */
    184      1.33    kardel static l_fp time_offset;		/* time offset (ns) */
    185      1.33    kardel static l_fp time_freq;			/* frequency offset (ns/s) */
    186      1.33    kardel #endif /* NTP */
    187      1.33    kardel 
    188      1.33    kardel static l_fp time_adj;			/* tick adjust (ns/s) */
    189      1.33    kardel int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
    190      1.33    kardel 
    191      1.33    kardel extern int time_adjusted;	/* ntp might have changed the system time */
    192      1.33    kardel 
    193      1.33    kardel #ifdef NTP
    194      1.33    kardel #ifdef PPS_SYNC
    195      1.33    kardel /*
    196      1.33    kardel  * The following variables are used when a pulse-per-second (PPS) signal
    197      1.33    kardel  * is available and connected via a modem control lead. They establish
    198      1.33    kardel  * the engineering parameters of the clock discipline loop when
    199      1.33    kardel  * controlled by the PPS signal.
    200      1.33    kardel  */
    201      1.33    kardel #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
    202      1.33    kardel #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
    203      1.33    kardel #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
    204      1.33    kardel #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
    205      1.33    kardel #define PPS_VALID	120		/* PPS signal watchdog max (s) */
    206      1.33    kardel #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
    207      1.33    kardel #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
    208      1.33    kardel 
    209      1.33    kardel static struct timespec pps_tf[3];	/* phase median filter */
    210      1.33    kardel static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
    211      1.33    kardel static long pps_fcount;			/* frequency accumulator */
    212      1.33    kardel static long pps_jitter;			/* nominal jitter (ns) */
    213      1.33    kardel static long pps_stabil;			/* nominal stability (scaled ns/s) */
    214      1.33    kardel static long pps_lastsec;		/* time at last calibration (s) */
    215      1.33    kardel static int pps_valid;			/* signal watchdog counter */
    216      1.33    kardel static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
    217      1.33    kardel static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
    218      1.33    kardel static int pps_intcnt;			/* wander counter */
    219      1.33    kardel 
    220      1.33    kardel /*
    221      1.33    kardel  * PPS signal quality monitors
    222      1.33    kardel  */
    223      1.33    kardel static long pps_calcnt;			/* calibration intervals */
    224      1.33    kardel static long pps_jitcnt;			/* jitter limit exceeded */
    225      1.33    kardel static long pps_stbcnt;			/* stability limit exceeded */
    226      1.33    kardel static long pps_errcnt;			/* calibration errors */
    227      1.33    kardel #endif /* PPS_SYNC */
    228      1.33    kardel /*
    229      1.33    kardel  * End of phase/frequency-lock loop (PLL/FLL) definitions
    230      1.33    kardel  */
    231      1.33    kardel 
    232      1.33    kardel static void hardupdate(long offset);
    233      1.33    kardel 
    234      1.33    kardel /*
    235      1.33    kardel  * ntp_gettime() - NTP user application interface
    236      1.33    kardel  */
    237      1.33    kardel void
    238      1.45       dsl ntp_gettime(struct ntptimeval *ntv)
    239      1.33    kardel {
    240      1.48        ad 
    241      1.48        ad 	mutex_spin_enter(&timecounter_lock);
    242      1.33    kardel 	nanotime(&ntv->time);
    243      1.33    kardel 	ntv->maxerror = time_maxerror;
    244      1.33    kardel 	ntv->esterror = time_esterror;
    245      1.33    kardel 	ntv->tai = time_tai;
    246      1.33    kardel 	ntv->time_state = time_state;
    247      1.48        ad 	mutex_spin_exit(&timecounter_lock);
    248      1.33    kardel }
    249      1.33    kardel 
    250      1.33    kardel /* ARGSUSED */
    251      1.33    kardel /*
    252      1.33    kardel  * ntp_adjtime() - NTP daemon application interface
    253      1.33    kardel  */
    254      1.33    kardel int
    255      1.45       dsl sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
    256      1.33    kardel {
    257      1.45       dsl 	/* {
    258      1.33    kardel 		syscallarg(struct timex *) tp;
    259      1.45       dsl 	} */
    260      1.33    kardel 	struct timex ntv;
    261      1.33    kardel 	int error = 0;
    262      1.33    kardel 
    263      1.43  christos 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
    264      1.35        ad 	if (error != 0)
    265      1.33    kardel 		return (error);
    266      1.33    kardel 
    267      1.37      elad 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
    268      1.37      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
    269      1.36      elad 	    NULL, NULL)) != 0)
    270      1.33    kardel 		return (error);
    271      1.33    kardel 
    272      1.33    kardel 	ntp_adjtime1(&ntv);
    273      1.33    kardel 
    274      1.43  christos 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
    275      1.35        ad 	if (!error)
    276      1.33    kardel 		*retval = ntp_timestatus();
    277      1.35        ad 
    278      1.33    kardel 	return error;
    279      1.33    kardel }
    280      1.33    kardel 
    281      1.33    kardel void
    282      1.45       dsl ntp_adjtime1(struct timex *ntv)
    283      1.33    kardel {
    284      1.33    kardel 	long freq;
    285      1.33    kardel 	int modes;
    286      1.33    kardel 
    287      1.33    kardel 	/*
    288      1.33    kardel 	 * Update selected clock variables - only the superuser can
    289      1.33    kardel 	 * change anything. Note that there is no error checking here on
    290      1.33    kardel 	 * the assumption the superuser should know what it is doing.
    291      1.33    kardel 	 * Note that either the time constant or TAI offset are loaded
    292      1.33    kardel 	 * from the ntv.constant member, depending on the mode bits. If
    293      1.33    kardel 	 * the STA_PLL bit in the status word is cleared, the state and
    294      1.33    kardel 	 * status words are reset to the initial values at boot.
    295      1.33    kardel 	 */
    296      1.48        ad 	mutex_spin_enter(&timecounter_lock);
    297      1.33    kardel 	modes = ntv->modes;
    298      1.33    kardel 	if (modes != 0)
    299      1.33    kardel 		/* We need to save the system time during shutdown */
    300      1.33    kardel 		time_adjusted |= 2;
    301      1.33    kardel 	if (modes & MOD_MAXERROR)
    302      1.33    kardel 		time_maxerror = ntv->maxerror;
    303      1.33    kardel 	if (modes & MOD_ESTERROR)
    304      1.33    kardel 		time_esterror = ntv->esterror;
    305      1.33    kardel 	if (modes & MOD_STATUS) {
    306      1.33    kardel 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
    307      1.33    kardel 			time_state = TIME_OK;
    308      1.33    kardel 			time_status = STA_UNSYNC;
    309      1.33    kardel #ifdef PPS_SYNC
    310      1.33    kardel 			pps_shift = PPS_FAVG;
    311      1.33    kardel #endif /* PPS_SYNC */
    312      1.33    kardel 		}
    313      1.33    kardel 		time_status &= STA_RONLY;
    314      1.33    kardel 		time_status |= ntv->status & ~STA_RONLY;
    315      1.33    kardel 	}
    316      1.33    kardel 	if (modes & MOD_TIMECONST) {
    317      1.33    kardel 		if (ntv->constant < 0)
    318      1.33    kardel 			time_constant = 0;
    319      1.33    kardel 		else if (ntv->constant > MAXTC)
    320      1.33    kardel 			time_constant = MAXTC;
    321      1.33    kardel 		else
    322      1.33    kardel 			time_constant = ntv->constant;
    323      1.33    kardel 	}
    324      1.33    kardel 	if (modes & MOD_TAI) {
    325      1.33    kardel 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
    326      1.33    kardel 			time_tai = ntv->constant;
    327      1.33    kardel 	}
    328      1.33    kardel #ifdef PPS_SYNC
    329      1.33    kardel 	if (modes & MOD_PPSMAX) {
    330      1.33    kardel 		if (ntv->shift < PPS_FAVG)
    331      1.33    kardel 			pps_shiftmax = PPS_FAVG;
    332      1.33    kardel 		else if (ntv->shift > PPS_FAVGMAX)
    333      1.33    kardel 			pps_shiftmax = PPS_FAVGMAX;
    334      1.33    kardel 		else
    335      1.33    kardel 			pps_shiftmax = ntv->shift;
    336      1.33    kardel 	}
    337      1.33    kardel #endif /* PPS_SYNC */
    338      1.33    kardel 	if (modes & MOD_NANO)
    339      1.33    kardel 		time_status |= STA_NANO;
    340      1.33    kardel 	if (modes & MOD_MICRO)
    341      1.33    kardel 		time_status &= ~STA_NANO;
    342      1.33    kardel 	if (modes & MOD_CLKB)
    343      1.33    kardel 		time_status |= STA_CLK;
    344      1.33    kardel 	if (modes & MOD_CLKA)
    345      1.33    kardel 		time_status &= ~STA_CLK;
    346      1.33    kardel 	if (modes & MOD_FREQUENCY) {
    347      1.33    kardel 		freq = (ntv->freq * 1000LL) >> 16;
    348      1.33    kardel 		if (freq > MAXFREQ)
    349      1.33    kardel 			L_LINT(time_freq, MAXFREQ);
    350      1.33    kardel 		else if (freq < -MAXFREQ)
    351      1.33    kardel 			L_LINT(time_freq, -MAXFREQ);
    352      1.33    kardel 		else {
    353      1.33    kardel 			/*
    354      1.33    kardel 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
    355      1.33    kardel 			 * time_freq is [ns/s * 2^32]
    356      1.33    kardel 			 */
    357      1.33    kardel 			time_freq = ntv->freq * 1000LL * 65536LL;
    358      1.33    kardel 		}
    359      1.33    kardel #ifdef PPS_SYNC
    360      1.33    kardel 		pps_freq = time_freq;
    361      1.33    kardel #endif /* PPS_SYNC */
    362      1.33    kardel 	}
    363      1.33    kardel 	if (modes & MOD_OFFSET) {
    364      1.33    kardel 		if (time_status & STA_NANO)
    365      1.33    kardel 			hardupdate(ntv->offset);
    366      1.33    kardel 		else
    367      1.33    kardel 			hardupdate(ntv->offset * 1000);
    368      1.33    kardel 	}
    369      1.33    kardel 
    370      1.33    kardel 	/*
    371      1.33    kardel 	 * Retrieve all clock variables. Note that the TAI offset is
    372      1.33    kardel 	 * returned only by ntp_gettime();
    373      1.33    kardel 	 */
    374      1.33    kardel 	if (time_status & STA_NANO)
    375      1.33    kardel 		ntv->offset = L_GINT(time_offset);
    376      1.33    kardel 	else
    377      1.33    kardel 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
    378      1.33    kardel 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
    379      1.33    kardel 	ntv->maxerror = time_maxerror;
    380      1.33    kardel 	ntv->esterror = time_esterror;
    381      1.33    kardel 	ntv->status = time_status;
    382      1.33    kardel 	ntv->constant = time_constant;
    383      1.33    kardel 	if (time_status & STA_NANO)
    384      1.33    kardel 		ntv->precision = time_precision;
    385      1.33    kardel 	else
    386      1.33    kardel 		ntv->precision = time_precision / 1000;
    387      1.33    kardel 	ntv->tolerance = MAXFREQ * SCALE_PPM;
    388      1.33    kardel #ifdef PPS_SYNC
    389      1.33    kardel 	ntv->shift = pps_shift;
    390      1.33    kardel 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
    391      1.33    kardel 	if (time_status & STA_NANO)
    392      1.33    kardel 		ntv->jitter = pps_jitter;
    393      1.33    kardel 	else
    394      1.33    kardel 		ntv->jitter = pps_jitter / 1000;
    395      1.33    kardel 	ntv->stabil = pps_stabil;
    396      1.33    kardel 	ntv->calcnt = pps_calcnt;
    397      1.33    kardel 	ntv->errcnt = pps_errcnt;
    398      1.33    kardel 	ntv->jitcnt = pps_jitcnt;
    399      1.33    kardel 	ntv->stbcnt = pps_stbcnt;
    400      1.33    kardel #endif /* PPS_SYNC */
    401      1.48        ad 	mutex_spin_exit(&timecounter_lock);
    402      1.33    kardel }
    403      1.33    kardel #endif /* NTP */
    404      1.33    kardel 
    405      1.33    kardel /*
    406      1.33    kardel  * second_overflow() - called after ntp_tick_adjust()
    407      1.33    kardel  *
    408      1.33    kardel  * This routine is ordinarily called immediately following the above
    409      1.33    kardel  * routine ntp_tick_adjust(). While these two routines are normally
    410      1.33    kardel  * combined, they are separated here only for the purposes of
    411      1.33    kardel  * simulation.
    412      1.33    kardel  */
    413      1.33    kardel void
    414      1.33    kardel ntp_update_second(int64_t *adjustment, time_t *newsec)
    415      1.33    kardel {
    416      1.33    kardel 	int tickrate;
    417      1.33    kardel 	l_fp ftemp;		/* 32/64-bit temporary */
    418      1.33    kardel 
    419      1.48        ad 	KASSERT(mutex_owned(&timecounter_lock));
    420      1.48        ad 
    421      1.33    kardel #ifdef NTP
    422      1.33    kardel 
    423      1.33    kardel 	/*
    424      1.33    kardel 	 * On rollover of the second both the nanosecond and microsecond
    425      1.33    kardel 	 * clocks are updated and the state machine cranked as
    426      1.33    kardel 	 * necessary. The phase adjustment to be used for the next
    427      1.33    kardel 	 * second is calculated and the maximum error is increased by
    428      1.33    kardel 	 * the tolerance.
    429      1.33    kardel 	 */
    430      1.33    kardel 	time_maxerror += MAXFREQ / 1000;
    431      1.33    kardel 
    432      1.33    kardel 	/*
    433      1.33    kardel 	 * Leap second processing. If in leap-insert state at
    434      1.33    kardel 	 * the end of the day, the system clock is set back one
    435      1.33    kardel 	 * second; if in leap-delete state, the system clock is
    436      1.33    kardel 	 * set ahead one second. The nano_time() routine or
    437      1.33    kardel 	 * external clock driver will insure that reported time
    438      1.33    kardel 	 * is always monotonic.
    439      1.33    kardel 	 */
    440      1.33    kardel 	switch (time_state) {
    441      1.33    kardel 
    442      1.33    kardel 		/*
    443      1.33    kardel 		 * No warning.
    444      1.33    kardel 		 */
    445      1.33    kardel 		case TIME_OK:
    446      1.33    kardel 		if (time_status & STA_INS)
    447      1.33    kardel 			time_state = TIME_INS;
    448      1.33    kardel 		else if (time_status & STA_DEL)
    449      1.33    kardel 			time_state = TIME_DEL;
    450      1.33    kardel 		break;
    451      1.33    kardel 
    452      1.33    kardel 		/*
    453      1.33    kardel 		 * Insert second 23:59:60 following second
    454      1.33    kardel 		 * 23:59:59.
    455      1.33    kardel 		 */
    456      1.33    kardel 		case TIME_INS:
    457      1.33    kardel 		if (!(time_status & STA_INS))
    458      1.33    kardel 			time_state = TIME_OK;
    459      1.33    kardel 		else if ((*newsec) % 86400 == 0) {
    460      1.33    kardel 			(*newsec)--;
    461      1.33    kardel 			time_state = TIME_OOP;
    462      1.33    kardel 			time_tai++;
    463      1.33    kardel 		}
    464      1.33    kardel 		break;
    465      1.33    kardel 
    466      1.33    kardel 		/*
    467      1.33    kardel 		 * Delete second 23:59:59.
    468      1.33    kardel 		 */
    469      1.33    kardel 		case TIME_DEL:
    470      1.33    kardel 		if (!(time_status & STA_DEL))
    471      1.33    kardel 			time_state = TIME_OK;
    472      1.33    kardel 		else if (((*newsec) + 1) % 86400 == 0) {
    473      1.33    kardel 			(*newsec)++;
    474      1.33    kardel 			time_tai--;
    475      1.33    kardel 			time_state = TIME_WAIT;
    476      1.33    kardel 		}
    477      1.33    kardel 		break;
    478      1.33    kardel 
    479      1.33    kardel 		/*
    480      1.33    kardel 		 * Insert second in progress.
    481      1.33    kardel 		 */
    482      1.33    kardel 		case TIME_OOP:
    483      1.33    kardel 			time_state = TIME_WAIT;
    484      1.33    kardel 		break;
    485      1.33    kardel 
    486      1.33    kardel 		/*
    487      1.33    kardel 		 * Wait for status bits to clear.
    488      1.33    kardel 		 */
    489      1.33    kardel 		case TIME_WAIT:
    490      1.33    kardel 		if (!(time_status & (STA_INS | STA_DEL)))
    491      1.33    kardel 			time_state = TIME_OK;
    492      1.33    kardel 	}
    493      1.33    kardel 
    494      1.33    kardel 	/*
    495      1.33    kardel 	 * Compute the total time adjustment for the next second
    496      1.33    kardel 	 * in ns. The offset is reduced by a factor depending on
    497      1.33    kardel 	 * whether the PPS signal is operating. Note that the
    498      1.33    kardel 	 * value is in effect scaled by the clock frequency,
    499      1.33    kardel 	 * since the adjustment is added at each tick interrupt.
    500      1.33    kardel 	 */
    501      1.33    kardel 	ftemp = time_offset;
    502      1.33    kardel #ifdef PPS_SYNC
    503      1.33    kardel 	/* XXX even if PPS signal dies we should finish adjustment ? */
    504      1.33    kardel 	if (time_status & STA_PPSTIME && time_status &
    505      1.33    kardel 	    STA_PPSSIGNAL)
    506      1.33    kardel 		L_RSHIFT(ftemp, pps_shift);
    507      1.33    kardel 	else
    508      1.33    kardel 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    509      1.33    kardel #else
    510      1.33    kardel 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    511      1.33    kardel #endif /* PPS_SYNC */
    512      1.33    kardel 	time_adj = ftemp;
    513      1.33    kardel 	L_SUB(time_offset, ftemp);
    514      1.33    kardel 	L_ADD(time_adj, time_freq);
    515      1.33    kardel 
    516      1.33    kardel #ifdef PPS_SYNC
    517      1.33    kardel 	if (pps_valid > 0)
    518      1.33    kardel 		pps_valid--;
    519      1.33    kardel 	else
    520      1.33    kardel 		time_status &= ~STA_PPSSIGNAL;
    521      1.33    kardel #endif /* PPS_SYNC */
    522      1.34    kardel #else  /* !NTP */
    523      1.34    kardel 	L_CLR(time_adj);
    524      1.34    kardel #endif /* !NTP */
    525      1.33    kardel 
    526      1.33    kardel 	/*
    527      1.33    kardel 	 * Apply any correction from adjtime(2).  If more than one second
    528      1.33    kardel 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
    529      1.33    kardel 	 * until the last second is slewed the final < 500 usecs.
    530      1.33    kardel 	 */
    531      1.33    kardel 	if (time_adjtime != 0) {
    532      1.33    kardel 		if (time_adjtime > 1000000)
    533      1.33    kardel 			tickrate = 5000;
    534      1.33    kardel 		else if (time_adjtime < -1000000)
    535      1.33    kardel 			tickrate = -5000;
    536      1.33    kardel 		else if (time_adjtime > 500)
    537      1.33    kardel 			tickrate = 500;
    538      1.33    kardel 		else if (time_adjtime < -500)
    539      1.33    kardel 			tickrate = -500;
    540      1.33    kardel 		else
    541      1.33    kardel 			tickrate = time_adjtime;
    542      1.33    kardel 		time_adjtime -= tickrate;
    543      1.33    kardel 		L_LINT(ftemp, tickrate * 1000);
    544      1.33    kardel 		L_ADD(time_adj, ftemp);
    545      1.33    kardel 	}
    546      1.33    kardel 	*adjustment = time_adj;
    547      1.33    kardel }
    548      1.33    kardel 
    549      1.33    kardel /*
    550      1.33    kardel  * ntp_init() - initialize variables and structures
    551      1.33    kardel  *
    552      1.33    kardel  * This routine must be called after the kernel variables hz and tick
    553      1.33    kardel  * are set or changed and before the next tick interrupt. In this
    554      1.33    kardel  * particular implementation, these values are assumed set elsewhere in
    555      1.33    kardel  * the kernel. The design allows the clock frequency and tick interval
    556      1.33    kardel  * to be changed while the system is running. So, this routine should
    557      1.33    kardel  * probably be integrated with the code that does that.
    558      1.33    kardel  */
    559      1.33    kardel void
    560      1.33    kardel ntp_init(void)
    561      1.33    kardel {
    562      1.33    kardel 
    563      1.33    kardel 	/*
    564      1.33    kardel 	 * The following variables are initialized only at startup. Only
    565      1.33    kardel 	 * those structures not cleared by the compiler need to be
    566      1.33    kardel 	 * initialized, and these only in the simulator. In the actual
    567      1.33    kardel 	 * kernel, any nonzero values here will quickly evaporate.
    568      1.33    kardel 	 */
    569      1.33    kardel 	L_CLR(time_adj);
    570      1.33    kardel #ifdef NTP
    571      1.33    kardel 	L_CLR(time_offset);
    572      1.33    kardel 	L_CLR(time_freq);
    573      1.33    kardel #ifdef PPS_SYNC
    574      1.33    kardel 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
    575      1.33    kardel 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
    576      1.33    kardel 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
    577      1.33    kardel 	pps_fcount = 0;
    578      1.33    kardel 	L_CLR(pps_freq);
    579      1.33    kardel #endif /* PPS_SYNC */
    580      1.33    kardel #endif
    581      1.33    kardel }
    582      1.33    kardel 
    583      1.33    kardel #ifdef NTP
    584      1.33    kardel /*
    585      1.33    kardel  * hardupdate() - local clock update
    586      1.33    kardel  *
    587      1.33    kardel  * This routine is called by ntp_adjtime() to update the local clock
    588      1.33    kardel  * phase and frequency. The implementation is of an adaptive-parameter,
    589      1.33    kardel  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    590      1.33    kardel  * time and frequency offset estimates for each call. If the kernel PPS
    591      1.33    kardel  * discipline code is configured (PPS_SYNC), the PPS signal itself
    592      1.33    kardel  * determines the new time offset, instead of the calling argument.
    593      1.33    kardel  * Presumably, calls to ntp_adjtime() occur only when the caller
    594      1.33    kardel  * believes the local clock is valid within some bound (+-128 ms with
    595      1.33    kardel  * NTP). If the caller's time is far different than the PPS time, an
    596      1.33    kardel  * argument will ensue, and it's not clear who will lose.
    597      1.33    kardel  *
    598      1.33    kardel  * For uncompensated quartz crystal oscillators and nominal update
    599      1.33    kardel  * intervals less than 256 s, operation should be in phase-lock mode,
    600      1.33    kardel  * where the loop is disciplined to phase. For update intervals greater
    601      1.33    kardel  * than 1024 s, operation should be in frequency-lock mode, where the
    602      1.33    kardel  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
    603      1.33    kardel  * is selected by the STA_MODE status bit.
    604      1.33    kardel  *
    605      1.33    kardel  * Note: splclock() is in effect.
    606      1.33    kardel  */
    607      1.33    kardel void
    608      1.33    kardel hardupdate(long offset)
    609      1.33    kardel {
    610      1.33    kardel 	long mtemp;
    611      1.33    kardel 	l_fp ftemp;
    612      1.33    kardel 
    613      1.48        ad 	KASSERT(mutex_owned(&timecounter_lock));
    614      1.48        ad 
    615      1.33    kardel 	/*
    616      1.33    kardel 	 * Select how the phase is to be controlled and from which
    617      1.33    kardel 	 * source. If the PPS signal is present and enabled to
    618      1.33    kardel 	 * discipline the time, the PPS offset is used; otherwise, the
    619      1.33    kardel 	 * argument offset is used.
    620      1.33    kardel 	 */
    621      1.33    kardel 	if (!(time_status & STA_PLL))
    622      1.33    kardel 		return;
    623      1.33    kardel 	if (!(time_status & STA_PPSTIME && time_status &
    624      1.33    kardel 	    STA_PPSSIGNAL)) {
    625      1.33    kardel 		if (offset > MAXPHASE)
    626      1.33    kardel 			time_monitor = MAXPHASE;
    627      1.33    kardel 		else if (offset < -MAXPHASE)
    628      1.33    kardel 			time_monitor = -MAXPHASE;
    629      1.33    kardel 		else
    630      1.33    kardel 			time_monitor = offset;
    631      1.33    kardel 		L_LINT(time_offset, time_monitor);
    632      1.33    kardel 	}
    633      1.33    kardel 
    634      1.33    kardel 	/*
    635      1.33    kardel 	 * Select how the frequency is to be controlled and in which
    636      1.33    kardel 	 * mode (PLL or FLL). If the PPS signal is present and enabled
    637      1.33    kardel 	 * to discipline the frequency, the PPS frequency is used;
    638      1.33    kardel 	 * otherwise, the argument offset is used to compute it.
    639      1.33    kardel 	 */
    640      1.33    kardel 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
    641      1.33    kardel 		time_reftime = time_second;
    642      1.33    kardel 		return;
    643      1.33    kardel 	}
    644      1.33    kardel 	if (time_status & STA_FREQHOLD || time_reftime == 0)
    645      1.33    kardel 		time_reftime = time_second;
    646      1.33    kardel 	mtemp = time_second - time_reftime;
    647      1.33    kardel 	L_LINT(ftemp, time_monitor);
    648      1.33    kardel 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
    649      1.33    kardel 	L_MPY(ftemp, mtemp);
    650      1.33    kardel 	L_ADD(time_freq, ftemp);
    651      1.33    kardel 	time_status &= ~STA_MODE;
    652      1.33    kardel 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
    653      1.33    kardel 	    MAXSEC)) {
    654      1.33    kardel 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
    655      1.33    kardel 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
    656      1.33    kardel 		L_ADD(time_freq, ftemp);
    657      1.33    kardel 		time_status |= STA_MODE;
    658      1.33    kardel 	}
    659      1.33    kardel 	time_reftime = time_second;
    660      1.33    kardel 	if (L_GINT(time_freq) > MAXFREQ)
    661      1.33    kardel 		L_LINT(time_freq, MAXFREQ);
    662      1.33    kardel 	else if (L_GINT(time_freq) < -MAXFREQ)
    663      1.33    kardel 		L_LINT(time_freq, -MAXFREQ);
    664      1.33    kardel }
    665      1.33    kardel 
    666      1.33    kardel #ifdef PPS_SYNC
    667      1.33    kardel /*
    668      1.33    kardel  * hardpps() - discipline CPU clock oscillator to external PPS signal
    669      1.33    kardel  *
    670      1.33    kardel  * This routine is called at each PPS interrupt in order to discipline
    671      1.33    kardel  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
    672      1.33    kardel  * and leaves it in a handy spot for the hardclock() routine. It
    673      1.33    kardel  * integrates successive PPS phase differences and calculates the
    674      1.33    kardel  * frequency offset. This is used in hardclock() to discipline the CPU
    675      1.33    kardel  * clock oscillator so that intrinsic frequency error is cancelled out.
    676      1.33    kardel  * The code requires the caller to capture the time and hardware counter
    677      1.33    kardel  * value at the on-time PPS signal transition.
    678      1.33    kardel  *
    679      1.33    kardel  * Note that, on some Unix systems, this routine runs at an interrupt
    680      1.33    kardel  * priority level higher than the timer interrupt routine hardclock().
    681      1.33    kardel  * Therefore, the variables used are distinct from the hardclock()
    682      1.33    kardel  * variables, except for certain exceptions: The PPS frequency pps_freq
    683      1.33    kardel  * and phase pps_offset variables are determined by this routine and
    684      1.33    kardel  * updated atomically. The time_tolerance variable can be considered a
    685      1.33    kardel  * constant, since it is infrequently changed, and then only when the
    686      1.33    kardel  * PPS signal is disabled. The watchdog counter pps_valid is updated
    687      1.33    kardel  * once per second by hardclock() and is atomically cleared in this
    688      1.33    kardel  * routine.
    689      1.33    kardel  */
    690      1.33    kardel void
    691      1.33    kardel hardpps(struct timespec *tsp,		/* time at PPS */
    692      1.33    kardel 	long nsec			/* hardware counter at PPS */)
    693      1.33    kardel {
    694      1.33    kardel 	long u_sec, u_nsec, v_nsec; /* temps */
    695      1.33    kardel 	l_fp ftemp;
    696      1.33    kardel 
    697      1.48        ad 	KASSERT(mutex_owned(&timecounter_lock));
    698      1.48        ad 
    699      1.33    kardel 	/*
    700      1.33    kardel 	 * The signal is first processed by a range gate and frequency
    701      1.33    kardel 	 * discriminator. The range gate rejects noise spikes outside
    702      1.33    kardel 	 * the range +-500 us. The frequency discriminator rejects input
    703      1.33    kardel 	 * signals with apparent frequency outside the range 1 +-500
    704      1.33    kardel 	 * PPM. If two hits occur in the same second, we ignore the
    705      1.33    kardel 	 * later hit; if not and a hit occurs outside the range gate,
    706      1.33    kardel 	 * keep the later hit for later comparison, but do not process
    707      1.33    kardel 	 * it.
    708      1.33    kardel 	 */
    709      1.33    kardel 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
    710      1.33    kardel 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
    711      1.33    kardel 	pps_valid = PPS_VALID;
    712      1.33    kardel 	u_sec = tsp->tv_sec;
    713      1.33    kardel 	u_nsec = tsp->tv_nsec;
    714      1.33    kardel 	if (u_nsec >= (NANOSECOND >> 1)) {
    715      1.33    kardel 		u_nsec -= NANOSECOND;
    716      1.33    kardel 		u_sec++;
    717      1.33    kardel 	}
    718      1.33    kardel 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
    719      1.33    kardel 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
    720      1.33    kardel 	    MAXFREQ)
    721      1.33    kardel 		return;
    722      1.33    kardel 	pps_tf[2] = pps_tf[1];
    723      1.33    kardel 	pps_tf[1] = pps_tf[0];
    724      1.33    kardel 	pps_tf[0].tv_sec = u_sec;
    725      1.33    kardel 	pps_tf[0].tv_nsec = u_nsec;
    726      1.33    kardel 
    727      1.33    kardel 	/*
    728      1.33    kardel 	 * Compute the difference between the current and previous
    729      1.33    kardel 	 * counter values. If the difference exceeds 0.5 s, assume it
    730      1.33    kardel 	 * has wrapped around, so correct 1.0 s. If the result exceeds
    731      1.33    kardel 	 * the tick interval, the sample point has crossed a tick
    732      1.33    kardel 	 * boundary during the last second, so correct the tick. Very
    733      1.33    kardel 	 * intricate.
    734      1.33    kardel 	 */
    735      1.33    kardel 	u_nsec = nsec;
    736      1.33    kardel 	if (u_nsec > (NANOSECOND >> 1))
    737      1.33    kardel 		u_nsec -= NANOSECOND;
    738      1.33    kardel 	else if (u_nsec < -(NANOSECOND >> 1))
    739      1.33    kardel 		u_nsec += NANOSECOND;
    740      1.33    kardel 	pps_fcount += u_nsec;
    741      1.33    kardel 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
    742      1.33    kardel 		return;
    743      1.33    kardel 	time_status &= ~STA_PPSJITTER;
    744      1.33    kardel 
    745      1.33    kardel 	/*
    746      1.33    kardel 	 * A three-stage median filter is used to help denoise the PPS
    747      1.33    kardel 	 * time. The median sample becomes the time offset estimate; the
    748      1.33    kardel 	 * difference between the other two samples becomes the time
    749      1.33    kardel 	 * dispersion (jitter) estimate.
    750      1.33    kardel 	 */
    751      1.33    kardel 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
    752      1.33    kardel 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
    753      1.33    kardel 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
    754      1.33    kardel 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
    755      1.33    kardel 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
    756      1.33    kardel 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
    757      1.33    kardel 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
    758      1.33    kardel 		} else {
    759      1.33    kardel 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
    760      1.33    kardel 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
    761      1.33    kardel 		}
    762      1.33    kardel 	} else {
    763      1.33    kardel 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
    764      1.33    kardel 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
    765      1.33    kardel 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
    766      1.33    kardel 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
    767      1.33    kardel 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
    768      1.33    kardel 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
    769      1.33    kardel 		} else {
    770      1.33    kardel 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
    771      1.33    kardel 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
    772      1.33    kardel 		}
    773      1.33    kardel 	}
    774      1.33    kardel 
    775      1.33    kardel 	/*
    776      1.33    kardel 	 * Nominal jitter is due to PPS signal noise and interrupt
    777      1.33    kardel 	 * latency. If it exceeds the popcorn threshold, the sample is
    778      1.33    kardel 	 * discarded. otherwise, if so enabled, the time offset is
    779      1.33    kardel 	 * updated. We can tolerate a modest loss of data here without
    780      1.33    kardel 	 * much degrading time accuracy.
    781      1.33    kardel 	 */
    782      1.33    kardel 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
    783      1.33    kardel 		time_status |= STA_PPSJITTER;
    784      1.33    kardel 		pps_jitcnt++;
    785      1.33    kardel 	} else if (time_status & STA_PPSTIME) {
    786      1.33    kardel 		time_monitor = -v_nsec;
    787      1.33    kardel 		L_LINT(time_offset, time_monitor);
    788      1.33    kardel 	}
    789      1.33    kardel 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
    790      1.33    kardel 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
    791      1.33    kardel 	if (u_sec < (1 << pps_shift))
    792      1.33    kardel 		return;
    793      1.33    kardel 
    794      1.33    kardel 	/*
    795      1.33    kardel 	 * At the end of the calibration interval the difference between
    796      1.33    kardel 	 * the first and last counter values becomes the scaled
    797      1.33    kardel 	 * frequency. It will later be divided by the length of the
    798      1.33    kardel 	 * interval to determine the frequency update. If the frequency
    799      1.33    kardel 	 * exceeds a sanity threshold, or if the actual calibration
    800      1.33    kardel 	 * interval is not equal to the expected length, the data are
    801      1.33    kardel 	 * discarded. We can tolerate a modest loss of data here without
    802      1.33    kardel 	 * much degrading frequency accuracy.
    803      1.33    kardel 	 */
    804      1.33    kardel 	pps_calcnt++;
    805      1.33    kardel 	v_nsec = -pps_fcount;
    806      1.33    kardel 	pps_lastsec = pps_tf[0].tv_sec;
    807      1.33    kardel 	pps_fcount = 0;
    808      1.33    kardel 	u_nsec = MAXFREQ << pps_shift;
    809      1.33    kardel 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
    810      1.33    kardel 	    pps_shift)) {
    811      1.33    kardel 		time_status |= STA_PPSERROR;
    812      1.33    kardel 		pps_errcnt++;
    813      1.33    kardel 		return;
    814      1.33    kardel 	}
    815      1.33    kardel 
    816      1.33    kardel 	/*
    817      1.33    kardel 	 * Here the raw frequency offset and wander (stability) is
    818      1.33    kardel 	 * calculated. If the wander is less than the wander threshold
    819      1.33    kardel 	 * for four consecutive averaging intervals, the interval is
    820      1.33    kardel 	 * doubled; if it is greater than the threshold for four
    821      1.33    kardel 	 * consecutive intervals, the interval is halved. The scaled
    822      1.33    kardel 	 * frequency offset is converted to frequency offset. The
    823      1.33    kardel 	 * stability metric is calculated as the average of recent
    824      1.33    kardel 	 * frequency changes, but is used only for performance
    825      1.33    kardel 	 * monitoring.
    826      1.33    kardel 	 */
    827      1.33    kardel 	L_LINT(ftemp, v_nsec);
    828      1.33    kardel 	L_RSHIFT(ftemp, pps_shift);
    829      1.33    kardel 	L_SUB(ftemp, pps_freq);
    830      1.33    kardel 	u_nsec = L_GINT(ftemp);
    831      1.33    kardel 	if (u_nsec > PPS_MAXWANDER) {
    832      1.33    kardel 		L_LINT(ftemp, PPS_MAXWANDER);
    833      1.33    kardel 		pps_intcnt--;
    834      1.33    kardel 		time_status |= STA_PPSWANDER;
    835      1.33    kardel 		pps_stbcnt++;
    836      1.33    kardel 	} else if (u_nsec < -PPS_MAXWANDER) {
    837      1.33    kardel 		L_LINT(ftemp, -PPS_MAXWANDER);
    838      1.33    kardel 		pps_intcnt--;
    839      1.33    kardel 		time_status |= STA_PPSWANDER;
    840      1.33    kardel 		pps_stbcnt++;
    841      1.33    kardel 	} else {
    842      1.33    kardel 		pps_intcnt++;
    843      1.33    kardel 	}
    844      1.33    kardel 	if (pps_intcnt >= 4) {
    845      1.33    kardel 		pps_intcnt = 4;
    846      1.33    kardel 		if (pps_shift < pps_shiftmax) {
    847      1.33    kardel 			pps_shift++;
    848      1.33    kardel 			pps_intcnt = 0;
    849      1.33    kardel 		}
    850      1.33    kardel 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
    851      1.33    kardel 		pps_intcnt = -4;
    852      1.33    kardel 		if (pps_shift > PPS_FAVG) {
    853      1.33    kardel 			pps_shift--;
    854      1.33    kardel 			pps_intcnt = 0;
    855      1.33    kardel 		}
    856      1.33    kardel 	}
    857      1.33    kardel 	if (u_nsec < 0)
    858      1.33    kardel 		u_nsec = -u_nsec;
    859      1.33    kardel 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
    860      1.33    kardel 
    861      1.33    kardel 	/*
    862      1.33    kardel 	 * The PPS frequency is recalculated and clamped to the maximum
    863      1.33    kardel 	 * MAXFREQ. If enabled, the system clock frequency is updated as
    864      1.33    kardel 	 * well.
    865      1.33    kardel 	 */
    866      1.33    kardel 	L_ADD(pps_freq, ftemp);
    867      1.33    kardel 	u_nsec = L_GINT(pps_freq);
    868      1.33    kardel 	if (u_nsec > MAXFREQ)
    869      1.33    kardel 		L_LINT(pps_freq, MAXFREQ);
    870      1.33    kardel 	else if (u_nsec < -MAXFREQ)
    871      1.33    kardel 		L_LINT(pps_freq, -MAXFREQ);
    872      1.33    kardel 	if (time_status & STA_PPSFREQ)
    873      1.33    kardel 		time_freq = pps_freq;
    874      1.33    kardel }
    875      1.33    kardel #endif /* PPS_SYNC */
    876      1.33    kardel #endif /* NTP */
    877      1.33    kardel 
    878      1.33    kardel #ifdef NTP
    879      1.33    kardel int
    880      1.47      matt ntp_timestatus(void)
    881      1.33    kardel {
    882      1.48        ad 	int rv;
    883      1.48        ad 
    884      1.33    kardel 	/*
    885      1.33    kardel 	 * Status word error decode. If any of these conditions
    886      1.33    kardel 	 * occur, an error is returned, instead of the status
    887      1.33    kardel 	 * word. Most applications will care only about the fact
    888      1.33    kardel 	 * the system clock may not be trusted, not about the
    889      1.33    kardel 	 * details.
    890      1.33    kardel 	 *
    891      1.33    kardel 	 * Hardware or software error
    892      1.33    kardel 	 */
    893      1.48        ad 	mutex_spin_enter(&timecounter_lock);
    894      1.33    kardel 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    895      1.33    kardel 
    896      1.33    kardel 	/*
    897      1.33    kardel 	 * PPS signal lost when either time or frequency
    898      1.33    kardel 	 * synchronization requested
    899      1.33    kardel 	 */
    900      1.33    kardel 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    901      1.33    kardel 	     !(time_status & STA_PPSSIGNAL)) ||
    902      1.33    kardel 
    903      1.33    kardel 	/*
    904      1.33    kardel 	 * PPS jitter exceeded when time synchronization
    905      1.33    kardel 	 * requested
    906      1.33    kardel 	 */
    907      1.33    kardel 	    (time_status & STA_PPSTIME &&
    908      1.33    kardel 	     time_status & STA_PPSJITTER) ||
    909      1.33    kardel 
    910      1.33    kardel 	/*
    911      1.33    kardel 	 * PPS wander exceeded or calibration error when
    912      1.33    kardel 	 * frequency synchronization requested
    913      1.33    kardel 	 */
    914      1.33    kardel 	    (time_status & STA_PPSFREQ &&
    915      1.33    kardel 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
    916      1.48        ad 		rv = TIME_ERROR;
    917      1.33    kardel 	else
    918      1.48        ad 		rv = time_state;
    919      1.48        ad 	mutex_spin_exit(&timecounter_lock);
    920      1.48        ad 
    921      1.48        ad 	return rv;
    922      1.33    kardel }
    923       1.1  jonathan 
    924      1.33    kardel /*ARGSUSED*/
    925      1.33    kardel /*
    926      1.33    kardel  * ntp_gettime() - NTP user application interface
    927      1.33    kardel  */
    928      1.33    kardel int
    929      1.45       dsl sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
    930      1.33    kardel {
    931      1.45       dsl 	/* {
    932      1.33    kardel 		syscallarg(struct ntptimeval *) ntvp;
    933      1.45       dsl 	} */
    934      1.33    kardel 	struct ntptimeval ntv;
    935      1.33    kardel 	int error = 0;
    936      1.33    kardel 
    937      1.33    kardel 	if (SCARG(uap, ntvp)) {
    938      1.33    kardel 		ntp_gettime(&ntv);
    939      1.33    kardel 
    940      1.43  christos 		error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
    941      1.33    kardel 				sizeof(ntv));
    942      1.33    kardel 	}
    943       1.1  jonathan 	if (!error) {
    944      1.33    kardel 		*retval = ntp_timestatus();
    945      1.33    kardel 	}
    946      1.33    kardel 	return(error);
    947      1.33    kardel }
    948       1.1  jonathan 
    949      1.33    kardel int
    950  1.49.6.1      haad sys_ntp_gettime(struct lwp *l, const struct sys_ntp_gettime_args *uap, register_t *retval)
    951      1.33    kardel {
    952      1.45       dsl 	/* {
    953      1.33    kardel 		syscallarg(struct ntptimeval30 *) ontvp;
    954      1.45       dsl 	} */
    955      1.33    kardel 	struct ntptimeval ntv;
    956      1.33    kardel 	struct ntptimeval30 ontv;
    957      1.33    kardel 	int error = 0;
    958      1.33    kardel 
    959      1.33    kardel 	if (SCARG(uap, ntvp)) {
    960      1.33    kardel 		ntp_gettime(&ntv);
    961      1.33    kardel 		TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
    962      1.33    kardel 		ontv.maxerror = ntv.maxerror;
    963      1.33    kardel 		ontv.esterror = ntv.esterror;
    964      1.33    kardel 
    965      1.43  christos 		error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
    966      1.33    kardel 				sizeof(ontv));
    967      1.33    kardel  	}
    968      1.33    kardel 	if (!error)
    969      1.33    kardel 		*retval = ntp_timestatus();
    970      1.33    kardel 
    971      1.33    kardel 	return (error);
    972       1.1  jonathan }
    973       1.1  jonathan 
    974       1.1  jonathan /*
    975       1.1  jonathan  * return information about kernel precision timekeeping
    976       1.1  jonathan  */
    977      1.25    atatat static int
    978      1.25    atatat sysctl_kern_ntptime(SYSCTLFN_ARGS)
    979       1.1  jonathan {
    980      1.25    atatat 	struct sysctlnode node;
    981       1.1  jonathan 	struct ntptimeval ntv;
    982       1.1  jonathan 
    983      1.31  drochner 	ntp_gettime(&ntv);
    984      1.25    atatat 
    985      1.25    atatat 	node = *rnode;
    986      1.25    atatat 	node.sysctl_data = &ntv;
    987      1.25    atatat 	node.sysctl_size = sizeof(ntv);
    988      1.25    atatat 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
    989      1.25    atatat }
    990      1.25    atatat 
    991      1.25    atatat SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
    992      1.25    atatat {
    993      1.25    atatat 
    994      1.26    atatat 	sysctl_createv(clog, 0, NULL, NULL,
    995      1.26    atatat 		       CTLFLAG_PERMANENT,
    996      1.25    atatat 		       CTLTYPE_NODE, "kern", NULL,
    997      1.25    atatat 		       NULL, 0, NULL, 0,
    998      1.25    atatat 		       CTL_KERN, CTL_EOL);
    999      1.25    atatat 
   1000      1.26    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1001      1.26    atatat 		       CTLFLAG_PERMANENT,
   1002      1.27    atatat 		       CTLTYPE_STRUCT, "ntptime",
   1003      1.27    atatat 		       SYSCTL_DESCR("Kernel clock values for NTP"),
   1004      1.25    atatat 		       sysctl_kern_ntptime, 0, NULL,
   1005      1.25    atatat 		       sizeof(struct ntptimeval),
   1006      1.25    atatat 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
   1007       1.1  jonathan }
   1008       1.4   thorpej #else /* !NTP */
   1009      1.13     bjh21 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
   1010      1.13     bjh21 
   1011       1.4   thorpej int
   1012      1.45       dsl sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
   1013      1.31  drochner {
   1014      1.31  drochner 
   1015      1.31  drochner 	return(ENOSYS);
   1016      1.31  drochner }
   1017      1.31  drochner 
   1018      1.31  drochner int
   1019  1.49.6.1      haad sys_ntp_gettime(struct lwp *l, const struct sys_ntp_gettime_args *uap, register_t *retval)
   1020       1.4   thorpej {
   1021      1.19    simonb 
   1022      1.33    kardel  	return(ENOSYS);
   1023       1.4   thorpej }
   1024      1.13     bjh21 #endif /* !NTP */
   1025