kern_ntptime.c revision 1.17 1 /* $NetBSD: kern_ntptime.c,v 1.17 2001/12/09 16:10:43 manu Exp $ */
2
3 /******************************************************************************
4 * *
5 * Copyright (c) David L. Mills 1993, 1994 *
6 * *
7 * Permission to use, copy, modify, and distribute this software and its *
8 * documentation for any purpose and without fee is hereby granted, provided *
9 * that the above copyright notice appears in all copies and that both the *
10 * copyright notice and this permission notice appear in supporting *
11 * documentation, and that the name University of Delaware not be used in *
12 * advertising or publicity pertaining to distribution of the software *
13 * without specific, written prior permission. The University of Delaware *
14 * makes no representations about the suitability this software for any *
15 * purpose. It is provided "as is" without express or implied warranty. *
16 * *
17 ******************************************************************************/
18
19 /*
20 * Modification history kern_ntptime.c
21 *
22 * 24 Sep 94 David L. Mills
23 * Tightened code at exits.
24 *
25 * 24 Mar 94 David L. Mills
26 * Revised syscall interface to include new variables for PPS
27 * time discipline.
28 *
29 * 14 Feb 94 David L. Mills
30 * Added code for external clock
31 *
32 * 28 Nov 93 David L. Mills
33 * Revised frequency scaling to conform with adjusted parameters
34 *
35 * 17 Sep 93 David L. Mills
36 * Created file
37 */
38 /*
39 * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
40 * V4.1.1 and V4.1.3
41 *
42 * These routines consitute the Network Time Protocol (NTP) interfaces
43 * for user and daemon application programs. The ntp_gettime() routine
44 * provides the time, maximum error (synch distance) and estimated error
45 * (dispersion) to client user application programs. The ntp_adjtime()
46 * routine is used by the NTP daemon to adjust the system clock to an
47 * externally derived time. The time offset and related variables set by
48 * this routine are used by hardclock() to adjust the phase and
49 * frequency of the phase-lock loop which controls the system clock.
50 */
51
52 #include <sys/cdefs.h>
53 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.17 2001/12/09 16:10:43 manu Exp $");
54
55 #include "opt_ntp.h"
56
57 #include <sys/param.h>
58 #include <sys/resourcevar.h>
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/proc.h>
62 #include <sys/timex.h>
63 #include <sys/vnode.h>
64
65 #include <sys/mount.h>
66 #include <sys/syscallargs.h>
67
68 #include <machine/cpu.h>
69
70 #include <uvm/uvm_extern.h>
71 #include <sys/sysctl.h>
72
73 #ifdef NTP
74
75 /*
76 * The following variables are used by the hardclock() routine in the
77 * kern_clock.c module and are described in that module.
78 */
79 extern int time_state; /* clock state */
80 extern int time_status; /* clock status bits */
81 extern long time_offset; /* time adjustment (us) */
82 extern long time_freq; /* frequency offset (scaled ppm) */
83 extern long time_maxerror; /* maximum error (us) */
84 extern long time_esterror; /* estimated error (us) */
85 extern long time_constant; /* pll time constant */
86 extern long time_precision; /* clock precision (us) */
87 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
88
89 #ifdef PPS_SYNC
90 /*
91 * The following variables are used only if the PPS signal discipline
92 * is configured in the kernel.
93 */
94 extern int pps_shift; /* interval duration (s) (shift) */
95 extern long pps_freq; /* pps frequency offset (scaled ppm) */
96 extern long pps_jitter; /* pps jitter (us) */
97 extern long pps_stabil; /* pps stability (scaled ppm) */
98 extern long pps_jitcnt; /* jitter limit exceeded */
99 extern long pps_calcnt; /* calibration intervals */
100 extern long pps_errcnt; /* calibration errors */
101 extern long pps_stbcnt; /* stability limit exceeded */
102 #endif /* PPS_SYNC */
103
104
105
106 /*ARGSUSED*/
107 /*
108 * ntp_gettime() - NTP user application interface
109 */
110 int
111 sys_ntp_gettime(p, v, retval)
112 struct proc *p;
113 void *v;
114 register_t *retval;
115
116 {
117 struct sys_ntp_gettime_args /* {
118 syscallarg(struct ntptimeval *) ntvp;
119 } */ *uap = v;
120 struct timeval atv;
121 struct ntptimeval ntv;
122 int error = 0;
123 int s;
124
125 if (SCARG(uap, ntvp)) {
126 s = splclock();
127 #ifdef EXT_CLOCK
128 /*
129 * The microtime() external clock routine returns a
130 * status code. If less than zero, we declare an error
131 * in the clock status word and return the kernel
132 * (software) time variable. While there are other
133 * places that call microtime(), this is the only place
134 * that matters from an application point of view.
135 */
136 if (microtime(&atv) < 0) {
137 time_status |= STA_CLOCKERR;
138 ntv.time = time;
139 } else
140 time_status &= ~STA_CLOCKERR;
141 #else /* EXT_CLOCK */
142 microtime(&atv);
143 #endif /* EXT_CLOCK */
144 ntv.time = atv;
145 ntv.maxerror = time_maxerror;
146 ntv.esterror = time_esterror;
147 (void) splx(s);
148
149 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
150 sizeof(ntv));
151 }
152 if (!error) {
153
154 /*
155 * Status word error decode. If any of these conditions
156 * occur, an error is returned, instead of the status
157 * word. Most applications will care only about the fact
158 * the system clock may not be trusted, not about the
159 * details.
160 *
161 * Hardware or software error
162 */
163 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
164
165 /*
166 * PPS signal lost when either time or frequency
167 * synchronization requested
168 */
169 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
170 !(time_status & STA_PPSSIGNAL)) ||
171
172 /*
173 * PPS jitter exceeded when time synchronization
174 * requested
175 */
176 (time_status & STA_PPSTIME &&
177 time_status & STA_PPSJITTER) ||
178
179 /*
180 * PPS wander exceeded or calibration error when
181 * frequency synchronization requested
182 */
183 (time_status & STA_PPSFREQ &&
184 time_status & (STA_PPSWANDER | STA_PPSERROR)))
185 *retval = TIME_ERROR;
186 else
187 *retval = (register_t)time_state;
188 }
189 return(error);
190 }
191
192
193 /* ARGSUSED */
194 /*
195 * ntp_adjtime() - NTP daemon application interface
196 */
197 int
198 sys_ntp_adjtime(p, v, retval)
199 struct proc *p;
200 void *v;
201 register_t *retval;
202 {
203 struct sys_ntp_adjtime_args /* {
204 syscallarg(struct timex *) tp;
205 } */ *uap = v;
206 struct timex ntv;
207 int error = 0;
208
209 if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
210 sizeof(ntv))) != 0)
211 return (error);
212
213 if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
214 return (error);
215
216 return (ntp_adjtime1(&ntv, v, retval));
217 }
218
219 int
220 ntp_adjtime1(ntv, v, retval)
221 struct timex *ntv;
222 void *v;
223 register_t *retval;
224 {
225 struct sys_ntp_adjtime_args /* {
226 syscallarg(struct timex *) tp;
227 } */ *uap = v;
228 int error = 0;
229 int modes;
230 int s;
231
232 /*
233 * Update selected clock variables. Note that there is no error
234 * checking here on the assumption the superuser should know
235 * what it is doing.
236 */
237 modes = ntv->modes;
238 s = splclock();
239 if (modes & MOD_FREQUENCY)
240 #ifdef PPS_SYNC
241 time_freq = ntv->freq - pps_freq;
242 #else /* PPS_SYNC */
243 time_freq = ntv->freq;
244 #endif /* PPS_SYNC */
245 if (modes & MOD_MAXERROR)
246 time_maxerror = ntv->maxerror;
247 if (modes & MOD_ESTERROR)
248 time_esterror = ntv->esterror;
249 if (modes & MOD_STATUS) {
250 time_status &= STA_RONLY;
251 time_status |= ntv->status & ~STA_RONLY;
252 }
253 if (modes & MOD_TIMECONST)
254 time_constant = ntv->constant;
255 if (modes & MOD_OFFSET)
256 hardupdate(ntv->offset);
257
258 /*
259 * Retrieve all clock variables
260 */
261 if (time_offset < 0)
262 ntv->offset = -(-time_offset >> SHIFT_UPDATE);
263 else
264 ntv->offset = time_offset >> SHIFT_UPDATE;
265 #ifdef PPS_SYNC
266 ntv->freq = time_freq + pps_freq;
267 #else /* PPS_SYNC */
268 ntv->freq = time_freq;
269 #endif /* PPS_SYNC */
270 ntv->maxerror = time_maxerror;
271 ntv->esterror = time_esterror;
272 ntv->status = time_status;
273 ntv->constant = time_constant;
274 ntv->precision = time_precision;
275 ntv->tolerance = time_tolerance;
276 #ifdef PPS_SYNC
277 ntv->shift = pps_shift;
278 ntv->ppsfreq = pps_freq;
279 ntv->jitter = pps_jitter >> PPS_AVG;
280 ntv->stabil = pps_stabil;
281 ntv->calcnt = pps_calcnt;
282 ntv->errcnt = pps_errcnt;
283 ntv->jitcnt = pps_jitcnt;
284 ntv->stbcnt = pps_stbcnt;
285 #endif /* PPS_SYNC */
286 (void)splx(s);
287
288 error = copyout((caddr_t)ntv, (caddr_t)SCARG(uap, tp), sizeof(*ntv));
289 if (!error) {
290
291 /*
292 * Status word error decode. See comments in
293 * ntp_gettime() routine.
294 */
295 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
296 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
297 !(time_status & STA_PPSSIGNAL)) ||
298 (time_status & STA_PPSTIME &&
299 time_status & STA_PPSJITTER) ||
300 (time_status & STA_PPSFREQ &&
301 time_status & (STA_PPSWANDER | STA_PPSERROR)))
302 *retval = TIME_ERROR;
303 else
304 *retval = (register_t)time_state;
305 }
306 return error;
307 }
308
309
310
311 /*
312 * return information about kernel precision timekeeping
313 */
314 int
315 sysctl_ntptime(where, sizep)
316 void *where;
317 size_t *sizep;
318 {
319 struct timeval atv;
320 struct ntptimeval ntv;
321 int s;
322
323 /*
324 * Construct ntp_timeval.
325 */
326
327 s = splclock();
328 #ifdef EXT_CLOCK
329 /*
330 * The microtime() external clock routine returns a
331 * status code. If less than zero, we declare an error
332 * in the clock status word and return the kernel
333 * (software) time variable. While there are other
334 * places that call microtime(), this is the only place
335 * that matters from an application point of view.
336 */
337 if (microtime(&atv) < 0) {
338 time_status |= STA_CLOCKERR;
339 ntv.time = time;
340 } else {
341 time_status &= ~STA_CLOCKERR;
342 }
343 #else /* EXT_CLOCK */
344 microtime(&atv);
345 #endif /* EXT_CLOCK */
346 ntv.time = atv;
347 ntv.maxerror = time_maxerror;
348 ntv.esterror = time_esterror;
349 splx(s);
350
351 #ifdef notyet
352 /*
353 * Status word error decode. If any of these conditions
354 * occur, an error is returned, instead of the status
355 * word. Most applications will care only about the fact
356 * the system clock may not be trusted, not about the
357 * details.
358 *
359 * Hardware or software error
360 */
361 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
362 ntv.time_state = TIME_ERROR;
363
364 /*
365 * PPS signal lost when either time or frequency
366 * synchronization requested
367 */
368 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
369 !(time_status & STA_PPSSIGNAL)) ||
370
371 /*
372 * PPS jitter exceeded when time synchronization
373 * requested
374 */
375 (time_status & STA_PPSTIME &&
376 time_status & STA_PPSJITTER) ||
377
378 /*
379 * PPS wander exceeded or calibration error when
380 * frequency synchronization requested
381 */
382 (time_status & STA_PPSFREQ &&
383 time_status & (STA_PPSWANDER | STA_PPSERROR)))
384 ntv.time_state = TIME_ERROR;
385 else
386 ntv.time_state = time_state;
387 #endif /* notyet */
388 return (sysctl_rdstruct(where, sizep, NULL, &ntv, sizeof(ntv)));
389 }
390
391 #else /* !NTP */
392
393 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
394
395 int
396 sys_ntp_gettime(p, v, retval)
397 struct proc *p;
398 void *v;
399 register_t *retval;
400 {
401 return(ENOSYS);
402 }
403
404 #endif /* !NTP */
405