kern_ntptime.c revision 1.53 1 1.53 tsutsui /* $NetBSD: kern_ntptime.c,v 1.53 2010/04/02 23:31:42 tsutsui Exp $ */
2 1.48 ad
3 1.48 ad /*-
4 1.48 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.48 ad * All rights reserved.
6 1.48 ad *
7 1.48 ad * Redistribution and use in source and binary forms, with or without
8 1.48 ad * modification, are permitted provided that the following conditions
9 1.48 ad * are met:
10 1.48 ad * 1. Redistributions of source code must retain the above copyright
11 1.48 ad * notice, this list of conditions and the following disclaimer.
12 1.48 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.48 ad * notice, this list of conditions and the following disclaimer in the
14 1.48 ad * documentation and/or other materials provided with the distribution.
15 1.48 ad *
16 1.48 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.48 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.48 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.48 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.48 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.48 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.48 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.48 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.48 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.48 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.48 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.48 ad */
28 1.33 kardel
29 1.33 kardel /*-
30 1.33 kardel ***********************************************************************
31 1.33 kardel * *
32 1.33 kardel * Copyright (c) David L. Mills 1993-2001 *
33 1.33 kardel * *
34 1.33 kardel * Permission to use, copy, modify, and distribute this software and *
35 1.33 kardel * its documentation for any purpose and without fee is hereby *
36 1.33 kardel * granted, provided that the above copyright notice appears in all *
37 1.33 kardel * copies and that both the copyright notice and this permission *
38 1.33 kardel * notice appear in supporting documentation, and that the name *
39 1.33 kardel * University of Delaware not be used in advertising or publicity *
40 1.33 kardel * pertaining to distribution of the software without specific, *
41 1.33 kardel * written prior permission. The University of Delaware makes no *
42 1.33 kardel * representations about the suitability this software for any *
43 1.33 kardel * purpose. It is provided "as is" without express or implied *
44 1.33 kardel * warranty. *
45 1.33 kardel * *
46 1.33 kardel **********************************************************************/
47 1.1 jonathan
48 1.33 kardel /*
49 1.33 kardel * Adapted from the original sources for FreeBSD and timecounters by:
50 1.33 kardel * Poul-Henning Kamp <phk (at) FreeBSD.org>.
51 1.33 kardel *
52 1.33 kardel * The 32bit version of the "LP" macros seems a bit past its "sell by"
53 1.33 kardel * date so I have retained only the 64bit version and included it directly
54 1.33 kardel * in this file.
55 1.33 kardel *
56 1.33 kardel * Only minor changes done to interface with the timecounters over in
57 1.33 kardel * sys/kern/kern_clock.c. Some of the comments below may be (even more)
58 1.33 kardel * confusing and/or plain wrong in that context.
59 1.33 kardel */
60 1.33 kardel
61 1.33 kardel #include <sys/cdefs.h>
62 1.33 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
63 1.53 tsutsui __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.53 2010/04/02 23:31:42 tsutsui Exp $");
64 1.33 kardel
65 1.33 kardel #include "opt_ntp.h"
66 1.33 kardel
67 1.33 kardel #include <sys/param.h>
68 1.33 kardel #include <sys/resourcevar.h>
69 1.33 kardel #include <sys/systm.h>
70 1.33 kardel #include <sys/kernel.h>
71 1.33 kardel #include <sys/proc.h>
72 1.33 kardel #include <sys/sysctl.h>
73 1.33 kardel #include <sys/timex.h>
74 1.33 kardel #include <sys/vnode.h>
75 1.33 kardel #include <sys/kauth.h>
76 1.33 kardel #include <sys/mount.h>
77 1.33 kardel #include <sys/syscallargs.h>
78 1.48 ad #include <sys/cpu.h>
79 1.33 kardel
80 1.48 ad #include <compat/sys/timex.h>
81 1.33 kardel
82 1.33 kardel /*
83 1.33 kardel * Single-precision macros for 64-bit machines
84 1.33 kardel */
85 1.33 kardel typedef int64_t l_fp;
86 1.33 kardel #define L_ADD(v, u) ((v) += (u))
87 1.33 kardel #define L_SUB(v, u) ((v) -= (u))
88 1.33 kardel #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
89 1.33 kardel #define L_NEG(v) ((v) = -(v))
90 1.33 kardel #define L_RSHIFT(v, n) \
91 1.33 kardel do { \
92 1.33 kardel if ((v) < 0) \
93 1.33 kardel (v) = -(-(v) >> (n)); \
94 1.33 kardel else \
95 1.33 kardel (v) = (v) >> (n); \
96 1.33 kardel } while (0)
97 1.33 kardel #define L_MPY(v, a) ((v) *= (a))
98 1.33 kardel #define L_CLR(v) ((v) = 0)
99 1.33 kardel #define L_ISNEG(v) ((v) < 0)
100 1.33 kardel #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
101 1.33 kardel #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
102 1.33 kardel
103 1.33 kardel #ifdef NTP
104 1.33 kardel /*
105 1.33 kardel * Generic NTP kernel interface
106 1.33 kardel *
107 1.33 kardel * These routines constitute the Network Time Protocol (NTP) interfaces
108 1.33 kardel * for user and daemon application programs. The ntp_gettime() routine
109 1.33 kardel * provides the time, maximum error (synch distance) and estimated error
110 1.33 kardel * (dispersion) to client user application programs. The ntp_adjtime()
111 1.33 kardel * routine is used by the NTP daemon to adjust the system clock to an
112 1.33 kardel * externally derived time. The time offset and related variables set by
113 1.33 kardel * this routine are used by other routines in this module to adjust the
114 1.33 kardel * phase and frequency of the clock discipline loop which controls the
115 1.33 kardel * system clock.
116 1.33 kardel *
117 1.33 kardel * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
118 1.33 kardel * defined), the time at each tick interrupt is derived directly from
119 1.33 kardel * the kernel time variable. When the kernel time is reckoned in
120 1.33 kardel * microseconds, (NTP_NANO undefined), the time is derived from the
121 1.33 kardel * kernel time variable together with a variable representing the
122 1.33 kardel * leftover nanoseconds at the last tick interrupt. In either case, the
123 1.33 kardel * current nanosecond time is reckoned from these values plus an
124 1.33 kardel * interpolated value derived by the clock routines in another
125 1.33 kardel * architecture-specific module. The interpolation can use either a
126 1.33 kardel * dedicated counter or a processor cycle counter (PCC) implemented in
127 1.33 kardel * some architectures.
128 1.33 kardel *
129 1.33 kardel * Note that all routines must run at priority splclock or higher.
130 1.33 kardel */
131 1.33 kardel /*
132 1.33 kardel * Phase/frequency-lock loop (PLL/FLL) definitions
133 1.33 kardel *
134 1.33 kardel * The nanosecond clock discipline uses two variable types, time
135 1.33 kardel * variables and frequency variables. Both types are represented as 64-
136 1.33 kardel * bit fixed-point quantities with the decimal point between two 32-bit
137 1.33 kardel * halves. On a 32-bit machine, each half is represented as a single
138 1.33 kardel * word and mathematical operations are done using multiple-precision
139 1.33 kardel * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
140 1.33 kardel * used.
141 1.33 kardel *
142 1.33 kardel * A time variable is a signed 64-bit fixed-point number in ns and
143 1.33 kardel * fraction. It represents the remaining time offset to be amortized
144 1.33 kardel * over succeeding tick interrupts. The maximum time offset is about
145 1.33 kardel * 0.5 s and the resolution is about 2.3e-10 ns.
146 1.33 kardel *
147 1.33 kardel * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
148 1.33 kardel * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
149 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
150 1.33 kardel * |s s s| ns |
151 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
152 1.33 kardel * | fraction |
153 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
154 1.33 kardel *
155 1.33 kardel * A frequency variable is a signed 64-bit fixed-point number in ns/s
156 1.33 kardel * and fraction. It represents the ns and fraction to be added to the
157 1.33 kardel * kernel time variable at each second. The maximum frequency offset is
158 1.33 kardel * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
159 1.33 kardel *
160 1.33 kardel * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
161 1.33 kardel * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
162 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
163 1.33 kardel * |s s s s s s s s s s s s s| ns/s |
164 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
165 1.33 kardel * | fraction |
166 1.33 kardel * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
167 1.33 kardel */
168 1.33 kardel /*
169 1.33 kardel * The following variables establish the state of the PLL/FLL and the
170 1.33 kardel * residual time and frequency offset of the local clock.
171 1.33 kardel */
172 1.33 kardel #define SHIFT_PLL 4 /* PLL loop gain (shift) */
173 1.33 kardel #define SHIFT_FLL 2 /* FLL loop gain (shift) */
174 1.33 kardel
175 1.33 kardel static int time_state = TIME_OK; /* clock state */
176 1.33 kardel static int time_status = STA_UNSYNC; /* clock status bits */
177 1.33 kardel static long time_tai; /* TAI offset (s) */
178 1.33 kardel static long time_monitor; /* last time offset scaled (ns) */
179 1.33 kardel static long time_constant; /* poll interval (shift) (s) */
180 1.33 kardel static long time_precision = 1; /* clock precision (ns) */
181 1.33 kardel static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
182 1.33 kardel static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
183 1.53 tsutsui static time_t time_reftime; /* time at last adjustment (s) */
184 1.33 kardel static l_fp time_offset; /* time offset (ns) */
185 1.33 kardel static l_fp time_freq; /* frequency offset (ns/s) */
186 1.33 kardel #endif /* NTP */
187 1.33 kardel
188 1.33 kardel static l_fp time_adj; /* tick adjust (ns/s) */
189 1.33 kardel int64_t time_adjtime; /* correction from adjtime(2) (usec) */
190 1.33 kardel
191 1.33 kardel extern int time_adjusted; /* ntp might have changed the system time */
192 1.33 kardel
193 1.33 kardel #ifdef NTP
194 1.33 kardel #ifdef PPS_SYNC
195 1.33 kardel /*
196 1.33 kardel * The following variables are used when a pulse-per-second (PPS) signal
197 1.33 kardel * is available and connected via a modem control lead. They establish
198 1.33 kardel * the engineering parameters of the clock discipline loop when
199 1.33 kardel * controlled by the PPS signal.
200 1.33 kardel */
201 1.33 kardel #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
202 1.33 kardel #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
203 1.33 kardel #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
204 1.33 kardel #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
205 1.33 kardel #define PPS_VALID 120 /* PPS signal watchdog max (s) */
206 1.33 kardel #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
207 1.33 kardel #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
208 1.33 kardel
209 1.33 kardel static struct timespec pps_tf[3]; /* phase median filter */
210 1.33 kardel static l_fp pps_freq; /* scaled frequency offset (ns/s) */
211 1.33 kardel static long pps_fcount; /* frequency accumulator */
212 1.33 kardel static long pps_jitter; /* nominal jitter (ns) */
213 1.33 kardel static long pps_stabil; /* nominal stability (scaled ns/s) */
214 1.33 kardel static long pps_lastsec; /* time at last calibration (s) */
215 1.33 kardel static int pps_valid; /* signal watchdog counter */
216 1.33 kardel static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
217 1.33 kardel static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
218 1.33 kardel static int pps_intcnt; /* wander counter */
219 1.33 kardel
220 1.33 kardel /*
221 1.33 kardel * PPS signal quality monitors
222 1.33 kardel */
223 1.33 kardel static long pps_calcnt; /* calibration intervals */
224 1.33 kardel static long pps_jitcnt; /* jitter limit exceeded */
225 1.33 kardel static long pps_stbcnt; /* stability limit exceeded */
226 1.33 kardel static long pps_errcnt; /* calibration errors */
227 1.33 kardel #endif /* PPS_SYNC */
228 1.33 kardel /*
229 1.33 kardel * End of phase/frequency-lock loop (PLL/FLL) definitions
230 1.33 kardel */
231 1.33 kardel
232 1.33 kardel static void hardupdate(long offset);
233 1.33 kardel
234 1.33 kardel /*
235 1.33 kardel * ntp_gettime() - NTP user application interface
236 1.33 kardel */
237 1.33 kardel void
238 1.45 dsl ntp_gettime(struct ntptimeval *ntv)
239 1.33 kardel {
240 1.48 ad
241 1.48 ad mutex_spin_enter(&timecounter_lock);
242 1.33 kardel nanotime(&ntv->time);
243 1.33 kardel ntv->maxerror = time_maxerror;
244 1.33 kardel ntv->esterror = time_esterror;
245 1.33 kardel ntv->tai = time_tai;
246 1.33 kardel ntv->time_state = time_state;
247 1.48 ad mutex_spin_exit(&timecounter_lock);
248 1.33 kardel }
249 1.33 kardel
250 1.33 kardel /* ARGSUSED */
251 1.33 kardel /*
252 1.33 kardel * ntp_adjtime() - NTP daemon application interface
253 1.33 kardel */
254 1.33 kardel int
255 1.45 dsl sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
256 1.33 kardel {
257 1.45 dsl /* {
258 1.33 kardel syscallarg(struct timex *) tp;
259 1.45 dsl } */
260 1.33 kardel struct timex ntv;
261 1.33 kardel int error = 0;
262 1.33 kardel
263 1.43 christos error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
264 1.35 ad if (error != 0)
265 1.33 kardel return (error);
266 1.33 kardel
267 1.37 elad if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
268 1.37 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
269 1.36 elad NULL, NULL)) != 0)
270 1.33 kardel return (error);
271 1.33 kardel
272 1.33 kardel ntp_adjtime1(&ntv);
273 1.33 kardel
274 1.43 christos error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
275 1.35 ad if (!error)
276 1.33 kardel *retval = ntp_timestatus();
277 1.35 ad
278 1.33 kardel return error;
279 1.33 kardel }
280 1.33 kardel
281 1.33 kardel void
282 1.45 dsl ntp_adjtime1(struct timex *ntv)
283 1.33 kardel {
284 1.33 kardel long freq;
285 1.33 kardel int modes;
286 1.33 kardel
287 1.33 kardel /*
288 1.33 kardel * Update selected clock variables - only the superuser can
289 1.33 kardel * change anything. Note that there is no error checking here on
290 1.33 kardel * the assumption the superuser should know what it is doing.
291 1.33 kardel * Note that either the time constant or TAI offset are loaded
292 1.33 kardel * from the ntv.constant member, depending on the mode bits. If
293 1.33 kardel * the STA_PLL bit in the status word is cleared, the state and
294 1.33 kardel * status words are reset to the initial values at boot.
295 1.33 kardel */
296 1.48 ad mutex_spin_enter(&timecounter_lock);
297 1.33 kardel modes = ntv->modes;
298 1.33 kardel if (modes != 0)
299 1.33 kardel /* We need to save the system time during shutdown */
300 1.33 kardel time_adjusted |= 2;
301 1.33 kardel if (modes & MOD_MAXERROR)
302 1.33 kardel time_maxerror = ntv->maxerror;
303 1.33 kardel if (modes & MOD_ESTERROR)
304 1.33 kardel time_esterror = ntv->esterror;
305 1.33 kardel if (modes & MOD_STATUS) {
306 1.33 kardel if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
307 1.33 kardel time_state = TIME_OK;
308 1.33 kardel time_status = STA_UNSYNC;
309 1.33 kardel #ifdef PPS_SYNC
310 1.33 kardel pps_shift = PPS_FAVG;
311 1.33 kardel #endif /* PPS_SYNC */
312 1.33 kardel }
313 1.33 kardel time_status &= STA_RONLY;
314 1.33 kardel time_status |= ntv->status & ~STA_RONLY;
315 1.33 kardel }
316 1.33 kardel if (modes & MOD_TIMECONST) {
317 1.33 kardel if (ntv->constant < 0)
318 1.33 kardel time_constant = 0;
319 1.33 kardel else if (ntv->constant > MAXTC)
320 1.33 kardel time_constant = MAXTC;
321 1.33 kardel else
322 1.33 kardel time_constant = ntv->constant;
323 1.33 kardel }
324 1.33 kardel if (modes & MOD_TAI) {
325 1.33 kardel if (ntv->constant > 0) /* XXX zero & negative numbers ? */
326 1.33 kardel time_tai = ntv->constant;
327 1.33 kardel }
328 1.33 kardel #ifdef PPS_SYNC
329 1.33 kardel if (modes & MOD_PPSMAX) {
330 1.33 kardel if (ntv->shift < PPS_FAVG)
331 1.33 kardel pps_shiftmax = PPS_FAVG;
332 1.33 kardel else if (ntv->shift > PPS_FAVGMAX)
333 1.33 kardel pps_shiftmax = PPS_FAVGMAX;
334 1.33 kardel else
335 1.33 kardel pps_shiftmax = ntv->shift;
336 1.33 kardel }
337 1.33 kardel #endif /* PPS_SYNC */
338 1.33 kardel if (modes & MOD_NANO)
339 1.33 kardel time_status |= STA_NANO;
340 1.33 kardel if (modes & MOD_MICRO)
341 1.33 kardel time_status &= ~STA_NANO;
342 1.33 kardel if (modes & MOD_CLKB)
343 1.33 kardel time_status |= STA_CLK;
344 1.33 kardel if (modes & MOD_CLKA)
345 1.33 kardel time_status &= ~STA_CLK;
346 1.33 kardel if (modes & MOD_FREQUENCY) {
347 1.33 kardel freq = (ntv->freq * 1000LL) >> 16;
348 1.33 kardel if (freq > MAXFREQ)
349 1.33 kardel L_LINT(time_freq, MAXFREQ);
350 1.33 kardel else if (freq < -MAXFREQ)
351 1.33 kardel L_LINT(time_freq, -MAXFREQ);
352 1.33 kardel else {
353 1.33 kardel /*
354 1.33 kardel * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
355 1.33 kardel * time_freq is [ns/s * 2^32]
356 1.33 kardel */
357 1.33 kardel time_freq = ntv->freq * 1000LL * 65536LL;
358 1.33 kardel }
359 1.33 kardel #ifdef PPS_SYNC
360 1.33 kardel pps_freq = time_freq;
361 1.33 kardel #endif /* PPS_SYNC */
362 1.33 kardel }
363 1.33 kardel if (modes & MOD_OFFSET) {
364 1.33 kardel if (time_status & STA_NANO)
365 1.33 kardel hardupdate(ntv->offset);
366 1.33 kardel else
367 1.33 kardel hardupdate(ntv->offset * 1000);
368 1.33 kardel }
369 1.33 kardel
370 1.33 kardel /*
371 1.33 kardel * Retrieve all clock variables. Note that the TAI offset is
372 1.33 kardel * returned only by ntp_gettime();
373 1.33 kardel */
374 1.33 kardel if (time_status & STA_NANO)
375 1.33 kardel ntv->offset = L_GINT(time_offset);
376 1.33 kardel else
377 1.33 kardel ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
378 1.33 kardel ntv->freq = L_GINT((time_freq / 1000LL) << 16);
379 1.33 kardel ntv->maxerror = time_maxerror;
380 1.33 kardel ntv->esterror = time_esterror;
381 1.33 kardel ntv->status = time_status;
382 1.33 kardel ntv->constant = time_constant;
383 1.33 kardel if (time_status & STA_NANO)
384 1.33 kardel ntv->precision = time_precision;
385 1.33 kardel else
386 1.33 kardel ntv->precision = time_precision / 1000;
387 1.33 kardel ntv->tolerance = MAXFREQ * SCALE_PPM;
388 1.33 kardel #ifdef PPS_SYNC
389 1.33 kardel ntv->shift = pps_shift;
390 1.33 kardel ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
391 1.33 kardel if (time_status & STA_NANO)
392 1.33 kardel ntv->jitter = pps_jitter;
393 1.33 kardel else
394 1.33 kardel ntv->jitter = pps_jitter / 1000;
395 1.33 kardel ntv->stabil = pps_stabil;
396 1.33 kardel ntv->calcnt = pps_calcnt;
397 1.33 kardel ntv->errcnt = pps_errcnt;
398 1.33 kardel ntv->jitcnt = pps_jitcnt;
399 1.33 kardel ntv->stbcnt = pps_stbcnt;
400 1.33 kardel #endif /* PPS_SYNC */
401 1.48 ad mutex_spin_exit(&timecounter_lock);
402 1.33 kardel }
403 1.33 kardel #endif /* NTP */
404 1.33 kardel
405 1.33 kardel /*
406 1.33 kardel * second_overflow() - called after ntp_tick_adjust()
407 1.33 kardel *
408 1.33 kardel * This routine is ordinarily called immediately following the above
409 1.33 kardel * routine ntp_tick_adjust(). While these two routines are normally
410 1.33 kardel * combined, they are separated here only for the purposes of
411 1.33 kardel * simulation.
412 1.33 kardel */
413 1.33 kardel void
414 1.33 kardel ntp_update_second(int64_t *adjustment, time_t *newsec)
415 1.33 kardel {
416 1.33 kardel int tickrate;
417 1.33 kardel l_fp ftemp; /* 32/64-bit temporary */
418 1.33 kardel
419 1.48 ad KASSERT(mutex_owned(&timecounter_lock));
420 1.48 ad
421 1.33 kardel #ifdef NTP
422 1.33 kardel
423 1.33 kardel /*
424 1.33 kardel * On rollover of the second both the nanosecond and microsecond
425 1.33 kardel * clocks are updated and the state machine cranked as
426 1.33 kardel * necessary. The phase adjustment to be used for the next
427 1.33 kardel * second is calculated and the maximum error is increased by
428 1.33 kardel * the tolerance.
429 1.33 kardel */
430 1.33 kardel time_maxerror += MAXFREQ / 1000;
431 1.33 kardel
432 1.33 kardel /*
433 1.33 kardel * Leap second processing. If in leap-insert state at
434 1.33 kardel * the end of the day, the system clock is set back one
435 1.33 kardel * second; if in leap-delete state, the system clock is
436 1.33 kardel * set ahead one second. The nano_time() routine or
437 1.33 kardel * external clock driver will insure that reported time
438 1.33 kardel * is always monotonic.
439 1.33 kardel */
440 1.33 kardel switch (time_state) {
441 1.33 kardel
442 1.33 kardel /*
443 1.33 kardel * No warning.
444 1.33 kardel */
445 1.33 kardel case TIME_OK:
446 1.33 kardel if (time_status & STA_INS)
447 1.33 kardel time_state = TIME_INS;
448 1.33 kardel else if (time_status & STA_DEL)
449 1.33 kardel time_state = TIME_DEL;
450 1.33 kardel break;
451 1.33 kardel
452 1.33 kardel /*
453 1.33 kardel * Insert second 23:59:60 following second
454 1.33 kardel * 23:59:59.
455 1.33 kardel */
456 1.33 kardel case TIME_INS:
457 1.33 kardel if (!(time_status & STA_INS))
458 1.33 kardel time_state = TIME_OK;
459 1.33 kardel else if ((*newsec) % 86400 == 0) {
460 1.33 kardel (*newsec)--;
461 1.33 kardel time_state = TIME_OOP;
462 1.33 kardel time_tai++;
463 1.33 kardel }
464 1.33 kardel break;
465 1.33 kardel
466 1.33 kardel /*
467 1.33 kardel * Delete second 23:59:59.
468 1.33 kardel */
469 1.33 kardel case TIME_DEL:
470 1.33 kardel if (!(time_status & STA_DEL))
471 1.33 kardel time_state = TIME_OK;
472 1.33 kardel else if (((*newsec) + 1) % 86400 == 0) {
473 1.33 kardel (*newsec)++;
474 1.33 kardel time_tai--;
475 1.33 kardel time_state = TIME_WAIT;
476 1.33 kardel }
477 1.33 kardel break;
478 1.33 kardel
479 1.33 kardel /*
480 1.33 kardel * Insert second in progress.
481 1.33 kardel */
482 1.33 kardel case TIME_OOP:
483 1.33 kardel time_state = TIME_WAIT;
484 1.33 kardel break;
485 1.33 kardel
486 1.33 kardel /*
487 1.33 kardel * Wait for status bits to clear.
488 1.33 kardel */
489 1.33 kardel case TIME_WAIT:
490 1.33 kardel if (!(time_status & (STA_INS | STA_DEL)))
491 1.33 kardel time_state = TIME_OK;
492 1.33 kardel }
493 1.33 kardel
494 1.33 kardel /*
495 1.33 kardel * Compute the total time adjustment for the next second
496 1.33 kardel * in ns. The offset is reduced by a factor depending on
497 1.33 kardel * whether the PPS signal is operating. Note that the
498 1.33 kardel * value is in effect scaled by the clock frequency,
499 1.33 kardel * since the adjustment is added at each tick interrupt.
500 1.33 kardel */
501 1.33 kardel ftemp = time_offset;
502 1.33 kardel #ifdef PPS_SYNC
503 1.33 kardel /* XXX even if PPS signal dies we should finish adjustment ? */
504 1.33 kardel if (time_status & STA_PPSTIME && time_status &
505 1.33 kardel STA_PPSSIGNAL)
506 1.33 kardel L_RSHIFT(ftemp, pps_shift);
507 1.33 kardel else
508 1.33 kardel L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
509 1.33 kardel #else
510 1.33 kardel L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
511 1.33 kardel #endif /* PPS_SYNC */
512 1.33 kardel time_adj = ftemp;
513 1.33 kardel L_SUB(time_offset, ftemp);
514 1.33 kardel L_ADD(time_adj, time_freq);
515 1.33 kardel
516 1.33 kardel #ifdef PPS_SYNC
517 1.33 kardel if (pps_valid > 0)
518 1.33 kardel pps_valid--;
519 1.33 kardel else
520 1.33 kardel time_status &= ~STA_PPSSIGNAL;
521 1.33 kardel #endif /* PPS_SYNC */
522 1.34 kardel #else /* !NTP */
523 1.34 kardel L_CLR(time_adj);
524 1.34 kardel #endif /* !NTP */
525 1.33 kardel
526 1.33 kardel /*
527 1.33 kardel * Apply any correction from adjtime(2). If more than one second
528 1.33 kardel * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
529 1.33 kardel * until the last second is slewed the final < 500 usecs.
530 1.33 kardel */
531 1.33 kardel if (time_adjtime != 0) {
532 1.33 kardel if (time_adjtime > 1000000)
533 1.33 kardel tickrate = 5000;
534 1.33 kardel else if (time_adjtime < -1000000)
535 1.33 kardel tickrate = -5000;
536 1.33 kardel else if (time_adjtime > 500)
537 1.33 kardel tickrate = 500;
538 1.33 kardel else if (time_adjtime < -500)
539 1.33 kardel tickrate = -500;
540 1.33 kardel else
541 1.33 kardel tickrate = time_adjtime;
542 1.33 kardel time_adjtime -= tickrate;
543 1.33 kardel L_LINT(ftemp, tickrate * 1000);
544 1.33 kardel L_ADD(time_adj, ftemp);
545 1.33 kardel }
546 1.33 kardel *adjustment = time_adj;
547 1.33 kardel }
548 1.33 kardel
549 1.33 kardel /*
550 1.33 kardel * ntp_init() - initialize variables and structures
551 1.33 kardel *
552 1.33 kardel * This routine must be called after the kernel variables hz and tick
553 1.33 kardel * are set or changed and before the next tick interrupt. In this
554 1.33 kardel * particular implementation, these values are assumed set elsewhere in
555 1.33 kardel * the kernel. The design allows the clock frequency and tick interval
556 1.33 kardel * to be changed while the system is running. So, this routine should
557 1.33 kardel * probably be integrated with the code that does that.
558 1.33 kardel */
559 1.33 kardel void
560 1.33 kardel ntp_init(void)
561 1.33 kardel {
562 1.33 kardel
563 1.33 kardel /*
564 1.33 kardel * The following variables are initialized only at startup. Only
565 1.33 kardel * those structures not cleared by the compiler need to be
566 1.33 kardel * initialized, and these only in the simulator. In the actual
567 1.33 kardel * kernel, any nonzero values here will quickly evaporate.
568 1.33 kardel */
569 1.33 kardel L_CLR(time_adj);
570 1.33 kardel #ifdef NTP
571 1.33 kardel L_CLR(time_offset);
572 1.33 kardel L_CLR(time_freq);
573 1.33 kardel #ifdef PPS_SYNC
574 1.33 kardel pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
575 1.33 kardel pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
576 1.33 kardel pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
577 1.33 kardel pps_fcount = 0;
578 1.33 kardel L_CLR(pps_freq);
579 1.33 kardel #endif /* PPS_SYNC */
580 1.33 kardel #endif
581 1.33 kardel }
582 1.33 kardel
583 1.33 kardel #ifdef NTP
584 1.33 kardel /*
585 1.33 kardel * hardupdate() - local clock update
586 1.33 kardel *
587 1.33 kardel * This routine is called by ntp_adjtime() to update the local clock
588 1.33 kardel * phase and frequency. The implementation is of an adaptive-parameter,
589 1.33 kardel * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
590 1.33 kardel * time and frequency offset estimates for each call. If the kernel PPS
591 1.33 kardel * discipline code is configured (PPS_SYNC), the PPS signal itself
592 1.33 kardel * determines the new time offset, instead of the calling argument.
593 1.33 kardel * Presumably, calls to ntp_adjtime() occur only when the caller
594 1.33 kardel * believes the local clock is valid within some bound (+-128 ms with
595 1.33 kardel * NTP). If the caller's time is far different than the PPS time, an
596 1.33 kardel * argument will ensue, and it's not clear who will lose.
597 1.33 kardel *
598 1.33 kardel * For uncompensated quartz crystal oscillators and nominal update
599 1.33 kardel * intervals less than 256 s, operation should be in phase-lock mode,
600 1.33 kardel * where the loop is disciplined to phase. For update intervals greater
601 1.33 kardel * than 1024 s, operation should be in frequency-lock mode, where the
602 1.33 kardel * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
603 1.33 kardel * is selected by the STA_MODE status bit.
604 1.33 kardel *
605 1.33 kardel * Note: splclock() is in effect.
606 1.33 kardel */
607 1.33 kardel void
608 1.33 kardel hardupdate(long offset)
609 1.33 kardel {
610 1.33 kardel long mtemp;
611 1.33 kardel l_fp ftemp;
612 1.33 kardel
613 1.48 ad KASSERT(mutex_owned(&timecounter_lock));
614 1.48 ad
615 1.33 kardel /*
616 1.33 kardel * Select how the phase is to be controlled and from which
617 1.33 kardel * source. If the PPS signal is present and enabled to
618 1.33 kardel * discipline the time, the PPS offset is used; otherwise, the
619 1.33 kardel * argument offset is used.
620 1.33 kardel */
621 1.33 kardel if (!(time_status & STA_PLL))
622 1.33 kardel return;
623 1.33 kardel if (!(time_status & STA_PPSTIME && time_status &
624 1.33 kardel STA_PPSSIGNAL)) {
625 1.33 kardel if (offset > MAXPHASE)
626 1.33 kardel time_monitor = MAXPHASE;
627 1.33 kardel else if (offset < -MAXPHASE)
628 1.33 kardel time_monitor = -MAXPHASE;
629 1.33 kardel else
630 1.33 kardel time_monitor = offset;
631 1.33 kardel L_LINT(time_offset, time_monitor);
632 1.33 kardel }
633 1.33 kardel
634 1.33 kardel /*
635 1.33 kardel * Select how the frequency is to be controlled and in which
636 1.33 kardel * mode (PLL or FLL). If the PPS signal is present and enabled
637 1.33 kardel * to discipline the frequency, the PPS frequency is used;
638 1.33 kardel * otherwise, the argument offset is used to compute it.
639 1.33 kardel */
640 1.33 kardel if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
641 1.33 kardel time_reftime = time_second;
642 1.33 kardel return;
643 1.33 kardel }
644 1.33 kardel if (time_status & STA_FREQHOLD || time_reftime == 0)
645 1.33 kardel time_reftime = time_second;
646 1.33 kardel mtemp = time_second - time_reftime;
647 1.33 kardel L_LINT(ftemp, time_monitor);
648 1.33 kardel L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
649 1.33 kardel L_MPY(ftemp, mtemp);
650 1.33 kardel L_ADD(time_freq, ftemp);
651 1.33 kardel time_status &= ~STA_MODE;
652 1.33 kardel if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
653 1.33 kardel MAXSEC)) {
654 1.33 kardel L_LINT(ftemp, (time_monitor << 4) / mtemp);
655 1.33 kardel L_RSHIFT(ftemp, SHIFT_FLL + 4);
656 1.33 kardel L_ADD(time_freq, ftemp);
657 1.33 kardel time_status |= STA_MODE;
658 1.33 kardel }
659 1.33 kardel time_reftime = time_second;
660 1.33 kardel if (L_GINT(time_freq) > MAXFREQ)
661 1.33 kardel L_LINT(time_freq, MAXFREQ);
662 1.33 kardel else if (L_GINT(time_freq) < -MAXFREQ)
663 1.33 kardel L_LINT(time_freq, -MAXFREQ);
664 1.33 kardel }
665 1.33 kardel
666 1.33 kardel #ifdef PPS_SYNC
667 1.33 kardel /*
668 1.33 kardel * hardpps() - discipline CPU clock oscillator to external PPS signal
669 1.33 kardel *
670 1.33 kardel * This routine is called at each PPS interrupt in order to discipline
671 1.33 kardel * the CPU clock oscillator to the PPS signal. It measures the PPS phase
672 1.33 kardel * and leaves it in a handy spot for the hardclock() routine. It
673 1.33 kardel * integrates successive PPS phase differences and calculates the
674 1.33 kardel * frequency offset. This is used in hardclock() to discipline the CPU
675 1.33 kardel * clock oscillator so that intrinsic frequency error is cancelled out.
676 1.33 kardel * The code requires the caller to capture the time and hardware counter
677 1.33 kardel * value at the on-time PPS signal transition.
678 1.33 kardel *
679 1.33 kardel * Note that, on some Unix systems, this routine runs at an interrupt
680 1.33 kardel * priority level higher than the timer interrupt routine hardclock().
681 1.33 kardel * Therefore, the variables used are distinct from the hardclock()
682 1.33 kardel * variables, except for certain exceptions: The PPS frequency pps_freq
683 1.33 kardel * and phase pps_offset variables are determined by this routine and
684 1.33 kardel * updated atomically. The time_tolerance variable can be considered a
685 1.33 kardel * constant, since it is infrequently changed, and then only when the
686 1.33 kardel * PPS signal is disabled. The watchdog counter pps_valid is updated
687 1.33 kardel * once per second by hardclock() and is atomically cleared in this
688 1.33 kardel * routine.
689 1.33 kardel */
690 1.33 kardel void
691 1.33 kardel hardpps(struct timespec *tsp, /* time at PPS */
692 1.33 kardel long nsec /* hardware counter at PPS */)
693 1.33 kardel {
694 1.33 kardel long u_sec, u_nsec, v_nsec; /* temps */
695 1.33 kardel l_fp ftemp;
696 1.33 kardel
697 1.48 ad KASSERT(mutex_owned(&timecounter_lock));
698 1.48 ad
699 1.33 kardel /*
700 1.33 kardel * The signal is first processed by a range gate and frequency
701 1.33 kardel * discriminator. The range gate rejects noise spikes outside
702 1.33 kardel * the range +-500 us. The frequency discriminator rejects input
703 1.33 kardel * signals with apparent frequency outside the range 1 +-500
704 1.33 kardel * PPM. If two hits occur in the same second, we ignore the
705 1.33 kardel * later hit; if not and a hit occurs outside the range gate,
706 1.33 kardel * keep the later hit for later comparison, but do not process
707 1.33 kardel * it.
708 1.33 kardel */
709 1.33 kardel time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
710 1.33 kardel time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
711 1.33 kardel pps_valid = PPS_VALID;
712 1.33 kardel u_sec = tsp->tv_sec;
713 1.33 kardel u_nsec = tsp->tv_nsec;
714 1.33 kardel if (u_nsec >= (NANOSECOND >> 1)) {
715 1.33 kardel u_nsec -= NANOSECOND;
716 1.33 kardel u_sec++;
717 1.33 kardel }
718 1.33 kardel v_nsec = u_nsec - pps_tf[0].tv_nsec;
719 1.33 kardel if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
720 1.33 kardel MAXFREQ)
721 1.33 kardel return;
722 1.33 kardel pps_tf[2] = pps_tf[1];
723 1.33 kardel pps_tf[1] = pps_tf[0];
724 1.33 kardel pps_tf[0].tv_sec = u_sec;
725 1.33 kardel pps_tf[0].tv_nsec = u_nsec;
726 1.33 kardel
727 1.33 kardel /*
728 1.33 kardel * Compute the difference between the current and previous
729 1.33 kardel * counter values. If the difference exceeds 0.5 s, assume it
730 1.33 kardel * has wrapped around, so correct 1.0 s. If the result exceeds
731 1.33 kardel * the tick interval, the sample point has crossed a tick
732 1.33 kardel * boundary during the last second, so correct the tick. Very
733 1.33 kardel * intricate.
734 1.33 kardel */
735 1.33 kardel u_nsec = nsec;
736 1.33 kardel if (u_nsec > (NANOSECOND >> 1))
737 1.33 kardel u_nsec -= NANOSECOND;
738 1.33 kardel else if (u_nsec < -(NANOSECOND >> 1))
739 1.33 kardel u_nsec += NANOSECOND;
740 1.33 kardel pps_fcount += u_nsec;
741 1.33 kardel if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
742 1.33 kardel return;
743 1.33 kardel time_status &= ~STA_PPSJITTER;
744 1.33 kardel
745 1.33 kardel /*
746 1.33 kardel * A three-stage median filter is used to help denoise the PPS
747 1.33 kardel * time. The median sample becomes the time offset estimate; the
748 1.33 kardel * difference between the other two samples becomes the time
749 1.33 kardel * dispersion (jitter) estimate.
750 1.33 kardel */
751 1.33 kardel if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
752 1.33 kardel if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
753 1.33 kardel v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
754 1.33 kardel u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
755 1.33 kardel } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
756 1.33 kardel v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
757 1.33 kardel u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
758 1.33 kardel } else {
759 1.33 kardel v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
760 1.33 kardel u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
761 1.33 kardel }
762 1.33 kardel } else {
763 1.33 kardel if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
764 1.33 kardel v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
765 1.33 kardel u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
766 1.33 kardel } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
767 1.33 kardel v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
768 1.33 kardel u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
769 1.33 kardel } else {
770 1.33 kardel v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
771 1.33 kardel u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
772 1.33 kardel }
773 1.33 kardel }
774 1.33 kardel
775 1.33 kardel /*
776 1.33 kardel * Nominal jitter is due to PPS signal noise and interrupt
777 1.33 kardel * latency. If it exceeds the popcorn threshold, the sample is
778 1.33 kardel * discarded. otherwise, if so enabled, the time offset is
779 1.33 kardel * updated. We can tolerate a modest loss of data here without
780 1.33 kardel * much degrading time accuracy.
781 1.33 kardel */
782 1.33 kardel if (u_nsec > (pps_jitter << PPS_POPCORN)) {
783 1.33 kardel time_status |= STA_PPSJITTER;
784 1.33 kardel pps_jitcnt++;
785 1.33 kardel } else if (time_status & STA_PPSTIME) {
786 1.33 kardel time_monitor = -v_nsec;
787 1.33 kardel L_LINT(time_offset, time_monitor);
788 1.33 kardel }
789 1.33 kardel pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
790 1.33 kardel u_sec = pps_tf[0].tv_sec - pps_lastsec;
791 1.33 kardel if (u_sec < (1 << pps_shift))
792 1.33 kardel return;
793 1.33 kardel
794 1.33 kardel /*
795 1.33 kardel * At the end of the calibration interval the difference between
796 1.33 kardel * the first and last counter values becomes the scaled
797 1.33 kardel * frequency. It will later be divided by the length of the
798 1.33 kardel * interval to determine the frequency update. If the frequency
799 1.33 kardel * exceeds a sanity threshold, or if the actual calibration
800 1.33 kardel * interval is not equal to the expected length, the data are
801 1.33 kardel * discarded. We can tolerate a modest loss of data here without
802 1.33 kardel * much degrading frequency accuracy.
803 1.33 kardel */
804 1.33 kardel pps_calcnt++;
805 1.33 kardel v_nsec = -pps_fcount;
806 1.33 kardel pps_lastsec = pps_tf[0].tv_sec;
807 1.33 kardel pps_fcount = 0;
808 1.33 kardel u_nsec = MAXFREQ << pps_shift;
809 1.33 kardel if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
810 1.33 kardel pps_shift)) {
811 1.33 kardel time_status |= STA_PPSERROR;
812 1.33 kardel pps_errcnt++;
813 1.33 kardel return;
814 1.33 kardel }
815 1.33 kardel
816 1.33 kardel /*
817 1.33 kardel * Here the raw frequency offset and wander (stability) is
818 1.33 kardel * calculated. If the wander is less than the wander threshold
819 1.33 kardel * for four consecutive averaging intervals, the interval is
820 1.33 kardel * doubled; if it is greater than the threshold for four
821 1.33 kardel * consecutive intervals, the interval is halved. The scaled
822 1.33 kardel * frequency offset is converted to frequency offset. The
823 1.33 kardel * stability metric is calculated as the average of recent
824 1.33 kardel * frequency changes, but is used only for performance
825 1.33 kardel * monitoring.
826 1.33 kardel */
827 1.33 kardel L_LINT(ftemp, v_nsec);
828 1.33 kardel L_RSHIFT(ftemp, pps_shift);
829 1.33 kardel L_SUB(ftemp, pps_freq);
830 1.33 kardel u_nsec = L_GINT(ftemp);
831 1.33 kardel if (u_nsec > PPS_MAXWANDER) {
832 1.33 kardel L_LINT(ftemp, PPS_MAXWANDER);
833 1.33 kardel pps_intcnt--;
834 1.33 kardel time_status |= STA_PPSWANDER;
835 1.33 kardel pps_stbcnt++;
836 1.33 kardel } else if (u_nsec < -PPS_MAXWANDER) {
837 1.33 kardel L_LINT(ftemp, -PPS_MAXWANDER);
838 1.33 kardel pps_intcnt--;
839 1.33 kardel time_status |= STA_PPSWANDER;
840 1.33 kardel pps_stbcnt++;
841 1.33 kardel } else {
842 1.33 kardel pps_intcnt++;
843 1.33 kardel }
844 1.33 kardel if (pps_intcnt >= 4) {
845 1.33 kardel pps_intcnt = 4;
846 1.33 kardel if (pps_shift < pps_shiftmax) {
847 1.33 kardel pps_shift++;
848 1.33 kardel pps_intcnt = 0;
849 1.33 kardel }
850 1.33 kardel } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
851 1.33 kardel pps_intcnt = -4;
852 1.33 kardel if (pps_shift > PPS_FAVG) {
853 1.33 kardel pps_shift--;
854 1.33 kardel pps_intcnt = 0;
855 1.33 kardel }
856 1.33 kardel }
857 1.33 kardel if (u_nsec < 0)
858 1.33 kardel u_nsec = -u_nsec;
859 1.33 kardel pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
860 1.33 kardel
861 1.33 kardel /*
862 1.33 kardel * The PPS frequency is recalculated and clamped to the maximum
863 1.33 kardel * MAXFREQ. If enabled, the system clock frequency is updated as
864 1.33 kardel * well.
865 1.33 kardel */
866 1.33 kardel L_ADD(pps_freq, ftemp);
867 1.33 kardel u_nsec = L_GINT(pps_freq);
868 1.33 kardel if (u_nsec > MAXFREQ)
869 1.33 kardel L_LINT(pps_freq, MAXFREQ);
870 1.33 kardel else if (u_nsec < -MAXFREQ)
871 1.33 kardel L_LINT(pps_freq, -MAXFREQ);
872 1.33 kardel if (time_status & STA_PPSFREQ)
873 1.33 kardel time_freq = pps_freq;
874 1.33 kardel }
875 1.33 kardel #endif /* PPS_SYNC */
876 1.33 kardel #endif /* NTP */
877 1.33 kardel
878 1.33 kardel #ifdef NTP
879 1.33 kardel int
880 1.47 matt ntp_timestatus(void)
881 1.33 kardel {
882 1.48 ad int rv;
883 1.48 ad
884 1.33 kardel /*
885 1.33 kardel * Status word error decode. If any of these conditions
886 1.33 kardel * occur, an error is returned, instead of the status
887 1.33 kardel * word. Most applications will care only about the fact
888 1.33 kardel * the system clock may not be trusted, not about the
889 1.33 kardel * details.
890 1.33 kardel *
891 1.33 kardel * Hardware or software error
892 1.33 kardel */
893 1.48 ad mutex_spin_enter(&timecounter_lock);
894 1.33 kardel if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
895 1.33 kardel
896 1.33 kardel /*
897 1.33 kardel * PPS signal lost when either time or frequency
898 1.33 kardel * synchronization requested
899 1.33 kardel */
900 1.33 kardel (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
901 1.33 kardel !(time_status & STA_PPSSIGNAL)) ||
902 1.33 kardel
903 1.33 kardel /*
904 1.33 kardel * PPS jitter exceeded when time synchronization
905 1.33 kardel * requested
906 1.33 kardel */
907 1.33 kardel (time_status & STA_PPSTIME &&
908 1.33 kardel time_status & STA_PPSJITTER) ||
909 1.33 kardel
910 1.33 kardel /*
911 1.33 kardel * PPS wander exceeded or calibration error when
912 1.33 kardel * frequency synchronization requested
913 1.33 kardel */
914 1.33 kardel (time_status & STA_PPSFREQ &&
915 1.33 kardel time_status & (STA_PPSWANDER | STA_PPSERROR)))
916 1.48 ad rv = TIME_ERROR;
917 1.33 kardel else
918 1.48 ad rv = time_state;
919 1.48 ad mutex_spin_exit(&timecounter_lock);
920 1.48 ad
921 1.48 ad return rv;
922 1.33 kardel }
923 1.1 jonathan
924 1.33 kardel /*ARGSUSED*/
925 1.33 kardel /*
926 1.33 kardel * ntp_gettime() - NTP user application interface
927 1.33 kardel */
928 1.33 kardel int
929 1.51 christos sys___ntp_gettime50(struct lwp *l, const struct sys___ntp_gettime50_args *uap, register_t *retval)
930 1.33 kardel {
931 1.45 dsl /* {
932 1.33 kardel syscallarg(struct ntptimeval *) ntvp;
933 1.45 dsl } */
934 1.33 kardel struct ntptimeval ntv;
935 1.33 kardel int error = 0;
936 1.33 kardel
937 1.33 kardel if (SCARG(uap, ntvp)) {
938 1.33 kardel ntp_gettime(&ntv);
939 1.33 kardel
940 1.43 christos error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
941 1.33 kardel sizeof(ntv));
942 1.33 kardel }
943 1.1 jonathan if (!error) {
944 1.33 kardel *retval = ntp_timestatus();
945 1.33 kardel }
946 1.33 kardel return(error);
947 1.33 kardel }
948 1.1 jonathan
949 1.1 jonathan /*
950 1.1 jonathan * return information about kernel precision timekeeping
951 1.1 jonathan */
952 1.25 atatat static int
953 1.25 atatat sysctl_kern_ntptime(SYSCTLFN_ARGS)
954 1.1 jonathan {
955 1.25 atatat struct sysctlnode node;
956 1.1 jonathan struct ntptimeval ntv;
957 1.1 jonathan
958 1.31 drochner ntp_gettime(&ntv);
959 1.25 atatat
960 1.25 atatat node = *rnode;
961 1.25 atatat node.sysctl_data = &ntv;
962 1.25 atatat node.sysctl_size = sizeof(ntv);
963 1.25 atatat return (sysctl_lookup(SYSCTLFN_CALL(&node)));
964 1.25 atatat }
965 1.25 atatat
966 1.25 atatat SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
967 1.25 atatat {
968 1.25 atatat
969 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
970 1.26 atatat CTLFLAG_PERMANENT,
971 1.25 atatat CTLTYPE_NODE, "kern", NULL,
972 1.25 atatat NULL, 0, NULL, 0,
973 1.25 atatat CTL_KERN, CTL_EOL);
974 1.25 atatat
975 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
976 1.26 atatat CTLFLAG_PERMANENT,
977 1.27 atatat CTLTYPE_STRUCT, "ntptime",
978 1.27 atatat SYSCTL_DESCR("Kernel clock values for NTP"),
979 1.25 atatat sysctl_kern_ntptime, 0, NULL,
980 1.25 atatat sizeof(struct ntptimeval),
981 1.25 atatat CTL_KERN, KERN_NTPTIME, CTL_EOL);
982 1.1 jonathan }
983 1.13 bjh21 #endif /* !NTP */
984