kern_ntptime.c revision 1.14 1 /* $NetBSD: kern_ntptime.c,v 1.14 2001/09/16 06:50:06 manu Exp $ */
2
3 /******************************************************************************
4 * *
5 * Copyright (c) David L. Mills 1993, 1994 *
6 * *
7 * Permission to use, copy, modify, and distribute this software and its *
8 * documentation for any purpose and without fee is hereby granted, provided *
9 * that the above copyright notice appears in all copies and that both the *
10 * copyright notice and this permission notice appear in supporting *
11 * documentation, and that the name University of Delaware not be used in *
12 * advertising or publicity pertaining to distribution of the software *
13 * without specific, written prior permission. The University of Delaware *
14 * makes no representations about the suitability this software for any *
15 * purpose. It is provided "as is" without express or implied warranty. *
16 * *
17 ******************************************************************************/
18
19 /*
20 * Modification history kern_ntptime.c
21 *
22 * 24 Sep 94 David L. Mills
23 * Tightened code at exits.
24 *
25 * 24 Mar 94 David L. Mills
26 * Revised syscall interface to include new variables for PPS
27 * time discipline.
28 *
29 * 14 Feb 94 David L. Mills
30 * Added code for external clock
31 *
32 * 28 Nov 93 David L. Mills
33 * Revised frequency scaling to conform with adjusted parameters
34 *
35 * 17 Sep 93 David L. Mills
36 * Created file
37 */
38 /*
39 * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
40 * V4.1.1 and V4.1.3
41 *
42 * These routines consitute the Network Time Protocol (NTP) interfaces
43 * for user and daemon application programs. The ntp_gettime() routine
44 * provides the time, maximum error (synch distance) and estimated error
45 * (dispersion) to client user application programs. The ntp_adjtime()
46 * routine is used by the NTP daemon to adjust the system clock to an
47 * externally derived time. The time offset and related variables set by
48 * this routine are used by hardclock() to adjust the phase and
49 * frequency of the phase-lock loop which controls the system clock.
50 */
51 #include "opt_ntp.h"
52
53 #include <sys/param.h>
54 #include <sys/resourcevar.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/proc.h>
58 #include <sys/timex.h>
59 #include <sys/vnode.h>
60
61 #include <sys/mount.h>
62 #include <sys/syscallargs.h>
63
64 #include <machine/cpu.h>
65
66 #include <uvm/uvm_extern.h>
67 #include <sys/sysctl.h>
68
69 #ifdef NTP
70
71 /*
72 * The following variables are used by the hardclock() routine in the
73 * kern_clock.c module and are described in that module.
74 */
75 extern int time_state; /* clock state */
76 extern int time_status; /* clock status bits */
77 extern long time_offset; /* time adjustment (us) */
78 extern long time_freq; /* frequency offset (scaled ppm) */
79 extern long time_maxerror; /* maximum error (us) */
80 extern long time_esterror; /* estimated error (us) */
81 extern long time_constant; /* pll time constant */
82 extern long time_precision; /* clock precision (us) */
83 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
84
85 #ifdef PPS_SYNC
86 /*
87 * The following variables are used only if the PPS signal discipline
88 * is configured in the kernel.
89 */
90 extern int pps_shift; /* interval duration (s) (shift) */
91 extern long pps_freq; /* pps frequency offset (scaled ppm) */
92 extern long pps_jitter; /* pps jitter (us) */
93 extern long pps_stabil; /* pps stability (scaled ppm) */
94 extern long pps_jitcnt; /* jitter limit exceeded */
95 extern long pps_calcnt; /* calibration intervals */
96 extern long pps_errcnt; /* calibration errors */
97 extern long pps_stbcnt; /* stability limit exceeded */
98 #endif /* PPS_SYNC */
99
100
101
102 /*ARGSUSED*/
103 /*
104 * ntp_gettime() - NTP user application interface
105 */
106 int
107 sys_ntp_gettime(p, v, retval)
108 struct proc *p;
109 void *v;
110 register_t *retval;
111
112 {
113 struct sys_ntp_gettime_args /* {
114 syscallarg(struct ntptimeval *) ntvp;
115 } */ *uap = v;
116 struct timeval atv;
117 struct ntptimeval ntv;
118 int error = 0;
119 int s;
120
121 if (SCARG(uap, ntvp)) {
122 s = splclock();
123 #ifdef EXT_CLOCK
124 /*
125 * The microtime() external clock routine returns a
126 * status code. If less than zero, we declare an error
127 * in the clock status word and return the kernel
128 * (software) time variable. While there are other
129 * places that call microtime(), this is the only place
130 * that matters from an application point of view.
131 */
132 if (microtime(&atv) < 0) {
133 time_status |= STA_CLOCKERR;
134 ntv.time = time;
135 } else
136 time_status &= ~STA_CLOCKERR;
137 #else /* EXT_CLOCK */
138 microtime(&atv);
139 #endif /* EXT_CLOCK */
140 ntv.time = atv;
141 ntv.maxerror = time_maxerror;
142 ntv.esterror = time_esterror;
143 (void) splx(s);
144
145 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
146 sizeof(ntv));
147 }
148 if (!error) {
149
150 /*
151 * Status word error decode. If any of these conditions
152 * occur, an error is returned, instead of the status
153 * word. Most applications will care only about the fact
154 * the system clock may not be trusted, not about the
155 * details.
156 *
157 * Hardware or software error
158 */
159 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
160
161 /*
162 * PPS signal lost when either time or frequency
163 * synchronization requested
164 */
165 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
166 !(time_status & STA_PPSSIGNAL)) ||
167
168 /*
169 * PPS jitter exceeded when time synchronization
170 * requested
171 */
172 (time_status & STA_PPSTIME &&
173 time_status & STA_PPSJITTER) ||
174
175 /*
176 * PPS wander exceeded or calibration error when
177 * frequency synchronization requested
178 */
179 (time_status & STA_PPSFREQ &&
180 time_status & (STA_PPSWANDER | STA_PPSERROR)))
181 *retval = TIME_ERROR;
182 else
183 *retval = (register_t)time_state;
184 }
185 return(error);
186 }
187
188
189 /* ARGSUSED */
190 /*
191 * ntp_adjtime() - NTP daemon application interface
192 */
193 int
194 sys_ntp_adjtime(p, v, retval)
195 struct proc *p;
196 void *v;
197 register_t *retval;
198 {
199 struct sys_ntp_adjtime_args /* {
200 syscallarg(struct timex *) tp;
201 } */ *uap = v;
202 struct timex ntv;
203 int error = 0;
204
205 if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
206 sizeof(ntv))) != 0)
207 return (error);
208
209
210 if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
211 return (error);
212
213 return (ntp_adjtime1(&ntv, retval));
214 }
215
216 int
217 ntp_adjtime1(struct timex *, register_t*)
218 struct timex *ntv;
219 register_t *retval;
220 {
221 int error = 0;
222 int modes;
223 int s;
224
225 /*
226 * Update selected clock variables. Note that there is no error
227 * checking here on the assumption the superuser should know
228 * what it is doing.
229 */
230 modes = ntv.modes;
231 s = splclock();
232 if (modes & MOD_FREQUENCY)
233 #ifdef PPS_SYNC
234 time_freq = ntv.freq - pps_freq;
235 #else /* PPS_SYNC */
236 time_freq = ntv.freq;
237 #endif /* PPS_SYNC */
238 if (modes & MOD_MAXERROR)
239 time_maxerror = ntv.maxerror;
240 if (modes & MOD_ESTERROR)
241 time_esterror = ntv.esterror;
242 if (modes & MOD_STATUS) {
243 time_status &= STA_RONLY;
244 time_status |= ntv.status & ~STA_RONLY;
245 }
246 if (modes & MOD_TIMECONST)
247 time_constant = ntv.constant;
248 if (modes & MOD_OFFSET)
249 hardupdate(ntv.offset);
250
251 /*
252 * Retrieve all clock variables
253 */
254 if (time_offset < 0)
255 ntv.offset = -(-time_offset >> SHIFT_UPDATE);
256 else
257 ntv.offset = time_offset >> SHIFT_UPDATE;
258 #ifdef PPS_SYNC
259 ntv.freq = time_freq + pps_freq;
260 #else /* PPS_SYNC */
261 ntv.freq = time_freq;
262 #endif /* PPS_SYNC */
263 ntv.maxerror = time_maxerror;
264 ntv.esterror = time_esterror;
265 ntv.status = time_status;
266 ntv.constant = time_constant;
267 ntv.precision = time_precision;
268 ntv.tolerance = time_tolerance;
269 #ifdef PPS_SYNC
270 ntv.shift = pps_shift;
271 ntv.ppsfreq = pps_freq;
272 ntv.jitter = pps_jitter >> PPS_AVG;
273 ntv.stabil = pps_stabil;
274 ntv.calcnt = pps_calcnt;
275 ntv.errcnt = pps_errcnt;
276 ntv.jitcnt = pps_jitcnt;
277 ntv.stbcnt = pps_stbcnt;
278 #endif /* PPS_SYNC */
279 (void)splx(s);
280
281 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
282 if (!error) {
283
284 /*
285 * Status word error decode. See comments in
286 * ntp_gettime() routine.
287 */
288 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
289 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
290 !(time_status & STA_PPSSIGNAL)) ||
291 (time_status & STA_PPSTIME &&
292 time_status & STA_PPSJITTER) ||
293 (time_status & STA_PPSFREQ &&
294 time_status & (STA_PPSWANDER | STA_PPSERROR)))
295 *retval = TIME_ERROR;
296 else
297 *retval = (register_t)time_state;
298 }
299 return error;
300 }
301
302
303
304 /*
305 * return information about kernel precision timekeeping
306 */
307 int
308 sysctl_ntptime(where, sizep)
309 void *where;
310 size_t *sizep;
311 {
312 struct timeval atv;
313 struct ntptimeval ntv;
314 int s;
315
316 /*
317 * Construct ntp_timeval.
318 */
319
320 s = splclock();
321 #ifdef EXT_CLOCK
322 /*
323 * The microtime() external clock routine returns a
324 * status code. If less than zero, we declare an error
325 * in the clock status word and return the kernel
326 * (software) time variable. While there are other
327 * places that call microtime(), this is the only place
328 * that matters from an application point of view.
329 */
330 if (microtime(&atv) < 0) {
331 time_status |= STA_CLOCKERR;
332 ntv.time = time;
333 } else {
334 time_status &= ~STA_CLOCKERR;
335 }
336 #else /* EXT_CLOCK */
337 microtime(&atv);
338 #endif /* EXT_CLOCK */
339 ntv.time = atv;
340 ntv.maxerror = time_maxerror;
341 ntv.esterror = time_esterror;
342 splx(s);
343
344 #ifdef notyet
345 /*
346 * Status word error decode. If any of these conditions
347 * occur, an error is returned, instead of the status
348 * word. Most applications will care only about the fact
349 * the system clock may not be trusted, not about the
350 * details.
351 *
352 * Hardware or software error
353 */
354 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
355 ntv.time_state = TIME_ERROR;
356
357 /*
358 * PPS signal lost when either time or frequency
359 * synchronization requested
360 */
361 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
362 !(time_status & STA_PPSSIGNAL)) ||
363
364 /*
365 * PPS jitter exceeded when time synchronization
366 * requested
367 */
368 (time_status & STA_PPSTIME &&
369 time_status & STA_PPSJITTER) ||
370
371 /*
372 * PPS wander exceeded or calibration error when
373 * frequency synchronization requested
374 */
375 (time_status & STA_PPSFREQ &&
376 time_status & (STA_PPSWANDER | STA_PPSERROR)))
377 ntv.time_state = TIME_ERROR;
378 else
379 ntv.time_state = time_state;
380 #endif /* notyet */
381 return (sysctl_rdstruct(where, sizep, NULL, &ntv, sizeof(ntv)));
382 }
383
384 #else /* !NTP */
385
386 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
387
388 int
389 sys_ntp_gettime(p, v, retval)
390 struct proc *p;
391 void *v;
392 register_t *retval;
393 {
394 return(ENOSYS);
395 }
396
397 #endif /* !NTP */
398