kern_ntptime.c revision 1.29.6.3 1 /* $NetBSD: kern_ntptime.c,v 1.29.6.3 2006/03/15 22:52:05 kardel Exp $ */
2 #include <sys/types.h> /* XXX to get __HAVE_TIMECOUNTER, remove
3 after all ports are converted. */
4 #ifdef __HAVE_TIMECOUNTER
5
6 /*-
7 ***********************************************************************
8 * *
9 * Copyright (c) David L. Mills 1993-2001 *
10 * *
11 * Permission to use, copy, modify, and distribute this software and *
12 * its documentation for any purpose and without fee is hereby *
13 * granted, provided that the above copyright notice appears in all *
14 * copies and that both the copyright notice and this permission *
15 * notice appear in supporting documentation, and that the name *
16 * University of Delaware not be used in advertising or publicity *
17 * pertaining to distribution of the software without specific, *
18 * written prior permission. The University of Delaware makes no *
19 * representations about the suitability this software for any *
20 * purpose. It is provided "as is" without express or implied *
21 * warranty. *
22 * *
23 **********************************************************************/
24
25 /*
26 * Adapted from the original sources for FreeBSD and timecounters by:
27 * Poul-Henning Kamp <phk (at) FreeBSD.org>.
28 *
29 * The 32bit version of the "LP" macros seems a bit past its "sell by"
30 * date so I have retained only the 64bit version and included it directly
31 * in this file.
32 *
33 * Only minor changes done to interface with the timecounters over in
34 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
35 * confusing and/or plain wrong in that context.
36 */
37
38 #include <sys/cdefs.h>
39 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
40 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.3 2006/03/15 22:52:05 kardel Exp $");
41
42 #include "opt_ntp.h"
43
44 #include <sys/param.h>
45 #include <sys/resourcevar.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/proc.h>
49 #include <sys/sysctl.h>
50 #include <sys/timex.h>
51 #include <sys/vnode.h>
52
53 #include <sys/mount.h>
54 #include <sys/sa.h>
55 #include <sys/syscallargs.h>
56
57 #include <machine/cpu.h>
58
59 /*
60 * Single-precision macros for 64-bit machines
61 */
62 typedef int64_t l_fp;
63 #define L_ADD(v, u) ((v) += (u))
64 #define L_SUB(v, u) ((v) -= (u))
65 #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
66 #define L_NEG(v) ((v) = -(v))
67 #define L_RSHIFT(v, n) \
68 do { \
69 if ((v) < 0) \
70 (v) = -(-(v) >> (n)); \
71 else \
72 (v) = (v) >> (n); \
73 } while (0)
74 #define L_MPY(v, a) ((v) *= (a))
75 #define L_CLR(v) ((v) = 0)
76 #define L_ISNEG(v) ((v) < 0)
77 #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
78 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
79
80 #ifdef NTP
81 /*
82 * Generic NTP kernel interface
83 *
84 * These routines constitute the Network Time Protocol (NTP) interfaces
85 * for user and daemon application programs. The ntp_gettime() routine
86 * provides the time, maximum error (synch distance) and estimated error
87 * (dispersion) to client user application programs. The ntp_adjtime()
88 * routine is used by the NTP daemon to adjust the system clock to an
89 * externally derived time. The time offset and related variables set by
90 * this routine are used by other routines in this module to adjust the
91 * phase and frequency of the clock discipline loop which controls the
92 * system clock.
93 *
94 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
95 * defined), the time at each tick interrupt is derived directly from
96 * the kernel time variable. When the kernel time is reckoned in
97 * microseconds, (NTP_NANO undefined), the time is derived from the
98 * kernel time variable together with a variable representing the
99 * leftover nanoseconds at the last tick interrupt. In either case, the
100 * current nanosecond time is reckoned from these values plus an
101 * interpolated value derived by the clock routines in another
102 * architecture-specific module. The interpolation can use either a
103 * dedicated counter or a processor cycle counter (PCC) implemented in
104 * some architectures.
105 *
106 * Note that all routines must run at priority splclock or higher.
107 */
108 /*
109 * Phase/frequency-lock loop (PLL/FLL) definitions
110 *
111 * The nanosecond clock discipline uses two variable types, time
112 * variables and frequency variables. Both types are represented as 64-
113 * bit fixed-point quantities with the decimal point between two 32-bit
114 * halves. On a 32-bit machine, each half is represented as a single
115 * word and mathematical operations are done using multiple-precision
116 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
117 * used.
118 *
119 * A time variable is a signed 64-bit fixed-point number in ns and
120 * fraction. It represents the remaining time offset to be amortized
121 * over succeeding tick interrupts. The maximum time offset is about
122 * 0.5 s and the resolution is about 2.3e-10 ns.
123 *
124 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
125 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
126 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127 * |s s s| ns |
128 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 * | fraction |
130 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131 *
132 * A frequency variable is a signed 64-bit fixed-point number in ns/s
133 * and fraction. It represents the ns and fraction to be added to the
134 * kernel time variable at each second. The maximum frequency offset is
135 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
136 *
137 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
138 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
139 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
140 * |s s s s s s s s s s s s s| ns/s |
141 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
142 * | fraction |
143 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
144 */
145 /*
146 * The following variables establish the state of the PLL/FLL and the
147 * residual time and frequency offset of the local clock.
148 */
149 #define SHIFT_PLL 4 /* PLL loop gain (shift) */
150 #define SHIFT_FLL 2 /* FLL loop gain (shift) */
151
152 static int time_state = TIME_OK; /* clock state */
153 static int time_status = STA_UNSYNC; /* clock status bits */
154 static long time_tai; /* TAI offset (s) */
155 static long time_monitor; /* last time offset scaled (ns) */
156 static long time_constant; /* poll interval (shift) (s) */
157 static long time_precision = 1; /* clock precision (ns) */
158 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
159 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
160 static long time_reftime; /* time at last adjustment (s) */
161 static l_fp time_offset; /* time offset (ns) */
162 static l_fp time_freq; /* frequency offset (ns/s) */
163 #endif /* NTP */
164
165 static l_fp time_adj; /* tick adjust (ns/s) */
166 int64_t time_adjtime; /* correction from adjtime(2) (usec) */
167
168 extern int time_adjusted; /* ntp might have changed the system time */
169
170 #ifdef NTP
171 #ifdef PPS_SYNC
172 /*
173 * The following variables are used when a pulse-per-second (PPS) signal
174 * is available and connected via a modem control lead. They establish
175 * the engineering parameters of the clock discipline loop when
176 * controlled by the PPS signal.
177 */
178 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
179 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
180 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
181 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
182 #define PPS_VALID 120 /* PPS signal watchdog max (s) */
183 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
184 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
185
186 static struct timespec pps_tf[3]; /* phase median filter */
187 static l_fp pps_freq; /* scaled frequency offset (ns/s) */
188 static long pps_fcount; /* frequency accumulator */
189 static long pps_jitter; /* nominal jitter (ns) */
190 static long pps_stabil; /* nominal stability (scaled ns/s) */
191 static long pps_lastsec; /* time at last calibration (s) */
192 static int pps_valid; /* signal watchdog counter */
193 static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
194 static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
195 static int pps_intcnt; /* wander counter */
196
197 /*
198 * PPS signal quality monitors
199 */
200 static long pps_calcnt; /* calibration intervals */
201 static long pps_jitcnt; /* jitter limit exceeded */
202 static long pps_stbcnt; /* stability limit exceeded */
203 static long pps_errcnt; /* calibration errors */
204 #endif /* PPS_SYNC */
205 /*
206 * End of phase/frequency-lock loop (PLL/FLL) definitions
207 */
208
209 static void hardupdate(long offset);
210
211 /*ARGSUSED*/
212 /*
213 * ntp_gettime() - NTP user application interface
214 */
215 int
216 sys_ntp_gettime(l, v, retval)
217 struct lwp *l;
218 void *v;
219 register_t *retval;
220
221 {
222 struct sys_ntp_gettime_args /* {
223 syscallarg(struct ntptimeval *) ntvp;
224 } */ *uap = v;
225 struct ntptimeval ntv;
226 int error = 0;
227
228 if (SCARG(uap, ntvp)) {
229 nanotime(&ntv.time);
230 ntv.maxerror = time_maxerror;
231 ntv.esterror = time_esterror;
232 ntv.tai = time_tai;
233 ntv.time_state = time_state;
234
235 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
236 sizeof(ntv));
237 }
238 if (!error) {
239
240 /*
241 * Status word error decode. If any of these conditions occur,
242 * an error is returned, instead of the status word. Most
243 * applications will care only about the fact the system clock
244 * may not be trusted, not about the details.
245 *
246 * Hardware or software error
247 */
248 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
249
250 /*
251 * PPS signal lost when either time or frequency synchronization
252 * requested
253 */
254 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
255 !(time_status & STA_PPSSIGNAL)) ||
256
257 /*
258 * PPS jitter exceeded when time synchronization requested
259 */
260 (time_status & STA_PPSTIME &&
261 time_status & STA_PPSJITTER) ||
262
263 /*
264 * PPS wander exceeded or calibration error when frequency
265 * synchronization requested
266 */
267 (time_status & STA_PPSFREQ &&
268 time_status & (STA_PPSWANDER | STA_PPSERROR)))
269 ntv.time_state = TIME_ERROR;
270
271 *retval = (register_t)ntv.time_state;
272 }
273 return(error);
274 }
275
276 /* ARGSUSED */
277 /*
278 * ntp_adjtime() - NTP daemon application interface
279 */
280 int
281 sys_ntp_adjtime(l, v, retval)
282 struct lwp *l;
283 void *v;
284 register_t *retval;
285 {
286 struct sys_ntp_adjtime_args /* {
287 syscallarg(struct timex *) tp;
288 } */ *uap = v;
289 struct proc *p = l->l_proc;
290 struct timex ntv;
291 int error = 0;
292
293 if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
294 sizeof(ntv))) != 0)
295 return (error);
296
297 if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
298 return (error);
299
300 return (ntp_adjtime1(&ntv, v, retval));
301 }
302
303 int
304 ntp_adjtime1(ntv, v, retval)
305 struct timex *ntv;
306 void *v;
307 register_t *retval;
308 {
309 struct sys_ntp_adjtime_args /* {
310 syscallarg(struct timex *) tp;
311 } */ *uap = v;
312 long freq;
313 int modes;
314 int s;
315 int error = 0;
316
317 /*
318 * Update selected clock variables - only the superuser can
319 * change anything. Note that there is no error checking here on
320 * the assumption the superuser should know what it is doing.
321 * Note that either the time constant or TAI offset are loaded
322 * from the ntv.constant member, depending on the mode bits. If
323 * the STA_PLL bit in the status word is cleared, the state and
324 * status words are reset to the initial values at boot.
325 */
326 modes = ntv->modes;
327 if (modes != 0)
328 /* We need to save the system time during shutdown */
329 time_adjusted |= 2;
330 s = splclock();
331 if (modes & MOD_MAXERROR)
332 time_maxerror = ntv->maxerror;
333 if (modes & MOD_ESTERROR)
334 time_esterror = ntv->esterror;
335 if (modes & MOD_STATUS) {
336 if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
337 time_state = TIME_OK;
338 time_status = STA_UNSYNC;
339 #ifdef PPS_SYNC
340 pps_shift = PPS_FAVG;
341 #endif /* PPS_SYNC */
342 }
343 time_status &= STA_RONLY;
344 time_status |= ntv->status & ~STA_RONLY;
345 }
346 if (modes & MOD_TIMECONST) {
347 if (ntv->constant < 0)
348 time_constant = 0;
349 else if (ntv->constant > MAXTC)
350 time_constant = MAXTC;
351 else
352 time_constant = ntv->constant;
353 }
354 if (modes & MOD_TAI) {
355 if (ntv->constant > 0) /* XXX zero & negative numbers ? */
356 time_tai = ntv->constant;
357 }
358 #ifdef PPS_SYNC
359 if (modes & MOD_PPSMAX) {
360 if (ntv->shift < PPS_FAVG)
361 pps_shiftmax = PPS_FAVG;
362 else if (ntv->shift > PPS_FAVGMAX)
363 pps_shiftmax = PPS_FAVGMAX;
364 else
365 pps_shiftmax = ntv->shift;
366 }
367 #endif /* PPS_SYNC */
368 if (modes & MOD_NANO)
369 time_status |= STA_NANO;
370 if (modes & MOD_MICRO)
371 time_status &= ~STA_NANO;
372 if (modes & MOD_CLKB)
373 time_status |= STA_CLK;
374 if (modes & MOD_CLKA)
375 time_status &= ~STA_CLK;
376 if (modes & MOD_FREQUENCY) {
377 freq = (ntv->freq * 1000LL) >> 16;
378 if (freq > MAXFREQ)
379 L_LINT(time_freq, MAXFREQ);
380 else if (freq < -MAXFREQ)
381 L_LINT(time_freq, -MAXFREQ);
382 else {
383 /*
384 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
385 * time_freq is [ns/s * 2^32]
386 */
387 time_freq = ntv->freq * 1000LL * 65536LL;
388 }
389 #ifdef PPS_SYNC
390 pps_freq = time_freq;
391 #endif /* PPS_SYNC */
392 }
393 if (modes & MOD_OFFSET) {
394 if (time_status & STA_NANO)
395 hardupdate(ntv->offset);
396 else
397 hardupdate(ntv->offset * 1000);
398 }
399
400 /*
401 * Retrieve all clock variables. Note that the TAI offset is
402 * returned only by ntp_gettime();
403 */
404 if (time_status & STA_NANO)
405 ntv->offset = L_GINT(time_offset);
406 else
407 ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
408 ntv->freq = L_GINT((time_freq / 1000LL) << 16);
409 ntv->maxerror = time_maxerror;
410 ntv->esterror = time_esterror;
411 ntv->status = time_status;
412 ntv->constant = time_constant;
413 if (time_status & STA_NANO)
414 ntv->precision = time_precision;
415 else
416 ntv->precision = time_precision / 1000;
417 ntv->tolerance = MAXFREQ * SCALE_PPM;
418 #ifdef PPS_SYNC
419 ntv->shift = pps_shift;
420 ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
421 if (time_status & STA_NANO)
422 ntv->jitter = pps_jitter;
423 else
424 ntv->jitter = pps_jitter / 1000;
425 ntv->stabil = pps_stabil;
426 ntv->calcnt = pps_calcnt;
427 ntv->errcnt = pps_errcnt;
428 ntv->jitcnt = pps_jitcnt;
429 ntv->stbcnt = pps_stbcnt;
430 #endif /* PPS_SYNC */
431 splx(s);
432
433 error = copyout((caddr_t)ntv, (caddr_t)SCARG(uap, tp), sizeof(*ntv));
434 if (!error) {
435
436 /*
437 * Status word error decode. See comments in
438 * ntp_gettime() routine.
439 */
440 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
441 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
442 !(time_status & STA_PPSSIGNAL)) ||
443 (time_status & STA_PPSTIME &&
444 time_status & STA_PPSJITTER) ||
445 (time_status & STA_PPSFREQ &&
446 time_status & (STA_PPSWANDER | STA_PPSERROR))) {
447 *retval = TIME_ERROR;
448 } else
449 *retval = (register_t)time_state;
450 }
451 return error;
452 }
453 #endif /* NTP */
454
455 /*
456 * second_overflow() - called after ntp_tick_adjust()
457 *
458 * This routine is ordinarily called immediately following the above
459 * routine ntp_tick_adjust(). While these two routines are normally
460 * combined, they are separated here only for the purposes of
461 * simulation.
462 */
463 void
464 ntp_update_second(int64_t *adjustment, time_t *newsec)
465 {
466 int tickrate;
467 l_fp ftemp; /* 32/64-bit temporary */
468
469 #ifdef NTP
470
471 /*
472 * On rollover of the second both the nanosecond and microsecond
473 * clocks are updated and the state machine cranked as
474 * necessary. The phase adjustment to be used for the next
475 * second is calculated and the maximum error is increased by
476 * the tolerance.
477 */
478 time_maxerror += MAXFREQ / 1000;
479
480 /*
481 * Leap second processing. If in leap-insert state at
482 * the end of the day, the system clock is set back one
483 * second; if in leap-delete state, the system clock is
484 * set ahead one second. The nano_time() routine or
485 * external clock driver will insure that reported time
486 * is always monotonic.
487 */
488 switch (time_state) {
489
490 /*
491 * No warning.
492 */
493 case TIME_OK:
494 if (time_status & STA_INS)
495 time_state = TIME_INS;
496 else if (time_status & STA_DEL)
497 time_state = TIME_DEL;
498 break;
499
500 /*
501 * Insert second 23:59:60 following second
502 * 23:59:59.
503 */
504 case TIME_INS:
505 if (!(time_status & STA_INS))
506 time_state = TIME_OK;
507 else if ((*newsec) % 86400 == 0) {
508 (*newsec)--;
509 time_state = TIME_OOP;
510 time_tai++;
511 }
512 break;
513
514 /*
515 * Delete second 23:59:59.
516 */
517 case TIME_DEL:
518 if (!(time_status & STA_DEL))
519 time_state = TIME_OK;
520 else if (((*newsec) + 1) % 86400 == 0) {
521 (*newsec)++;
522 time_tai--;
523 time_state = TIME_WAIT;
524 }
525 break;
526
527 /*
528 * Insert second in progress.
529 */
530 case TIME_OOP:
531 time_state = TIME_WAIT;
532 break;
533
534 /*
535 * Wait for status bits to clear.
536 */
537 case TIME_WAIT:
538 if (!(time_status & (STA_INS | STA_DEL)))
539 time_state = TIME_OK;
540 }
541
542 /*
543 * Compute the total time adjustment for the next second
544 * in ns. The offset is reduced by a factor depending on
545 * whether the PPS signal is operating. Note that the
546 * value is in effect scaled by the clock frequency,
547 * since the adjustment is added at each tick interrupt.
548 */
549 ftemp = time_offset;
550 #ifdef PPS_SYNC
551 /* XXX even if PPS signal dies we should finish adjustment ? */
552 if (time_status & STA_PPSTIME && time_status &
553 STA_PPSSIGNAL)
554 L_RSHIFT(ftemp, pps_shift);
555 else
556 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
557 #else
558 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
559 #endif /* PPS_SYNC */
560 time_adj = ftemp;
561 L_SUB(time_offset, ftemp);
562 L_ADD(time_adj, time_freq);
563
564 #ifdef PPS_SYNC
565 if (pps_valid > 0)
566 pps_valid--;
567 else
568 time_status &= ~STA_PPSSIGNAL;
569 #endif /* PPS_SYNC */
570
571 #endif /* NTP */
572
573 /*
574 * Apply any correction from adjtime(2). If more than one second
575 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
576 * until the last second is slewed the final < 500 usecs.
577 */
578 if (time_adjtime != 0) {
579 if (time_adjtime > 1000000)
580 tickrate = 5000;
581 else if (time_adjtime < -1000000)
582 tickrate = -5000;
583 else if (time_adjtime > 500)
584 tickrate = 500;
585 else if (time_adjtime < -500)
586 tickrate = -500;
587 else
588 tickrate = time_adjtime;
589 time_adjtime -= tickrate;
590 L_LINT(ftemp, tickrate * 1000);
591 L_ADD(time_adj, ftemp);
592 }
593 *adjustment = time_adj;
594
595 }
596
597 /*
598 * ntp_init() - initialize variables and structures
599 *
600 * This routine must be called after the kernel variables hz and tick
601 * are set or changed and before the next tick interrupt. In this
602 * particular implementation, these values are assumed set elsewhere in
603 * the kernel. The design allows the clock frequency and tick interval
604 * to be changed while the system is running. So, this routine should
605 * probably be integrated with the code that does that.
606 */
607 void
608 ntp_init(void)
609 {
610
611 /*
612 * The following variables are initialized only at startup. Only
613 * those structures not cleared by the compiler need to be
614 * initialized, and these only in the simulator. In the actual
615 * kernel, any nonzero values here will quickly evaporate.
616 */
617 L_CLR(time_adj);
618 #ifdef NTP
619 L_CLR(time_offset);
620 L_CLR(time_freq);
621 #ifdef PPS_SYNC
622 pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
623 pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
624 pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
625 pps_fcount = 0;
626 L_CLR(pps_freq);
627 #endif /* PPS_SYNC */
628 #endif
629 }
630
631 #ifdef NTP
632 /*
633 * hardupdate() - local clock update
634 *
635 * This routine is called by ntp_adjtime() to update the local clock
636 * phase and frequency. The implementation is of an adaptive-parameter,
637 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
638 * time and frequency offset estimates for each call. If the kernel PPS
639 * discipline code is configured (PPS_SYNC), the PPS signal itself
640 * determines the new time offset, instead of the calling argument.
641 * Presumably, calls to ntp_adjtime() occur only when the caller
642 * believes the local clock is valid within some bound (+-128 ms with
643 * NTP). If the caller's time is far different than the PPS time, an
644 * argument will ensue, and it's not clear who will lose.
645 *
646 * For uncompensated quartz crystal oscillators and nominal update
647 * intervals less than 256 s, operation should be in phase-lock mode,
648 * where the loop is disciplined to phase. For update intervals greater
649 * than 1024 s, operation should be in frequency-lock mode, where the
650 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
651 * is selected by the STA_MODE status bit.
652 *
653 * Note: splclock() is in effect.
654 */
655 void
656 hardupdate(long offset)
657 {
658 long mtemp;
659 l_fp ftemp;
660
661 /*
662 * Select how the phase is to be controlled and from which
663 * source. If the PPS signal is present and enabled to
664 * discipline the time, the PPS offset is used; otherwise, the
665 * argument offset is used.
666 */
667 if (!(time_status & STA_PLL))
668 return;
669 if (!(time_status & STA_PPSTIME && time_status &
670 STA_PPSSIGNAL)) {
671 if (offset > MAXPHASE)
672 time_monitor = MAXPHASE;
673 else if (offset < -MAXPHASE)
674 time_monitor = -MAXPHASE;
675 else
676 time_monitor = offset;
677 L_LINT(time_offset, time_monitor);
678 }
679
680 /*
681 * Select how the frequency is to be controlled and in which
682 * mode (PLL or FLL). If the PPS signal is present and enabled
683 * to discipline the frequency, the PPS frequency is used;
684 * otherwise, the argument offset is used to compute it.
685 */
686 if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
687 time_reftime = time_second;
688 return;
689 }
690 if (time_status & STA_FREQHOLD || time_reftime == 0)
691 time_reftime = time_second;
692 mtemp = time_second - time_reftime;
693 L_LINT(ftemp, time_monitor);
694 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
695 L_MPY(ftemp, mtemp);
696 L_ADD(time_freq, ftemp);
697 time_status &= ~STA_MODE;
698 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
699 MAXSEC)) {
700 L_LINT(ftemp, (time_monitor << 4) / mtemp);
701 L_RSHIFT(ftemp, SHIFT_FLL + 4);
702 L_ADD(time_freq, ftemp);
703 time_status |= STA_MODE;
704 }
705 time_reftime = time_second;
706 if (L_GINT(time_freq) > MAXFREQ)
707 L_LINT(time_freq, MAXFREQ);
708 else if (L_GINT(time_freq) < -MAXFREQ)
709 L_LINT(time_freq, -MAXFREQ);
710 }
711
712 #ifdef PPS_SYNC
713 /*
714 * hardpps() - discipline CPU clock oscillator to external PPS signal
715 *
716 * This routine is called at each PPS interrupt in order to discipline
717 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
718 * and leaves it in a handy spot for the hardclock() routine. It
719 * integrates successive PPS phase differences and calculates the
720 * frequency offset. This is used in hardclock() to discipline the CPU
721 * clock oscillator so that intrinsic frequency error is cancelled out.
722 * The code requires the caller to capture the time and hardware counter
723 * value at the on-time PPS signal transition.
724 *
725 * Note that, on some Unix systems, this routine runs at an interrupt
726 * priority level higher than the timer interrupt routine hardclock().
727 * Therefore, the variables used are distinct from the hardclock()
728 * variables, except for certain exceptions: The PPS frequency pps_freq
729 * and phase pps_offset variables are determined by this routine and
730 * updated atomically. The time_tolerance variable can be considered a
731 * constant, since it is infrequently changed, and then only when the
732 * PPS signal is disabled. The watchdog counter pps_valid is updated
733 * once per second by hardclock() and is atomically cleared in this
734 * routine.
735 */
736 void
737 hardpps(struct timespec *tsp, /* time at PPS */
738 long nsec /* hardware counter at PPS */)
739 {
740 long u_sec, u_nsec, v_nsec; /* temps */
741 l_fp ftemp;
742
743 /*
744 * The signal is first processed by a range gate and frequency
745 * discriminator. The range gate rejects noise spikes outside
746 * the range +-500 us. The frequency discriminator rejects input
747 * signals with apparent frequency outside the range 1 +-500
748 * PPM. If two hits occur in the same second, we ignore the
749 * later hit; if not and a hit occurs outside the range gate,
750 * keep the later hit for later comparison, but do not process
751 * it.
752 */
753 time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
754 time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
755 pps_valid = PPS_VALID;
756 u_sec = tsp->tv_sec;
757 u_nsec = tsp->tv_nsec;
758 if (u_nsec >= (NANOSECOND >> 1)) {
759 u_nsec -= NANOSECOND;
760 u_sec++;
761 }
762 v_nsec = u_nsec - pps_tf[0].tv_nsec;
763 if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
764 MAXFREQ)
765 return;
766 pps_tf[2] = pps_tf[1];
767 pps_tf[1] = pps_tf[0];
768 pps_tf[0].tv_sec = u_sec;
769 pps_tf[0].tv_nsec = u_nsec;
770
771 /*
772 * Compute the difference between the current and previous
773 * counter values. If the difference exceeds 0.5 s, assume it
774 * has wrapped around, so correct 1.0 s. If the result exceeds
775 * the tick interval, the sample point has crossed a tick
776 * boundary during the last second, so correct the tick. Very
777 * intricate.
778 */
779 u_nsec = nsec;
780 if (u_nsec > (NANOSECOND >> 1))
781 u_nsec -= NANOSECOND;
782 else if (u_nsec < -(NANOSECOND >> 1))
783 u_nsec += NANOSECOND;
784 pps_fcount += u_nsec;
785 if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
786 return;
787 time_status &= ~STA_PPSJITTER;
788
789 /*
790 * A three-stage median filter is used to help denoise the PPS
791 * time. The median sample becomes the time offset estimate; the
792 * difference between the other two samples becomes the time
793 * dispersion (jitter) estimate.
794 */
795 if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
796 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
797 v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
798 u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
799 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
800 v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
801 u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
802 } else {
803 v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
804 u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
805 }
806 } else {
807 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
808 v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
809 u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
810 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
811 v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
812 u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
813 } else {
814 v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
815 u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
816 }
817 }
818
819 /*
820 * Nominal jitter is due to PPS signal noise and interrupt
821 * latency. If it exceeds the popcorn threshold, the sample is
822 * discarded. otherwise, if so enabled, the time offset is
823 * updated. We can tolerate a modest loss of data here without
824 * much degrading time accuracy.
825 */
826 if (u_nsec > (pps_jitter << PPS_POPCORN)) {
827 time_status |= STA_PPSJITTER;
828 pps_jitcnt++;
829 } else if (time_status & STA_PPSTIME) {
830 time_monitor = -v_nsec;
831 L_LINT(time_offset, time_monitor);
832 }
833 pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
834 u_sec = pps_tf[0].tv_sec - pps_lastsec;
835 if (u_sec < (1 << pps_shift))
836 return;
837
838 /*
839 * At the end of the calibration interval the difference between
840 * the first and last counter values becomes the scaled
841 * frequency. It will later be divided by the length of the
842 * interval to determine the frequency update. If the frequency
843 * exceeds a sanity threshold, or if the actual calibration
844 * interval is not equal to the expected length, the data are
845 * discarded. We can tolerate a modest loss of data here without
846 * much degrading frequency accuracy.
847 */
848 pps_calcnt++;
849 v_nsec = -pps_fcount;
850 pps_lastsec = pps_tf[0].tv_sec;
851 pps_fcount = 0;
852 u_nsec = MAXFREQ << pps_shift;
853 if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
854 pps_shift)) {
855 time_status |= STA_PPSERROR;
856 pps_errcnt++;
857 return;
858 }
859
860 /*
861 * Here the raw frequency offset and wander (stability) is
862 * calculated. If the wander is less than the wander threshold
863 * for four consecutive averaging intervals, the interval is
864 * doubled; if it is greater than the threshold for four
865 * consecutive intervals, the interval is halved. The scaled
866 * frequency offset is converted to frequency offset. The
867 * stability metric is calculated as the average of recent
868 * frequency changes, but is used only for performance
869 * monitoring.
870 */
871 L_LINT(ftemp, v_nsec);
872 L_RSHIFT(ftemp, pps_shift);
873 L_SUB(ftemp, pps_freq);
874 u_nsec = L_GINT(ftemp);
875 if (u_nsec > PPS_MAXWANDER) {
876 L_LINT(ftemp, PPS_MAXWANDER);
877 pps_intcnt--;
878 time_status |= STA_PPSWANDER;
879 pps_stbcnt++;
880 } else if (u_nsec < -PPS_MAXWANDER) {
881 L_LINT(ftemp, -PPS_MAXWANDER);
882 pps_intcnt--;
883 time_status |= STA_PPSWANDER;
884 pps_stbcnt++;
885 } else {
886 pps_intcnt++;
887 }
888 if (pps_intcnt >= 4) {
889 pps_intcnt = 4;
890 if (pps_shift < pps_shiftmax) {
891 pps_shift++;
892 pps_intcnt = 0;
893 }
894 } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
895 pps_intcnt = -4;
896 if (pps_shift > PPS_FAVG) {
897 pps_shift--;
898 pps_intcnt = 0;
899 }
900 }
901 if (u_nsec < 0)
902 u_nsec = -u_nsec;
903 pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
904
905 /*
906 * The PPS frequency is recalculated and clamped to the maximum
907 * MAXFREQ. If enabled, the system clock frequency is updated as
908 * well.
909 */
910 L_ADD(pps_freq, ftemp);
911 u_nsec = L_GINT(pps_freq);
912 if (u_nsec > MAXFREQ)
913 L_LINT(pps_freq, MAXFREQ);
914 else if (u_nsec < -MAXFREQ)
915 L_LINT(pps_freq, -MAXFREQ);
916 if (time_status & STA_PPSFREQ)
917 time_freq = pps_freq;
918 }
919 #endif /* PPS_SYNC */
920
921 /*
922 * return information about kernel precision timekeeping
923 * XXX this should share code with sys_ntp_gettime
924 */
925 static int
926 sysctl_kern_ntptime(SYSCTLFN_ARGS)
927 {
928 struct sysctlnode node;
929 struct ntptimeval ntv;
930
931 /*
932 * Construct ntp_timeval.
933 */
934
935 nanotime(&ntv.time);
936 ntv.maxerror = time_maxerror;
937 ntv.esterror = time_esterror;
938 ntv.tai = time_tai;
939 ntv.time_state = time_state;
940
941 #ifdef notyet
942 /*
943 * Status word error decode. If any of these conditions occur,
944 * an error is returned, instead of the status word. Most
945 * applications will care only about the fact the system clock
946 * may not be trusted, not about the details.
947 *
948 * Hardware or software error
949 */
950 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
951
952 /*
953 * PPS signal lost when either time or frequency synchronization
954 * requested
955 */
956 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
957 !(time_status & STA_PPSSIGNAL)) ||
958
959 /*
960 * PPS jitter exceeded when time synchronization requested
961 */
962 (time_status & STA_PPSTIME &&
963 time_status & STA_PPSJITTER) ||
964
965 /*
966 * PPS wander exceeded or calibration error when frequency
967 * synchronization requested
968 */
969 (time_status & STA_PPSFREQ &&
970 time_status & (STA_PPSWANDER | STA_PPSERROR)))
971 ntv.time_state = TIME_ERROR;
972 else
973 ntv.time_state = time_state;
974 #endif /* notyet */
975
976 node = *rnode;
977 node.sysctl_data = &ntv;
978 node.sysctl_size = sizeof(ntv);
979 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
980 }
981
982 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
983 {
984
985 sysctl_createv(clog, 0, NULL, NULL,
986 CTLFLAG_PERMANENT,
987 CTLTYPE_NODE, "kern", NULL,
988 NULL, 0, NULL, 0,
989 CTL_KERN, CTL_EOL);
990
991 sysctl_createv(clog, 0, NULL, NULL,
992 CTLFLAG_PERMANENT,
993 CTLTYPE_STRUCT, "ntptime",
994 SYSCTL_DESCR("Kernel clock values for NTP"),
995 sysctl_kern_ntptime, 0, NULL,
996 sizeof(struct ntptimeval),
997 CTL_KERN, KERN_NTPTIME, CTL_EOL);
998 }
999 #else /* !NTP */
1000 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
1001
1002 int
1003 sys_ntp_gettime(l, v, retval)
1004 struct lwp *l;
1005 void *v;
1006 register_t *retval;
1007 {
1008
1009 return(ENOSYS);
1010 }
1011 #endif /* !NTP */
1012 #else /* !__HAVE_TIMECOUNTER */
1013 /******************************************************************************
1014 * *
1015 * Copyright (c) David L. Mills 1993, 1994 *
1016 * *
1017 * Permission to use, copy, modify, and distribute this software and its *
1018 * documentation for any purpose and without fee is hereby granted, provided *
1019 * that the above copyright notice appears in all copies and that both the *
1020 * copyright notice and this permission notice appear in supporting *
1021 * documentation, and that the name University of Delaware not be used in *
1022 * advertising or publicity pertaining to distribution of the software *
1023 * without specific, written prior permission. The University of Delaware *
1024 * makes no representations about the suitability this software for any *
1025 * purpose. It is provided "as is" without express or implied warranty. *
1026 * *
1027 ******************************************************************************/
1028
1029 /*
1030 * Modification history kern_ntptime.c
1031 *
1032 * 24 Sep 94 David L. Mills
1033 * Tightened code at exits.
1034 *
1035 * 24 Mar 94 David L. Mills
1036 * Revised syscall interface to include new variables for PPS
1037 * time discipline.
1038 *
1039 * 14 Feb 94 David L. Mills
1040 * Added code for external clock
1041 *
1042 * 28 Nov 93 David L. Mills
1043 * Revised frequency scaling to conform with adjusted parameters
1044 *
1045 * 17 Sep 93 David L. Mills
1046 * Created file
1047 */
1048 /*
1049 * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
1050 * V4.1.1 and V4.1.3
1051 *
1052 * These routines consitute the Network Time Protocol (NTP) interfaces
1053 * for user and daemon application programs. The ntp_gettime() routine
1054 * provides the time, maximum error (synch distance) and estimated error
1055 * (dispersion) to client user application programs. The ntp_adjtime()
1056 * routine is used by the NTP daemon to adjust the system clock to an
1057 * externally derived time. The time offset and related variables set by
1058 * this routine are used by hardclock() to adjust the phase and
1059 * frequency of the phase-lock loop which controls the system clock.
1060 */
1061
1062 #include <sys/cdefs.h>
1063 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.3 2006/03/15 22:52:05 kardel Exp $");
1064
1065 #include "opt_ntp.h"
1066
1067 #include <sys/param.h>
1068 #include <sys/resourcevar.h>
1069 #include <sys/systm.h>
1070 #include <sys/kernel.h>
1071 #include <sys/proc.h>
1072 #include <sys/sysctl.h>
1073 #include <sys/timex.h>
1074 #include <sys/vnode.h>
1075
1076 #include <sys/mount.h>
1077 #include <sys/sa.h>
1078 #include <sys/syscallargs.h>
1079
1080 #include <machine/cpu.h>
1081
1082 #ifdef NTP
1083 /*
1084 * The following variables are used by the hardclock() routine in the
1085 * kern_clock.c module and are described in that module.
1086 */
1087 extern int time_state; /* clock state */
1088 extern int time_status; /* clock status bits */
1089 extern long time_offset; /* time adjustment (us) */
1090 extern long time_freq; /* frequency offset (scaled ppm) */
1091 extern long time_maxerror; /* maximum error (us) */
1092 extern long time_esterror; /* estimated error (us) */
1093 extern long time_constant; /* pll time constant */
1094 extern long time_precision; /* clock precision (us) */
1095 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
1096 extern int time_adjusted; /* ntp might have changed the system time */
1097
1098 #ifdef PPS_SYNC
1099 /*
1100 * The following variables are used only if the PPS signal discipline
1101 * is configured in the kernel.
1102 */
1103 extern int pps_shift; /* interval duration (s) (shift) */
1104 extern long pps_freq; /* pps frequency offset (scaled ppm) */
1105 extern long pps_jitter; /* pps jitter (us) */
1106 extern long pps_stabil; /* pps stability (scaled ppm) */
1107 extern long pps_jitcnt; /* jitter limit exceeded */
1108 extern long pps_calcnt; /* calibration intervals */
1109 extern long pps_errcnt; /* calibration errors */
1110 extern long pps_stbcnt; /* stability limit exceeded */
1111 #endif /* PPS_SYNC */
1112
1113 /*ARGSUSED*/
1114 /*
1115 * ntp_gettime() - NTP user application interface
1116 */
1117 int
1118 sys_ntp_gettime(l, v, retval)
1119 struct lwp *l;
1120 void *v;
1121 register_t *retval;
1122
1123 {
1124 struct sys_ntp_gettime_args /* {
1125 syscallarg(struct ntptimeval *) ntvp;
1126 } */ *uap = v;
1127 struct timeval atv;
1128 struct ntptimeval ntv;
1129 int error = 0;
1130 int s;
1131
1132 if (SCARG(uap, ntvp)) {
1133 s = splclock();
1134 #ifdef EXT_CLOCK
1135 /*
1136 * The microtime() external clock routine returns a
1137 * status code. If less than zero, we declare an error
1138 * in the clock status word and return the kernel
1139 * (software) time variable. While there are other
1140 * places that call microtime(), this is the only place
1141 * that matters from an application point of view.
1142 */
1143 if (microtime(&atv) < 0) {
1144 time_status |= STA_CLOCKERR;
1145 ntv.time = time;
1146 } else
1147 time_status &= ~STA_CLOCKERR;
1148 #else /* EXT_CLOCK */
1149 microtime(&atv);
1150 #endif /* EXT_CLOCK */
1151 ntv.time = atv;
1152 ntv.maxerror = time_maxerror;
1153 ntv.esterror = time_esterror;
1154 (void) splx(s);
1155
1156 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
1157 sizeof(ntv));
1158 }
1159 if (!error) {
1160
1161 /*
1162 * Status word error decode. If any of these conditions
1163 * occur, an error is returned, instead of the status
1164 * word. Most applications will care only about the fact
1165 * the system clock may not be trusted, not about the
1166 * details.
1167 *
1168 * Hardware or software error
1169 */
1170 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1171
1172 /*
1173 * PPS signal lost when either time or frequency
1174 * synchronization requested
1175 */
1176 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1177 !(time_status & STA_PPSSIGNAL)) ||
1178
1179 /*
1180 * PPS jitter exceeded when time synchronization
1181 * requested
1182 */
1183 (time_status & STA_PPSTIME &&
1184 time_status & STA_PPSJITTER) ||
1185
1186 /*
1187 * PPS wander exceeded or calibration error when
1188 * frequency synchronization requested
1189 */
1190 (time_status & STA_PPSFREQ &&
1191 time_status & (STA_PPSWANDER | STA_PPSERROR)))
1192 *retval = TIME_ERROR;
1193 else
1194 *retval = (register_t)time_state;
1195 }
1196 return(error);
1197 }
1198
1199 /* ARGSUSED */
1200 /*
1201 * ntp_adjtime() - NTP daemon application interface
1202 */
1203 int
1204 sys_ntp_adjtime(l, v, retval)
1205 struct lwp *l;
1206 void *v;
1207 register_t *retval;
1208 {
1209 struct sys_ntp_adjtime_args /* {
1210 syscallarg(struct timex *) tp;
1211 } */ *uap = v;
1212 struct proc *p = l->l_proc;
1213 struct timex ntv;
1214 int error = 0;
1215
1216 if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
1217 sizeof(ntv))) != 0)
1218 return (error);
1219
1220 if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
1221 return (error);
1222
1223 return (ntp_adjtime1(&ntv, v, retval));
1224 }
1225
1226 int
1227 ntp_adjtime1(ntv, v, retval)
1228 struct timex *ntv;
1229 void *v;
1230 register_t *retval;
1231 {
1232 struct sys_ntp_adjtime_args /* {
1233 syscallarg(struct timex *) tp;
1234 } */ *uap = v;
1235 int error = 0;
1236 int modes;
1237 int s;
1238
1239 /*
1240 * Update selected clock variables. Note that there is no error
1241 * checking here on the assumption the superuser should know
1242 * what it is doing.
1243 */
1244 modes = ntv->modes;
1245 if (modes != 0)
1246 /* We need to save the system time during shutdown */
1247 time_adjusted |= 2;
1248 s = splclock();
1249 if (modes & MOD_FREQUENCY)
1250 #ifdef PPS_SYNC
1251 time_freq = ntv->freq - pps_freq;
1252 #else /* PPS_SYNC */
1253 time_freq = ntv->freq;
1254 #endif /* PPS_SYNC */
1255 if (modes & MOD_MAXERROR)
1256 time_maxerror = ntv->maxerror;
1257 if (modes & MOD_ESTERROR)
1258 time_esterror = ntv->esterror;
1259 if (modes & MOD_STATUS) {
1260 time_status &= STA_RONLY;
1261 time_status |= ntv->status & ~STA_RONLY;
1262 }
1263 if (modes & MOD_TIMECONST)
1264 time_constant = ntv->constant;
1265 if (modes & MOD_OFFSET)
1266 hardupdate(ntv->offset);
1267
1268 /*
1269 * Retrieve all clock variables
1270 */
1271 if (time_offset < 0)
1272 ntv->offset = -(-time_offset >> SHIFT_UPDATE);
1273 else
1274 ntv->offset = time_offset >> SHIFT_UPDATE;
1275 #ifdef PPS_SYNC
1276 ntv->freq = time_freq + pps_freq;
1277 #else /* PPS_SYNC */
1278 ntv->freq = time_freq;
1279 #endif /* PPS_SYNC */
1280 ntv->maxerror = time_maxerror;
1281 ntv->esterror = time_esterror;
1282 ntv->status = time_status;
1283 ntv->constant = time_constant;
1284 ntv->precision = time_precision;
1285 ntv->tolerance = time_tolerance;
1286 #ifdef PPS_SYNC
1287 ntv->shift = pps_shift;
1288 ntv->ppsfreq = pps_freq;
1289 ntv->jitter = pps_jitter >> PPS_AVG;
1290 ntv->stabil = pps_stabil;
1291 ntv->calcnt = pps_calcnt;
1292 ntv->errcnt = pps_errcnt;
1293 ntv->jitcnt = pps_jitcnt;
1294 ntv->stbcnt = pps_stbcnt;
1295 #endif /* PPS_SYNC */
1296 (void)splx(s);
1297
1298 error = copyout((caddr_t)ntv, (caddr_t)SCARG(uap, tp), sizeof(*ntv));
1299 if (!error) {
1300
1301 /*
1302 * Status word error decode. See comments in
1303 * ntp_gettime() routine.
1304 */
1305 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1306 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1307 !(time_status & STA_PPSSIGNAL)) ||
1308 (time_status & STA_PPSTIME &&
1309 time_status & STA_PPSJITTER) ||
1310 (time_status & STA_PPSFREQ &&
1311 time_status & (STA_PPSWANDER | STA_PPSERROR)))
1312 *retval = TIME_ERROR;
1313 else
1314 *retval = (register_t)time_state;
1315 }
1316 return error;
1317 }
1318
1319 /*
1320 * return information about kernel precision timekeeping
1321 */
1322 static int
1323 sysctl_kern_ntptime(SYSCTLFN_ARGS)
1324 {
1325 struct sysctlnode node;
1326 struct timeval atv;
1327 struct ntptimeval ntv;
1328 int s;
1329
1330 /*
1331 * Construct ntp_timeval.
1332 */
1333
1334 s = splclock();
1335 #ifdef EXT_CLOCK
1336 /*
1337 * The microtime() external clock routine returns a
1338 * status code. If less than zero, we declare an error
1339 * in the clock status word and return the kernel
1340 * (software) time variable. While there are other
1341 * places that call microtime(), this is the only place
1342 * that matters from an application point of view.
1343 */
1344 if (microtime(&atv) < 0) {
1345 time_status |= STA_CLOCKERR;
1346 ntv.time = time;
1347 } else {
1348 time_status &= ~STA_CLOCKERR;
1349 }
1350 #else /* EXT_CLOCK */
1351 microtime(&atv);
1352 #endif /* EXT_CLOCK */
1353 ntv.time = atv;
1354 ntv.maxerror = time_maxerror;
1355 ntv.esterror = time_esterror;
1356 splx(s);
1357
1358 #ifdef notyet
1359 /*
1360 * Status word error decode. If any of these conditions
1361 * occur, an error is returned, instead of the status
1362 * word. Most applications will care only about the fact
1363 * the system clock may not be trusted, not about the
1364 * details.
1365 *
1366 * Hardware or software error
1367 */
1368 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1369 ntv.time_state = TIME_ERROR;
1370
1371 /*
1372 * PPS signal lost when either time or frequency
1373 * synchronization requested
1374 */
1375 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1376 !(time_status & STA_PPSSIGNAL)) ||
1377
1378 /*
1379 * PPS jitter exceeded when time synchronization
1380 * requested
1381 */
1382 (time_status & STA_PPSTIME &&
1383 time_status & STA_PPSJITTER) ||
1384
1385 /*
1386 * PPS wander exceeded or calibration error when
1387 * frequency synchronization requested
1388 */
1389 (time_status & STA_PPSFREQ &&
1390 time_status & (STA_PPSWANDER | STA_PPSERROR)))
1391 ntv.time_state = TIME_ERROR;
1392 else
1393 ntv.time_state = time_state;
1394 #endif /* notyet */
1395
1396 node = *rnode;
1397 node.sysctl_data = &ntv;
1398 node.sysctl_size = sizeof(ntv);
1399 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1400 }
1401
1402 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
1403 {
1404
1405 sysctl_createv(clog, 0, NULL, NULL,
1406 CTLFLAG_PERMANENT,
1407 CTLTYPE_NODE, "kern", NULL,
1408 NULL, 0, NULL, 0,
1409 CTL_KERN, CTL_EOL);
1410
1411 sysctl_createv(clog, 0, NULL, NULL,
1412 CTLFLAG_PERMANENT,
1413 CTLTYPE_STRUCT, "ntptime",
1414 SYSCTL_DESCR("Kernel clock values for NTP"),
1415 sysctl_kern_ntptime, 0, NULL,
1416 sizeof(struct ntptimeval),
1417 CTL_KERN, KERN_NTPTIME, CTL_EOL);
1418 }
1419 #else /* !NTP */
1420 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
1421
1422 int
1423 sys_ntp_gettime(l, v, retval)
1424 struct lwp *l;
1425 void *v;
1426 register_t *retval;
1427 {
1428
1429 return(ENOSYS);
1430 }
1431 #endif /* !NTP */
1432 #endif /* !__HAVE_TIMECOUNTER */
1433