Home | History | Annotate | Line # | Download | only in kern
kern_ntptime.c revision 1.29.6.6
      1 /*	$NetBSD: kern_ntptime.c,v 1.29.6.6 2006/06/02 00:13:12 kardel Exp $	*/
      2 #include <sys/types.h> 	/* XXX to get __HAVE_TIMECOUNTER, remove
      3 			   after all ports are converted. */
      4 #ifdef __HAVE_TIMECOUNTER
      5 
      6 /*-
      7  ***********************************************************************
      8  *								       *
      9  * Copyright (c) David L. Mills 1993-2001			       *
     10  *								       *
     11  * Permission to use, copy, modify, and distribute this software and   *
     12  * its documentation for any purpose and without fee is hereby	       *
     13  * granted, provided that the above copyright notice appears in all    *
     14  * copies and that both the copyright notice and this permission       *
     15  * notice appear in supporting documentation, and that the name	       *
     16  * University of Delaware not be used in advertising or publicity      *
     17  * pertaining to distribution of the software without specific,	       *
     18  * written prior permission. The University of Delaware makes no       *
     19  * representations about the suitability this software for any	       *
     20  * purpose. It is provided "as is" without express or implied	       *
     21  * warranty.							       *
     22  *								       *
     23  **********************************************************************/
     24 
     25 /*
     26  * Adapted from the original sources for FreeBSD and timecounters by:
     27  * Poul-Henning Kamp <phk (at) FreeBSD.org>.
     28  *
     29  * The 32bit version of the "LP" macros seems a bit past its "sell by"
     30  * date so I have retained only the 64bit version and included it directly
     31  * in this file.
     32  *
     33  * Only minor changes done to interface with the timecounters over in
     34  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
     35  * confusing and/or plain wrong in that context.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
     40 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.6 2006/06/02 00:13:12 kardel Exp $");
     41 
     42 #include "opt_ntp.h"
     43 #include "opt_compat_netbsd.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/systm.h>
     48 #include <sys/kernel.h>
     49 #include <sys/proc.h>
     50 #include <sys/sysctl.h>
     51 #include <sys/timex.h>
     52 #ifdef COMPAT_30
     53 #include <compat/sys/timex.h>
     54 #endif
     55 #include <sys/vnode.h>
     56 #include <sys/kauth.h>
     57 
     58 #include <sys/mount.h>
     59 #include <sys/sa.h>
     60 #include <sys/syscallargs.h>
     61 
     62 #include <machine/cpu.h>
     63 
     64 /*
     65  * Single-precision macros for 64-bit machines
     66  */
     67 typedef int64_t l_fp;
     68 #define L_ADD(v, u)	((v) += (u))
     69 #define L_SUB(v, u)	((v) -= (u))
     70 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
     71 #define L_NEG(v)	((v) = -(v))
     72 #define L_RSHIFT(v, n) \
     73 	do { \
     74 		if ((v) < 0) \
     75 			(v) = -(-(v) >> (n)); \
     76 		else \
     77 			(v) = (v) >> (n); \
     78 	} while (0)
     79 #define L_MPY(v, a)	((v) *= (a))
     80 #define L_CLR(v)	((v) = 0)
     81 #define L_ISNEG(v)	((v) < 0)
     82 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
     83 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
     84 
     85 #ifdef NTP
     86 /*
     87  * Generic NTP kernel interface
     88  *
     89  * These routines constitute the Network Time Protocol (NTP) interfaces
     90  * for user and daemon application programs. The ntp_gettime() routine
     91  * provides the time, maximum error (synch distance) and estimated error
     92  * (dispersion) to client user application programs. The ntp_adjtime()
     93  * routine is used by the NTP daemon to adjust the system clock to an
     94  * externally derived time. The time offset and related variables set by
     95  * this routine are used by other routines in this module to adjust the
     96  * phase and frequency of the clock discipline loop which controls the
     97  * system clock.
     98  *
     99  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
    100  * defined), the time at each tick interrupt is derived directly from
    101  * the kernel time variable. When the kernel time is reckoned in
    102  * microseconds, (NTP_NANO undefined), the time is derived from the
    103  * kernel time variable together with a variable representing the
    104  * leftover nanoseconds at the last tick interrupt. In either case, the
    105  * current nanosecond time is reckoned from these values plus an
    106  * interpolated value derived by the clock routines in another
    107  * architecture-specific module. The interpolation can use either a
    108  * dedicated counter or a processor cycle counter (PCC) implemented in
    109  * some architectures.
    110  *
    111  * Note that all routines must run at priority splclock or higher.
    112  */
    113 /*
    114  * Phase/frequency-lock loop (PLL/FLL) definitions
    115  *
    116  * The nanosecond clock discipline uses two variable types, time
    117  * variables and frequency variables. Both types are represented as 64-
    118  * bit fixed-point quantities with the decimal point between two 32-bit
    119  * halves. On a 32-bit machine, each half is represented as a single
    120  * word and mathematical operations are done using multiple-precision
    121  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
    122  * used.
    123  *
    124  * A time variable is a signed 64-bit fixed-point number in ns and
    125  * fraction. It represents the remaining time offset to be amortized
    126  * over succeeding tick interrupts. The maximum time offset is about
    127  * 0.5 s and the resolution is about 2.3e-10 ns.
    128  *
    129  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    130  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    131  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    132  * |s s s|			 ns				   |
    133  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    134  * |			    fraction				   |
    135  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    136  *
    137  * A frequency variable is a signed 64-bit fixed-point number in ns/s
    138  * and fraction. It represents the ns and fraction to be added to the
    139  * kernel time variable at each second. The maximum frequency offset is
    140  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
    141  *
    142  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    143  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    144  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    145  * |s s s s s s s s s s s s s|	          ns/s			   |
    146  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    147  * |			    fraction				   |
    148  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    149  */
    150 /*
    151  * The following variables establish the state of the PLL/FLL and the
    152  * residual time and frequency offset of the local clock.
    153  */
    154 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
    155 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
    156 
    157 static int time_state = TIME_OK;	/* clock state */
    158 static int time_status = STA_UNSYNC;	/* clock status bits */
    159 static long time_tai;			/* TAI offset (s) */
    160 static long time_monitor;		/* last time offset scaled (ns) */
    161 static long time_constant;		/* poll interval (shift) (s) */
    162 static long time_precision = 1;		/* clock precision (ns) */
    163 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
    164 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
    165 static long time_reftime;		/* time at last adjustment (s) */
    166 static l_fp time_offset;		/* time offset (ns) */
    167 static l_fp time_freq;			/* frequency offset (ns/s) */
    168 #endif /* NTP */
    169 
    170 static l_fp time_adj;			/* tick adjust (ns/s) */
    171 int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
    172 
    173 extern int time_adjusted;	/* ntp might have changed the system time */
    174 
    175 #ifdef NTP
    176 #ifdef PPS_SYNC
    177 /*
    178  * The following variables are used when a pulse-per-second (PPS) signal
    179  * is available and connected via a modem control lead. They establish
    180  * the engineering parameters of the clock discipline loop when
    181  * controlled by the PPS signal.
    182  */
    183 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
    184 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
    185 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
    186 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
    187 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
    188 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
    189 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
    190 
    191 static struct timespec pps_tf[3];	/* phase median filter */
    192 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
    193 static long pps_fcount;			/* frequency accumulator */
    194 static long pps_jitter;			/* nominal jitter (ns) */
    195 static long pps_stabil;			/* nominal stability (scaled ns/s) */
    196 static long pps_lastsec;		/* time at last calibration (s) */
    197 static int pps_valid;			/* signal watchdog counter */
    198 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
    199 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
    200 static int pps_intcnt;			/* wander counter */
    201 
    202 /*
    203  * PPS signal quality monitors
    204  */
    205 static long pps_calcnt;			/* calibration intervals */
    206 static long pps_jitcnt;			/* jitter limit exceeded */
    207 static long pps_stbcnt;			/* stability limit exceeded */
    208 static long pps_errcnt;			/* calibration errors */
    209 #endif /* PPS_SYNC */
    210 /*
    211  * End of phase/frequency-lock loop (PLL/FLL) definitions
    212  */
    213 
    214 static void hardupdate(long offset);
    215 
    216 /*
    217  * ntp_gettime() - NTP user application interface
    218  */
    219 void
    220 ntp_gettime(ntv)
    221 	struct ntptimeval *ntv;
    222 {
    223 	nanotime(&ntv->time);
    224 	ntv->maxerror = time_maxerror;
    225 	ntv->esterror = time_esterror;
    226 	ntv->tai = time_tai;
    227 	ntv->time_state = time_state;
    228 }
    229 
    230 /* ARGSUSED */
    231 /*
    232  * ntp_adjtime() - NTP daemon application interface
    233  */
    234 int
    235 sys_ntp_adjtime(l, v, retval)
    236 	struct lwp *l;
    237 	void *v;
    238 	register_t *retval;
    239 {
    240 	struct sys_ntp_adjtime_args /* {
    241 		syscallarg(struct timex *) tp;
    242 	} */ *uap = v;
    243 	struct proc *p = l->l_proc;
    244 	struct timex ntv;
    245 	int error = 0;
    246 
    247 	if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
    248 			sizeof(ntv))) != 0)
    249 		return (error);
    250 
    251 	if (ntv.modes != 0 && (error = kauth_authorize_generic(p->p_cred,
    252 				KAUTH_GENERIC_ISSUSER, &p->p_acflag)) != 0)
    253 
    254 	ntp_adjtime1(&ntv);
    255 
    256 	error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
    257 	if (!error) {
    258 		*retval = ntp_timestatus();
    259 	}
    260 	return error;
    261 }
    262 
    263 void
    264 ntp_adjtime1(ntv)
    265 	struct timex *ntv;
    266 {
    267 	long freq;
    268 	int modes;
    269 	int s;
    270 
    271 	/*
    272 	 * Update selected clock variables - only the superuser can
    273 	 * change anything. Note that there is no error checking here on
    274 	 * the assumption the superuser should know what it is doing.
    275 	 * Note that either the time constant or TAI offset are loaded
    276 	 * from the ntv.constant member, depending on the mode bits. If
    277 	 * the STA_PLL bit in the status word is cleared, the state and
    278 	 * status words are reset to the initial values at boot.
    279 	 */
    280 	modes = ntv->modes;
    281 	if (modes != 0)
    282 		/* We need to save the system time during shutdown */
    283 		time_adjusted |= 2;
    284 	s = splclock();
    285 	if (modes & MOD_MAXERROR)
    286 		time_maxerror = ntv->maxerror;
    287 	if (modes & MOD_ESTERROR)
    288 		time_esterror = ntv->esterror;
    289 	if (modes & MOD_STATUS) {
    290 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
    291 			time_state = TIME_OK;
    292 			time_status = STA_UNSYNC;
    293 #ifdef PPS_SYNC
    294 			pps_shift = PPS_FAVG;
    295 #endif /* PPS_SYNC */
    296 		}
    297 		time_status &= STA_RONLY;
    298 		time_status |= ntv->status & ~STA_RONLY;
    299 	}
    300 	if (modes & MOD_TIMECONST) {
    301 		if (ntv->constant < 0)
    302 			time_constant = 0;
    303 		else if (ntv->constant > MAXTC)
    304 			time_constant = MAXTC;
    305 		else
    306 			time_constant = ntv->constant;
    307 	}
    308 	if (modes & MOD_TAI) {
    309 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
    310 			time_tai = ntv->constant;
    311 	}
    312 #ifdef PPS_SYNC
    313 	if (modes & MOD_PPSMAX) {
    314 		if (ntv->shift < PPS_FAVG)
    315 			pps_shiftmax = PPS_FAVG;
    316 		else if (ntv->shift > PPS_FAVGMAX)
    317 			pps_shiftmax = PPS_FAVGMAX;
    318 		else
    319 			pps_shiftmax = ntv->shift;
    320 	}
    321 #endif /* PPS_SYNC */
    322 	if (modes & MOD_NANO)
    323 		time_status |= STA_NANO;
    324 	if (modes & MOD_MICRO)
    325 		time_status &= ~STA_NANO;
    326 	if (modes & MOD_CLKB)
    327 		time_status |= STA_CLK;
    328 	if (modes & MOD_CLKA)
    329 		time_status &= ~STA_CLK;
    330 	if (modes & MOD_FREQUENCY) {
    331 		freq = (ntv->freq * 1000LL) >> 16;
    332 		if (freq > MAXFREQ)
    333 			L_LINT(time_freq, MAXFREQ);
    334 		else if (freq < -MAXFREQ)
    335 			L_LINT(time_freq, -MAXFREQ);
    336 		else {
    337 			/*
    338 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
    339 			 * time_freq is [ns/s * 2^32]
    340 			 */
    341 			time_freq = ntv->freq * 1000LL * 65536LL;
    342 		}
    343 #ifdef PPS_SYNC
    344 		pps_freq = time_freq;
    345 #endif /* PPS_SYNC */
    346 	}
    347 	if (modes & MOD_OFFSET) {
    348 		if (time_status & STA_NANO)
    349 			hardupdate(ntv->offset);
    350 		else
    351 			hardupdate(ntv->offset * 1000);
    352 	}
    353 
    354 	/*
    355 	 * Retrieve all clock variables. Note that the TAI offset is
    356 	 * returned only by ntp_gettime();
    357 	 */
    358 	if (time_status & STA_NANO)
    359 		ntv->offset = L_GINT(time_offset);
    360 	else
    361 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
    362 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
    363 	ntv->maxerror = time_maxerror;
    364 	ntv->esterror = time_esterror;
    365 	ntv->status = time_status;
    366 	ntv->constant = time_constant;
    367 	if (time_status & STA_NANO)
    368 		ntv->precision = time_precision;
    369 	else
    370 		ntv->precision = time_precision / 1000;
    371 	ntv->tolerance = MAXFREQ * SCALE_PPM;
    372 #ifdef PPS_SYNC
    373 	ntv->shift = pps_shift;
    374 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
    375 	if (time_status & STA_NANO)
    376 		ntv->jitter = pps_jitter;
    377 	else
    378 		ntv->jitter = pps_jitter / 1000;
    379 	ntv->stabil = pps_stabil;
    380 	ntv->calcnt = pps_calcnt;
    381 	ntv->errcnt = pps_errcnt;
    382 	ntv->jitcnt = pps_jitcnt;
    383 	ntv->stbcnt = pps_stbcnt;
    384 #endif /* PPS_SYNC */
    385 	splx(s);
    386 }
    387 #endif /* NTP */
    388 
    389 /*
    390  * second_overflow() - called after ntp_tick_adjust()
    391  *
    392  * This routine is ordinarily called immediately following the above
    393  * routine ntp_tick_adjust(). While these two routines are normally
    394  * combined, they are separated here only for the purposes of
    395  * simulation.
    396  */
    397 void
    398 ntp_update_second(int64_t *adjustment, time_t *newsec)
    399 {
    400 	int tickrate;
    401 	l_fp ftemp;		/* 32/64-bit temporary */
    402 
    403 #ifdef NTP
    404 
    405 	/*
    406 	 * On rollover of the second both the nanosecond and microsecond
    407 	 * clocks are updated and the state machine cranked as
    408 	 * necessary. The phase adjustment to be used for the next
    409 	 * second is calculated and the maximum error is increased by
    410 	 * the tolerance.
    411 	 */
    412 	time_maxerror += MAXFREQ / 1000;
    413 
    414 	/*
    415 	 * Leap second processing. If in leap-insert state at
    416 	 * the end of the day, the system clock is set back one
    417 	 * second; if in leap-delete state, the system clock is
    418 	 * set ahead one second. The nano_time() routine or
    419 	 * external clock driver will insure that reported time
    420 	 * is always monotonic.
    421 	 */
    422 	switch (time_state) {
    423 
    424 		/*
    425 		 * No warning.
    426 		 */
    427 		case TIME_OK:
    428 		if (time_status & STA_INS)
    429 			time_state = TIME_INS;
    430 		else if (time_status & STA_DEL)
    431 			time_state = TIME_DEL;
    432 		break;
    433 
    434 		/*
    435 		 * Insert second 23:59:60 following second
    436 		 * 23:59:59.
    437 		 */
    438 		case TIME_INS:
    439 		if (!(time_status & STA_INS))
    440 			time_state = TIME_OK;
    441 		else if ((*newsec) % 86400 == 0) {
    442 			(*newsec)--;
    443 			time_state = TIME_OOP;
    444 			time_tai++;
    445 		}
    446 		break;
    447 
    448 		/*
    449 		 * Delete second 23:59:59.
    450 		 */
    451 		case TIME_DEL:
    452 		if (!(time_status & STA_DEL))
    453 			time_state = TIME_OK;
    454 		else if (((*newsec) + 1) % 86400 == 0) {
    455 			(*newsec)++;
    456 			time_tai--;
    457 			time_state = TIME_WAIT;
    458 		}
    459 		break;
    460 
    461 		/*
    462 		 * Insert second in progress.
    463 		 */
    464 		case TIME_OOP:
    465 			time_state = TIME_WAIT;
    466 		break;
    467 
    468 		/*
    469 		 * Wait for status bits to clear.
    470 		 */
    471 		case TIME_WAIT:
    472 		if (!(time_status & (STA_INS | STA_DEL)))
    473 			time_state = TIME_OK;
    474 	}
    475 
    476 	/*
    477 	 * Compute the total time adjustment for the next second
    478 	 * in ns. The offset is reduced by a factor depending on
    479 	 * whether the PPS signal is operating. Note that the
    480 	 * value is in effect scaled by the clock frequency,
    481 	 * since the adjustment is added at each tick interrupt.
    482 	 */
    483 	ftemp = time_offset;
    484 #ifdef PPS_SYNC
    485 	/* XXX even if PPS signal dies we should finish adjustment ? */
    486 	if (time_status & STA_PPSTIME && time_status &
    487 	    STA_PPSSIGNAL)
    488 		L_RSHIFT(ftemp, pps_shift);
    489 	else
    490 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    491 #else
    492 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    493 #endif /* PPS_SYNC */
    494 	time_adj = ftemp;
    495 	L_SUB(time_offset, ftemp);
    496 	L_ADD(time_adj, time_freq);
    497 
    498 #ifdef PPS_SYNC
    499 	if (pps_valid > 0)
    500 		pps_valid--;
    501 	else
    502 		time_status &= ~STA_PPSSIGNAL;
    503 #endif /* PPS_SYNC */
    504 
    505 #endif /* NTP */
    506 
    507 	/*
    508 	 * Apply any correction from adjtime(2).  If more than one second
    509 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
    510 	 * until the last second is slewed the final < 500 usecs.
    511 	 */
    512 	if (time_adjtime != 0) {
    513 		if (time_adjtime > 1000000)
    514 			tickrate = 5000;
    515 		else if (time_adjtime < -1000000)
    516 			tickrate = -5000;
    517 		else if (time_adjtime > 500)
    518 			tickrate = 500;
    519 		else if (time_adjtime < -500)
    520 			tickrate = -500;
    521 		else
    522 			tickrate = time_adjtime;
    523 		time_adjtime -= tickrate;
    524 		L_LINT(ftemp, tickrate * 1000);
    525 		L_ADD(time_adj, ftemp);
    526 	}
    527 	*adjustment = time_adj;
    528 }
    529 
    530 /*
    531  * ntp_init() - initialize variables and structures
    532  *
    533  * This routine must be called after the kernel variables hz and tick
    534  * are set or changed and before the next tick interrupt. In this
    535  * particular implementation, these values are assumed set elsewhere in
    536  * the kernel. The design allows the clock frequency and tick interval
    537  * to be changed while the system is running. So, this routine should
    538  * probably be integrated with the code that does that.
    539  */
    540 void
    541 ntp_init(void)
    542 {
    543 
    544 	/*
    545 	 * The following variables are initialized only at startup. Only
    546 	 * those structures not cleared by the compiler need to be
    547 	 * initialized, and these only in the simulator. In the actual
    548 	 * kernel, any nonzero values here will quickly evaporate.
    549 	 */
    550 	L_CLR(time_adj);
    551 #ifdef NTP
    552 	L_CLR(time_offset);
    553 	L_CLR(time_freq);
    554 #ifdef PPS_SYNC
    555 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
    556 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
    557 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
    558 	pps_fcount = 0;
    559 	L_CLR(pps_freq);
    560 #endif /* PPS_SYNC */
    561 #endif
    562 }
    563 
    564 #ifdef NTP
    565 /*
    566  * hardupdate() - local clock update
    567  *
    568  * This routine is called by ntp_adjtime() to update the local clock
    569  * phase and frequency. The implementation is of an adaptive-parameter,
    570  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    571  * time and frequency offset estimates for each call. If the kernel PPS
    572  * discipline code is configured (PPS_SYNC), the PPS signal itself
    573  * determines the new time offset, instead of the calling argument.
    574  * Presumably, calls to ntp_adjtime() occur only when the caller
    575  * believes the local clock is valid within some bound (+-128 ms with
    576  * NTP). If the caller's time is far different than the PPS time, an
    577  * argument will ensue, and it's not clear who will lose.
    578  *
    579  * For uncompensated quartz crystal oscillators and nominal update
    580  * intervals less than 256 s, operation should be in phase-lock mode,
    581  * where the loop is disciplined to phase. For update intervals greater
    582  * than 1024 s, operation should be in frequency-lock mode, where the
    583  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
    584  * is selected by the STA_MODE status bit.
    585  *
    586  * Note: splclock() is in effect.
    587  */
    588 void
    589 hardupdate(long offset)
    590 {
    591 	long mtemp;
    592 	l_fp ftemp;
    593 
    594 	/*
    595 	 * Select how the phase is to be controlled and from which
    596 	 * source. If the PPS signal is present and enabled to
    597 	 * discipline the time, the PPS offset is used; otherwise, the
    598 	 * argument offset is used.
    599 	 */
    600 	if (!(time_status & STA_PLL))
    601 		return;
    602 	if (!(time_status & STA_PPSTIME && time_status &
    603 	    STA_PPSSIGNAL)) {
    604 		if (offset > MAXPHASE)
    605 			time_monitor = MAXPHASE;
    606 		else if (offset < -MAXPHASE)
    607 			time_monitor = -MAXPHASE;
    608 		else
    609 			time_monitor = offset;
    610 		L_LINT(time_offset, time_monitor);
    611 	}
    612 
    613 	/*
    614 	 * Select how the frequency is to be controlled and in which
    615 	 * mode (PLL or FLL). If the PPS signal is present and enabled
    616 	 * to discipline the frequency, the PPS frequency is used;
    617 	 * otherwise, the argument offset is used to compute it.
    618 	 */
    619 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
    620 		time_reftime = time_second;
    621 		return;
    622 	}
    623 	if (time_status & STA_FREQHOLD || time_reftime == 0)
    624 		time_reftime = time_second;
    625 	mtemp = time_second - time_reftime;
    626 	L_LINT(ftemp, time_monitor);
    627 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
    628 	L_MPY(ftemp, mtemp);
    629 	L_ADD(time_freq, ftemp);
    630 	time_status &= ~STA_MODE;
    631 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
    632 	    MAXSEC)) {
    633 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
    634 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
    635 		L_ADD(time_freq, ftemp);
    636 		time_status |= STA_MODE;
    637 	}
    638 	time_reftime = time_second;
    639 	if (L_GINT(time_freq) > MAXFREQ)
    640 		L_LINT(time_freq, MAXFREQ);
    641 	else if (L_GINT(time_freq) < -MAXFREQ)
    642 		L_LINT(time_freq, -MAXFREQ);
    643 }
    644 
    645 #ifdef PPS_SYNC
    646 /*
    647  * hardpps() - discipline CPU clock oscillator to external PPS signal
    648  *
    649  * This routine is called at each PPS interrupt in order to discipline
    650  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
    651  * and leaves it in a handy spot for the hardclock() routine. It
    652  * integrates successive PPS phase differences and calculates the
    653  * frequency offset. This is used in hardclock() to discipline the CPU
    654  * clock oscillator so that intrinsic frequency error is cancelled out.
    655  * The code requires the caller to capture the time and hardware counter
    656  * value at the on-time PPS signal transition.
    657  *
    658  * Note that, on some Unix systems, this routine runs at an interrupt
    659  * priority level higher than the timer interrupt routine hardclock().
    660  * Therefore, the variables used are distinct from the hardclock()
    661  * variables, except for certain exceptions: The PPS frequency pps_freq
    662  * and phase pps_offset variables are determined by this routine and
    663  * updated atomically. The time_tolerance variable can be considered a
    664  * constant, since it is infrequently changed, and then only when the
    665  * PPS signal is disabled. The watchdog counter pps_valid is updated
    666  * once per second by hardclock() and is atomically cleared in this
    667  * routine.
    668  */
    669 void
    670 hardpps(struct timespec *tsp,		/* time at PPS */
    671 	long nsec			/* hardware counter at PPS */)
    672 {
    673 	long u_sec, u_nsec, v_nsec; /* temps */
    674 	l_fp ftemp;
    675 
    676 	/*
    677 	 * The signal is first processed by a range gate and frequency
    678 	 * discriminator. The range gate rejects noise spikes outside
    679 	 * the range +-500 us. The frequency discriminator rejects input
    680 	 * signals with apparent frequency outside the range 1 +-500
    681 	 * PPM. If two hits occur in the same second, we ignore the
    682 	 * later hit; if not and a hit occurs outside the range gate,
    683 	 * keep the later hit for later comparison, but do not process
    684 	 * it.
    685 	 */
    686 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
    687 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
    688 	pps_valid = PPS_VALID;
    689 	u_sec = tsp->tv_sec;
    690 	u_nsec = tsp->tv_nsec;
    691 	if (u_nsec >= (NANOSECOND >> 1)) {
    692 		u_nsec -= NANOSECOND;
    693 		u_sec++;
    694 	}
    695 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
    696 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
    697 	    MAXFREQ)
    698 		return;
    699 	pps_tf[2] = pps_tf[1];
    700 	pps_tf[1] = pps_tf[0];
    701 	pps_tf[0].tv_sec = u_sec;
    702 	pps_tf[0].tv_nsec = u_nsec;
    703 
    704 	/*
    705 	 * Compute the difference between the current and previous
    706 	 * counter values. If the difference exceeds 0.5 s, assume it
    707 	 * has wrapped around, so correct 1.0 s. If the result exceeds
    708 	 * the tick interval, the sample point has crossed a tick
    709 	 * boundary during the last second, so correct the tick. Very
    710 	 * intricate.
    711 	 */
    712 	u_nsec = nsec;
    713 	if (u_nsec > (NANOSECOND >> 1))
    714 		u_nsec -= NANOSECOND;
    715 	else if (u_nsec < -(NANOSECOND >> 1))
    716 		u_nsec += NANOSECOND;
    717 	pps_fcount += u_nsec;
    718 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
    719 		return;
    720 	time_status &= ~STA_PPSJITTER;
    721 
    722 	/*
    723 	 * A three-stage median filter is used to help denoise the PPS
    724 	 * time. The median sample becomes the time offset estimate; the
    725 	 * difference between the other two samples becomes the time
    726 	 * dispersion (jitter) estimate.
    727 	 */
    728 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
    729 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
    730 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
    731 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
    732 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
    733 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
    734 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
    735 		} else {
    736 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
    737 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
    738 		}
    739 	} else {
    740 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
    741 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
    742 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
    743 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
    744 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
    745 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
    746 		} else {
    747 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
    748 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
    749 		}
    750 	}
    751 
    752 	/*
    753 	 * Nominal jitter is due to PPS signal noise and interrupt
    754 	 * latency. If it exceeds the popcorn threshold, the sample is
    755 	 * discarded. otherwise, if so enabled, the time offset is
    756 	 * updated. We can tolerate a modest loss of data here without
    757 	 * much degrading time accuracy.
    758 	 */
    759 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
    760 		time_status |= STA_PPSJITTER;
    761 		pps_jitcnt++;
    762 	} else if (time_status & STA_PPSTIME) {
    763 		time_monitor = -v_nsec;
    764 		L_LINT(time_offset, time_monitor);
    765 	}
    766 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
    767 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
    768 	if (u_sec < (1 << pps_shift))
    769 		return;
    770 
    771 	/*
    772 	 * At the end of the calibration interval the difference between
    773 	 * the first and last counter values becomes the scaled
    774 	 * frequency. It will later be divided by the length of the
    775 	 * interval to determine the frequency update. If the frequency
    776 	 * exceeds a sanity threshold, or if the actual calibration
    777 	 * interval is not equal to the expected length, the data are
    778 	 * discarded. We can tolerate a modest loss of data here without
    779 	 * much degrading frequency accuracy.
    780 	 */
    781 	pps_calcnt++;
    782 	v_nsec = -pps_fcount;
    783 	pps_lastsec = pps_tf[0].tv_sec;
    784 	pps_fcount = 0;
    785 	u_nsec = MAXFREQ << pps_shift;
    786 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
    787 	    pps_shift)) {
    788 		time_status |= STA_PPSERROR;
    789 		pps_errcnt++;
    790 		return;
    791 	}
    792 
    793 	/*
    794 	 * Here the raw frequency offset and wander (stability) is
    795 	 * calculated. If the wander is less than the wander threshold
    796 	 * for four consecutive averaging intervals, the interval is
    797 	 * doubled; if it is greater than the threshold for four
    798 	 * consecutive intervals, the interval is halved. The scaled
    799 	 * frequency offset is converted to frequency offset. The
    800 	 * stability metric is calculated as the average of recent
    801 	 * frequency changes, but is used only for performance
    802 	 * monitoring.
    803 	 */
    804 	L_LINT(ftemp, v_nsec);
    805 	L_RSHIFT(ftemp, pps_shift);
    806 	L_SUB(ftemp, pps_freq);
    807 	u_nsec = L_GINT(ftemp);
    808 	if (u_nsec > PPS_MAXWANDER) {
    809 		L_LINT(ftemp, PPS_MAXWANDER);
    810 		pps_intcnt--;
    811 		time_status |= STA_PPSWANDER;
    812 		pps_stbcnt++;
    813 	} else if (u_nsec < -PPS_MAXWANDER) {
    814 		L_LINT(ftemp, -PPS_MAXWANDER);
    815 		pps_intcnt--;
    816 		time_status |= STA_PPSWANDER;
    817 		pps_stbcnt++;
    818 	} else {
    819 		pps_intcnt++;
    820 	}
    821 	if (pps_intcnt >= 4) {
    822 		pps_intcnt = 4;
    823 		if (pps_shift < pps_shiftmax) {
    824 			pps_shift++;
    825 			pps_intcnt = 0;
    826 		}
    827 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
    828 		pps_intcnt = -4;
    829 		if (pps_shift > PPS_FAVG) {
    830 			pps_shift--;
    831 			pps_intcnt = 0;
    832 		}
    833 	}
    834 	if (u_nsec < 0)
    835 		u_nsec = -u_nsec;
    836 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
    837 
    838 	/*
    839 	 * The PPS frequency is recalculated and clamped to the maximum
    840 	 * MAXFREQ. If enabled, the system clock frequency is updated as
    841 	 * well.
    842 	 */
    843 	L_ADD(pps_freq, ftemp);
    844 	u_nsec = L_GINT(pps_freq);
    845 	if (u_nsec > MAXFREQ)
    846 		L_LINT(pps_freq, MAXFREQ);
    847 	else if (u_nsec < -MAXFREQ)
    848 		L_LINT(pps_freq, -MAXFREQ);
    849 	if (time_status & STA_PPSFREQ)
    850 		time_freq = pps_freq;
    851 }
    852 #endif /* PPS_SYNC */
    853 #endif /* NTP */
    854 #else /* !__HAVE_TIMECOUNTER */
    855 /******************************************************************************
    856  *                                                                            *
    857  * Copyright (c) David L. Mills 1993, 1994                                    *
    858  *                                                                            *
    859  * Permission to use, copy, modify, and distribute this software and its      *
    860  * documentation for any purpose and without fee is hereby granted, provided  *
    861  * that the above copyright notice appears in all copies and that both the    *
    862  * copyright notice and this permission notice appear in supporting           *
    863  * documentation, and that the name University of Delaware not be used in     *
    864  * advertising or publicity pertaining to distribution of the software        *
    865  * without specific, written prior permission.  The University of Delaware    *
    866  * makes no representations about the suitability this software for any       *
    867  * purpose.  It is provided "as is" without express or implied warranty.      *
    868  *                                                                            *
    869  ******************************************************************************/
    870 
    871 /*
    872  * Modification history kern_ntptime.c
    873  *
    874  * 24 Sep 94	David L. Mills
    875  *	Tightened code at exits.
    876  *
    877  * 24 Mar 94	David L. Mills
    878  *	Revised syscall interface to include new variables for PPS
    879  *	time discipline.
    880  *
    881  * 14 Feb 94	David L. Mills
    882  *	Added code for external clock
    883  *
    884  * 28 Nov 93	David L. Mills
    885  *	Revised frequency scaling to conform with adjusted parameters
    886  *
    887  * 17 Sep 93	David L. Mills
    888  *	Created file
    889  */
    890 /*
    891  * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
    892  * V4.1.1 and V4.1.3
    893  *
    894  * These routines consitute the Network Time Protocol (NTP) interfaces
    895  * for user and daemon application programs. The ntp_gettime() routine
    896  * provides the time, maximum error (synch distance) and estimated error
    897  * (dispersion) to client user application programs. The ntp_adjtime()
    898  * routine is used by the NTP daemon to adjust the system clock to an
    899  * externally derived time. The time offset and related variables set by
    900  * this routine are used by hardclock() to adjust the phase and
    901  * frequency of the phase-lock loop which controls the system clock.
    902  */
    903 
    904 #include <sys/cdefs.h>
    905 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.6 2006/06/02 00:13:12 kardel Exp $");
    906 
    907 #include "opt_ntp.h"
    908 #include "opt_compat_netbsd.h"
    909 
    910 #include <sys/param.h>
    911 #include <sys/resourcevar.h>
    912 #include <sys/systm.h>
    913 #include <sys/kernel.h>
    914 #include <sys/proc.h>
    915 #include <sys/sysctl.h>
    916 #include <sys/timex.h>
    917 #ifdef COMPAT_30
    918 #include <compat/sys/timex.h>
    919 #endif
    920 #include <sys/vnode.h>
    921 #include <sys/kauth.h>
    922 
    923 #include <sys/mount.h>
    924 #include <sys/sa.h>
    925 #include <sys/syscallargs.h>
    926 
    927 #include <machine/cpu.h>
    928 
    929 #ifdef NTP
    930 /*
    931  * The following variables are used by the hardclock() routine in the
    932  * kern_clock.c module and are described in that module.
    933  */
    934 extern int time_state;		/* clock state */
    935 extern int time_status;		/* clock status bits */
    936 extern long time_offset;	/* time adjustment (us) */
    937 extern long time_freq;		/* frequency offset (scaled ppm) */
    938 extern long time_maxerror;	/* maximum error (us) */
    939 extern long time_esterror;	/* estimated error (us) */
    940 extern long time_constant;	/* pll time constant */
    941 extern long time_precision;	/* clock precision (us) */
    942 extern long time_tolerance;	/* frequency tolerance (scaled ppm) */
    943 extern int time_adjusted;	/* ntp might have changed the system time */
    944 
    945 #ifdef PPS_SYNC
    946 /*
    947  * The following variables are used only if the PPS signal discipline
    948  * is configured in the kernel.
    949  */
    950 extern int pps_shift;		/* interval duration (s) (shift) */
    951 extern long pps_freq;		/* pps frequency offset (scaled ppm) */
    952 extern long pps_jitter;		/* pps jitter (us) */
    953 extern long pps_stabil;		/* pps stability (scaled ppm) */
    954 extern long pps_jitcnt;		/* jitter limit exceeded */
    955 extern long pps_calcnt;		/* calibration intervals */
    956 extern long pps_errcnt;		/* calibration errors */
    957 extern long pps_stbcnt;		/* stability limit exceeded */
    958 #endif /* PPS_SYNC */
    959 
    960 /*ARGSUSED*/
    961 /*
    962  * ntp_gettime() - NTP user application interface
    963  */
    964 void
    965 ntp_gettime(ntvp)
    966 	struct ntptimeval *ntvp;
    967 {
    968 	struct timeval atv;
    969 	int s;
    970 
    971 	memset(ntvp, 0, sizeof(struct ntptimeval));
    972 
    973 	s = splclock();
    974 #ifdef EXT_CLOCK
    975 	/*
    976 	 * The microtime() external clock routine returns a
    977 	 * status code. If less than zero, we declare an error
    978 	 * in the clock status word and return the kernel
    979 	 * (software) time variable. While there are other
    980 	 * places that call microtime(), this is the only place
    981 	 * that matters from an application point of view.
    982 	 */
    983 	if (microtime(&atv) < 0) {
    984 		time_status |= STA_CLOCKERR;
    985 		ntvp->time = time;
    986 	} else
    987 		time_status &= ~STA_CLOCKERR;
    988 #else /* EXT_CLOCK */
    989 	microtime(&atv);
    990 #endif /* EXT_CLOCK */
    991 	ntvp->maxerror = time_maxerror;
    992 	ntvp->esterror = time_esterror;
    993 	(void) splx(s);
    994 	TIMEVAL_TO_TIMESPEC(&atv, &ntvp->time);
    995 }
    996 
    997 
    998 /* ARGSUSED */
    999 /*
   1000  * ntp_adjtime() - NTP daemon application interface
   1001  */
   1002 int
   1003 sys_ntp_adjtime(l, v, retval)
   1004 	struct lwp *l;
   1005 	void *v;
   1006 	register_t *retval;
   1007 {
   1008 	struct sys_ntp_adjtime_args /* {
   1009 		syscallarg(struct timex *) tp;
   1010 	} */ *uap = v;
   1011 	struct proc *p = l->l_proc;
   1012 	struct timex ntv;
   1013 	int error = 0;
   1014 
   1015 	if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
   1016 			sizeof(ntv))) != 0)
   1017 		return (error);
   1018 
   1019 	if (ntv.modes != 0 && (error = kauth_authorize_generic(p->p_cred,
   1020 				KAUTH_GENERIC_ISSUSER, &p->p_acflag)) != 0)
   1021 
   1022 	ntp_adjtime1(&ntv);
   1023 
   1024 	error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
   1025 
   1026 	if (error == 0) {
   1027 		*retval = ntp_timestatus();
   1028 	}
   1029 
   1030 	return error;
   1031 }
   1032 
   1033 void
   1034 ntp_adjtime1(ntv)
   1035 	struct timex *ntv;
   1036 {
   1037 	int modes;
   1038 	int s;
   1039 
   1040 	/*
   1041 	 * Update selected clock variables. Note that there is no error
   1042 	 * checking here on the assumption the superuser should know
   1043 	 * what it is doing.
   1044 	 */
   1045 	modes = ntv->modes;
   1046 	if (modes != 0)
   1047 		/* We need to save the system time during shutdown */
   1048 		time_adjusted |= 2;
   1049 	s = splclock();
   1050 	if (modes & MOD_FREQUENCY)
   1051 #ifdef PPS_SYNC
   1052 		time_freq = ntv->freq - pps_freq;
   1053 #else /* PPS_SYNC */
   1054 		time_freq = ntv->freq;
   1055 #endif /* PPS_SYNC */
   1056 	if (modes & MOD_MAXERROR)
   1057 		time_maxerror = ntv->maxerror;
   1058 	if (modes & MOD_ESTERROR)
   1059 		time_esterror = ntv->esterror;
   1060 	if (modes & MOD_STATUS) {
   1061 		time_status &= STA_RONLY;
   1062 		time_status |= ntv->status & ~STA_RONLY;
   1063 	}
   1064 	if (modes & MOD_TIMECONST)
   1065 		time_constant = ntv->constant;
   1066 	if (modes & MOD_OFFSET)
   1067 		hardupdate(ntv->offset);
   1068 
   1069 	/*
   1070 	 * Retrieve all clock variables
   1071 	 */
   1072 	if (time_offset < 0)
   1073 		ntv->offset = -(-time_offset >> SHIFT_UPDATE);
   1074 	else
   1075 		ntv->offset = time_offset >> SHIFT_UPDATE;
   1076 #ifdef PPS_SYNC
   1077 	ntv->freq = time_freq + pps_freq;
   1078 #else /* PPS_SYNC */
   1079 	ntv->freq = time_freq;
   1080 #endif /* PPS_SYNC */
   1081 	ntv->maxerror = time_maxerror;
   1082 	ntv->esterror = time_esterror;
   1083 	ntv->status = time_status;
   1084 	ntv->constant = time_constant;
   1085 	ntv->precision = time_precision;
   1086 	ntv->tolerance = time_tolerance;
   1087 #ifdef PPS_SYNC
   1088 	ntv->shift = pps_shift;
   1089 	ntv->ppsfreq = pps_freq;
   1090 	ntv->jitter = pps_jitter >> PPS_AVG;
   1091 	ntv->stabil = pps_stabil;
   1092 	ntv->calcnt = pps_calcnt;
   1093 	ntv->errcnt = pps_errcnt;
   1094 	ntv->jitcnt = pps_jitcnt;
   1095 	ntv->stbcnt = pps_stbcnt;
   1096 #endif /* PPS_SYNC */
   1097 	(void)splx(s);
   1098 }
   1099 #endif /* NTP */
   1100 #endif /* !__HAVE_TIMECOUNTER */
   1101 
   1102 #ifdef NTP
   1103 register_t
   1104 ntp_timestatus()
   1105 {
   1106 	/*
   1107 	 * Status word error decode. If any of these conditions
   1108 	 * occur, an error is returned, instead of the status
   1109 	 * word. Most applications will care only about the fact
   1110 	 * the system clock may not be trusted, not about the
   1111 	 * details.
   1112 	 *
   1113 	 * Hardware or software error
   1114 	 */
   1115 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
   1116 
   1117 	/*
   1118 	 * PPS signal lost when either time or frequency
   1119 	 * synchronization requested
   1120 	 */
   1121 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
   1122 	     !(time_status & STA_PPSSIGNAL)) ||
   1123 
   1124 	/*
   1125 	 * PPS jitter exceeded when time synchronization
   1126 	 * requested
   1127 	 */
   1128 	    (time_status & STA_PPSTIME &&
   1129 	     time_status & STA_PPSJITTER) ||
   1130 
   1131 	/*
   1132 	 * PPS wander exceeded or calibration error when
   1133 	 * frequency synchronization requested
   1134 	 */
   1135 	    (time_status & STA_PPSFREQ &&
   1136 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
   1137 		return (TIME_ERROR);
   1138 	else
   1139 		return ((register_t)time_state);
   1140 }
   1141 
   1142 /*ARGSUSED*/
   1143 /*
   1144  * ntp_gettime() - NTP user application interface
   1145  */
   1146 int
   1147 sys___ntp_gettime30(l, v, retval)
   1148 	struct lwp *l;
   1149 	void *v;
   1150 	register_t *retval;
   1151 {
   1152 	struct sys___ntp_gettime30_args /* {
   1153 		syscallarg(struct ntptimeval *) ntvp;
   1154 	} */ *uap = v;
   1155 	struct ntptimeval ntv;
   1156 	int error = 0;
   1157 
   1158 	if (SCARG(uap, ntvp)) {
   1159 		ntp_gettime(&ntv);
   1160 
   1161 		error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
   1162 				sizeof(ntv));
   1163 	}
   1164 	if (!error) {
   1165 		*retval = ntp_timestatus();
   1166 	}
   1167 	return(error);
   1168 }
   1169 
   1170 #ifdef COMPAT_30
   1171 int
   1172 compat_30_sys_ntp_gettime(l, v, retval)
   1173 	struct lwp *l;
   1174 	void *v;
   1175 	register_t *retval;
   1176 {
   1177 	struct compat_30_sys_ntp_gettime_args /* {
   1178 		syscallarg(struct ntptimeval30 *) ontvp;
   1179 	} */ *uap = v;
   1180 	struct ntptimeval ntv;
   1181 	struct ntptimeval30 ontv;
   1182 	int error = 0;
   1183 
   1184 	if (SCARG(uap, ntvp)) {
   1185 		ntp_gettime(&ntv);
   1186 		TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
   1187 		ontv.maxerror = ntv.maxerror;
   1188 		ontv.esterror = ntv.esterror;
   1189 
   1190 		error = copyout((caddr_t)&ontv, (caddr_t)SCARG(uap, ntvp),
   1191 				sizeof(ontv));
   1192  	}
   1193 	if (!error)
   1194 		*retval = ntp_timestatus();
   1195 
   1196 	return (error);
   1197 }
   1198 #endif
   1199 
   1200 /*
   1201  * return information about kernel precision timekeeping
   1202  */
   1203 static int
   1204 sysctl_kern_ntptime(SYSCTLFN_ARGS)
   1205 {
   1206 	struct sysctlnode node;
   1207 	struct ntptimeval ntv;
   1208 
   1209 	ntp_gettime(&ntv);
   1210 
   1211 	node = *rnode;
   1212 	node.sysctl_data = &ntv;
   1213 	node.sysctl_size = sizeof(ntv);
   1214 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
   1215 }
   1216 
   1217 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
   1218 {
   1219 
   1220 	sysctl_createv(clog, 0, NULL, NULL,
   1221 		       CTLFLAG_PERMANENT,
   1222 		       CTLTYPE_NODE, "kern", NULL,
   1223 		       NULL, 0, NULL, 0,
   1224 		       CTL_KERN, CTL_EOL);
   1225 
   1226 	sysctl_createv(clog, 0, NULL, NULL,
   1227 		       CTLFLAG_PERMANENT,
   1228 		       CTLTYPE_STRUCT, "ntptime",
   1229 		       SYSCTL_DESCR("Kernel clock values for NTP"),
   1230 		       sysctl_kern_ntptime, 0, NULL,
   1231 		       sizeof(struct ntptimeval),
   1232 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
   1233 }
   1234 #else /* !NTP */
   1235 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
   1236 
   1237 int
   1238 sys___ntp_gettime30(l, v, retval)
   1239 	struct lwp *l;
   1240 	void *v;
   1241 	register_t *retval;
   1242 {
   1243 
   1244 	return(ENOSYS);
   1245 }
   1246 
   1247 #ifdef COMPAT_30
   1248 int
   1249 compat_30_sys_ntp_gettime(l, v, retval)
   1250  	struct lwp *l;
   1251  	void *v;
   1252  	register_t *retval;
   1253 {
   1254 
   1255  	return(ENOSYS);
   1256 }
   1257 #endif
   1258 #endif /* !NTP */
   1259