Home | History | Annotate | Line # | Download | only in kern
kern_ntptime.c revision 1.29.6.1
      1 /*	$NetBSD: kern_ntptime.c,v 1.29.6.1 2006/02/04 12:47:20 simonb Exp $	*/
      2 #include <sys/types.h> 	/* XXX to get __HAVE_TIMECOUNTER, remove
      3 			   after all ports are converted. */
      4 #ifdef __HAVE_TIMECOUNTER
      5 
      6 /*-
      7  ***********************************************************************
      8  *								       *
      9  * Copyright (c) David L. Mills 1993-2001			       *
     10  *								       *
     11  * Permission to use, copy, modify, and distribute this software and   *
     12  * its documentation for any purpose and without fee is hereby	       *
     13  * granted, provided that the above copyright notice appears in all    *
     14  * copies and that both the copyright notice and this permission       *
     15  * notice appear in supporting documentation, and that the name	       *
     16  * University of Delaware not be used in advertising or publicity      *
     17  * pertaining to distribution of the software without specific,	       *
     18  * written prior permission. The University of Delaware makes no       *
     19  * representations about the suitability this software for any	       *
     20  * purpose. It is provided "as is" without express or implied	       *
     21  * warranty.							       *
     22  *								       *
     23  **********************************************************************/
     24 
     25 /*
     26  * Adapted from the original sources for FreeBSD and timecounters by:
     27  * Poul-Henning Kamp <phk (at) FreeBSD.org>.
     28  *
     29  * The 32bit version of the "LP" macros seems a bit past its "sell by"
     30  * date so I have retained only the 64bit version and included it directly
     31  * in this file.
     32  *
     33  * Only minor changes done to interface with the timecounters over in
     34  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
     35  * confusing and/or plain wrong in that context.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
     40 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.1 2006/02/04 12:47:20 simonb Exp $");
     41 
     42 #include "opt_ntp.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/resourcevar.h>
     46 #include <sys/systm.h>
     47 #include <sys/kernel.h>
     48 #include <sys/proc.h>
     49 #include <sys/sysctl.h>
     50 #include <sys/timex.h>
     51 #include <sys/vnode.h>
     52 
     53 #include <sys/mount.h>
     54 #include <sys/sa.h>
     55 #include <sys/syscallargs.h>
     56 
     57 #include <machine/cpu.h>
     58 
     59 #ifdef NTP
     60 /*
     61  * Single-precision macros for 64-bit machines
     62  */
     63 typedef int64_t l_fp;
     64 #define L_ADD(v, u)	((v) += (u))
     65 #define L_SUB(v, u)	((v) -= (u))
     66 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
     67 #define L_NEG(v)	((v) = -(v))
     68 #define L_RSHIFT(v, n) \
     69 	do { \
     70 		if ((v) < 0) \
     71 			(v) = -(-(v) >> (n)); \
     72 		else \
     73 			(v) = (v) >> (n); \
     74 	} while (0)
     75 #define L_MPY(v, a)	((v) *= (a))
     76 #define L_CLR(v)	((v) = 0)
     77 #define L_ISNEG(v)	((v) < 0)
     78 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
     79 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
     80 
     81 /*
     82  * Generic NTP kernel interface
     83  *
     84  * These routines constitute the Network Time Protocol (NTP) interfaces
     85  * for user and daemon application programs. The ntp_gettime() routine
     86  * provides the time, maximum error (synch distance) and estimated error
     87  * (dispersion) to client user application programs. The ntp_adjtime()
     88  * routine is used by the NTP daemon to adjust the system clock to an
     89  * externally derived time. The time offset and related variables set by
     90  * this routine are used by other routines in this module to adjust the
     91  * phase and frequency of the clock discipline loop which controls the
     92  * system clock.
     93  *
     94  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
     95  * defined), the time at each tick interrupt is derived directly from
     96  * the kernel time variable. When the kernel time is reckoned in
     97  * microseconds, (NTP_NANO undefined), the time is derived from the
     98  * kernel time variable together with a variable representing the
     99  * leftover nanoseconds at the last tick interrupt. In either case, the
    100  * current nanosecond time is reckoned from these values plus an
    101  * interpolated value derived by the clock routines in another
    102  * architecture-specific module. The interpolation can use either a
    103  * dedicated counter or a processor cycle counter (PCC) implemented in
    104  * some architectures.
    105  *
    106  * Note that all routines must run at priority splclock or higher.
    107  */
    108 /*
    109  * Phase/frequency-lock loop (PLL/FLL) definitions
    110  *
    111  * The nanosecond clock discipline uses two variable types, time
    112  * variables and frequency variables. Both types are represented as 64-
    113  * bit fixed-point quantities with the decimal point between two 32-bit
    114  * halves. On a 32-bit machine, each half is represented as a single
    115  * word and mathematical operations are done using multiple-precision
    116  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
    117  * used.
    118  *
    119  * A time variable is a signed 64-bit fixed-point number in ns and
    120  * fraction. It represents the remaining time offset to be amortized
    121  * over succeeding tick interrupts. The maximum time offset is about
    122  * 0.5 s and the resolution is about 2.3e-10 ns.
    123  *
    124  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    125  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    126  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    127  * |s s s|			 ns				   |
    128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    129  * |			    fraction				   |
    130  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    131  *
    132  * A frequency variable is a signed 64-bit fixed-point number in ns/s
    133  * and fraction. It represents the ns and fraction to be added to the
    134  * kernel time variable at each second. The maximum frequency offset is
    135  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
    136  *
    137  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    138  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    139  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    140  * |s s s s s s s s s s s s s|	          ns/s			   |
    141  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    142  * |			    fraction				   |
    143  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    144  */
    145 /*
    146  * The following variables establish the state of the PLL/FLL and the
    147  * residual time and frequency offset of the local clock.
    148  */
    149 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
    150 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
    151 
    152 static int time_state = TIME_OK;	/* clock state */
    153 static int time_status = STA_UNSYNC;	/* clock status bits */
    154 static long time_tai;			/* TAI offset (s) */
    155 static long time_monitor;		/* last time offset scaled (ns) */
    156 static long time_constant;		/* poll interval (shift) (s) */
    157 static long time_precision = 1;		/* clock precision (ns) */
    158 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
    159 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
    160 static long time_reftime;		/* time at last adjustment (s) */
    161 static l_fp time_offset;		/* time offset (ns) */
    162 static l_fp time_freq;			/* frequency offset (ns/s) */
    163 static l_fp time_adj;			/* tick adjust (ns/s) */
    164 
    165 static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
    166 
    167 extern int time_adjusted;	/* ntp might have changed the system time */
    168 
    169 #ifdef PPS_SYNC
    170 /*
    171  * The following variables are used when a pulse-per-second (PPS) signal
    172  * is available and connected via a modem control lead. They establish
    173  * the engineering parameters of the clock discipline loop when
    174  * controlled by the PPS signal.
    175  */
    176 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
    177 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
    178 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
    179 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
    180 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
    181 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
    182 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
    183 
    184 static struct timespec pps_tf[3];	/* phase median filter */
    185 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
    186 static long pps_fcount;			/* frequency accumulator */
    187 static long pps_jitter;			/* nominal jitter (ns) */
    188 static long pps_stabil;			/* nominal stability (scaled ns/s) */
    189 static long pps_lastsec;		/* time at last calibration (s) */
    190 static int pps_valid;			/* signal watchdog counter */
    191 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
    192 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
    193 static int pps_intcnt;			/* wander counter */
    194 
    195 /*
    196  * PPS signal quality monitors
    197  */
    198 static long pps_calcnt;			/* calibration intervals */
    199 static long pps_jitcnt;			/* jitter limit exceeded */
    200 static long pps_stbcnt;			/* stability limit exceeded */
    201 static long pps_errcnt;			/* calibration errors */
    202 #endif /* PPS_SYNC */
    203 /*
    204  * End of phase/frequency-lock loop (PLL/FLL) definitions
    205  */
    206 
    207 static void hardupdate(long offset);
    208 
    209 /*ARGSUSED*/
    210 /*
    211  * ntp_gettime() - NTP user application interface
    212  */
    213 int
    214 sys_ntp_gettime(l, v, retval)
    215 	struct lwp *l;
    216 	void *v;
    217 	register_t *retval;
    218 
    219 {
    220 	struct sys_ntp_gettime_args /* {
    221 		syscallarg(struct ntptimeval *) ntvp;
    222 	} */ *uap = v;
    223 	struct ntptimeval ntv;
    224 	int error = 0;
    225 
    226 	if (SCARG(uap, ntvp)) {
    227 		nanotime(&ntv.time);
    228 		ntv.maxerror = time_maxerror;
    229 		ntv.esterror = time_esterror;
    230 		ntv.tai = time_tai;
    231 		ntv.time_state = time_state;
    232 
    233 		error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
    234 		    sizeof(ntv));
    235 	}
    236 	if (!error) {
    237 
    238 		/*
    239 		 * Status word error decode. If any of these conditions occur,
    240 		 * an error is returned, instead of the status word. Most
    241 		 * applications will care only about the fact the system clock
    242 		 * may not be trusted, not about the details.
    243 		 *
    244 		 * Hardware or software error
    245 		 */
    246 		if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    247 
    248 		/*
    249 		 * PPS signal lost when either time or frequency synchronization
    250 		 * requested
    251 		 */
    252 		    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    253 		    !(time_status & STA_PPSSIGNAL)) ||
    254 
    255 		/*
    256 		 * PPS jitter exceeded when time synchronization requested
    257 		 */
    258 		    (time_status & STA_PPSTIME &&
    259 		    time_status & STA_PPSJITTER) ||
    260 
    261 		/*
    262 		 * PPS wander exceeded or calibration error when frequency
    263 		 * synchronization requested
    264 		 */
    265 		    (time_status & STA_PPSFREQ &&
    266 		    time_status & (STA_PPSWANDER | STA_PPSERROR)))
    267 			ntv.time_state = TIME_ERROR;
    268 
    269 		*retval = (register_t)ntv.time_state;
    270 	}
    271 	return(error);
    272 }
    273 
    274 /* ARGSUSED */
    275 /*
    276  * ntp_adjtime() - NTP daemon application interface
    277  */
    278 int
    279 sys_ntp_adjtime(l, v, retval)
    280 	struct lwp *l;
    281 	void *v;
    282 	register_t *retval;
    283 {
    284 	struct sys_ntp_adjtime_args /* {
    285 		syscallarg(struct timex *) tp;
    286 	} */ *uap = v;
    287 	struct proc *p = l->l_proc;
    288 	struct timex ntv;
    289 	int error = 0;
    290 
    291 	if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
    292 			sizeof(ntv))) != 0)
    293 		return (error);
    294 
    295 	if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
    296 		return (error);
    297 
    298 	return (ntp_adjtime1(&ntv, v, retval));
    299 }
    300 
    301 int
    302 ntp_adjtime1(ntv, v, retval)
    303 	struct timex *ntv;
    304 	void *v;
    305 	register_t	*retval;
    306 {
    307 	struct sys_ntp_adjtime_args /* {
    308 		syscallarg(struct timex *) tp;
    309 	} */ *uap = v;
    310 	long freq;
    311 	int modes;
    312 	int s;
    313 	int error = 0;
    314 
    315 	/*
    316 	 * Update selected clock variables - only the superuser can
    317 	 * change anything. Note that there is no error checking here on
    318 	 * the assumption the superuser should know what it is doing.
    319 	 * Note that either the time constant or TAI offset are loaded
    320 	 * from the ntv.constant member, depending on the mode bits. If
    321 	 * the STA_PLL bit in the status word is cleared, the state and
    322 	 * status words are reset to the initial values at boot.
    323 	 */
    324 	modes = ntv->modes;
    325 	if (modes != 0)
    326 		/* We need to save the system time during shutdown */
    327 		time_adjusted |= 2;
    328 	s = splclock();
    329 	if (modes & MOD_MAXERROR)
    330 		time_maxerror = ntv->maxerror;
    331 	if (modes & MOD_ESTERROR)
    332 		time_esterror = ntv->esterror;
    333 	if (modes & MOD_STATUS) {
    334 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
    335 			time_state = TIME_OK;
    336 			time_status = STA_UNSYNC;
    337 #ifdef PPS_SYNC
    338 			pps_shift = PPS_FAVG;
    339 #endif /* PPS_SYNC */
    340 		}
    341 		time_status &= STA_RONLY;
    342 		time_status |= ntv->status & ~STA_RONLY;
    343 	}
    344 	if (modes & MOD_TIMECONST) {
    345 		if (ntv->constant < 0)
    346 			time_constant = 0;
    347 		else if (ntv->constant > MAXTC)
    348 			time_constant = MAXTC;
    349 		else
    350 			time_constant = ntv->constant;
    351 	}
    352 	if (modes & MOD_TAI) {
    353 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
    354 			time_tai = ntv->constant;
    355 	}
    356 #ifdef PPS_SYNC
    357 	if (modes & MOD_PPSMAX) {
    358 		if (ntv->shift < PPS_FAVG)
    359 			pps_shiftmax = PPS_FAVG;
    360 		else if (ntv->shift > PPS_FAVGMAX)
    361 			pps_shiftmax = PPS_FAVGMAX;
    362 		else
    363 			pps_shiftmax = ntv.shift;
    364 	}
    365 #endif /* PPS_SYNC */
    366 	if (modes & MOD_NANO)
    367 		time_status |= STA_NANO;
    368 	if (modes & MOD_MICRO)
    369 		time_status &= ~STA_NANO;
    370 	if (modes & MOD_CLKB)
    371 		time_status |= STA_CLK;
    372 	if (modes & MOD_CLKA)
    373 		time_status &= ~STA_CLK;
    374 	if (modes & MOD_FREQUENCY) {
    375 		freq = (ntv->freq * 1000LL) >> 16;
    376 		if (freq > MAXFREQ)
    377 			L_LINT(time_freq, MAXFREQ);
    378 		else if (freq < -MAXFREQ)
    379 			L_LINT(time_freq, -MAXFREQ);
    380 		else {
    381 			/*
    382 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
    383 			 * time_freq is [ns/s * 2^32]
    384 			 */
    385 			time_freq = ntv->freq * 1000LL * 65536LL;
    386 		}
    387 #ifdef PPS_SYNC
    388 		pps_freq = time_freq;
    389 #endif /* PPS_SYNC */
    390 	}
    391 	if (modes & MOD_OFFSET) {
    392 		if (time_status & STA_NANO)
    393 			hardupdate(ntv->offset);
    394 		else
    395 			hardupdate(ntv->offset * 1000);
    396 	}
    397 
    398 	/*
    399 	 * Retrieve all clock variables. Note that the TAI offset is
    400 	 * returned only by ntp_gettime();
    401 	 */
    402 	if (time_status & STA_NANO)
    403 		ntv->offset = L_GINT(time_offset);
    404 	else
    405 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
    406 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
    407 	ntv->maxerror = time_maxerror;
    408 	ntv->esterror = time_esterror;
    409 	ntv->status = time_status;
    410 	ntv->constant = time_constant;
    411 	if (time_status & STA_NANO)
    412 		ntv->precision = time_precision;
    413 	else
    414 		ntv->precision = time_precision / 1000;
    415 	ntv->tolerance = MAXFREQ * SCALE_PPM;
    416 #ifdef PPS_SYNC
    417 	ntv->shift = pps_shift;
    418 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
    419 	if (time_status & STA_NANO)
    420 		ntv->jitter = pps_jitter;
    421 	else
    422 		ntv->jitter = pps_jitter / 1000;
    423 	ntv->stabil = pps_stabil;
    424 	ntv->calcnt = pps_calcnt;
    425 	ntv->errcnt = pps_errcnt;
    426 	ntv->jitcnt = pps_jitcnt;
    427 	ntv->stbcnt = pps_stbcnt;
    428 #endif /* PPS_SYNC */
    429 	splx(s);
    430 
    431 	error = copyout((caddr_t)ntv, (caddr_t)SCARG(uap, tp), sizeof(*ntv));
    432 	if (!error) {
    433 
    434 		/*
    435 		 * Status word error decode. See comments in
    436 		 * ntp_gettime() routine.
    437 		 */
    438 		if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    439 		    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    440 		    !(time_status & STA_PPSSIGNAL)) ||
    441 		    (time_status & STA_PPSTIME &&
    442 		    time_status & STA_PPSJITTER) ||
    443 		    (time_status & STA_PPSFREQ &&
    444 		    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
    445 			*retval = TIME_ERROR;
    446 		} else
    447 			*retval = (register_t)time_state;
    448 	}
    449 	return error;
    450 }
    451 
    452 /*
    453  * second_overflow() - called after ntp_tick_adjust()
    454  *
    455  * This routine is ordinarily called immediately following the above
    456  * routine ntp_tick_adjust(). While these two routines are normally
    457  * combined, they are separated here only for the purposes of
    458  * simulation.
    459  */
    460 void
    461 ntp_update_second(int64_t *adjustment, time_t *newsec)
    462 {
    463 	int tickrate;
    464 	l_fp ftemp;		/* 32/64-bit temporary */
    465 
    466 	/*
    467 	 * On rollover of the second both the nanosecond and microsecond
    468 	 * clocks are updated and the state machine cranked as
    469 	 * necessary. The phase adjustment to be used for the next
    470 	 * second is calculated and the maximum error is increased by
    471 	 * the tolerance.
    472 	 */
    473 	time_maxerror += MAXFREQ / 1000;
    474 
    475 	/*
    476 	 * Leap second processing. If in leap-insert state at
    477 	 * the end of the day, the system clock is set back one
    478 	 * second; if in leap-delete state, the system clock is
    479 	 * set ahead one second. The nano_time() routine or
    480 	 * external clock driver will insure that reported time
    481 	 * is always monotonic.
    482 	 */
    483 	switch (time_state) {
    484 
    485 		/*
    486 		 * No warning.
    487 		 */
    488 		case TIME_OK:
    489 		if (time_status & STA_INS)
    490 			time_state = TIME_INS;
    491 		else if (time_status & STA_DEL)
    492 			time_state = TIME_DEL;
    493 		break;
    494 
    495 		/*
    496 		 * Insert second 23:59:60 following second
    497 		 * 23:59:59.
    498 		 */
    499 		case TIME_INS:
    500 		if (!(time_status & STA_INS))
    501 			time_state = TIME_OK;
    502 		else if ((*newsec) % 86400 == 0) {
    503 			(*newsec)--;
    504 			time_state = TIME_OOP;
    505 			time_tai++;
    506 		}
    507 		break;
    508 
    509 		/*
    510 		 * Delete second 23:59:59.
    511 		 */
    512 		case TIME_DEL:
    513 		if (!(time_status & STA_DEL))
    514 			time_state = TIME_OK;
    515 		else if (((*newsec) + 1) % 86400 == 0) {
    516 			(*newsec)++;
    517 			time_tai--;
    518 			time_state = TIME_WAIT;
    519 		}
    520 		break;
    521 
    522 		/*
    523 		 * Insert second in progress.
    524 		 */
    525 		case TIME_OOP:
    526 			time_state = TIME_WAIT;
    527 		break;
    528 
    529 		/*
    530 		 * Wait for status bits to clear.
    531 		 */
    532 		case TIME_WAIT:
    533 		if (!(time_status & (STA_INS | STA_DEL)))
    534 			time_state = TIME_OK;
    535 	}
    536 
    537 	/*
    538 	 * Compute the total time adjustment for the next second
    539 	 * in ns. The offset is reduced by a factor depending on
    540 	 * whether the PPS signal is operating. Note that the
    541 	 * value is in effect scaled by the clock frequency,
    542 	 * since the adjustment is added at each tick interrupt.
    543 	 */
    544 	ftemp = time_offset;
    545 #ifdef PPS_SYNC
    546 	/* XXX even if PPS signal dies we should finish adjustment ? */
    547 	if (time_status & STA_PPSTIME && time_status &
    548 	    STA_PPSSIGNAL)
    549 		L_RSHIFT(ftemp, pps_shift);
    550 	else
    551 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    552 #else
    553 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    554 #endif /* PPS_SYNC */
    555 	time_adj = ftemp;
    556 	L_SUB(time_offset, ftemp);
    557 	L_ADD(time_adj, time_freq);
    558 
    559 	/*
    560 	 * Apply any correction from adjtime(2).  If more than one second
    561 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
    562 	 * until the last second is slewed the final < 500 usecs.
    563 	 */
    564 	if (time_adjtime != 0) {
    565 		if (time_adjtime > 1000000)
    566 			tickrate = 5000;
    567 		else if (time_adjtime < -1000000)
    568 			tickrate = -5000;
    569 		else if (time_adjtime > 500)
    570 			tickrate = 500;
    571 		else if (time_adjtime < -500)
    572 			tickrate = -500;
    573 		else
    574 			tickrate = time_adjtime;
    575 		time_adjtime -= tickrate;
    576 		L_LINT(ftemp, tickrate * 1000);
    577 		L_ADD(time_adj, ftemp);
    578 	}
    579 	*adjustment = time_adj;
    580 
    581 #ifdef PPS_SYNC
    582 	if (pps_valid > 0)
    583 		pps_valid--;
    584 	else
    585 		time_status &= ~STA_PPSSIGNAL;
    586 #endif /* PPS_SYNC */
    587 }
    588 
    589 /*
    590  * ntp_init() - initialize variables and structures
    591  *
    592  * This routine must be called after the kernel variables hz and tick
    593  * are set or changed and before the next tick interrupt. In this
    594  * particular implementation, these values are assumed set elsewhere in
    595  * the kernel. The design allows the clock frequency and tick interval
    596  * to be changed while the system is running. So, this routine should
    597  * probably be integrated with the code that does that.
    598  */
    599 void
    600 ntp_init(void)
    601 {
    602 
    603 	/*
    604 	 * The following variables are initialized only at startup. Only
    605 	 * those structures not cleared by the compiler need to be
    606 	 * initialized, and these only in the simulator. In the actual
    607 	 * kernel, any nonzero values here will quickly evaporate.
    608 	 */
    609 	L_CLR(time_offset);
    610 	L_CLR(time_freq);
    611 #ifdef PPS_SYNC
    612 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
    613 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
    614 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
    615 	pps_fcount = 0;
    616 	L_CLR(pps_freq);
    617 #endif /* PPS_SYNC */
    618 }
    619 
    620 /*
    621  * hardupdate() - local clock update
    622  *
    623  * This routine is called by ntp_adjtime() to update the local clock
    624  * phase and frequency. The implementation is of an adaptive-parameter,
    625  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    626  * time and frequency offset estimates for each call. If the kernel PPS
    627  * discipline code is configured (PPS_SYNC), the PPS signal itself
    628  * determines the new time offset, instead of the calling argument.
    629  * Presumably, calls to ntp_adjtime() occur only when the caller
    630  * believes the local clock is valid within some bound (+-128 ms with
    631  * NTP). If the caller's time is far different than the PPS time, an
    632  * argument will ensue, and it's not clear who will lose.
    633  *
    634  * For uncompensated quartz crystal oscillators and nominal update
    635  * intervals less than 256 s, operation should be in phase-lock mode,
    636  * where the loop is disciplined to phase. For update intervals greater
    637  * than 1024 s, operation should be in frequency-lock mode, where the
    638  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
    639  * is selected by the STA_MODE status bit.
    640  *
    641  * Note: splclock() is in effect.
    642  */
    643 void
    644 hardupdate(long offset)
    645 {
    646 	long mtemp;
    647 	l_fp ftemp;
    648 
    649 	/*
    650 	 * Select how the phase is to be controlled and from which
    651 	 * source. If the PPS signal is present and enabled to
    652 	 * discipline the time, the PPS offset is used; otherwise, the
    653 	 * argument offset is used.
    654 	 */
    655 	if (!(time_status & STA_PLL))
    656 		return;
    657 	if (!(time_status & STA_PPSTIME && time_status &
    658 	    STA_PPSSIGNAL)) {
    659 		if (offset > MAXPHASE)
    660 			time_monitor = MAXPHASE;
    661 		else if (offset < -MAXPHASE)
    662 			time_monitor = -MAXPHASE;
    663 		else
    664 			time_monitor = offset;
    665 		L_LINT(time_offset, time_monitor);
    666 	}
    667 
    668 	/*
    669 	 * Select how the frequency is to be controlled and in which
    670 	 * mode (PLL or FLL). If the PPS signal is present and enabled
    671 	 * to discipline the frequency, the PPS frequency is used;
    672 	 * otherwise, the argument offset is used to compute it.
    673 	 */
    674 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
    675 		time_reftime = time_second;
    676 		return;
    677 	}
    678 	if (time_status & STA_FREQHOLD || time_reftime == 0)
    679 		time_reftime = time_second;
    680 	mtemp = time_second - time_reftime;
    681 	L_LINT(ftemp, time_monitor);
    682 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
    683 	L_MPY(ftemp, mtemp);
    684 	L_ADD(time_freq, ftemp);
    685 	time_status &= ~STA_MODE;
    686 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
    687 	    MAXSEC)) {
    688 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
    689 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
    690 		L_ADD(time_freq, ftemp);
    691 		time_status |= STA_MODE;
    692 	}
    693 	time_reftime = time_second;
    694 	if (L_GINT(time_freq) > MAXFREQ)
    695 		L_LINT(time_freq, MAXFREQ);
    696 	else if (L_GINT(time_freq) < -MAXFREQ)
    697 		L_LINT(time_freq, -MAXFREQ);
    698 }
    699 
    700 #ifdef PPS_SYNC
    701 /*
    702  * hardpps() - discipline CPU clock oscillator to external PPS signal
    703  *
    704  * This routine is called at each PPS interrupt in order to discipline
    705  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
    706  * and leaves it in a handy spot for the hardclock() routine. It
    707  * integrates successive PPS phase differences and calculates the
    708  * frequency offset. This is used in hardclock() to discipline the CPU
    709  * clock oscillator so that intrinsic frequency error is cancelled out.
    710  * The code requires the caller to capture the time and hardware counter
    711  * value at the on-time PPS signal transition.
    712  *
    713  * Note that, on some Unix systems, this routine runs at an interrupt
    714  * priority level higher than the timer interrupt routine hardclock().
    715  * Therefore, the variables used are distinct from the hardclock()
    716  * variables, except for certain exceptions: The PPS frequency pps_freq
    717  * and phase pps_offset variables are determined by this routine and
    718  * updated atomically. The time_tolerance variable can be considered a
    719  * constant, since it is infrequently changed, and then only when the
    720  * PPS signal is disabled. The watchdog counter pps_valid is updated
    721  * once per second by hardclock() and is atomically cleared in this
    722  * routine.
    723  */
    724 void
    725 hardpps(struct timespec *tvp,		/* time at PPS */
    726 	long usec			/* hardware counter at PPS */)
    727 {
    728 	long u_sec, u_nsec, v_nsec; /* temps */
    729 	l_fp ftemp;
    730 
    731 	/*
    732 	 * The signal is first processed by a range gate and frequency
    733 	 * discriminator. The range gate rejects noise spikes outside
    734 	 * the range +-500 us. The frequency discriminator rejects input
    735 	 * signals with apparent frequency outside the range 1 +-500
    736 	 * PPM. If two hits occur in the same second, we ignore the
    737 	 * later hit; if not and a hit occurs outside the range gate,
    738 	 * keep the later hit for later comparison, but do not process
    739 	 * it.
    740 	 */
    741 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
    742 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
    743 	pps_valid = PPS_VALID;
    744 	u_sec = tsp->tv_sec;
    745 	u_nsec = tsp->tv_nsec;
    746 	if (u_nsec >= (NANOSECOND >> 1)) {
    747 		u_nsec -= NANOSECOND;
    748 		u_sec++;
    749 	}
    750 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
    751 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
    752 	    MAXFREQ)
    753 		return;
    754 	pps_tf[2] = pps_tf[1];
    755 	pps_tf[1] = pps_tf[0];
    756 	pps_tf[0].tv_sec = u_sec;
    757 	pps_tf[0].tv_nsec = u_nsec;
    758 
    759 	/*
    760 	 * Compute the difference between the current and previous
    761 	 * counter values. If the difference exceeds 0.5 s, assume it
    762 	 * has wrapped around, so correct 1.0 s. If the result exceeds
    763 	 * the tick interval, the sample point has crossed a tick
    764 	 * boundary during the last second, so correct the tick. Very
    765 	 * intricate.
    766 	 */
    767 	u_nsec = nsec;
    768 	if (u_nsec > (NANOSECOND >> 1))
    769 		u_nsec -= NANOSECOND;
    770 	else if (u_nsec < -(NANOSECOND >> 1))
    771 		u_nsec += NANOSECOND;
    772 	pps_fcount += u_nsec;
    773 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
    774 		return;
    775 	time_status &= ~STA_PPSJITTER;
    776 
    777 	/*
    778 	 * A three-stage median filter is used to help denoise the PPS
    779 	 * time. The median sample becomes the time offset estimate; the
    780 	 * difference between the other two samples becomes the time
    781 	 * dispersion (jitter) estimate.
    782 	 */
    783 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
    784 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
    785 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
    786 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
    787 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
    788 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
    789 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
    790 		} else {
    791 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
    792 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
    793 		}
    794 	} else {
    795 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
    796 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
    797 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
    798 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
    799 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
    800 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
    801 		} else {
    802 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
    803 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
    804 		}
    805 	}
    806 
    807 	/*
    808 	 * Nominal jitter is due to PPS signal noise and interrupt
    809 	 * latency. If it exceeds the popcorn threshold, the sample is
    810 	 * discarded. otherwise, if so enabled, the time offset is
    811 	 * updated. We can tolerate a modest loss of data here without
    812 	 * much degrading time accuracy.
    813 	 */
    814 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
    815 		time_status |= STA_PPSJITTER;
    816 		pps_jitcnt++;
    817 	} else if (time_status & STA_PPSTIME) {
    818 		time_monitor = -v_nsec;
    819 		L_LINT(time_offset, time_monitor);
    820 	}
    821 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
    822 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
    823 	if (u_sec < (1 << pps_shift))
    824 		return;
    825 
    826 	/*
    827 	 * At the end of the calibration interval the difference between
    828 	 * the first and last counter values becomes the scaled
    829 	 * frequency. It will later be divided by the length of the
    830 	 * interval to determine the frequency update. If the frequency
    831 	 * exceeds a sanity threshold, or if the actual calibration
    832 	 * interval is not equal to the expected length, the data are
    833 	 * discarded. We can tolerate a modest loss of data here without
    834 	 * much degrading frequency accuracy.
    835 	 */
    836 	pps_calcnt++;
    837 	v_nsec = -pps_fcount;
    838 	pps_lastsec = pps_tf[0].tv_sec;
    839 	pps_fcount = 0;
    840 	u_nsec = MAXFREQ << pps_shift;
    841 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
    842 	    pps_shift)) {
    843 		time_status |= STA_PPSERROR;
    844 		pps_errcnt++;
    845 		return;
    846 	}
    847 
    848 	/*
    849 	 * Here the raw frequency offset and wander (stability) is
    850 	 * calculated. If the wander is less than the wander threshold
    851 	 * for four consecutive averaging intervals, the interval is
    852 	 * doubled; if it is greater than the threshold for four
    853 	 * consecutive intervals, the interval is halved. The scaled
    854 	 * frequency offset is converted to frequency offset. The
    855 	 * stability metric is calculated as the average of recent
    856 	 * frequency changes, but is used only for performance
    857 	 * monitoring.
    858 	 */
    859 	L_LINT(ftemp, v_nsec);
    860 	L_RSHIFT(ftemp, pps_shift);
    861 	L_SUB(ftemp, pps_freq);
    862 	u_nsec = L_GINT(ftemp);
    863 	if (u_nsec > PPS_MAXWANDER) {
    864 		L_LINT(ftemp, PPS_MAXWANDER);
    865 		pps_intcnt--;
    866 		time_status |= STA_PPSWANDER;
    867 		pps_stbcnt++;
    868 	} else if (u_nsec < -PPS_MAXWANDER) {
    869 		L_LINT(ftemp, -PPS_MAXWANDER);
    870 		pps_intcnt--;
    871 		time_status |= STA_PPSWANDER;
    872 		pps_stbcnt++;
    873 	} else {
    874 		pps_intcnt++;
    875 	}
    876 	if (pps_intcnt >= 4) {
    877 		pps_intcnt = 4;
    878 		if (pps_shift < pps_shiftmax) {
    879 			pps_shift++;
    880 			pps_intcnt = 0;
    881 		}
    882 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
    883 		pps_intcnt = -4;
    884 		if (pps_shift > PPS_FAVG) {
    885 			pps_shift--;
    886 			pps_intcnt = 0;
    887 		}
    888 	}
    889 	if (u_nsec < 0)
    890 		u_nsec = -u_nsec;
    891 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
    892 
    893 	/*
    894 	 * The PPS frequency is recalculated and clamped to the maximum
    895 	 * MAXFREQ. If enabled, the system clock frequency is updated as
    896 	 * well.
    897 	 */
    898 	L_ADD(pps_freq, ftemp);
    899 	u_nsec = L_GINT(pps_freq);
    900 	if (u_nsec > MAXFREQ)
    901 		L_LINT(pps_freq, MAXFREQ);
    902 	else if (u_nsec < -MAXFREQ)
    903 		L_LINT(pps_freq, -MAXFREQ);
    904 	if (time_status & STA_PPSFREQ)
    905 		time_freq = pps_freq;
    906 }
    907 #endif /* PPS_SYNC */
    908 
    909 /*
    910  * return information about kernel precision timekeeping
    911  * XXX this should share code with sys_ntp_gettime
    912  */
    913 static int
    914 sysctl_kern_ntptime(SYSCTLFN_ARGS)
    915 {
    916 	struct sysctlnode node;
    917 	struct ntptimeval ntv;
    918 
    919 	/*
    920 	 * Construct ntp_timeval.
    921 	 */
    922 
    923 	nanotime(&ntv.time);
    924 	ntv.maxerror = time_maxerror;
    925 	ntv.esterror = time_esterror;
    926 	ntv.tai = time_tai;
    927 	ntv.time_state = time_state;
    928 
    929 #ifdef notyet
    930 	/*
    931 	 * Status word error decode. If any of these conditions occur,
    932 	 * an error is returned, instead of the status word. Most
    933 	 * applications will care only about the fact the system clock
    934 	 * may not be trusted, not about the details.
    935 	 *
    936 	 * Hardware or software error
    937 	 */
    938 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    939 
    940 	/*
    941 	 * PPS signal lost when either time or frequency synchronization
    942 	 * requested
    943 	 */
    944 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    945 	    !(time_status & STA_PPSSIGNAL)) ||
    946 
    947 	/*
    948 	 * PPS jitter exceeded when time synchronization requested
    949 	 */
    950 	    (time_status & STA_PPSTIME &&
    951 	    time_status & STA_PPSJITTER) ||
    952 
    953 	/*
    954 	 * PPS wander exceeded or calibration error when frequency
    955 	 * synchronization requested
    956 	 */
    957 	    (time_status & STA_PPSFREQ &&
    958 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
    959 		ntv.time_state = TIME_ERROR;
    960 	else
    961 		ntv.time_state = time_state;
    962 #endif /* notyet */
    963 
    964 	node = *rnode;
    965 	node.sysctl_data = &ntv;
    966 	node.sysctl_size = sizeof(ntv);
    967 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
    968 }
    969 
    970 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
    971 {
    972 
    973 	sysctl_createv(clog, 0, NULL, NULL,
    974 		       CTLFLAG_PERMANENT,
    975 		       CTLTYPE_NODE, "kern", NULL,
    976 		       NULL, 0, NULL, 0,
    977 		       CTL_KERN, CTL_EOL);
    978 
    979 	sysctl_createv(clog, 0, NULL, NULL,
    980 		       CTLFLAG_PERMANENT,
    981 		       CTLTYPE_STRUCT, "ntptime",
    982 		       SYSCTL_DESCR("Kernel clock values for NTP"),
    983 		       sysctl_kern_ntptime, 0, NULL,
    984 		       sizeof(struct ntptimeval),
    985 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
    986 }
    987 #else /* !NTP */
    988 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
    989 
    990 int
    991 sys_ntp_gettime(l, v, retval)
    992 	struct lwp *l;
    993 	void *v;
    994 	register_t *retval;
    995 {
    996 
    997 	return(ENOSYS);
    998 }
    999 #endif /* !NTP */
   1000 #else /* !__HAVE_TIMECOUNTER */
   1001 /******************************************************************************
   1002  *                                                                            *
   1003  * Copyright (c) David L. Mills 1993, 1994                                    *
   1004  *                                                                            *
   1005  * Permission to use, copy, modify, and distribute this software and its      *
   1006  * documentation for any purpose and without fee is hereby granted, provided  *
   1007  * that the above copyright notice appears in all copies and that both the    *
   1008  * copyright notice and this permission notice appear in supporting           *
   1009  * documentation, and that the name University of Delaware not be used in     *
   1010  * advertising or publicity pertaining to distribution of the software        *
   1011  * without specific, written prior permission.  The University of Delaware    *
   1012  * makes no representations about the suitability this software for any       *
   1013  * purpose.  It is provided "as is" without express or implied warranty.      *
   1014  *                                                                            *
   1015  ******************************************************************************/
   1016 
   1017 /*
   1018  * Modification history kern_ntptime.c
   1019  *
   1020  * 24 Sep 94	David L. Mills
   1021  *	Tightened code at exits.
   1022  *
   1023  * 24 Mar 94	David L. Mills
   1024  *	Revised syscall interface to include new variables for PPS
   1025  *	time discipline.
   1026  *
   1027  * 14 Feb 94	David L. Mills
   1028  *	Added code for external clock
   1029  *
   1030  * 28 Nov 93	David L. Mills
   1031  *	Revised frequency scaling to conform with adjusted parameters
   1032  *
   1033  * 17 Sep 93	David L. Mills
   1034  *	Created file
   1035  */
   1036 /*
   1037  * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
   1038  * V4.1.1 and V4.1.3
   1039  *
   1040  * These routines consitute the Network Time Protocol (NTP) interfaces
   1041  * for user and daemon application programs. The ntp_gettime() routine
   1042  * provides the time, maximum error (synch distance) and estimated error
   1043  * (dispersion) to client user application programs. The ntp_adjtime()
   1044  * routine is used by the NTP daemon to adjust the system clock to an
   1045  * externally derived time. The time offset and related variables set by
   1046  * this routine are used by hardclock() to adjust the phase and
   1047  * frequency of the phase-lock loop which controls the system clock.
   1048  */
   1049 
   1050 #include <sys/cdefs.h>
   1051 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.1 2006/02/04 12:47:20 simonb Exp $");
   1052 
   1053 #include "opt_ntp.h"
   1054 
   1055 #include <sys/param.h>
   1056 #include <sys/resourcevar.h>
   1057 #include <sys/systm.h>
   1058 #include <sys/kernel.h>
   1059 #include <sys/proc.h>
   1060 #include <sys/sysctl.h>
   1061 #include <sys/timex.h>
   1062 #include <sys/vnode.h>
   1063 
   1064 #include <sys/mount.h>
   1065 #include <sys/sa.h>
   1066 #include <sys/syscallargs.h>
   1067 
   1068 #include <machine/cpu.h>
   1069 
   1070 #ifdef NTP
   1071 /*
   1072  * The following variables are used by the hardclock() routine in the
   1073  * kern_clock.c module and are described in that module.
   1074  */
   1075 extern int time_state;		/* clock state */
   1076 extern int time_status;		/* clock status bits */
   1077 extern long time_offset;	/* time adjustment (us) */
   1078 extern long time_freq;		/* frequency offset (scaled ppm) */
   1079 extern long time_maxerror;	/* maximum error (us) */
   1080 extern long time_esterror;	/* estimated error (us) */
   1081 extern long time_constant;	/* pll time constant */
   1082 extern long time_precision;	/* clock precision (us) */
   1083 extern long time_tolerance;	/* frequency tolerance (scaled ppm) */
   1084 extern int time_adjusted;	/* ntp might have changed the system time */
   1085 
   1086 #ifdef PPS_SYNC
   1087 /*
   1088  * The following variables are used only if the PPS signal discipline
   1089  * is configured in the kernel.
   1090  */
   1091 extern int pps_shift;		/* interval duration (s) (shift) */
   1092 extern long pps_freq;		/* pps frequency offset (scaled ppm) */
   1093 extern long pps_jitter;		/* pps jitter (us) */
   1094 extern long pps_stabil;		/* pps stability (scaled ppm) */
   1095 extern long pps_jitcnt;		/* jitter limit exceeded */
   1096 extern long pps_calcnt;		/* calibration intervals */
   1097 extern long pps_errcnt;		/* calibration errors */
   1098 extern long pps_stbcnt;		/* stability limit exceeded */
   1099 #endif /* PPS_SYNC */
   1100 
   1101 /*ARGSUSED*/
   1102 /*
   1103  * ntp_gettime() - NTP user application interface
   1104  */
   1105 int
   1106 sys_ntp_gettime(l, v, retval)
   1107 	struct lwp *l;
   1108 	void *v;
   1109 	register_t *retval;
   1110 
   1111 {
   1112 	struct sys_ntp_gettime_args /* {
   1113 		syscallarg(struct ntptimeval *) ntvp;
   1114 	} */ *uap = v;
   1115 	struct timeval atv;
   1116 	struct ntptimeval ntv;
   1117 	int error = 0;
   1118 	int s;
   1119 
   1120 	if (SCARG(uap, ntvp)) {
   1121 		s = splclock();
   1122 #ifdef EXT_CLOCK
   1123 		/*
   1124 		 * The microtime() external clock routine returns a
   1125 		 * status code. If less than zero, we declare an error
   1126 		 * in the clock status word and return the kernel
   1127 		 * (software) time variable. While there are other
   1128 		 * places that call microtime(), this is the only place
   1129 		 * that matters from an application point of view.
   1130 		 */
   1131 		if (microtime(&atv) < 0) {
   1132 			time_status |= STA_CLOCKERR;
   1133 			ntv.time = time;
   1134 		} else
   1135 			time_status &= ~STA_CLOCKERR;
   1136 #else /* EXT_CLOCK */
   1137 		microtime(&atv);
   1138 #endif /* EXT_CLOCK */
   1139 		ntv.time = atv;
   1140 		ntv.maxerror = time_maxerror;
   1141 		ntv.esterror = time_esterror;
   1142 		(void) splx(s);
   1143 
   1144 		error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
   1145 		    sizeof(ntv));
   1146 	}
   1147 	if (!error) {
   1148 
   1149 		/*
   1150 		 * Status word error decode. If any of these conditions
   1151 		 * occur, an error is returned, instead of the status
   1152 		 * word. Most applications will care only about the fact
   1153 		 * the system clock may not be trusted, not about the
   1154 		 * details.
   1155 		 *
   1156 		 * Hardware or software error
   1157 		 */
   1158 		if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
   1159 
   1160 		/*
   1161 		 * PPS signal lost when either time or frequency
   1162 		 * synchronization requested
   1163 		 */
   1164 		    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
   1165 		    !(time_status & STA_PPSSIGNAL)) ||
   1166 
   1167 		/*
   1168 		 * PPS jitter exceeded when time synchronization
   1169 		 * requested
   1170 		 */
   1171 		    (time_status & STA_PPSTIME &&
   1172 		    time_status & STA_PPSJITTER) ||
   1173 
   1174 		/*
   1175 		 * PPS wander exceeded or calibration error when
   1176 		 * frequency synchronization requested
   1177 		 */
   1178 		    (time_status & STA_PPSFREQ &&
   1179 		    time_status & (STA_PPSWANDER | STA_PPSERROR)))
   1180 			*retval = TIME_ERROR;
   1181 		else
   1182 			*retval = (register_t)time_state;
   1183 	}
   1184 	return(error);
   1185 }
   1186 
   1187 /* ARGSUSED */
   1188 /*
   1189  * ntp_adjtime() - NTP daemon application interface
   1190  */
   1191 int
   1192 sys_ntp_adjtime(l, v, retval)
   1193 	struct lwp *l;
   1194 	void *v;
   1195 	register_t *retval;
   1196 {
   1197 	struct sys_ntp_adjtime_args /* {
   1198 		syscallarg(struct timex *) tp;
   1199 	} */ *uap = v;
   1200 	struct proc *p = l->l_proc;
   1201 	struct timex ntv;
   1202 	int error = 0;
   1203 
   1204 	if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
   1205 			sizeof(ntv))) != 0)
   1206 		return (error);
   1207 
   1208 	if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
   1209 		return (error);
   1210 
   1211 	return (ntp_adjtime1(&ntv, v, retval));
   1212 }
   1213 
   1214 int
   1215 ntp_adjtime1(ntv, v, retval)
   1216 	struct timex *ntv;
   1217 	void *v;
   1218 	register_t	*retval;
   1219 {
   1220 	struct sys_ntp_adjtime_args /* {
   1221 		syscallarg(struct timex *) tp;
   1222 	} */ *uap = v;
   1223 	int error = 0;
   1224 	int modes;
   1225 	int s;
   1226 
   1227 	/*
   1228 	 * Update selected clock variables. Note that there is no error
   1229 	 * checking here on the assumption the superuser should know
   1230 	 * what it is doing.
   1231 	 */
   1232 	modes = ntv->modes;
   1233 	if (modes != 0)
   1234 		/* We need to save the system time during shutdown */
   1235 		time_adjusted |= 2;
   1236 	s = splclock();
   1237 	if (modes & MOD_FREQUENCY)
   1238 #ifdef PPS_SYNC
   1239 		time_freq = ntv->freq - pps_freq;
   1240 #else /* PPS_SYNC */
   1241 		time_freq = ntv->freq;
   1242 #endif /* PPS_SYNC */
   1243 	if (modes & MOD_MAXERROR)
   1244 		time_maxerror = ntv->maxerror;
   1245 	if (modes & MOD_ESTERROR)
   1246 		time_esterror = ntv->esterror;
   1247 	if (modes & MOD_STATUS) {
   1248 		time_status &= STA_RONLY;
   1249 		time_status |= ntv->status & ~STA_RONLY;
   1250 	}
   1251 	if (modes & MOD_TIMECONST)
   1252 		time_constant = ntv->constant;
   1253 	if (modes & MOD_OFFSET)
   1254 		hardupdate(ntv->offset);
   1255 
   1256 	/*
   1257 	 * Retrieve all clock variables
   1258 	 */
   1259 	if (time_offset < 0)
   1260 		ntv->offset = -(-time_offset >> SHIFT_UPDATE);
   1261 	else
   1262 		ntv->offset = time_offset >> SHIFT_UPDATE;
   1263 #ifdef PPS_SYNC
   1264 	ntv->freq = time_freq + pps_freq;
   1265 #else /* PPS_SYNC */
   1266 	ntv->freq = time_freq;
   1267 #endif /* PPS_SYNC */
   1268 	ntv->maxerror = time_maxerror;
   1269 	ntv->esterror = time_esterror;
   1270 	ntv->status = time_status;
   1271 	ntv->constant = time_constant;
   1272 	ntv->precision = time_precision;
   1273 	ntv->tolerance = time_tolerance;
   1274 #ifdef PPS_SYNC
   1275 	ntv->shift = pps_shift;
   1276 	ntv->ppsfreq = pps_freq;
   1277 	ntv->jitter = pps_jitter >> PPS_AVG;
   1278 	ntv->stabil = pps_stabil;
   1279 	ntv->calcnt = pps_calcnt;
   1280 	ntv->errcnt = pps_errcnt;
   1281 	ntv->jitcnt = pps_jitcnt;
   1282 	ntv->stbcnt = pps_stbcnt;
   1283 #endif /* PPS_SYNC */
   1284 	(void)splx(s);
   1285 
   1286 	error = copyout((caddr_t)ntv, (caddr_t)SCARG(uap, tp), sizeof(*ntv));
   1287 	if (!error) {
   1288 
   1289 		/*
   1290 		 * Status word error decode. See comments in
   1291 		 * ntp_gettime() routine.
   1292 		 */
   1293 		if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
   1294 		    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
   1295 		    !(time_status & STA_PPSSIGNAL)) ||
   1296 		    (time_status & STA_PPSTIME &&
   1297 		    time_status & STA_PPSJITTER) ||
   1298 		    (time_status & STA_PPSFREQ &&
   1299 		    time_status & (STA_PPSWANDER | STA_PPSERROR)))
   1300 			*retval = TIME_ERROR;
   1301 		else
   1302 			*retval = (register_t)time_state;
   1303 	}
   1304 	return error;
   1305 }
   1306 
   1307 /*
   1308  * return information about kernel precision timekeeping
   1309  */
   1310 static int
   1311 sysctl_kern_ntptime(SYSCTLFN_ARGS)
   1312 {
   1313 	struct sysctlnode node;
   1314 	struct timeval atv;
   1315 	struct ntptimeval ntv;
   1316 	int s;
   1317 
   1318 	/*
   1319 	 * Construct ntp_timeval.
   1320 	 */
   1321 
   1322 	s = splclock();
   1323 #ifdef EXT_CLOCK
   1324 	/*
   1325 	 * The microtime() external clock routine returns a
   1326 	 * status code. If less than zero, we declare an error
   1327 	 * in the clock status word and return the kernel
   1328 	 * (software) time variable. While there are other
   1329 	 * places that call microtime(), this is the only place
   1330 	 * that matters from an application point of view.
   1331 	 */
   1332 	if (microtime(&atv) < 0) {
   1333 		time_status |= STA_CLOCKERR;
   1334 		ntv.time = time;
   1335 	} else {
   1336 		time_status &= ~STA_CLOCKERR;
   1337 	}
   1338 #else /* EXT_CLOCK */
   1339 	microtime(&atv);
   1340 #endif /* EXT_CLOCK */
   1341 	ntv.time = atv;
   1342 	ntv.maxerror = time_maxerror;
   1343 	ntv.esterror = time_esterror;
   1344 	splx(s);
   1345 
   1346 #ifdef notyet
   1347 	/*
   1348 	 * Status word error decode. If any of these conditions
   1349 	 * occur, an error is returned, instead of the status
   1350 	 * word. Most applications will care only about the fact
   1351 	 * the system clock may not be trusted, not about the
   1352 	 * details.
   1353 	 *
   1354 	 * Hardware or software error
   1355 	 */
   1356 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
   1357 		ntv.time_state = TIME_ERROR;
   1358 
   1359 	/*
   1360 	 * PPS signal lost when either time or frequency
   1361 	 * synchronization requested
   1362 	 */
   1363 	   (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
   1364 	    !(time_status & STA_PPSSIGNAL)) ||
   1365 
   1366 	/*
   1367 	 * PPS jitter exceeded when time synchronization
   1368 	 * requested
   1369 	 */
   1370 	   (time_status & STA_PPSTIME &&
   1371 	    time_status & STA_PPSJITTER) ||
   1372 
   1373 	/*
   1374 	 * PPS wander exceeded or calibration error when
   1375 	 * frequency synchronization requested
   1376 	 */
   1377 	   (time_status & STA_PPSFREQ &&
   1378 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
   1379 		ntv.time_state = TIME_ERROR;
   1380 	else
   1381 		ntv.time_state = time_state;
   1382 #endif /* notyet */
   1383 
   1384 	node = *rnode;
   1385 	node.sysctl_data = &ntv;
   1386 	node.sysctl_size = sizeof(ntv);
   1387 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
   1388 }
   1389 
   1390 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
   1391 {
   1392 
   1393 	sysctl_createv(clog, 0, NULL, NULL,
   1394 		       CTLFLAG_PERMANENT,
   1395 		       CTLTYPE_NODE, "kern", NULL,
   1396 		       NULL, 0, NULL, 0,
   1397 		       CTL_KERN, CTL_EOL);
   1398 
   1399 	sysctl_createv(clog, 0, NULL, NULL,
   1400 		       CTLFLAG_PERMANENT,
   1401 		       CTLTYPE_STRUCT, "ntptime",
   1402 		       SYSCTL_DESCR("Kernel clock values for NTP"),
   1403 		       sysctl_kern_ntptime, 0, NULL,
   1404 		       sizeof(struct ntptimeval),
   1405 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
   1406 }
   1407 #else /* !NTP */
   1408 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
   1409 
   1410 int
   1411 sys_ntp_gettime(l, v, retval)
   1412 	struct lwp *l;
   1413 	void *v;
   1414 	register_t *retval;
   1415 {
   1416 
   1417 	return(ENOSYS);
   1418 }
   1419 #endif /* !NTP */
   1420 #endif /* !__HAVE_TIMECOUNTER */
   1421