kern_ntptime.c revision 1.19 1 /* $NetBSD: kern_ntptime.c,v 1.19 2002/03/17 11:15:49 simonb Exp $ */
2
3 /******************************************************************************
4 * *
5 * Copyright (c) David L. Mills 1993, 1994 *
6 * *
7 * Permission to use, copy, modify, and distribute this software and its *
8 * documentation for any purpose and without fee is hereby granted, provided *
9 * that the above copyright notice appears in all copies and that both the *
10 * copyright notice and this permission notice appear in supporting *
11 * documentation, and that the name University of Delaware not be used in *
12 * advertising or publicity pertaining to distribution of the software *
13 * without specific, written prior permission. The University of Delaware *
14 * makes no representations about the suitability this software for any *
15 * purpose. It is provided "as is" without express or implied warranty. *
16 * *
17 ******************************************************************************/
18
19 /*
20 * Modification history kern_ntptime.c
21 *
22 * 24 Sep 94 David L. Mills
23 * Tightened code at exits.
24 *
25 * 24 Mar 94 David L. Mills
26 * Revised syscall interface to include new variables for PPS
27 * time discipline.
28 *
29 * 14 Feb 94 David L. Mills
30 * Added code for external clock
31 *
32 * 28 Nov 93 David L. Mills
33 * Revised frequency scaling to conform with adjusted parameters
34 *
35 * 17 Sep 93 David L. Mills
36 * Created file
37 */
38 /*
39 * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
40 * V4.1.1 and V4.1.3
41 *
42 * These routines consitute the Network Time Protocol (NTP) interfaces
43 * for user and daemon application programs. The ntp_gettime() routine
44 * provides the time, maximum error (synch distance) and estimated error
45 * (dispersion) to client user application programs. The ntp_adjtime()
46 * routine is used by the NTP daemon to adjust the system clock to an
47 * externally derived time. The time offset and related variables set by
48 * this routine are used by hardclock() to adjust the phase and
49 * frequency of the phase-lock loop which controls the system clock.
50 */
51
52 #include <sys/cdefs.h>
53 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.19 2002/03/17 11:15:49 simonb Exp $");
54
55 #include "opt_ntp.h"
56
57 #include <sys/param.h>
58 #include <sys/resourcevar.h>
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/proc.h>
62 #include <sys/sysctl.h>
63 #include <sys/timex.h>
64 #include <sys/vnode.h>
65
66 #include <sys/mount.h>
67 #include <sys/syscallargs.h>
68
69 #include <machine/cpu.h>
70
71 #ifdef NTP
72 /*
73 * The following variables are used by the hardclock() routine in the
74 * kern_clock.c module and are described in that module.
75 */
76 extern int time_state; /* clock state */
77 extern int time_status; /* clock status bits */
78 extern long time_offset; /* time adjustment (us) */
79 extern long time_freq; /* frequency offset (scaled ppm) */
80 extern long time_maxerror; /* maximum error (us) */
81 extern long time_esterror; /* estimated error (us) */
82 extern long time_constant; /* pll time constant */
83 extern long time_precision; /* clock precision (us) */
84 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
85
86 #ifdef PPS_SYNC
87 /*
88 * The following variables are used only if the PPS signal discipline
89 * is configured in the kernel.
90 */
91 extern int pps_shift; /* interval duration (s) (shift) */
92 extern long pps_freq; /* pps frequency offset (scaled ppm) */
93 extern long pps_jitter; /* pps jitter (us) */
94 extern long pps_stabil; /* pps stability (scaled ppm) */
95 extern long pps_jitcnt; /* jitter limit exceeded */
96 extern long pps_calcnt; /* calibration intervals */
97 extern long pps_errcnt; /* calibration errors */
98 extern long pps_stbcnt; /* stability limit exceeded */
99 #endif /* PPS_SYNC */
100
101 /*ARGSUSED*/
102 /*
103 * ntp_gettime() - NTP user application interface
104 */
105 int
106 sys_ntp_gettime(p, v, retval)
107 struct proc *p;
108 void *v;
109 register_t *retval;
110
111 {
112 struct sys_ntp_gettime_args /* {
113 syscallarg(struct ntptimeval *) ntvp;
114 } */ *uap = v;
115 struct timeval atv;
116 struct ntptimeval ntv;
117 int error = 0;
118 int s;
119
120 if (SCARG(uap, ntvp)) {
121 s = splclock();
122 #ifdef EXT_CLOCK
123 /*
124 * The microtime() external clock routine returns a
125 * status code. If less than zero, we declare an error
126 * in the clock status word and return the kernel
127 * (software) time variable. While there are other
128 * places that call microtime(), this is the only place
129 * that matters from an application point of view.
130 */
131 if (microtime(&atv) < 0) {
132 time_status |= STA_CLOCKERR;
133 ntv.time = time;
134 } else
135 time_status &= ~STA_CLOCKERR;
136 #else /* EXT_CLOCK */
137 microtime(&atv);
138 #endif /* EXT_CLOCK */
139 ntv.time = atv;
140 ntv.maxerror = time_maxerror;
141 ntv.esterror = time_esterror;
142 (void) splx(s);
143
144 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
145 sizeof(ntv));
146 }
147 if (!error) {
148
149 /*
150 * Status word error decode. If any of these conditions
151 * occur, an error is returned, instead of the status
152 * word. Most applications will care only about the fact
153 * the system clock may not be trusted, not about the
154 * details.
155 *
156 * Hardware or software error
157 */
158 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
159
160 /*
161 * PPS signal lost when either time or frequency
162 * synchronization requested
163 */
164 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
165 !(time_status & STA_PPSSIGNAL)) ||
166
167 /*
168 * PPS jitter exceeded when time synchronization
169 * requested
170 */
171 (time_status & STA_PPSTIME &&
172 time_status & STA_PPSJITTER) ||
173
174 /*
175 * PPS wander exceeded or calibration error when
176 * frequency synchronization requested
177 */
178 (time_status & STA_PPSFREQ &&
179 time_status & (STA_PPSWANDER | STA_PPSERROR)))
180 *retval = TIME_ERROR;
181 else
182 *retval = (register_t)time_state;
183 }
184 return(error);
185 }
186
187 /* ARGSUSED */
188 /*
189 * ntp_adjtime() - NTP daemon application interface
190 */
191 int
192 sys_ntp_adjtime(p, v, retval)
193 struct proc *p;
194 void *v;
195 register_t *retval;
196 {
197 struct sys_ntp_adjtime_args /* {
198 syscallarg(struct timex *) tp;
199 } */ *uap = v;
200 struct timex ntv;
201 int error = 0;
202
203 if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
204 sizeof(ntv))) != 0)
205 return (error);
206
207 if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
208 return (error);
209
210 return (ntp_adjtime1(&ntv, v, retval));
211 }
212
213 int
214 ntp_adjtime1(ntv, v, retval)
215 struct timex *ntv;
216 void *v;
217 register_t *retval;
218 {
219 struct sys_ntp_adjtime_args /* {
220 syscallarg(struct timex *) tp;
221 } */ *uap = v;
222 int error = 0;
223 int modes;
224 int s;
225
226 /*
227 * Update selected clock variables. Note that there is no error
228 * checking here on the assumption the superuser should know
229 * what it is doing.
230 */
231 modes = ntv->modes;
232 s = splclock();
233 if (modes & MOD_FREQUENCY)
234 #ifdef PPS_SYNC
235 time_freq = ntv->freq - pps_freq;
236 #else /* PPS_SYNC */
237 time_freq = ntv->freq;
238 #endif /* PPS_SYNC */
239 if (modes & MOD_MAXERROR)
240 time_maxerror = ntv->maxerror;
241 if (modes & MOD_ESTERROR)
242 time_esterror = ntv->esterror;
243 if (modes & MOD_STATUS) {
244 time_status &= STA_RONLY;
245 time_status |= ntv->status & ~STA_RONLY;
246 }
247 if (modes & MOD_TIMECONST)
248 time_constant = ntv->constant;
249 if (modes & MOD_OFFSET)
250 hardupdate(ntv->offset);
251
252 /*
253 * Retrieve all clock variables
254 */
255 if (time_offset < 0)
256 ntv->offset = -(-time_offset >> SHIFT_UPDATE);
257 else
258 ntv->offset = time_offset >> SHIFT_UPDATE;
259 #ifdef PPS_SYNC
260 ntv->freq = time_freq + pps_freq;
261 #else /* PPS_SYNC */
262 ntv->freq = time_freq;
263 #endif /* PPS_SYNC */
264 ntv->maxerror = time_maxerror;
265 ntv->esterror = time_esterror;
266 ntv->status = time_status;
267 ntv->constant = time_constant;
268 ntv->precision = time_precision;
269 ntv->tolerance = time_tolerance;
270 #ifdef PPS_SYNC
271 ntv->shift = pps_shift;
272 ntv->ppsfreq = pps_freq;
273 ntv->jitter = pps_jitter >> PPS_AVG;
274 ntv->stabil = pps_stabil;
275 ntv->calcnt = pps_calcnt;
276 ntv->errcnt = pps_errcnt;
277 ntv->jitcnt = pps_jitcnt;
278 ntv->stbcnt = pps_stbcnt;
279 #endif /* PPS_SYNC */
280 (void)splx(s);
281
282 error = copyout((caddr_t)ntv, (caddr_t)SCARG(uap, tp), sizeof(*ntv));
283 if (!error) {
284
285 /*
286 * Status word error decode. See comments in
287 * ntp_gettime() routine.
288 */
289 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
290 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
291 !(time_status & STA_PPSSIGNAL)) ||
292 (time_status & STA_PPSTIME &&
293 time_status & STA_PPSJITTER) ||
294 (time_status & STA_PPSFREQ &&
295 time_status & (STA_PPSWANDER | STA_PPSERROR)))
296 *retval = TIME_ERROR;
297 else
298 *retval = (register_t)time_state;
299 }
300 return error;
301 }
302
303 /*
304 * return information about kernel precision timekeeping
305 */
306 int
307 sysctl_ntptime(where, sizep)
308 void *where;
309 size_t *sizep;
310 {
311 struct timeval atv;
312 struct ntptimeval ntv;
313 int s;
314
315 /*
316 * Construct ntp_timeval.
317 */
318
319 s = splclock();
320 #ifdef EXT_CLOCK
321 /*
322 * The microtime() external clock routine returns a
323 * status code. If less than zero, we declare an error
324 * in the clock status word and return the kernel
325 * (software) time variable. While there are other
326 * places that call microtime(), this is the only place
327 * that matters from an application point of view.
328 */
329 if (microtime(&atv) < 0) {
330 time_status |= STA_CLOCKERR;
331 ntv.time = time;
332 } else {
333 time_status &= ~STA_CLOCKERR;
334 }
335 #else /* EXT_CLOCK */
336 microtime(&atv);
337 #endif /* EXT_CLOCK */
338 ntv.time = atv;
339 ntv.maxerror = time_maxerror;
340 ntv.esterror = time_esterror;
341 splx(s);
342
343 #ifdef notyet
344 /*
345 * Status word error decode. If any of these conditions
346 * occur, an error is returned, instead of the status
347 * word. Most applications will care only about the fact
348 * the system clock may not be trusted, not about the
349 * details.
350 *
351 * Hardware or software error
352 */
353 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
354 ntv.time_state = TIME_ERROR;
355
356 /*
357 * PPS signal lost when either time or frequency
358 * synchronization requested
359 */
360 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
361 !(time_status & STA_PPSSIGNAL)) ||
362
363 /*
364 * PPS jitter exceeded when time synchronization
365 * requested
366 */
367 (time_status & STA_PPSTIME &&
368 time_status & STA_PPSJITTER) ||
369
370 /*
371 * PPS wander exceeded or calibration error when
372 * frequency synchronization requested
373 */
374 (time_status & STA_PPSFREQ &&
375 time_status & (STA_PPSWANDER | STA_PPSERROR)))
376 ntv.time_state = TIME_ERROR;
377 else
378 ntv.time_state = time_state;
379 #endif /* notyet */
380 return (sysctl_rdstruct(where, sizep, NULL, &ntv, sizeof(ntv)));
381 }
382 #else /* !NTP */
383 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
384
385 int
386 sys_ntp_gettime(p, v, retval)
387 struct proc *p;
388 void *v;
389 register_t *retval;
390 {
391
392 return(ENOSYS);
393 }
394 #endif /* !NTP */
395