kern_ntptime.c revision 1.1 1 /* $NetBSD: kern_ntptime.c,v 1.1 1996/02/27 04:20:38 jonathan Exp $ */
2
3 /******************************************************************************
4 * *
5 * Copyright (c) David L. Mills 1993, 1994 *
6 * *
7 * Permission to use, copy, modify, and distribute this software and its *
8 * documentation for any purpose and without fee is hereby granted, provided *
9 * that the above copyright notice appears in all copies and that both the *
10 * copyright notice and this permission notice appear in supporting *
11 * documentation, and that the name University of Delaware not be used in *
12 * advertising or publicity pertaining to distribution of the software *
13 * without specific, written prior permission. The University of Delaware *
14 * makes no representations about the suitability this software for any *
15 * purpose. It is provided "as is" without express or implied warranty. *
16 * *
17 ******************************************************************************/
18
19 /*
20 * Modification history kern_ntptime.c
21 *
22 * 24 Sep 94 David L. Mills
23 * Tightened code at exits.
24 *
25 * 24 Mar 94 David L. Mills
26 * Revised syscall interface to include new variables for PPS
27 * time discipline.
28 *
29 * 14 Feb 94 David L. Mills
30 * Added code for external clock
31 *
32 * 28 Nov 93 David L. Mills
33 * Revised frequency scaling to conform with adjusted parameters
34 *
35 * 17 Sep 93 David L. Mills
36 * Created file
37 */
38 /*
39 * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
40 * V4.1.1 and V4.1.3
41 *
42 * These routines consitute the Network Time Protocol (NTP) interfaces
43 * for user and daemon application programs. The ntp_gettime() routine
44 * provides the time, maximum error (synch distance) and estimated error
45 * (dispersion) to client user application programs. The ntp_adjtime()
46 * routine is used by the NTP daemon to adjust the system clock to an
47 * externally derived time. The time offset and related variables set by
48 * this routine are used by hardclock() to adjust the phase and
49 * frequency of the phase-lock loop which controls the system clock.
50 */
51 #include <sys/param.h>
52 #include <sys/resourcevar.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/proc.h>
56 #include <sys/timex.h>
57 #include <sys/vnode.h>
58
59 #include <sys/mount.h>
60 #include <sys/syscallargs.h>
61
62 #include <machine/cpu.h>
63
64 #ifdef NTP
65 /*
66 * The following variables are used by the hardclock() routine in the
67 * kern_clock.c module and are described in that module.
68 */
69 extern struct timeval time; /* kernel time variable */
70 extern int time_state; /* clock state */
71 extern int time_status; /* clock status bits */
72 extern long time_offset; /* time adjustment (us) */
73 extern long time_freq; /* frequency offset (scaled ppm) */
74 extern long time_maxerror; /* maximum error (us) */
75 extern long time_esterror; /* estimated error (us) */
76 extern long time_constant; /* pll time constant */
77 extern long time_precision; /* clock precision (us) */
78 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
79
80 #ifdef PPS_SYNC
81 /*
82 * The following variables are used only if the PPS signal discipline
83 * is configured in the kernel.
84 */
85 extern int pps_shift; /* interval duration (s) (shift) */
86 extern long pps_freq; /* pps frequency offset (scaled ppm) */
87 extern long pps_jitter; /* pps jitter (us) */
88 extern long pps_stabil; /* pps stability (scaled ppm) */
89 extern long pps_jitcnt; /* jitter limit exceeded */
90 extern long pps_calcnt; /* calibration intervals */
91 extern long pps_errcnt; /* calibration errors */
92 extern long pps_stbcnt; /* stability limit exceeded */
93 #endif /* PPS_SYNC */
94
95
96
97 /*ARGSUSED*/
98 /*
99 * ntp_gettime() - NTP user application interface
100 */
101 int
102 ntp_gettime(p, v, retval)
103 struct proc *p;
104 void *v;
105 register_t *retval;
106
107 {
108 struct ntp_gettime_args /* {
109 syscallarg(struct timex *) tp;
110 } */ *uap = v;
111 struct timeval atv;
112 struct ntptimeval ntv;
113 int error = 0;
114 int s;
115
116 if (SCARG(uap, tp)) {
117 s = splclock();
118 #ifdef EXT_CLOCK
119 /*
120 * The microtime() external clock routine returns a
121 * status code. If less than zero, we declare an error
122 * in the clock status word and return the kernel
123 * (software) time variable. While there are other
124 * places that call microtime(), this is the only place
125 * that matters from an application point of view.
126 */
127 if (microtime(&atv) < 0) {
128 time_status |= STA_CLOCKERR;
129 ntv.time = time;
130 } else
131 time_status &= ~STA_CLOCKERR;
132 #else /* EXT_CLOCK */
133 microtime(&atv);
134 #endif /* EXT_CLOCK */
135 ntv.time = atv;
136 ntv.maxerror = time_maxerror;
137 ntv.esterror = time_esterror;
138 (void) splx(s);
139
140 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp),
141 sizeof (ntv));
142 }
143 if (!error) {
144
145 /*
146 * Status word error decode. If any of these conditions
147 * occur, an error is returned, instead of the status
148 * word. Most applications will care only about the fact
149 * the system clock may not be trusted, not about the
150 * details.
151 *
152 * Hardware or software error
153 */
154 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
155
156 /*
157 * PPS signal lost when either time or frequency
158 * synchronization requested
159 */
160 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
161 !(time_status & STA_PPSSIGNAL)) ||
162
163 /*
164 * PPS jitter exceeded when time synchronization
165 * requested
166 */
167 (time_status & STA_PPSTIME &&
168 time_status & STA_PPSJITTER) ||
169
170 /*
171 * PPS wander exceeded or calibration error when
172 * frequency synchronization requested
173 */
174 (time_status & STA_PPSFREQ &&
175 time_status & (STA_PPSWANDER | STA_PPSERROR)))
176 *retval = TIME_ERROR;
177 else
178 *retval = (register_t)time_state;
179 }
180 return(error);
181 }
182
183
184 /* ARGSUSED */
185 /*
186 * ntp_adjtime() - NTP daemon application interface
187 */
188 int
189 ntp_adjtime(p, v, retval)
190 struct proc *p;
191 void *v;
192 register_t *retval;
193 {
194 struct ntp_adjtime_args /* {
195 syscallarg(struct timex *) tp;
196 } */ *uap = v;
197 struct timex ntv;
198 int error = 0;
199 int modes;
200 int s;
201
202 if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
203 sizeof(ntv))))
204 return (error);
205
206 /*
207 * Update selected clock variables - only the superuser can
208 * change anything. Note that there is no error checking here on
209 * the assumption the superuser should know what it is doing.
210 */
211 modes = ntv.modes;
212 if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
213 return (error);
214
215 s = splclock();
216 if (modes & MOD_FREQUENCY)
217 #ifdef PPS_SYNC
218 time_freq = ntv.freq - pps_freq;
219 #else /* PPS_SYNC */
220 time_freq = ntv.freq;
221 #endif /* PPS_SYNC */
222 if (modes & MOD_MAXERROR)
223 time_maxerror = ntv.maxerror;
224 if (modes & MOD_ESTERROR)
225 time_esterror = ntv.esterror;
226 if (modes & MOD_STATUS) {
227 time_status &= STA_RONLY;
228 time_status |= ntv.status & ~STA_RONLY;
229 }
230 if (modes & MOD_TIMECONST)
231 time_constant = ntv.constant;
232 if (modes & MOD_OFFSET)
233 hardupdate(ntv.offset);
234
235 /*
236 * Retrieve all clock variables
237 */
238 if (time_offset < 0)
239 ntv.offset = -(-time_offset >> SHIFT_UPDATE);
240 else
241 ntv.offset = time_offset >> SHIFT_UPDATE;
242 #ifdef PPS_SYNC
243 ntv.freq = time_freq + pps_freq;
244 #else /* PPS_SYNC */
245 ntv.freq = time_freq;
246 #endif /* PPS_SYNC */
247 ntv.maxerror = time_maxerror;
248 ntv.esterror = time_esterror;
249 ntv.status = time_status;
250 ntv.constant = time_constant;
251 ntv.precision = time_precision;
252 ntv.tolerance = time_tolerance;
253 #ifdef PPS_SYNC
254 ntv.shift = pps_shift;
255 ntv.ppsfreq = pps_freq;
256 ntv.jitter = pps_jitter >> PPS_AVG;
257 ntv.stabil = pps_stabil;
258 ntv.calcnt = pps_calcnt;
259 ntv.errcnt = pps_errcnt;
260 ntv.jitcnt = pps_jitcnt;
261 ntv.stbcnt = pps_stbcnt;
262 #endif /* PPS_SYNC */
263 (void)splx(s);
264
265 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
266 if (!error) {
267
268 /*
269 * Status word error decode. See comments in
270 * ntp_gettime() routine.
271 */
272 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
273 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
274 !(time_status & STA_PPSSIGNAL)) ||
275 (time_status & STA_PPSTIME &&
276 time_status & STA_PPSJITTER) ||
277 (time_status & STA_PPSFREQ &&
278 time_status & (STA_PPSWANDER | STA_PPSERROR)))
279 *retval = TIME_ERROR;
280 else
281 *retval = (register_t)time_state;
282 }
283 return error;
284 }
285
286
287
288 /*
289 * return information about kernel precision timekeeping
290 */
291 int
292 sysctl_ntptime(where, sizep)
293 register char *where;
294 size_t *sizep;
295 {
296 struct timeval atv;
297 struct ntptimeval ntv;
298 int s;
299
300 /*
301 * Construct ntp_timeval.
302 */
303
304 s = splclock();
305 #ifdef EXT_CLOCK
306 /*
307 * The microtime() external clock routine returns a
308 * status code. If less than zero, we declare an error
309 * in the clock status word and return the kernel
310 * (software) time variable. While there are other
311 * places that call microtime(), this is the only place
312 * that matters from an application point of view.
313 */
314 if (microtime(&atv) < 0) {
315 time_status |= STA_CLOCKERR;
316 ntv.time = time;
317 } else {
318 time_status &= ~STA_CLOCKERR;
319 }
320 #else /* EXT_CLOCK */
321 microtime(&atv);
322 #endif /* EXT_CLOCK */
323 ntv.time = atv;
324 ntv.maxerror = time_maxerror;
325 ntv.esterror = time_esterror;
326 splx(s);
327
328 #ifdef notyet
329 /*
330 * Status word error decode. If any of these conditions
331 * occur, an error is returned, instead of the status
332 * word. Most applications will care only about the fact
333 * the system clock may not be trusted, not about the
334 * details.
335 *
336 * Hardware or software error
337 */
338 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
339 ntv.time_state = TIME_ERROR;
340
341 /*
342 * PPS signal lost when either time or frequency
343 * synchronization requested
344 */
345 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
346 !(time_status & STA_PPSSIGNAL)) ||
347
348 /*
349 * PPS jitter exceeded when time synchronization
350 * requested
351 */
352 (time_status & STA_PPSTIME &&
353 time_status & STA_PPSJITTER) ||
354
355 /*
356 * PPS wander exceeded or calibration error when
357 * frequency synchronization requested
358 */
359 (time_status & STA_PPSFREQ &&
360 time_status & (STA_PPSWANDER | STA_PPSERROR)))
361 ntv.time_state = TIME_ERROR;
362 else
363 ntv.time_state = time_state;
364 #endif /* notyet */
365 return (sysctl_rdstruct(where, sizep, NULL, &ntv, sizeof(ntv)));
366 }
367
368 #else /* !NTP */
369
370 /*
371 * For kernels configured without the NTP option, emulate the behavior
372 * of a kernel with no NTP support (i.e., sys_nosys()). On systems
373 * where kernel NTP support appears present when xntpd is compiled,
374 * (e.g., sys/timex.h is present), xntpd relies on getting a SIGSYS
375 * signal in response to an ntp_adjtime() syscal, to inform xntpd that
376 * NTP support is not really present, and xntpd should fall back to
377 * using a user-level phase-locked loop to discipline the clock.
378 */
379 int
380 ntp_gettime(p, v, retval)
381 struct proc *p;
382 void *v;
383 register_t *retval;
384 {
385 return(ENOSYS);
386 }
387
388 int
389 ntp_adjtime(p, v, retval)
390 struct proc *p;
391 void *v;
392 register_t *retval;
393 {
394 return(sys_nosys(p, v, retval));
395 }
396
397 int
398 sysctl_ntptime(where, sizep)
399 register char *where;
400 size_t *sizep;
401 {
402 return (ENOSYS);
403 }
404 #endif /* NTP */
405