kern_ntptime.c revision 1.12 1 /* $NetBSD: kern_ntptime.c,v 1.12 2000/06/27 17:41:23 mrg Exp $ */
2
3 /******************************************************************************
4 * *
5 * Copyright (c) David L. Mills 1993, 1994 *
6 * *
7 * Permission to use, copy, modify, and distribute this software and its *
8 * documentation for any purpose and without fee is hereby granted, provided *
9 * that the above copyright notice appears in all copies and that both the *
10 * copyright notice and this permission notice appear in supporting *
11 * documentation, and that the name University of Delaware not be used in *
12 * advertising or publicity pertaining to distribution of the software *
13 * without specific, written prior permission. The University of Delaware *
14 * makes no representations about the suitability this software for any *
15 * purpose. It is provided "as is" without express or implied warranty. *
16 * *
17 ******************************************************************************/
18
19 /*
20 * Modification history kern_ntptime.c
21 *
22 * 24 Sep 94 David L. Mills
23 * Tightened code at exits.
24 *
25 * 24 Mar 94 David L. Mills
26 * Revised syscall interface to include new variables for PPS
27 * time discipline.
28 *
29 * 14 Feb 94 David L. Mills
30 * Added code for external clock
31 *
32 * 28 Nov 93 David L. Mills
33 * Revised frequency scaling to conform with adjusted parameters
34 *
35 * 17 Sep 93 David L. Mills
36 * Created file
37 */
38 /*
39 * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
40 * V4.1.1 and V4.1.3
41 *
42 * These routines consitute the Network Time Protocol (NTP) interfaces
43 * for user and daemon application programs. The ntp_gettime() routine
44 * provides the time, maximum error (synch distance) and estimated error
45 * (dispersion) to client user application programs. The ntp_adjtime()
46 * routine is used by the NTP daemon to adjust the system clock to an
47 * externally derived time. The time offset and related variables set by
48 * this routine are used by hardclock() to adjust the phase and
49 * frequency of the phase-lock loop which controls the system clock.
50 */
51 #include "opt_ntp.h"
52
53 #include <sys/param.h>
54 #include <sys/resourcevar.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/proc.h>
58 #include <sys/timex.h>
59 #include <sys/vnode.h>
60
61 #include <sys/mount.h>
62 #include <sys/syscallargs.h>
63
64 #include <machine/cpu.h>
65
66 #include <uvm/uvm_extern.h>
67 #include <sys/sysctl.h>
68
69 #ifdef NTP
70
71 /*
72 * The following variables are used by the hardclock() routine in the
73 * kern_clock.c module and are described in that module.
74 */
75 extern int time_state; /* clock state */
76 extern int time_status; /* clock status bits */
77 extern long time_offset; /* time adjustment (us) */
78 extern long time_freq; /* frequency offset (scaled ppm) */
79 extern long time_maxerror; /* maximum error (us) */
80 extern long time_esterror; /* estimated error (us) */
81 extern long time_constant; /* pll time constant */
82 extern long time_precision; /* clock precision (us) */
83 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
84
85 #ifdef PPS_SYNC
86 /*
87 * The following variables are used only if the PPS signal discipline
88 * is configured in the kernel.
89 */
90 extern int pps_shift; /* interval duration (s) (shift) */
91 extern long pps_freq; /* pps frequency offset (scaled ppm) */
92 extern long pps_jitter; /* pps jitter (us) */
93 extern long pps_stabil; /* pps stability (scaled ppm) */
94 extern long pps_jitcnt; /* jitter limit exceeded */
95 extern long pps_calcnt; /* calibration intervals */
96 extern long pps_errcnt; /* calibration errors */
97 extern long pps_stbcnt; /* stability limit exceeded */
98 #endif /* PPS_SYNC */
99
100
101
102 /*ARGSUSED*/
103 /*
104 * ntp_gettime() - NTP user application interface
105 */
106 int
107 sys_ntp_gettime(p, v, retval)
108 struct proc *p;
109 void *v;
110 register_t *retval;
111
112 {
113 struct sys_ntp_gettime_args /* {
114 syscallarg(struct ntptimeval *) ntvp;
115 } */ *uap = v;
116 struct timeval atv;
117 struct ntptimeval ntv;
118 int error = 0;
119 int s;
120
121 if (SCARG(uap, ntvp)) {
122 s = splclock();
123 #ifdef EXT_CLOCK
124 /*
125 * The microtime() external clock routine returns a
126 * status code. If less than zero, we declare an error
127 * in the clock status word and return the kernel
128 * (software) time variable. While there are other
129 * places that call microtime(), this is the only place
130 * that matters from an application point of view.
131 */
132 if (microtime(&atv) < 0) {
133 time_status |= STA_CLOCKERR;
134 ntv.time = time;
135 } else
136 time_status &= ~STA_CLOCKERR;
137 #else /* EXT_CLOCK */
138 microtime(&atv);
139 #endif /* EXT_CLOCK */
140 ntv.time = atv;
141 ntv.maxerror = time_maxerror;
142 ntv.esterror = time_esterror;
143 (void) splx(s);
144
145 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
146 sizeof(ntv));
147 }
148 if (!error) {
149
150 /*
151 * Status word error decode. If any of these conditions
152 * occur, an error is returned, instead of the status
153 * word. Most applications will care only about the fact
154 * the system clock may not be trusted, not about the
155 * details.
156 *
157 * Hardware or software error
158 */
159 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
160
161 /*
162 * PPS signal lost when either time or frequency
163 * synchronization requested
164 */
165 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
166 !(time_status & STA_PPSSIGNAL)) ||
167
168 /*
169 * PPS jitter exceeded when time synchronization
170 * requested
171 */
172 (time_status & STA_PPSTIME &&
173 time_status & STA_PPSJITTER) ||
174
175 /*
176 * PPS wander exceeded or calibration error when
177 * frequency synchronization requested
178 */
179 (time_status & STA_PPSFREQ &&
180 time_status & (STA_PPSWANDER | STA_PPSERROR)))
181 *retval = TIME_ERROR;
182 else
183 *retval = (register_t)time_state;
184 }
185 return(error);
186 }
187
188
189 /* ARGSUSED */
190 /*
191 * ntp_adjtime() - NTP daemon application interface
192 */
193 int
194 sys_ntp_adjtime(p, v, retval)
195 struct proc *p;
196 void *v;
197 register_t *retval;
198 {
199 struct sys_ntp_adjtime_args /* {
200 syscallarg(struct timex *) tp;
201 } */ *uap = v;
202 struct timex ntv;
203 int error = 0;
204 int modes;
205 int s;
206
207 if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
208 sizeof(ntv))))
209 return (error);
210
211 /*
212 * Update selected clock variables - only the superuser can
213 * change anything. Note that there is no error checking here on
214 * the assumption the superuser should know what it is doing.
215 */
216 modes = ntv.modes;
217 if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
218 return (error);
219
220 s = splclock();
221 if (modes & MOD_FREQUENCY)
222 #ifdef PPS_SYNC
223 time_freq = ntv.freq - pps_freq;
224 #else /* PPS_SYNC */
225 time_freq = ntv.freq;
226 #endif /* PPS_SYNC */
227 if (modes & MOD_MAXERROR)
228 time_maxerror = ntv.maxerror;
229 if (modes & MOD_ESTERROR)
230 time_esterror = ntv.esterror;
231 if (modes & MOD_STATUS) {
232 time_status &= STA_RONLY;
233 time_status |= ntv.status & ~STA_RONLY;
234 }
235 if (modes & MOD_TIMECONST)
236 time_constant = ntv.constant;
237 if (modes & MOD_OFFSET)
238 hardupdate(ntv.offset);
239
240 /*
241 * Retrieve all clock variables
242 */
243 if (time_offset < 0)
244 ntv.offset = -(-time_offset >> SHIFT_UPDATE);
245 else
246 ntv.offset = time_offset >> SHIFT_UPDATE;
247 #ifdef PPS_SYNC
248 ntv.freq = time_freq + pps_freq;
249 #else /* PPS_SYNC */
250 ntv.freq = time_freq;
251 #endif /* PPS_SYNC */
252 ntv.maxerror = time_maxerror;
253 ntv.esterror = time_esterror;
254 ntv.status = time_status;
255 ntv.constant = time_constant;
256 ntv.precision = time_precision;
257 ntv.tolerance = time_tolerance;
258 #ifdef PPS_SYNC
259 ntv.shift = pps_shift;
260 ntv.ppsfreq = pps_freq;
261 ntv.jitter = pps_jitter >> PPS_AVG;
262 ntv.stabil = pps_stabil;
263 ntv.calcnt = pps_calcnt;
264 ntv.errcnt = pps_errcnt;
265 ntv.jitcnt = pps_jitcnt;
266 ntv.stbcnt = pps_stbcnt;
267 #endif /* PPS_SYNC */
268 (void)splx(s);
269
270 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
271 if (!error) {
272
273 /*
274 * Status word error decode. See comments in
275 * ntp_gettime() routine.
276 */
277 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
278 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
279 !(time_status & STA_PPSSIGNAL)) ||
280 (time_status & STA_PPSTIME &&
281 time_status & STA_PPSJITTER) ||
282 (time_status & STA_PPSFREQ &&
283 time_status & (STA_PPSWANDER | STA_PPSERROR)))
284 *retval = TIME_ERROR;
285 else
286 *retval = (register_t)time_state;
287 }
288 return error;
289 }
290
291
292
293 /*
294 * return information about kernel precision timekeeping
295 */
296 int
297 sysctl_ntptime(where, sizep)
298 void *where;
299 size_t *sizep;
300 {
301 struct timeval atv;
302 struct ntptimeval ntv;
303 int s;
304
305 /*
306 * Construct ntp_timeval.
307 */
308
309 s = splclock();
310 #ifdef EXT_CLOCK
311 /*
312 * The microtime() external clock routine returns a
313 * status code. If less than zero, we declare an error
314 * in the clock status word and return the kernel
315 * (software) time variable. While there are other
316 * places that call microtime(), this is the only place
317 * that matters from an application point of view.
318 */
319 if (microtime(&atv) < 0) {
320 time_status |= STA_CLOCKERR;
321 ntv.time = time;
322 } else {
323 time_status &= ~STA_CLOCKERR;
324 }
325 #else /* EXT_CLOCK */
326 microtime(&atv);
327 #endif /* EXT_CLOCK */
328 ntv.time = atv;
329 ntv.maxerror = time_maxerror;
330 ntv.esterror = time_esterror;
331 splx(s);
332
333 #ifdef notyet
334 /*
335 * Status word error decode. If any of these conditions
336 * occur, an error is returned, instead of the status
337 * word. Most applications will care only about the fact
338 * the system clock may not be trusted, not about the
339 * details.
340 *
341 * Hardware or software error
342 */
343 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
344 ntv.time_state = TIME_ERROR;
345
346 /*
347 * PPS signal lost when either time or frequency
348 * synchronization requested
349 */
350 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
351 !(time_status & STA_PPSSIGNAL)) ||
352
353 /*
354 * PPS jitter exceeded when time synchronization
355 * requested
356 */
357 (time_status & STA_PPSTIME &&
358 time_status & STA_PPSJITTER) ||
359
360 /*
361 * PPS wander exceeded or calibration error when
362 * frequency synchronization requested
363 */
364 (time_status & STA_PPSFREQ &&
365 time_status & (STA_PPSWANDER | STA_PPSERROR)))
366 ntv.time_state = TIME_ERROR;
367 else
368 ntv.time_state = time_state;
369 #endif /* notyet */
370 return (sysctl_rdstruct(where, sizep, NULL, &ntv, sizeof(ntv)));
371 }
372
373 #else /* !NTP */
374
375 /*
376 * For kernels configured without the NTP option, emulate the behavior
377 * of a kernel with no NTP support (i.e., sys_nosys()). On systems
378 * where kernel NTP support appears present when xntpd is compiled,
379 * (e.g., sys/timex.h is present), xntpd relies on getting a SIGSYS
380 * signal in response to an ntp_adjtime() syscal, to inform xntpd that
381 * NTP support is not really present, and xntpd should fall back to
382 * using a user-level phase-locked loop to discipline the clock.
383 */
384 int
385 sys_ntp_gettime(p, v, retval)
386 struct proc *p;
387 void *v;
388 register_t *retval;
389 {
390 return(ENOSYS);
391 }
392
393 int
394 sys_ntp_adjtime(p, v, retval)
395 struct proc *p;
396 void *v;
397 register_t *retval;
398 {
399 return(sys_nosys(p, v, retval));
400 }
401
402 int
403 sysctl_ntptime(where, sizep)
404 void *where;
405 size_t *sizep;
406 {
407 return (ENOSYS);
408 }
409 #endif /* NTP */
410