Home | History | Annotate | Line # | Download | only in kern
kern_ntptime.c revision 1.29.6.5
      1 /*	$NetBSD: kern_ntptime.c,v 1.29.6.5 2006/06/01 22:38:07 kardel Exp $	*/
      2 #include <sys/types.h> 	/* XXX to get __HAVE_TIMECOUNTER, remove
      3 			   after all ports are converted. */
      4 #ifdef __HAVE_TIMECOUNTER
      5 
      6 /*-
      7  ***********************************************************************
      8  *								       *
      9  * Copyright (c) David L. Mills 1993-2001			       *
     10  *								       *
     11  * Permission to use, copy, modify, and distribute this software and   *
     12  * its documentation for any purpose and without fee is hereby	       *
     13  * granted, provided that the above copyright notice appears in all    *
     14  * copies and that both the copyright notice and this permission       *
     15  * notice appear in supporting documentation, and that the name	       *
     16  * University of Delaware not be used in advertising or publicity      *
     17  * pertaining to distribution of the software without specific,	       *
     18  * written prior permission. The University of Delaware makes no       *
     19  * representations about the suitability this software for any	       *
     20  * purpose. It is provided "as is" without express or implied	       *
     21  * warranty.							       *
     22  *								       *
     23  **********************************************************************/
     24 
     25 /*
     26  * Adapted from the original sources for FreeBSD and timecounters by:
     27  * Poul-Henning Kamp <phk (at) FreeBSD.org>.
     28  *
     29  * The 32bit version of the "LP" macros seems a bit past its "sell by"
     30  * date so I have retained only the 64bit version and included it directly
     31  * in this file.
     32  *
     33  * Only minor changes done to interface with the timecounters over in
     34  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
     35  * confusing and/or plain wrong in that context.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
     40 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.5 2006/06/01 22:38:07 kardel Exp $");
     41 
     42 #include "opt_ntp.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/resourcevar.h>
     46 #include <sys/systm.h>
     47 #include <sys/kernel.h>
     48 #include <sys/proc.h>
     49 #include <sys/sysctl.h>
     50 #include <sys/timex.h>
     51 #include <sys/vnode.h>
     52 
     53 #include <sys/mount.h>
     54 #include <sys/sa.h>
     55 #include <sys/syscallargs.h>
     56 
     57 #include <machine/cpu.h>
     58 
     59 /*
     60  * Single-precision macros for 64-bit machines
     61  */
     62 typedef int64_t l_fp;
     63 #define L_ADD(v, u)	((v) += (u))
     64 #define L_SUB(v, u)	((v) -= (u))
     65 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
     66 #define L_NEG(v)	((v) = -(v))
     67 #define L_RSHIFT(v, n) \
     68 	do { \
     69 		if ((v) < 0) \
     70 			(v) = -(-(v) >> (n)); \
     71 		else \
     72 			(v) = (v) >> (n); \
     73 	} while (0)
     74 #define L_MPY(v, a)	((v) *= (a))
     75 #define L_CLR(v)	((v) = 0)
     76 #define L_ISNEG(v)	((v) < 0)
     77 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
     78 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
     79 
     80 #ifdef NTP
     81 /*
     82  * Generic NTP kernel interface
     83  *
     84  * These routines constitute the Network Time Protocol (NTP) interfaces
     85  * for user and daemon application programs. The ntp_gettime() routine
     86  * provides the time, maximum error (synch distance) and estimated error
     87  * (dispersion) to client user application programs. The ntp_adjtime()
     88  * routine is used by the NTP daemon to adjust the system clock to an
     89  * externally derived time. The time offset and related variables set by
     90  * this routine are used by other routines in this module to adjust the
     91  * phase and frequency of the clock discipline loop which controls the
     92  * system clock.
     93  *
     94  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
     95  * defined), the time at each tick interrupt is derived directly from
     96  * the kernel time variable. When the kernel time is reckoned in
     97  * microseconds, (NTP_NANO undefined), the time is derived from the
     98  * kernel time variable together with a variable representing the
     99  * leftover nanoseconds at the last tick interrupt. In either case, the
    100  * current nanosecond time is reckoned from these values plus an
    101  * interpolated value derived by the clock routines in another
    102  * architecture-specific module. The interpolation can use either a
    103  * dedicated counter or a processor cycle counter (PCC) implemented in
    104  * some architectures.
    105  *
    106  * Note that all routines must run at priority splclock or higher.
    107  */
    108 /*
    109  * Phase/frequency-lock loop (PLL/FLL) definitions
    110  *
    111  * The nanosecond clock discipline uses two variable types, time
    112  * variables and frequency variables. Both types are represented as 64-
    113  * bit fixed-point quantities with the decimal point between two 32-bit
    114  * halves. On a 32-bit machine, each half is represented as a single
    115  * word and mathematical operations are done using multiple-precision
    116  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
    117  * used.
    118  *
    119  * A time variable is a signed 64-bit fixed-point number in ns and
    120  * fraction. It represents the remaining time offset to be amortized
    121  * over succeeding tick interrupts. The maximum time offset is about
    122  * 0.5 s and the resolution is about 2.3e-10 ns.
    123  *
    124  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    125  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    126  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    127  * |s s s|			 ns				   |
    128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    129  * |			    fraction				   |
    130  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    131  *
    132  * A frequency variable is a signed 64-bit fixed-point number in ns/s
    133  * and fraction. It represents the ns and fraction to be added to the
    134  * kernel time variable at each second. The maximum frequency offset is
    135  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
    136  *
    137  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    138  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    139  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    140  * |s s s s s s s s s s s s s|	          ns/s			   |
    141  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    142  * |			    fraction				   |
    143  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    144  */
    145 /*
    146  * The following variables establish the state of the PLL/FLL and the
    147  * residual time and frequency offset of the local clock.
    148  */
    149 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
    150 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
    151 
    152 static int time_state = TIME_OK;	/* clock state */
    153 static int time_status = STA_UNSYNC;	/* clock status bits */
    154 static long time_tai;			/* TAI offset (s) */
    155 static long time_monitor;		/* last time offset scaled (ns) */
    156 static long time_constant;		/* poll interval (shift) (s) */
    157 static long time_precision = 1;		/* clock precision (ns) */
    158 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
    159 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
    160 static long time_reftime;		/* time at last adjustment (s) */
    161 static l_fp time_offset;		/* time offset (ns) */
    162 static l_fp time_freq;			/* frequency offset (ns/s) */
    163 #endif /* NTP */
    164 
    165 static l_fp time_adj;			/* tick adjust (ns/s) */
    166 int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
    167 
    168 extern int time_adjusted;	/* ntp might have changed the system time */
    169 
    170 #ifdef NTP
    171 #ifdef PPS_SYNC
    172 /*
    173  * The following variables are used when a pulse-per-second (PPS) signal
    174  * is available and connected via a modem control lead. They establish
    175  * the engineering parameters of the clock discipline loop when
    176  * controlled by the PPS signal.
    177  */
    178 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
    179 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
    180 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
    181 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
    182 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
    183 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
    184 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
    185 
    186 static struct timespec pps_tf[3];	/* phase median filter */
    187 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
    188 static long pps_fcount;			/* frequency accumulator */
    189 static long pps_jitter;			/* nominal jitter (ns) */
    190 static long pps_stabil;			/* nominal stability (scaled ns/s) */
    191 static long pps_lastsec;		/* time at last calibration (s) */
    192 static int pps_valid;			/* signal watchdog counter */
    193 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
    194 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
    195 static int pps_intcnt;			/* wander counter */
    196 
    197 /*
    198  * PPS signal quality monitors
    199  */
    200 static long pps_calcnt;			/* calibration intervals */
    201 static long pps_jitcnt;			/* jitter limit exceeded */
    202 static long pps_stbcnt;			/* stability limit exceeded */
    203 static long pps_errcnt;			/* calibration errors */
    204 #endif /* PPS_SYNC */
    205 /*
    206  * End of phase/frequency-lock loop (PLL/FLL) definitions
    207  */
    208 
    209 static void hardupdate(long offset);
    210 
    211 /*ARGSUSED*/
    212 /*
    213  * ntp_gettime() - NTP user application interface
    214  */
    215 int
    216 sys_ntp_gettime(l, v, retval)
    217 	struct lwp *l;
    218 	void *v;
    219 	register_t *retval;
    220 
    221 {
    222 	struct sys_ntp_gettime_args /* {
    223 		syscallarg(struct ntptimeval *) ntvp;
    224 	} */ *uap = v;
    225 	struct ntptimeval ntv;
    226 	int error = 0;
    227 	register_t retval1 = TIME_ERROR;
    228 
    229 	if (SCARG(uap, ntvp)) {
    230 		ntp_gettime1(&ntv, &retval1);
    231 
    232 		error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
    233 		    sizeof(ntv));
    234 	}
    235 
    236 	if (!error) {
    237 		*retval = retval1;
    238 	}
    239 	return(error);
    240 }
    241 /*
    242  * ntp_gettime() - NTP user application interface
    243  */
    244 void
    245 ntp_gettime1(ntv, retval)
    246 	struct ntptimeval *ntv;
    247 	register_t *retval;
    248 {
    249 	nanotime(&ntv->time);
    250 	ntv->maxerror = time_maxerror;
    251 	ntv->esterror = time_esterror;
    252 	ntv->tai = time_tai;
    253 	ntv->time_state = time_state;
    254 
    255 	/*
    256 	 * Status word error decode. If any of these conditions occur,
    257 	 * an error is returned, instead of the status word. Most
    258 	 * applications will care only about the fact the system clock
    259 	 * may not be trusted, not about the details.
    260 	 *
    261 	 * Hardware or software error
    262 	 */
    263 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    264 
    265 	    /*
    266 	     * PPS signal lost when either time or frequency synchronization
    267 	     * requested
    268 	     */
    269 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    270 	     !(time_status & STA_PPSSIGNAL)) ||
    271 
    272 	    /*
    273 	     * PPS jitter exceeded when time synchronization requested
    274 	     */
    275 	    (time_status & STA_PPSTIME &&
    276 	     time_status & STA_PPSJITTER) ||
    277 
    278 	    /*
    279 	     * PPS wander exceeded or calibration error when frequency
    280 	     * synchronization requested
    281 	     */
    282 	    (time_status & STA_PPSFREQ &&
    283 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
    284 		ntv->time_state = TIME_ERROR;
    285 
    286 	*retval = (register_t)ntv->time_state;
    287 }
    288 
    289 /* ARGSUSED */
    290 /*
    291  * ntp_adjtime() - NTP daemon application interface
    292  */
    293 int
    294 sys_ntp_adjtime(l, v, retval)
    295 	struct lwp *l;
    296 	void *v;
    297 	register_t *retval;
    298 {
    299 	struct sys_ntp_adjtime_args /* {
    300 		syscallarg(struct timex *) tp;
    301 	} */ *uap = v;
    302 	struct proc *p = l->l_proc;
    303 	struct timex ntv;
    304 	int error = 0;
    305 	register_t retval1 = TIME_ERROR;
    306 
    307 	if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
    308 			sizeof(ntv))) != 0)
    309 		return (error);
    310 
    311 	if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
    312 		return (error);
    313 
    314 	ntp_adjtime1(&ntv, &retval1);
    315 
    316 	error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
    317 	if (!error) {
    318 		*retval = retval1;
    319 	}
    320 	return error;
    321 }
    322 
    323 void
    324 ntp_adjtime1(ntv, retval)
    325 	struct timex *ntv;
    326 	register_t	*retval;
    327 {
    328 	long freq;
    329 	int modes;
    330 	int s;
    331 
    332 	/*
    333 	 * Update selected clock variables - only the superuser can
    334 	 * change anything. Note that there is no error checking here on
    335 	 * the assumption the superuser should know what it is doing.
    336 	 * Note that either the time constant or TAI offset are loaded
    337 	 * from the ntv.constant member, depending on the mode bits. If
    338 	 * the STA_PLL bit in the status word is cleared, the state and
    339 	 * status words are reset to the initial values at boot.
    340 	 */
    341 	modes = ntv->modes;
    342 	if (modes != 0)
    343 		/* We need to save the system time during shutdown */
    344 		time_adjusted |= 2;
    345 	s = splclock();
    346 	if (modes & MOD_MAXERROR)
    347 		time_maxerror = ntv->maxerror;
    348 	if (modes & MOD_ESTERROR)
    349 		time_esterror = ntv->esterror;
    350 	if (modes & MOD_STATUS) {
    351 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
    352 			time_state = TIME_OK;
    353 			time_status = STA_UNSYNC;
    354 #ifdef PPS_SYNC
    355 			pps_shift = PPS_FAVG;
    356 #endif /* PPS_SYNC */
    357 		}
    358 		time_status &= STA_RONLY;
    359 		time_status |= ntv->status & ~STA_RONLY;
    360 	}
    361 	if (modes & MOD_TIMECONST) {
    362 		if (ntv->constant < 0)
    363 			time_constant = 0;
    364 		else if (ntv->constant > MAXTC)
    365 			time_constant = MAXTC;
    366 		else
    367 			time_constant = ntv->constant;
    368 	}
    369 	if (modes & MOD_TAI) {
    370 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
    371 			time_tai = ntv->constant;
    372 	}
    373 #ifdef PPS_SYNC
    374 	if (modes & MOD_PPSMAX) {
    375 		if (ntv->shift < PPS_FAVG)
    376 			pps_shiftmax = PPS_FAVG;
    377 		else if (ntv->shift > PPS_FAVGMAX)
    378 			pps_shiftmax = PPS_FAVGMAX;
    379 		else
    380 			pps_shiftmax = ntv->shift;
    381 	}
    382 #endif /* PPS_SYNC */
    383 	if (modes & MOD_NANO)
    384 		time_status |= STA_NANO;
    385 	if (modes & MOD_MICRO)
    386 		time_status &= ~STA_NANO;
    387 	if (modes & MOD_CLKB)
    388 		time_status |= STA_CLK;
    389 	if (modes & MOD_CLKA)
    390 		time_status &= ~STA_CLK;
    391 	if (modes & MOD_FREQUENCY) {
    392 		freq = (ntv->freq * 1000LL) >> 16;
    393 		if (freq > MAXFREQ)
    394 			L_LINT(time_freq, MAXFREQ);
    395 		else if (freq < -MAXFREQ)
    396 			L_LINT(time_freq, -MAXFREQ);
    397 		else {
    398 			/*
    399 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
    400 			 * time_freq is [ns/s * 2^32]
    401 			 */
    402 			time_freq = ntv->freq * 1000LL * 65536LL;
    403 		}
    404 #ifdef PPS_SYNC
    405 		pps_freq = time_freq;
    406 #endif /* PPS_SYNC */
    407 	}
    408 	if (modes & MOD_OFFSET) {
    409 		if (time_status & STA_NANO)
    410 			hardupdate(ntv->offset);
    411 		else
    412 			hardupdate(ntv->offset * 1000);
    413 	}
    414 
    415 	/*
    416 	 * Retrieve all clock variables. Note that the TAI offset is
    417 	 * returned only by ntp_gettime();
    418 	 */
    419 	if (time_status & STA_NANO)
    420 		ntv->offset = L_GINT(time_offset);
    421 	else
    422 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
    423 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
    424 	ntv->maxerror = time_maxerror;
    425 	ntv->esterror = time_esterror;
    426 	ntv->status = time_status;
    427 	ntv->constant = time_constant;
    428 	if (time_status & STA_NANO)
    429 		ntv->precision = time_precision;
    430 	else
    431 		ntv->precision = time_precision / 1000;
    432 	ntv->tolerance = MAXFREQ * SCALE_PPM;
    433 #ifdef PPS_SYNC
    434 	ntv->shift = pps_shift;
    435 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
    436 	if (time_status & STA_NANO)
    437 		ntv->jitter = pps_jitter;
    438 	else
    439 		ntv->jitter = pps_jitter / 1000;
    440 	ntv->stabil = pps_stabil;
    441 	ntv->calcnt = pps_calcnt;
    442 	ntv->errcnt = pps_errcnt;
    443 	ntv->jitcnt = pps_jitcnt;
    444 	ntv->stbcnt = pps_stbcnt;
    445 #endif /* PPS_SYNC */
    446 	splx(s);
    447 
    448 	/*
    449 	 * Status word error decode. See comments in
    450 	 * ntp_gettime() routine.
    451 	 */
    452 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    453 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    454 	     !(time_status & STA_PPSSIGNAL)) ||
    455 	    (time_status & STA_PPSTIME &&
    456 	     time_status & STA_PPSJITTER) ||
    457 	    (time_status & STA_PPSFREQ &&
    458 	     time_status & (STA_PPSWANDER | STA_PPSERROR))) {
    459 		*retval = TIME_ERROR;
    460 	} else
    461 		*retval = (register_t)time_state;
    462 }
    463 #endif /* NTP */
    464 
    465 /*
    466  * second_overflow() - called after ntp_tick_adjust()
    467  *
    468  * This routine is ordinarily called immediately following the above
    469  * routine ntp_tick_adjust(). While these two routines are normally
    470  * combined, they are separated here only for the purposes of
    471  * simulation.
    472  */
    473 void
    474 ntp_update_second(int64_t *adjustment, time_t *newsec)
    475 {
    476 	int tickrate;
    477 	l_fp ftemp;		/* 32/64-bit temporary */
    478 
    479 #ifdef NTP
    480 
    481 	/*
    482 	 * On rollover of the second both the nanosecond and microsecond
    483 	 * clocks are updated and the state machine cranked as
    484 	 * necessary. The phase adjustment to be used for the next
    485 	 * second is calculated and the maximum error is increased by
    486 	 * the tolerance.
    487 	 */
    488 	time_maxerror += MAXFREQ / 1000;
    489 
    490 	/*
    491 	 * Leap second processing. If in leap-insert state at
    492 	 * the end of the day, the system clock is set back one
    493 	 * second; if in leap-delete state, the system clock is
    494 	 * set ahead one second. The nano_time() routine or
    495 	 * external clock driver will insure that reported time
    496 	 * is always monotonic.
    497 	 */
    498 	switch (time_state) {
    499 
    500 		/*
    501 		 * No warning.
    502 		 */
    503 		case TIME_OK:
    504 		if (time_status & STA_INS)
    505 			time_state = TIME_INS;
    506 		else if (time_status & STA_DEL)
    507 			time_state = TIME_DEL;
    508 		break;
    509 
    510 		/*
    511 		 * Insert second 23:59:60 following second
    512 		 * 23:59:59.
    513 		 */
    514 		case TIME_INS:
    515 		if (!(time_status & STA_INS))
    516 			time_state = TIME_OK;
    517 		else if ((*newsec) % 86400 == 0) {
    518 			(*newsec)--;
    519 			time_state = TIME_OOP;
    520 			time_tai++;
    521 		}
    522 		break;
    523 
    524 		/*
    525 		 * Delete second 23:59:59.
    526 		 */
    527 		case TIME_DEL:
    528 		if (!(time_status & STA_DEL))
    529 			time_state = TIME_OK;
    530 		else if (((*newsec) + 1) % 86400 == 0) {
    531 			(*newsec)++;
    532 			time_tai--;
    533 			time_state = TIME_WAIT;
    534 		}
    535 		break;
    536 
    537 		/*
    538 		 * Insert second in progress.
    539 		 */
    540 		case TIME_OOP:
    541 			time_state = TIME_WAIT;
    542 		break;
    543 
    544 		/*
    545 		 * Wait for status bits to clear.
    546 		 */
    547 		case TIME_WAIT:
    548 		if (!(time_status & (STA_INS | STA_DEL)))
    549 			time_state = TIME_OK;
    550 	}
    551 
    552 	/*
    553 	 * Compute the total time adjustment for the next second
    554 	 * in ns. The offset is reduced by a factor depending on
    555 	 * whether the PPS signal is operating. Note that the
    556 	 * value is in effect scaled by the clock frequency,
    557 	 * since the adjustment is added at each tick interrupt.
    558 	 */
    559 	ftemp = time_offset;
    560 #ifdef PPS_SYNC
    561 	/* XXX even if PPS signal dies we should finish adjustment ? */
    562 	if (time_status & STA_PPSTIME && time_status &
    563 	    STA_PPSSIGNAL)
    564 		L_RSHIFT(ftemp, pps_shift);
    565 	else
    566 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    567 #else
    568 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    569 #endif /* PPS_SYNC */
    570 	time_adj = ftemp;
    571 	L_SUB(time_offset, ftemp);
    572 	L_ADD(time_adj, time_freq);
    573 
    574 #ifdef PPS_SYNC
    575 	if (pps_valid > 0)
    576 		pps_valid--;
    577 	else
    578 		time_status &= ~STA_PPSSIGNAL;
    579 #endif /* PPS_SYNC */
    580 
    581 #endif /* NTP */
    582 
    583 	/*
    584 	 * Apply any correction from adjtime(2).  If more than one second
    585 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
    586 	 * until the last second is slewed the final < 500 usecs.
    587 	 */
    588 	if (time_adjtime != 0) {
    589 		if (time_adjtime > 1000000)
    590 			tickrate = 5000;
    591 		else if (time_adjtime < -1000000)
    592 			tickrate = -5000;
    593 		else if (time_adjtime > 500)
    594 			tickrate = 500;
    595 		else if (time_adjtime < -500)
    596 			tickrate = -500;
    597 		else
    598 			tickrate = time_adjtime;
    599 		time_adjtime -= tickrate;
    600 		L_LINT(ftemp, tickrate * 1000);
    601 		L_ADD(time_adj, ftemp);
    602 	}
    603 	*adjustment = time_adj;
    604 
    605 }
    606 
    607 /*
    608  * ntp_init() - initialize variables and structures
    609  *
    610  * This routine must be called after the kernel variables hz and tick
    611  * are set or changed and before the next tick interrupt. In this
    612  * particular implementation, these values are assumed set elsewhere in
    613  * the kernel. The design allows the clock frequency and tick interval
    614  * to be changed while the system is running. So, this routine should
    615  * probably be integrated with the code that does that.
    616  */
    617 void
    618 ntp_init(void)
    619 {
    620 
    621 	/*
    622 	 * The following variables are initialized only at startup. Only
    623 	 * those structures not cleared by the compiler need to be
    624 	 * initialized, and these only in the simulator. In the actual
    625 	 * kernel, any nonzero values here will quickly evaporate.
    626 	 */
    627 	L_CLR(time_adj);
    628 #ifdef NTP
    629 	L_CLR(time_offset);
    630 	L_CLR(time_freq);
    631 #ifdef PPS_SYNC
    632 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
    633 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
    634 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
    635 	pps_fcount = 0;
    636 	L_CLR(pps_freq);
    637 #endif /* PPS_SYNC */
    638 #endif
    639 }
    640 
    641 #ifdef NTP
    642 /*
    643  * hardupdate() - local clock update
    644  *
    645  * This routine is called by ntp_adjtime() to update the local clock
    646  * phase and frequency. The implementation is of an adaptive-parameter,
    647  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    648  * time and frequency offset estimates for each call. If the kernel PPS
    649  * discipline code is configured (PPS_SYNC), the PPS signal itself
    650  * determines the new time offset, instead of the calling argument.
    651  * Presumably, calls to ntp_adjtime() occur only when the caller
    652  * believes the local clock is valid within some bound (+-128 ms with
    653  * NTP). If the caller's time is far different than the PPS time, an
    654  * argument will ensue, and it's not clear who will lose.
    655  *
    656  * For uncompensated quartz crystal oscillators and nominal update
    657  * intervals less than 256 s, operation should be in phase-lock mode,
    658  * where the loop is disciplined to phase. For update intervals greater
    659  * than 1024 s, operation should be in frequency-lock mode, where the
    660  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
    661  * is selected by the STA_MODE status bit.
    662  *
    663  * Note: splclock() is in effect.
    664  */
    665 void
    666 hardupdate(long offset)
    667 {
    668 	long mtemp;
    669 	l_fp ftemp;
    670 
    671 	/*
    672 	 * Select how the phase is to be controlled and from which
    673 	 * source. If the PPS signal is present and enabled to
    674 	 * discipline the time, the PPS offset is used; otherwise, the
    675 	 * argument offset is used.
    676 	 */
    677 	if (!(time_status & STA_PLL))
    678 		return;
    679 	if (!(time_status & STA_PPSTIME && time_status &
    680 	    STA_PPSSIGNAL)) {
    681 		if (offset > MAXPHASE)
    682 			time_monitor = MAXPHASE;
    683 		else if (offset < -MAXPHASE)
    684 			time_monitor = -MAXPHASE;
    685 		else
    686 			time_monitor = offset;
    687 		L_LINT(time_offset, time_monitor);
    688 	}
    689 
    690 	/*
    691 	 * Select how the frequency is to be controlled and in which
    692 	 * mode (PLL or FLL). If the PPS signal is present and enabled
    693 	 * to discipline the frequency, the PPS frequency is used;
    694 	 * otherwise, the argument offset is used to compute it.
    695 	 */
    696 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
    697 		time_reftime = time_second;
    698 		return;
    699 	}
    700 	if (time_status & STA_FREQHOLD || time_reftime == 0)
    701 		time_reftime = time_second;
    702 	mtemp = time_second - time_reftime;
    703 	L_LINT(ftemp, time_monitor);
    704 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
    705 	L_MPY(ftemp, mtemp);
    706 	L_ADD(time_freq, ftemp);
    707 	time_status &= ~STA_MODE;
    708 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
    709 	    MAXSEC)) {
    710 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
    711 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
    712 		L_ADD(time_freq, ftemp);
    713 		time_status |= STA_MODE;
    714 	}
    715 	time_reftime = time_second;
    716 	if (L_GINT(time_freq) > MAXFREQ)
    717 		L_LINT(time_freq, MAXFREQ);
    718 	else if (L_GINT(time_freq) < -MAXFREQ)
    719 		L_LINT(time_freq, -MAXFREQ);
    720 }
    721 
    722 #ifdef PPS_SYNC
    723 /*
    724  * hardpps() - discipline CPU clock oscillator to external PPS signal
    725  *
    726  * This routine is called at each PPS interrupt in order to discipline
    727  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
    728  * and leaves it in a handy spot for the hardclock() routine. It
    729  * integrates successive PPS phase differences and calculates the
    730  * frequency offset. This is used in hardclock() to discipline the CPU
    731  * clock oscillator so that intrinsic frequency error is cancelled out.
    732  * The code requires the caller to capture the time and hardware counter
    733  * value at the on-time PPS signal transition.
    734  *
    735  * Note that, on some Unix systems, this routine runs at an interrupt
    736  * priority level higher than the timer interrupt routine hardclock().
    737  * Therefore, the variables used are distinct from the hardclock()
    738  * variables, except for certain exceptions: The PPS frequency pps_freq
    739  * and phase pps_offset variables are determined by this routine and
    740  * updated atomically. The time_tolerance variable can be considered a
    741  * constant, since it is infrequently changed, and then only when the
    742  * PPS signal is disabled. The watchdog counter pps_valid is updated
    743  * once per second by hardclock() and is atomically cleared in this
    744  * routine.
    745  */
    746 void
    747 hardpps(struct timespec *tsp,		/* time at PPS */
    748 	long nsec			/* hardware counter at PPS */)
    749 {
    750 	long u_sec, u_nsec, v_nsec; /* temps */
    751 	l_fp ftemp;
    752 
    753 	/*
    754 	 * The signal is first processed by a range gate and frequency
    755 	 * discriminator. The range gate rejects noise spikes outside
    756 	 * the range +-500 us. The frequency discriminator rejects input
    757 	 * signals with apparent frequency outside the range 1 +-500
    758 	 * PPM. If two hits occur in the same second, we ignore the
    759 	 * later hit; if not and a hit occurs outside the range gate,
    760 	 * keep the later hit for later comparison, but do not process
    761 	 * it.
    762 	 */
    763 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
    764 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
    765 	pps_valid = PPS_VALID;
    766 	u_sec = tsp->tv_sec;
    767 	u_nsec = tsp->tv_nsec;
    768 	if (u_nsec >= (NANOSECOND >> 1)) {
    769 		u_nsec -= NANOSECOND;
    770 		u_sec++;
    771 	}
    772 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
    773 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
    774 	    MAXFREQ)
    775 		return;
    776 	pps_tf[2] = pps_tf[1];
    777 	pps_tf[1] = pps_tf[0];
    778 	pps_tf[0].tv_sec = u_sec;
    779 	pps_tf[0].tv_nsec = u_nsec;
    780 
    781 	/*
    782 	 * Compute the difference between the current and previous
    783 	 * counter values. If the difference exceeds 0.5 s, assume it
    784 	 * has wrapped around, so correct 1.0 s. If the result exceeds
    785 	 * the tick interval, the sample point has crossed a tick
    786 	 * boundary during the last second, so correct the tick. Very
    787 	 * intricate.
    788 	 */
    789 	u_nsec = nsec;
    790 	if (u_nsec > (NANOSECOND >> 1))
    791 		u_nsec -= NANOSECOND;
    792 	else if (u_nsec < -(NANOSECOND >> 1))
    793 		u_nsec += NANOSECOND;
    794 	pps_fcount += u_nsec;
    795 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
    796 		return;
    797 	time_status &= ~STA_PPSJITTER;
    798 
    799 	/*
    800 	 * A three-stage median filter is used to help denoise the PPS
    801 	 * time. The median sample becomes the time offset estimate; the
    802 	 * difference between the other two samples becomes the time
    803 	 * dispersion (jitter) estimate.
    804 	 */
    805 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
    806 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
    807 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
    808 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
    809 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
    810 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
    811 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
    812 		} else {
    813 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
    814 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
    815 		}
    816 	} else {
    817 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
    818 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
    819 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
    820 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
    821 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
    822 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
    823 		} else {
    824 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
    825 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
    826 		}
    827 	}
    828 
    829 	/*
    830 	 * Nominal jitter is due to PPS signal noise and interrupt
    831 	 * latency. If it exceeds the popcorn threshold, the sample is
    832 	 * discarded. otherwise, if so enabled, the time offset is
    833 	 * updated. We can tolerate a modest loss of data here without
    834 	 * much degrading time accuracy.
    835 	 */
    836 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
    837 		time_status |= STA_PPSJITTER;
    838 		pps_jitcnt++;
    839 	} else if (time_status & STA_PPSTIME) {
    840 		time_monitor = -v_nsec;
    841 		L_LINT(time_offset, time_monitor);
    842 	}
    843 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
    844 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
    845 	if (u_sec < (1 << pps_shift))
    846 		return;
    847 
    848 	/*
    849 	 * At the end of the calibration interval the difference between
    850 	 * the first and last counter values becomes the scaled
    851 	 * frequency. It will later be divided by the length of the
    852 	 * interval to determine the frequency update. If the frequency
    853 	 * exceeds a sanity threshold, or if the actual calibration
    854 	 * interval is not equal to the expected length, the data are
    855 	 * discarded. We can tolerate a modest loss of data here without
    856 	 * much degrading frequency accuracy.
    857 	 */
    858 	pps_calcnt++;
    859 	v_nsec = -pps_fcount;
    860 	pps_lastsec = pps_tf[0].tv_sec;
    861 	pps_fcount = 0;
    862 	u_nsec = MAXFREQ << pps_shift;
    863 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
    864 	    pps_shift)) {
    865 		time_status |= STA_PPSERROR;
    866 		pps_errcnt++;
    867 		return;
    868 	}
    869 
    870 	/*
    871 	 * Here the raw frequency offset and wander (stability) is
    872 	 * calculated. If the wander is less than the wander threshold
    873 	 * for four consecutive averaging intervals, the interval is
    874 	 * doubled; if it is greater than the threshold for four
    875 	 * consecutive intervals, the interval is halved. The scaled
    876 	 * frequency offset is converted to frequency offset. The
    877 	 * stability metric is calculated as the average of recent
    878 	 * frequency changes, but is used only for performance
    879 	 * monitoring.
    880 	 */
    881 	L_LINT(ftemp, v_nsec);
    882 	L_RSHIFT(ftemp, pps_shift);
    883 	L_SUB(ftemp, pps_freq);
    884 	u_nsec = L_GINT(ftemp);
    885 	if (u_nsec > PPS_MAXWANDER) {
    886 		L_LINT(ftemp, PPS_MAXWANDER);
    887 		pps_intcnt--;
    888 		time_status |= STA_PPSWANDER;
    889 		pps_stbcnt++;
    890 	} else if (u_nsec < -PPS_MAXWANDER) {
    891 		L_LINT(ftemp, -PPS_MAXWANDER);
    892 		pps_intcnt--;
    893 		time_status |= STA_PPSWANDER;
    894 		pps_stbcnt++;
    895 	} else {
    896 		pps_intcnt++;
    897 	}
    898 	if (pps_intcnt >= 4) {
    899 		pps_intcnt = 4;
    900 		if (pps_shift < pps_shiftmax) {
    901 			pps_shift++;
    902 			pps_intcnt = 0;
    903 		}
    904 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
    905 		pps_intcnt = -4;
    906 		if (pps_shift > PPS_FAVG) {
    907 			pps_shift--;
    908 			pps_intcnt = 0;
    909 		}
    910 	}
    911 	if (u_nsec < 0)
    912 		u_nsec = -u_nsec;
    913 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
    914 
    915 	/*
    916 	 * The PPS frequency is recalculated and clamped to the maximum
    917 	 * MAXFREQ. If enabled, the system clock frequency is updated as
    918 	 * well.
    919 	 */
    920 	L_ADD(pps_freq, ftemp);
    921 	u_nsec = L_GINT(pps_freq);
    922 	if (u_nsec > MAXFREQ)
    923 		L_LINT(pps_freq, MAXFREQ);
    924 	else if (u_nsec < -MAXFREQ)
    925 		L_LINT(pps_freq, -MAXFREQ);
    926 	if (time_status & STA_PPSFREQ)
    927 		time_freq = pps_freq;
    928 }
    929 #endif /* PPS_SYNC */
    930 
    931 /*
    932  * return information about kernel precision timekeeping
    933  * XXX this should share code with sys_ntp_gettime
    934  */
    935 static int
    936 sysctl_kern_ntptime(SYSCTLFN_ARGS)
    937 {
    938 	struct sysctlnode node;
    939 	struct ntptimeval ntv;
    940 
    941 	/*
    942 	 * Construct ntp_timeval.
    943 	 */
    944 
    945 	nanotime(&ntv.time);
    946 	ntv.maxerror = time_maxerror;
    947 	ntv.esterror = time_esterror;
    948 	ntv.tai = time_tai;
    949 	ntv.time_state = time_state;
    950 
    951 #ifdef notyet
    952 	/*
    953 	 * Status word error decode. If any of these conditions occur,
    954 	 * an error is returned, instead of the status word. Most
    955 	 * applications will care only about the fact the system clock
    956 	 * may not be trusted, not about the details.
    957 	 *
    958 	 * Hardware or software error
    959 	 */
    960 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    961 
    962 	/*
    963 	 * PPS signal lost when either time or frequency synchronization
    964 	 * requested
    965 	 */
    966 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    967 	    !(time_status & STA_PPSSIGNAL)) ||
    968 
    969 	/*
    970 	 * PPS jitter exceeded when time synchronization requested
    971 	 */
    972 	    (time_status & STA_PPSTIME &&
    973 	    time_status & STA_PPSJITTER) ||
    974 
    975 	/*
    976 	 * PPS wander exceeded or calibration error when frequency
    977 	 * synchronization requested
    978 	 */
    979 	    (time_status & STA_PPSFREQ &&
    980 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
    981 		ntv.time_state = TIME_ERROR;
    982 	else
    983 		ntv.time_state = time_state;
    984 #endif /* notyet */
    985 
    986 	node = *rnode;
    987 	node.sysctl_data = &ntv;
    988 	node.sysctl_size = sizeof(ntv);
    989 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
    990 }
    991 
    992 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
    993 {
    994 
    995 	sysctl_createv(clog, 0, NULL, NULL,
    996 		       CTLFLAG_PERMANENT,
    997 		       CTLTYPE_NODE, "kern", NULL,
    998 		       NULL, 0, NULL, 0,
    999 		       CTL_KERN, CTL_EOL);
   1000 
   1001 	sysctl_createv(clog, 0, NULL, NULL,
   1002 		       CTLFLAG_PERMANENT,
   1003 		       CTLTYPE_STRUCT, "ntptime",
   1004 		       SYSCTL_DESCR("Kernel clock values for NTP"),
   1005 		       sysctl_kern_ntptime, 0, NULL,
   1006 		       sizeof(struct ntptimeval),
   1007 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
   1008 }
   1009 #else /* !NTP */
   1010 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
   1011 
   1012 int
   1013 sys_ntp_gettime(l, v, retval)
   1014 	struct lwp *l;
   1015 	void *v;
   1016 	register_t *retval;
   1017 {
   1018 
   1019 	return(ENOSYS);
   1020 }
   1021 #endif /* !NTP */
   1022 #else /* !__HAVE_TIMECOUNTER */
   1023 /******************************************************************************
   1024  *                                                                            *
   1025  * Copyright (c) David L. Mills 1993, 1994                                    *
   1026  *                                                                            *
   1027  * Permission to use, copy, modify, and distribute this software and its      *
   1028  * documentation for any purpose and without fee is hereby granted, provided  *
   1029  * that the above copyright notice appears in all copies and that both the    *
   1030  * copyright notice and this permission notice appear in supporting           *
   1031  * documentation, and that the name University of Delaware not be used in     *
   1032  * advertising or publicity pertaining to distribution of the software        *
   1033  * without specific, written prior permission.  The University of Delaware    *
   1034  * makes no representations about the suitability this software for any       *
   1035  * purpose.  It is provided "as is" without express or implied warranty.      *
   1036  *                                                                            *
   1037  ******************************************************************************/
   1038 
   1039 /*
   1040  * Modification history kern_ntptime.c
   1041  *
   1042  * 24 Sep 94	David L. Mills
   1043  *	Tightened code at exits.
   1044  *
   1045  * 24 Mar 94	David L. Mills
   1046  *	Revised syscall interface to include new variables for PPS
   1047  *	time discipline.
   1048  *
   1049  * 14 Feb 94	David L. Mills
   1050  *	Added code for external clock
   1051  *
   1052  * 28 Nov 93	David L. Mills
   1053  *	Revised frequency scaling to conform with adjusted parameters
   1054  *
   1055  * 17 Sep 93	David L. Mills
   1056  *	Created file
   1057  */
   1058 /*
   1059  * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
   1060  * V4.1.1 and V4.1.3
   1061  *
   1062  * These routines consitute the Network Time Protocol (NTP) interfaces
   1063  * for user and daemon application programs. The ntp_gettime() routine
   1064  * provides the time, maximum error (synch distance) and estimated error
   1065  * (dispersion) to client user application programs. The ntp_adjtime()
   1066  * routine is used by the NTP daemon to adjust the system clock to an
   1067  * externally derived time. The time offset and related variables set by
   1068  * this routine are used by hardclock() to adjust the phase and
   1069  * frequency of the phase-lock loop which controls the system clock.
   1070  */
   1071 
   1072 #include <sys/cdefs.h>
   1073 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.5 2006/06/01 22:38:07 kardel Exp $");
   1074 
   1075 #include "opt_ntp.h"
   1076 #include "opt_compat_netbsd.h"
   1077 
   1078 #include <sys/param.h>
   1079 #include <sys/resourcevar.h>
   1080 #include <sys/systm.h>
   1081 #include <sys/kernel.h>
   1082 #include <sys/proc.h>
   1083 #include <sys/sysctl.h>
   1084 #include <sys/timex.h>
   1085 #ifdef COMPAT_30
   1086 #include <compat/sys/timex.h>
   1087 #endif
   1088 #include <sys/vnode.h>
   1089 #include <sys/kauth.h>
   1090 
   1091 #include <sys/mount.h>
   1092 #include <sys/sa.h>
   1093 #include <sys/syscallargs.h>
   1094 
   1095 #include <machine/cpu.h>
   1096 
   1097 #ifdef NTP
   1098 /*
   1099  * The following variables are used by the hardclock() routine in the
   1100  * kern_clock.c module and are described in that module.
   1101  */
   1102 extern int time_state;		/* clock state */
   1103 extern int time_status;		/* clock status bits */
   1104 extern long time_offset;	/* time adjustment (us) */
   1105 extern long time_freq;		/* frequency offset (scaled ppm) */
   1106 extern long time_maxerror;	/* maximum error (us) */
   1107 extern long time_esterror;	/* estimated error (us) */
   1108 extern long time_constant;	/* pll time constant */
   1109 extern long time_precision;	/* clock precision (us) */
   1110 extern long time_tolerance;	/* frequency tolerance (scaled ppm) */
   1111 extern int time_adjusted;	/* ntp might have changed the system time */
   1112 
   1113 #ifdef PPS_SYNC
   1114 /*
   1115  * The following variables are used only if the PPS signal discipline
   1116  * is configured in the kernel.
   1117  */
   1118 extern int pps_shift;		/* interval duration (s) (shift) */
   1119 extern long pps_freq;		/* pps frequency offset (scaled ppm) */
   1120 extern long pps_jitter;		/* pps jitter (us) */
   1121 extern long pps_stabil;		/* pps stability (scaled ppm) */
   1122 extern long pps_jitcnt;		/* jitter limit exceeded */
   1123 extern long pps_calcnt;		/* calibration intervals */
   1124 extern long pps_errcnt;		/* calibration errors */
   1125 extern long pps_stbcnt;		/* stability limit exceeded */
   1126 #endif /* PPS_SYNC */
   1127 
   1128 /*ARGSUSED*/
   1129 /*
   1130  * ntp_gettime() - NTP user application interface
   1131  */
   1132 void
   1133 ntp_gettime(ntvp)
   1134 	struct ntptimeval *ntvp;
   1135 {
   1136 	struct timeval atv;
   1137 	int s;
   1138 
   1139 	memset(ntvp, 0, sizeof(struct ntptimeval));
   1140 
   1141 	s = splclock();
   1142 #ifdef EXT_CLOCK
   1143 	/*
   1144 	 * The microtime() external clock routine returns a
   1145 	 * status code. If less than zero, we declare an error
   1146 	 * in the clock status word and return the kernel
   1147 	 * (software) time variable. While there are other
   1148 	 * places that call microtime(), this is the only place
   1149 	 * that matters from an application point of view.
   1150 	 */
   1151 	if (microtime(&atv) < 0) {
   1152 		time_status |= STA_CLOCKERR;
   1153 		ntvp->time = time;
   1154 	} else
   1155 		time_status &= ~STA_CLOCKERR;
   1156 #else /* EXT_CLOCK */
   1157 	microtime(&atv);
   1158 #endif /* EXT_CLOCK */
   1159 	ntvp->maxerror = time_maxerror;
   1160 	ntvp->esterror = time_esterror;
   1161 	(void) splx(s);
   1162 	TIMEVAL_TO_TIMESPEC(&atv, &ntvp->time);
   1163 }
   1164 
   1165 int
   1166 ntp_timestatus()
   1167 {
   1168 	/*
   1169 	 * Status word error decode. If any of these conditions
   1170 	 * occur, an error is returned, instead of the status
   1171 	 * word. Most applications will care only about the fact
   1172 	 * the system clock may not be trusted, not about the
   1173 	 * details.
   1174 	 *
   1175 	 * Hardware or software error
   1176 	 */
   1177 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
   1178 
   1179 	/*
   1180 	 * PPS signal lost when either time or frequency
   1181 	 * synchronization requested
   1182 	 */
   1183 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
   1184 	     !(time_status & STA_PPSSIGNAL)) ||
   1185 
   1186 	/*
   1187 	 * PPS jitter exceeded when time synchronization
   1188 	 * requested
   1189 	 */
   1190 	    (time_status & STA_PPSTIME &&
   1191 	     time_status & STA_PPSJITTER) ||
   1192 
   1193 	/*
   1194 	 * PPS wander exceeded or calibration error when
   1195 	 * frequency synchronization requested
   1196 	 */
   1197 	    (time_status & STA_PPSFREQ &&
   1198 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
   1199 		return (TIME_ERROR);
   1200 	else
   1201 		return ((register_t)time_state);
   1202 }
   1203 
   1204 int
   1205 sys___ntp_gettime30(l, v, retval)
   1206 	struct lwp *l;
   1207 	void *v;
   1208 	register_t *retval;
   1209 {
   1210 	struct sys___ntp_gettime30_args /* {
   1211 		syscallarg(struct ntptimeval *) ntvp;
   1212 	} */ *uap = v;
   1213 	struct ntptimeval ntv;
   1214 	int error = 0;
   1215 
   1216 	if (SCARG(uap, ntvp)) {
   1217 		ntp_gettime(&ntv);
   1218 
   1219 		error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
   1220 				sizeof(ntv));
   1221 	}
   1222 	if (!error)
   1223 		*retval = ntp_timestatus();
   1224 
   1225 	return (error);
   1226 }
   1227 
   1228 #ifdef COMPAT_30
   1229 int
   1230 compat_30_sys_ntp_gettime(l, v, retval)
   1231 	struct lwp *l;
   1232 	void *v;
   1233 	register_t *retval;
   1234 {
   1235 	struct compat_30_sys_ntp_gettime_args /* {
   1236 		syscallarg(struct ntptimeval30 *) ontvp;
   1237 	} */ *uap = v;
   1238 	struct ntptimeval ntv;
   1239 	struct ntptimeval30 ontv;
   1240 	int error = 0;
   1241 
   1242 	if (SCARG(uap, ntvp)) {
   1243 		ntp_gettime(&ntv);
   1244 
   1245 		TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
   1246 		ontv.maxerror = ntv.maxerror;
   1247 		ontv.esterror = ntv.esterror;
   1248 
   1249 		error = copyout((caddr_t)&ontv, (caddr_t)SCARG(uap, ntvp),
   1250 				sizeof(ontv));
   1251 	}
   1252 	if (!error)
   1253 		*retval = ntp_timestatus();
   1254 
   1255 	return (error);
   1256 }
   1257 #endif
   1258 
   1259 /* ARGSUSED */
   1260 /*
   1261  * ntp_adjtime() - NTP daemon application interface
   1262  */
   1263 int
   1264 sys_ntp_adjtime(l, v, retval)
   1265 	struct lwp *l;
   1266 	void *v;
   1267 	register_t *retval;
   1268 {
   1269 	struct sys_ntp_adjtime_args /* {
   1270 		syscallarg(struct timex *) tp;
   1271 	} */ *uap = v;
   1272 	struct proc *p = l->l_proc;
   1273 	struct timex ntv;
   1274 	register_t retval1 = TIME_ERROR;
   1275 	int error = 0;
   1276 
   1277 	if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
   1278 			sizeof(ntv))) != 0)
   1279 		return (error);
   1280 
   1281 	if (ntv.modes != 0 && (error = kauth_authorize_generic(p->p_cred,
   1282 				KAUTH_GENERIC_ISSUSER, &p->p_acflag)) != 0)
   1283 		return (error);
   1284 
   1285 	ntp_adjtime1(&ntv, &retval1);
   1286 
   1287 	error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
   1288 
   1289 	if (error == 0) {
   1290 		*retval = retval1;
   1291 	}
   1292 
   1293 	return error;
   1294 }
   1295 
   1296 void
   1297 ntp_adjtime1(ntv, retval)
   1298 	struct timex *ntv;
   1299 	register_t	*retval;
   1300 {
   1301 	int modes;
   1302 	int s;
   1303 
   1304 	/*
   1305 	 * Update selected clock variables. Note that there is no error
   1306 	 * checking here on the assumption the superuser should know
   1307 	 * what it is doing.
   1308 	 */
   1309 	modes = ntv->modes;
   1310 	if (modes != 0)
   1311 		/* We need to save the system time during shutdown */
   1312 		time_adjusted |= 2;
   1313 	s = splclock();
   1314 	if (modes & MOD_FREQUENCY)
   1315 #ifdef PPS_SYNC
   1316 		time_freq = ntv->freq - pps_freq;
   1317 #else /* PPS_SYNC */
   1318 		time_freq = ntv->freq;
   1319 #endif /* PPS_SYNC */
   1320 	if (modes & MOD_MAXERROR)
   1321 		time_maxerror = ntv->maxerror;
   1322 	if (modes & MOD_ESTERROR)
   1323 		time_esterror = ntv->esterror;
   1324 	if (modes & MOD_STATUS) {
   1325 		time_status &= STA_RONLY;
   1326 		time_status |= ntv->status & ~STA_RONLY;
   1327 	}
   1328 	if (modes & MOD_TIMECONST)
   1329 		time_constant = ntv->constant;
   1330 	if (modes & MOD_OFFSET)
   1331 		hardupdate(ntv->offset);
   1332 
   1333 	/*
   1334 	 * Retrieve all clock variables
   1335 	 */
   1336 	if (time_offset < 0)
   1337 		ntv->offset = -(-time_offset >> SHIFT_UPDATE);
   1338 	else
   1339 		ntv->offset = time_offset >> SHIFT_UPDATE;
   1340 #ifdef PPS_SYNC
   1341 	ntv->freq = time_freq + pps_freq;
   1342 #else /* PPS_SYNC */
   1343 	ntv->freq = time_freq;
   1344 #endif /* PPS_SYNC */
   1345 	ntv->maxerror = time_maxerror;
   1346 	ntv->esterror = time_esterror;
   1347 	ntv->status = time_status;
   1348 	ntv->constant = time_constant;
   1349 	ntv->precision = time_precision;
   1350 	ntv->tolerance = time_tolerance;
   1351 #ifdef PPS_SYNC
   1352 	ntv->shift = pps_shift;
   1353 	ntv->ppsfreq = pps_freq;
   1354 	ntv->jitter = pps_jitter >> PPS_AVG;
   1355 	ntv->stabil = pps_stabil;
   1356 	ntv->calcnt = pps_calcnt;
   1357 	ntv->errcnt = pps_errcnt;
   1358 	ntv->jitcnt = pps_jitcnt;
   1359 	ntv->stbcnt = pps_stbcnt;
   1360 #endif /* PPS_SYNC */
   1361 	(void)splx(s);
   1362 
   1363 	/*
   1364 	 * Status word error decode. See comments in
   1365 	 * ntp_gettime() routine.
   1366 	 */
   1367 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
   1368 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
   1369 	     !(time_status & STA_PPSSIGNAL)) ||
   1370 	    (time_status & STA_PPSTIME &&
   1371 	     time_status & STA_PPSJITTER) ||
   1372 	    (time_status & STA_PPSFREQ &&
   1373 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
   1374 		*retval = TIME_ERROR;
   1375 	else
   1376 		*retval = (register_t)time_state;
   1377 }
   1378 
   1379 /*
   1380  * return information about kernel precision timekeeping
   1381  */
   1382 static int
   1383 sysctl_kern_ntptime(SYSCTLFN_ARGS)
   1384 {
   1385 	struct sysctlnode node;
   1386 	struct ntptimeval ntv;
   1387 
   1388 	ntp_gettime(&ntv);
   1389 
   1390 	node = *rnode;
   1391 	node.sysctl_data = &ntv;
   1392 	node.sysctl_size = sizeof(ntv);
   1393 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
   1394 }
   1395 
   1396 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
   1397 {
   1398 
   1399 	sysctl_createv(clog, 0, NULL, NULL,
   1400 		       CTLFLAG_PERMANENT,
   1401 		       CTLTYPE_NODE, "kern", NULL,
   1402 		       NULL, 0, NULL, 0,
   1403 		       CTL_KERN, CTL_EOL);
   1404 
   1405 	sysctl_createv(clog, 0, NULL, NULL,
   1406 		       CTLFLAG_PERMANENT,
   1407 		       CTLTYPE_STRUCT, "ntptime",
   1408 		       SYSCTL_DESCR("Kernel clock values for NTP"),
   1409 		       sysctl_kern_ntptime, 0, NULL,
   1410 		       sizeof(struct ntptimeval),
   1411 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
   1412 }
   1413 #else /* !NTP */
   1414 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
   1415 
   1416 int
   1417 sys___ntp_gettime30(l, v, retval)
   1418 	struct lwp *l;
   1419 	void *v;
   1420 	register_t *retval;
   1421 {
   1422 
   1423 	return(ENOSYS);
   1424 }
   1425 
   1426 #ifdef COMPAT_30
   1427 int
   1428 compat_30_sys_ntp_gettime(l, v, retval)
   1429 	struct lwp *l;
   1430 	void *v;
   1431 	register_t *retval;
   1432 {
   1433 
   1434 	return(ENOSYS);
   1435 }
   1436 #endif
   1437 #endif /* !NTP */
   1438 #endif /* !__HAVE_TIMECOUNTER */
   1439