Home | History | Annotate | Line # | Download | only in kern
kern_ntptime.c revision 1.35
      1 /*	$NetBSD: kern_ntptime.c,v 1.35 2006/07/23 22:06:11 ad Exp $	*/
      2 #include <sys/types.h> 	/* XXX to get __HAVE_TIMECOUNTER, remove
      3 			   after all ports are converted. */
      4 #ifdef __HAVE_TIMECOUNTER
      5 
      6 /*-
      7  ***********************************************************************
      8  *								       *
      9  * Copyright (c) David L. Mills 1993-2001			       *
     10  *								       *
     11  * Permission to use, copy, modify, and distribute this software and   *
     12  * its documentation for any purpose and without fee is hereby	       *
     13  * granted, provided that the above copyright notice appears in all    *
     14  * copies and that both the copyright notice and this permission       *
     15  * notice appear in supporting documentation, and that the name	       *
     16  * University of Delaware not be used in advertising or publicity      *
     17  * pertaining to distribution of the software without specific,	       *
     18  * written prior permission. The University of Delaware makes no       *
     19  * representations about the suitability this software for any	       *
     20  * purpose. It is provided "as is" without express or implied	       *
     21  * warranty.							       *
     22  *								       *
     23  **********************************************************************/
     24 
     25 /*
     26  * Adapted from the original sources for FreeBSD and timecounters by:
     27  * Poul-Henning Kamp <phk (at) FreeBSD.org>.
     28  *
     29  * The 32bit version of the "LP" macros seems a bit past its "sell by"
     30  * date so I have retained only the 64bit version and included it directly
     31  * in this file.
     32  *
     33  * Only minor changes done to interface with the timecounters over in
     34  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
     35  * confusing and/or plain wrong in that context.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
     40 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.35 2006/07/23 22:06:11 ad Exp $");
     41 
     42 #include "opt_ntp.h"
     43 #include "opt_compat_netbsd.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/systm.h>
     48 #include <sys/kernel.h>
     49 #include <sys/proc.h>
     50 #include <sys/sysctl.h>
     51 #include <sys/timex.h>
     52 #ifdef COMPAT_30
     53 #include <compat/sys/timex.h>
     54 #endif
     55 #include <sys/vnode.h>
     56 #include <sys/kauth.h>
     57 
     58 #include <sys/mount.h>
     59 #include <sys/sa.h>
     60 #include <sys/syscallargs.h>
     61 
     62 #include <machine/cpu.h>
     63 
     64 /*
     65  * Single-precision macros for 64-bit machines
     66  */
     67 typedef int64_t l_fp;
     68 #define L_ADD(v, u)	((v) += (u))
     69 #define L_SUB(v, u)	((v) -= (u))
     70 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
     71 #define L_NEG(v)	((v) = -(v))
     72 #define L_RSHIFT(v, n) \
     73 	do { \
     74 		if ((v) < 0) \
     75 			(v) = -(-(v) >> (n)); \
     76 		else \
     77 			(v) = (v) >> (n); \
     78 	} while (0)
     79 #define L_MPY(v, a)	((v) *= (a))
     80 #define L_CLR(v)	((v) = 0)
     81 #define L_ISNEG(v)	((v) < 0)
     82 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
     83 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
     84 
     85 #ifdef NTP
     86 /*
     87  * Generic NTP kernel interface
     88  *
     89  * These routines constitute the Network Time Protocol (NTP) interfaces
     90  * for user and daemon application programs. The ntp_gettime() routine
     91  * provides the time, maximum error (synch distance) and estimated error
     92  * (dispersion) to client user application programs. The ntp_adjtime()
     93  * routine is used by the NTP daemon to adjust the system clock to an
     94  * externally derived time. The time offset and related variables set by
     95  * this routine are used by other routines in this module to adjust the
     96  * phase and frequency of the clock discipline loop which controls the
     97  * system clock.
     98  *
     99  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
    100  * defined), the time at each tick interrupt is derived directly from
    101  * the kernel time variable. When the kernel time is reckoned in
    102  * microseconds, (NTP_NANO undefined), the time is derived from the
    103  * kernel time variable together with a variable representing the
    104  * leftover nanoseconds at the last tick interrupt. In either case, the
    105  * current nanosecond time is reckoned from these values plus an
    106  * interpolated value derived by the clock routines in another
    107  * architecture-specific module. The interpolation can use either a
    108  * dedicated counter or a processor cycle counter (PCC) implemented in
    109  * some architectures.
    110  *
    111  * Note that all routines must run at priority splclock or higher.
    112  */
    113 /*
    114  * Phase/frequency-lock loop (PLL/FLL) definitions
    115  *
    116  * The nanosecond clock discipline uses two variable types, time
    117  * variables and frequency variables. Both types are represented as 64-
    118  * bit fixed-point quantities with the decimal point between two 32-bit
    119  * halves. On a 32-bit machine, each half is represented as a single
    120  * word and mathematical operations are done using multiple-precision
    121  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
    122  * used.
    123  *
    124  * A time variable is a signed 64-bit fixed-point number in ns and
    125  * fraction. It represents the remaining time offset to be amortized
    126  * over succeeding tick interrupts. The maximum time offset is about
    127  * 0.5 s and the resolution is about 2.3e-10 ns.
    128  *
    129  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    130  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    131  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    132  * |s s s|			 ns				   |
    133  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    134  * |			    fraction				   |
    135  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    136  *
    137  * A frequency variable is a signed 64-bit fixed-point number in ns/s
    138  * and fraction. It represents the ns and fraction to be added to the
    139  * kernel time variable at each second. The maximum frequency offset is
    140  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
    141  *
    142  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    143  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    144  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    145  * |s s s s s s s s s s s s s|	          ns/s			   |
    146  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    147  * |			    fraction				   |
    148  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    149  */
    150 /*
    151  * The following variables establish the state of the PLL/FLL and the
    152  * residual time and frequency offset of the local clock.
    153  */
    154 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
    155 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
    156 
    157 static int time_state = TIME_OK;	/* clock state */
    158 static int time_status = STA_UNSYNC;	/* clock status bits */
    159 static long time_tai;			/* TAI offset (s) */
    160 static long time_monitor;		/* last time offset scaled (ns) */
    161 static long time_constant;		/* poll interval (shift) (s) */
    162 static long time_precision = 1;		/* clock precision (ns) */
    163 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
    164 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
    165 static long time_reftime;		/* time at last adjustment (s) */
    166 static l_fp time_offset;		/* time offset (ns) */
    167 static l_fp time_freq;			/* frequency offset (ns/s) */
    168 #endif /* NTP */
    169 
    170 static l_fp time_adj;			/* tick adjust (ns/s) */
    171 int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
    172 
    173 extern int time_adjusted;	/* ntp might have changed the system time */
    174 
    175 #ifdef NTP
    176 #ifdef PPS_SYNC
    177 /*
    178  * The following variables are used when a pulse-per-second (PPS) signal
    179  * is available and connected via a modem control lead. They establish
    180  * the engineering parameters of the clock discipline loop when
    181  * controlled by the PPS signal.
    182  */
    183 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
    184 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
    185 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
    186 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
    187 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
    188 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
    189 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
    190 
    191 static struct timespec pps_tf[3];	/* phase median filter */
    192 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
    193 static long pps_fcount;			/* frequency accumulator */
    194 static long pps_jitter;			/* nominal jitter (ns) */
    195 static long pps_stabil;			/* nominal stability (scaled ns/s) */
    196 static long pps_lastsec;		/* time at last calibration (s) */
    197 static int pps_valid;			/* signal watchdog counter */
    198 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
    199 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
    200 static int pps_intcnt;			/* wander counter */
    201 
    202 /*
    203  * PPS signal quality monitors
    204  */
    205 static long pps_calcnt;			/* calibration intervals */
    206 static long pps_jitcnt;			/* jitter limit exceeded */
    207 static long pps_stbcnt;			/* stability limit exceeded */
    208 static long pps_errcnt;			/* calibration errors */
    209 #endif /* PPS_SYNC */
    210 /*
    211  * End of phase/frequency-lock loop (PLL/FLL) definitions
    212  */
    213 
    214 static void hardupdate(long offset);
    215 
    216 /*
    217  * ntp_gettime() - NTP user application interface
    218  */
    219 void
    220 ntp_gettime(ntv)
    221 	struct ntptimeval *ntv;
    222 {
    223 	nanotime(&ntv->time);
    224 	ntv->maxerror = time_maxerror;
    225 	ntv->esterror = time_esterror;
    226 	ntv->tai = time_tai;
    227 	ntv->time_state = time_state;
    228 }
    229 
    230 /* ARGSUSED */
    231 /*
    232  * ntp_adjtime() - NTP daemon application interface
    233  */
    234 int
    235 sys_ntp_adjtime(l, v, retval)
    236 	struct lwp *l;
    237 	void *v;
    238 	register_t *retval;
    239 {
    240 	struct sys_ntp_adjtime_args /* {
    241 		syscallarg(struct timex *) tp;
    242 	} */ *uap = v;
    243 	struct timex ntv;
    244 	int error = 0;
    245 
    246 	error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv, sizeof(ntv));
    247 	if (error != 0)
    248 		return (error);
    249 
    250 	if (ntv.modes != 0 && (error = kauth_authorize_generic(l->l_cred,
    251 	    KAUTH_GENERIC_ISSUSER, &l->l_acflag)) != 0)
    252 		return (error);
    253 
    254 	ntp_adjtime1(&ntv);
    255 
    256 	error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
    257 	if (!error)
    258 		*retval = ntp_timestatus();
    259 
    260 	return error;
    261 }
    262 
    263 void
    264 ntp_adjtime1(ntv)
    265 	struct timex *ntv;
    266 {
    267 	long freq;
    268 	int modes;
    269 	int s;
    270 
    271 	/*
    272 	 * Update selected clock variables - only the superuser can
    273 	 * change anything. Note that there is no error checking here on
    274 	 * the assumption the superuser should know what it is doing.
    275 	 * Note that either the time constant or TAI offset are loaded
    276 	 * from the ntv.constant member, depending on the mode bits. If
    277 	 * the STA_PLL bit in the status word is cleared, the state and
    278 	 * status words are reset to the initial values at boot.
    279 	 */
    280 	modes = ntv->modes;
    281 	if (modes != 0)
    282 		/* We need to save the system time during shutdown */
    283 		time_adjusted |= 2;
    284 	s = splclock();
    285 	if (modes & MOD_MAXERROR)
    286 		time_maxerror = ntv->maxerror;
    287 	if (modes & MOD_ESTERROR)
    288 		time_esterror = ntv->esterror;
    289 	if (modes & MOD_STATUS) {
    290 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
    291 			time_state = TIME_OK;
    292 			time_status = STA_UNSYNC;
    293 #ifdef PPS_SYNC
    294 			pps_shift = PPS_FAVG;
    295 #endif /* PPS_SYNC */
    296 		}
    297 		time_status &= STA_RONLY;
    298 		time_status |= ntv->status & ~STA_RONLY;
    299 	}
    300 	if (modes & MOD_TIMECONST) {
    301 		if (ntv->constant < 0)
    302 			time_constant = 0;
    303 		else if (ntv->constant > MAXTC)
    304 			time_constant = MAXTC;
    305 		else
    306 			time_constant = ntv->constant;
    307 	}
    308 	if (modes & MOD_TAI) {
    309 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
    310 			time_tai = ntv->constant;
    311 	}
    312 #ifdef PPS_SYNC
    313 	if (modes & MOD_PPSMAX) {
    314 		if (ntv->shift < PPS_FAVG)
    315 			pps_shiftmax = PPS_FAVG;
    316 		else if (ntv->shift > PPS_FAVGMAX)
    317 			pps_shiftmax = PPS_FAVGMAX;
    318 		else
    319 			pps_shiftmax = ntv->shift;
    320 	}
    321 #endif /* PPS_SYNC */
    322 	if (modes & MOD_NANO)
    323 		time_status |= STA_NANO;
    324 	if (modes & MOD_MICRO)
    325 		time_status &= ~STA_NANO;
    326 	if (modes & MOD_CLKB)
    327 		time_status |= STA_CLK;
    328 	if (modes & MOD_CLKA)
    329 		time_status &= ~STA_CLK;
    330 	if (modes & MOD_FREQUENCY) {
    331 		freq = (ntv->freq * 1000LL) >> 16;
    332 		if (freq > MAXFREQ)
    333 			L_LINT(time_freq, MAXFREQ);
    334 		else if (freq < -MAXFREQ)
    335 			L_LINT(time_freq, -MAXFREQ);
    336 		else {
    337 			/*
    338 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
    339 			 * time_freq is [ns/s * 2^32]
    340 			 */
    341 			time_freq = ntv->freq * 1000LL * 65536LL;
    342 		}
    343 #ifdef PPS_SYNC
    344 		pps_freq = time_freq;
    345 #endif /* PPS_SYNC */
    346 	}
    347 	if (modes & MOD_OFFSET) {
    348 		if (time_status & STA_NANO)
    349 			hardupdate(ntv->offset);
    350 		else
    351 			hardupdate(ntv->offset * 1000);
    352 	}
    353 
    354 	/*
    355 	 * Retrieve all clock variables. Note that the TAI offset is
    356 	 * returned only by ntp_gettime();
    357 	 */
    358 	if (time_status & STA_NANO)
    359 		ntv->offset = L_GINT(time_offset);
    360 	else
    361 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
    362 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
    363 	ntv->maxerror = time_maxerror;
    364 	ntv->esterror = time_esterror;
    365 	ntv->status = time_status;
    366 	ntv->constant = time_constant;
    367 	if (time_status & STA_NANO)
    368 		ntv->precision = time_precision;
    369 	else
    370 		ntv->precision = time_precision / 1000;
    371 	ntv->tolerance = MAXFREQ * SCALE_PPM;
    372 #ifdef PPS_SYNC
    373 	ntv->shift = pps_shift;
    374 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
    375 	if (time_status & STA_NANO)
    376 		ntv->jitter = pps_jitter;
    377 	else
    378 		ntv->jitter = pps_jitter / 1000;
    379 	ntv->stabil = pps_stabil;
    380 	ntv->calcnt = pps_calcnt;
    381 	ntv->errcnt = pps_errcnt;
    382 	ntv->jitcnt = pps_jitcnt;
    383 	ntv->stbcnt = pps_stbcnt;
    384 #endif /* PPS_SYNC */
    385 	splx(s);
    386 }
    387 #endif /* NTP */
    388 
    389 /*
    390  * second_overflow() - called after ntp_tick_adjust()
    391  *
    392  * This routine is ordinarily called immediately following the above
    393  * routine ntp_tick_adjust(). While these two routines are normally
    394  * combined, they are separated here only for the purposes of
    395  * simulation.
    396  */
    397 void
    398 ntp_update_second(int64_t *adjustment, time_t *newsec)
    399 {
    400 	int tickrate;
    401 	l_fp ftemp;		/* 32/64-bit temporary */
    402 
    403 #ifdef NTP
    404 
    405 	/*
    406 	 * On rollover of the second both the nanosecond and microsecond
    407 	 * clocks are updated and the state machine cranked as
    408 	 * necessary. The phase adjustment to be used for the next
    409 	 * second is calculated and the maximum error is increased by
    410 	 * the tolerance.
    411 	 */
    412 	time_maxerror += MAXFREQ / 1000;
    413 
    414 	/*
    415 	 * Leap second processing. If in leap-insert state at
    416 	 * the end of the day, the system clock is set back one
    417 	 * second; if in leap-delete state, the system clock is
    418 	 * set ahead one second. The nano_time() routine or
    419 	 * external clock driver will insure that reported time
    420 	 * is always monotonic.
    421 	 */
    422 	switch (time_state) {
    423 
    424 		/*
    425 		 * No warning.
    426 		 */
    427 		case TIME_OK:
    428 		if (time_status & STA_INS)
    429 			time_state = TIME_INS;
    430 		else if (time_status & STA_DEL)
    431 			time_state = TIME_DEL;
    432 		break;
    433 
    434 		/*
    435 		 * Insert second 23:59:60 following second
    436 		 * 23:59:59.
    437 		 */
    438 		case TIME_INS:
    439 		if (!(time_status & STA_INS))
    440 			time_state = TIME_OK;
    441 		else if ((*newsec) % 86400 == 0) {
    442 			(*newsec)--;
    443 			time_state = TIME_OOP;
    444 			time_tai++;
    445 		}
    446 		break;
    447 
    448 		/*
    449 		 * Delete second 23:59:59.
    450 		 */
    451 		case TIME_DEL:
    452 		if (!(time_status & STA_DEL))
    453 			time_state = TIME_OK;
    454 		else if (((*newsec) + 1) % 86400 == 0) {
    455 			(*newsec)++;
    456 			time_tai--;
    457 			time_state = TIME_WAIT;
    458 		}
    459 		break;
    460 
    461 		/*
    462 		 * Insert second in progress.
    463 		 */
    464 		case TIME_OOP:
    465 			time_state = TIME_WAIT;
    466 		break;
    467 
    468 		/*
    469 		 * Wait for status bits to clear.
    470 		 */
    471 		case TIME_WAIT:
    472 		if (!(time_status & (STA_INS | STA_DEL)))
    473 			time_state = TIME_OK;
    474 	}
    475 
    476 	/*
    477 	 * Compute the total time adjustment for the next second
    478 	 * in ns. The offset is reduced by a factor depending on
    479 	 * whether the PPS signal is operating. Note that the
    480 	 * value is in effect scaled by the clock frequency,
    481 	 * since the adjustment is added at each tick interrupt.
    482 	 */
    483 	ftemp = time_offset;
    484 #ifdef PPS_SYNC
    485 	/* XXX even if PPS signal dies we should finish adjustment ? */
    486 	if (time_status & STA_PPSTIME && time_status &
    487 	    STA_PPSSIGNAL)
    488 		L_RSHIFT(ftemp, pps_shift);
    489 	else
    490 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    491 #else
    492 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    493 #endif /* PPS_SYNC */
    494 	time_adj = ftemp;
    495 	L_SUB(time_offset, ftemp);
    496 	L_ADD(time_adj, time_freq);
    497 
    498 #ifdef PPS_SYNC
    499 	if (pps_valid > 0)
    500 		pps_valid--;
    501 	else
    502 		time_status &= ~STA_PPSSIGNAL;
    503 #endif /* PPS_SYNC */
    504 #else  /* !NTP */
    505 	L_CLR(time_adj);
    506 #endif /* !NTP */
    507 
    508 	/*
    509 	 * Apply any correction from adjtime(2).  If more than one second
    510 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
    511 	 * until the last second is slewed the final < 500 usecs.
    512 	 */
    513 	if (time_adjtime != 0) {
    514 		if (time_adjtime > 1000000)
    515 			tickrate = 5000;
    516 		else if (time_adjtime < -1000000)
    517 			tickrate = -5000;
    518 		else if (time_adjtime > 500)
    519 			tickrate = 500;
    520 		else if (time_adjtime < -500)
    521 			tickrate = -500;
    522 		else
    523 			tickrate = time_adjtime;
    524 		time_adjtime -= tickrate;
    525 		L_LINT(ftemp, tickrate * 1000);
    526 		L_ADD(time_adj, ftemp);
    527 	}
    528 	*adjustment = time_adj;
    529 }
    530 
    531 /*
    532  * ntp_init() - initialize variables and structures
    533  *
    534  * This routine must be called after the kernel variables hz and tick
    535  * are set or changed and before the next tick interrupt. In this
    536  * particular implementation, these values are assumed set elsewhere in
    537  * the kernel. The design allows the clock frequency and tick interval
    538  * to be changed while the system is running. So, this routine should
    539  * probably be integrated with the code that does that.
    540  */
    541 void
    542 ntp_init(void)
    543 {
    544 
    545 	/*
    546 	 * The following variables are initialized only at startup. Only
    547 	 * those structures not cleared by the compiler need to be
    548 	 * initialized, and these only in the simulator. In the actual
    549 	 * kernel, any nonzero values here will quickly evaporate.
    550 	 */
    551 	L_CLR(time_adj);
    552 #ifdef NTP
    553 	L_CLR(time_offset);
    554 	L_CLR(time_freq);
    555 #ifdef PPS_SYNC
    556 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
    557 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
    558 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
    559 	pps_fcount = 0;
    560 	L_CLR(pps_freq);
    561 #endif /* PPS_SYNC */
    562 #endif
    563 }
    564 
    565 #ifdef NTP
    566 /*
    567  * hardupdate() - local clock update
    568  *
    569  * This routine is called by ntp_adjtime() to update the local clock
    570  * phase and frequency. The implementation is of an adaptive-parameter,
    571  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    572  * time and frequency offset estimates for each call. If the kernel PPS
    573  * discipline code is configured (PPS_SYNC), the PPS signal itself
    574  * determines the new time offset, instead of the calling argument.
    575  * Presumably, calls to ntp_adjtime() occur only when the caller
    576  * believes the local clock is valid within some bound (+-128 ms with
    577  * NTP). If the caller's time is far different than the PPS time, an
    578  * argument will ensue, and it's not clear who will lose.
    579  *
    580  * For uncompensated quartz crystal oscillators and nominal update
    581  * intervals less than 256 s, operation should be in phase-lock mode,
    582  * where the loop is disciplined to phase. For update intervals greater
    583  * than 1024 s, operation should be in frequency-lock mode, where the
    584  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
    585  * is selected by the STA_MODE status bit.
    586  *
    587  * Note: splclock() is in effect.
    588  */
    589 void
    590 hardupdate(long offset)
    591 {
    592 	long mtemp;
    593 	l_fp ftemp;
    594 
    595 	/*
    596 	 * Select how the phase is to be controlled and from which
    597 	 * source. If the PPS signal is present and enabled to
    598 	 * discipline the time, the PPS offset is used; otherwise, the
    599 	 * argument offset is used.
    600 	 */
    601 	if (!(time_status & STA_PLL))
    602 		return;
    603 	if (!(time_status & STA_PPSTIME && time_status &
    604 	    STA_PPSSIGNAL)) {
    605 		if (offset > MAXPHASE)
    606 			time_monitor = MAXPHASE;
    607 		else if (offset < -MAXPHASE)
    608 			time_monitor = -MAXPHASE;
    609 		else
    610 			time_monitor = offset;
    611 		L_LINT(time_offset, time_monitor);
    612 	}
    613 
    614 	/*
    615 	 * Select how the frequency is to be controlled and in which
    616 	 * mode (PLL or FLL). If the PPS signal is present and enabled
    617 	 * to discipline the frequency, the PPS frequency is used;
    618 	 * otherwise, the argument offset is used to compute it.
    619 	 */
    620 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
    621 		time_reftime = time_second;
    622 		return;
    623 	}
    624 	if (time_status & STA_FREQHOLD || time_reftime == 0)
    625 		time_reftime = time_second;
    626 	mtemp = time_second - time_reftime;
    627 	L_LINT(ftemp, time_monitor);
    628 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
    629 	L_MPY(ftemp, mtemp);
    630 	L_ADD(time_freq, ftemp);
    631 	time_status &= ~STA_MODE;
    632 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
    633 	    MAXSEC)) {
    634 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
    635 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
    636 		L_ADD(time_freq, ftemp);
    637 		time_status |= STA_MODE;
    638 	}
    639 	time_reftime = time_second;
    640 	if (L_GINT(time_freq) > MAXFREQ)
    641 		L_LINT(time_freq, MAXFREQ);
    642 	else if (L_GINT(time_freq) < -MAXFREQ)
    643 		L_LINT(time_freq, -MAXFREQ);
    644 }
    645 
    646 #ifdef PPS_SYNC
    647 /*
    648  * hardpps() - discipline CPU clock oscillator to external PPS signal
    649  *
    650  * This routine is called at each PPS interrupt in order to discipline
    651  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
    652  * and leaves it in a handy spot for the hardclock() routine. It
    653  * integrates successive PPS phase differences and calculates the
    654  * frequency offset. This is used in hardclock() to discipline the CPU
    655  * clock oscillator so that intrinsic frequency error is cancelled out.
    656  * The code requires the caller to capture the time and hardware counter
    657  * value at the on-time PPS signal transition.
    658  *
    659  * Note that, on some Unix systems, this routine runs at an interrupt
    660  * priority level higher than the timer interrupt routine hardclock().
    661  * Therefore, the variables used are distinct from the hardclock()
    662  * variables, except for certain exceptions: The PPS frequency pps_freq
    663  * and phase pps_offset variables are determined by this routine and
    664  * updated atomically. The time_tolerance variable can be considered a
    665  * constant, since it is infrequently changed, and then only when the
    666  * PPS signal is disabled. The watchdog counter pps_valid is updated
    667  * once per second by hardclock() and is atomically cleared in this
    668  * routine.
    669  */
    670 void
    671 hardpps(struct timespec *tsp,		/* time at PPS */
    672 	long nsec			/* hardware counter at PPS */)
    673 {
    674 	long u_sec, u_nsec, v_nsec; /* temps */
    675 	l_fp ftemp;
    676 
    677 	/*
    678 	 * The signal is first processed by a range gate and frequency
    679 	 * discriminator. The range gate rejects noise spikes outside
    680 	 * the range +-500 us. The frequency discriminator rejects input
    681 	 * signals with apparent frequency outside the range 1 +-500
    682 	 * PPM. If two hits occur in the same second, we ignore the
    683 	 * later hit; if not and a hit occurs outside the range gate,
    684 	 * keep the later hit for later comparison, but do not process
    685 	 * it.
    686 	 */
    687 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
    688 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
    689 	pps_valid = PPS_VALID;
    690 	u_sec = tsp->tv_sec;
    691 	u_nsec = tsp->tv_nsec;
    692 	if (u_nsec >= (NANOSECOND >> 1)) {
    693 		u_nsec -= NANOSECOND;
    694 		u_sec++;
    695 	}
    696 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
    697 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
    698 	    MAXFREQ)
    699 		return;
    700 	pps_tf[2] = pps_tf[1];
    701 	pps_tf[1] = pps_tf[0];
    702 	pps_tf[0].tv_sec = u_sec;
    703 	pps_tf[0].tv_nsec = u_nsec;
    704 
    705 	/*
    706 	 * Compute the difference between the current and previous
    707 	 * counter values. If the difference exceeds 0.5 s, assume it
    708 	 * has wrapped around, so correct 1.0 s. If the result exceeds
    709 	 * the tick interval, the sample point has crossed a tick
    710 	 * boundary during the last second, so correct the tick. Very
    711 	 * intricate.
    712 	 */
    713 	u_nsec = nsec;
    714 	if (u_nsec > (NANOSECOND >> 1))
    715 		u_nsec -= NANOSECOND;
    716 	else if (u_nsec < -(NANOSECOND >> 1))
    717 		u_nsec += NANOSECOND;
    718 	pps_fcount += u_nsec;
    719 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
    720 		return;
    721 	time_status &= ~STA_PPSJITTER;
    722 
    723 	/*
    724 	 * A three-stage median filter is used to help denoise the PPS
    725 	 * time. The median sample becomes the time offset estimate; the
    726 	 * difference between the other two samples becomes the time
    727 	 * dispersion (jitter) estimate.
    728 	 */
    729 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
    730 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
    731 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
    732 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
    733 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
    734 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
    735 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
    736 		} else {
    737 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
    738 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
    739 		}
    740 	} else {
    741 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
    742 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
    743 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
    744 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
    745 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
    746 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
    747 		} else {
    748 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
    749 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
    750 		}
    751 	}
    752 
    753 	/*
    754 	 * Nominal jitter is due to PPS signal noise and interrupt
    755 	 * latency. If it exceeds the popcorn threshold, the sample is
    756 	 * discarded. otherwise, if so enabled, the time offset is
    757 	 * updated. We can tolerate a modest loss of data here without
    758 	 * much degrading time accuracy.
    759 	 */
    760 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
    761 		time_status |= STA_PPSJITTER;
    762 		pps_jitcnt++;
    763 	} else if (time_status & STA_PPSTIME) {
    764 		time_monitor = -v_nsec;
    765 		L_LINT(time_offset, time_monitor);
    766 	}
    767 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
    768 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
    769 	if (u_sec < (1 << pps_shift))
    770 		return;
    771 
    772 	/*
    773 	 * At the end of the calibration interval the difference between
    774 	 * the first and last counter values becomes the scaled
    775 	 * frequency. It will later be divided by the length of the
    776 	 * interval to determine the frequency update. If the frequency
    777 	 * exceeds a sanity threshold, or if the actual calibration
    778 	 * interval is not equal to the expected length, the data are
    779 	 * discarded. We can tolerate a modest loss of data here without
    780 	 * much degrading frequency accuracy.
    781 	 */
    782 	pps_calcnt++;
    783 	v_nsec = -pps_fcount;
    784 	pps_lastsec = pps_tf[0].tv_sec;
    785 	pps_fcount = 0;
    786 	u_nsec = MAXFREQ << pps_shift;
    787 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
    788 	    pps_shift)) {
    789 		time_status |= STA_PPSERROR;
    790 		pps_errcnt++;
    791 		return;
    792 	}
    793 
    794 	/*
    795 	 * Here the raw frequency offset and wander (stability) is
    796 	 * calculated. If the wander is less than the wander threshold
    797 	 * for four consecutive averaging intervals, the interval is
    798 	 * doubled; if it is greater than the threshold for four
    799 	 * consecutive intervals, the interval is halved. The scaled
    800 	 * frequency offset is converted to frequency offset. The
    801 	 * stability metric is calculated as the average of recent
    802 	 * frequency changes, but is used only for performance
    803 	 * monitoring.
    804 	 */
    805 	L_LINT(ftemp, v_nsec);
    806 	L_RSHIFT(ftemp, pps_shift);
    807 	L_SUB(ftemp, pps_freq);
    808 	u_nsec = L_GINT(ftemp);
    809 	if (u_nsec > PPS_MAXWANDER) {
    810 		L_LINT(ftemp, PPS_MAXWANDER);
    811 		pps_intcnt--;
    812 		time_status |= STA_PPSWANDER;
    813 		pps_stbcnt++;
    814 	} else if (u_nsec < -PPS_MAXWANDER) {
    815 		L_LINT(ftemp, -PPS_MAXWANDER);
    816 		pps_intcnt--;
    817 		time_status |= STA_PPSWANDER;
    818 		pps_stbcnt++;
    819 	} else {
    820 		pps_intcnt++;
    821 	}
    822 	if (pps_intcnt >= 4) {
    823 		pps_intcnt = 4;
    824 		if (pps_shift < pps_shiftmax) {
    825 			pps_shift++;
    826 			pps_intcnt = 0;
    827 		}
    828 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
    829 		pps_intcnt = -4;
    830 		if (pps_shift > PPS_FAVG) {
    831 			pps_shift--;
    832 			pps_intcnt = 0;
    833 		}
    834 	}
    835 	if (u_nsec < 0)
    836 		u_nsec = -u_nsec;
    837 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
    838 
    839 	/*
    840 	 * The PPS frequency is recalculated and clamped to the maximum
    841 	 * MAXFREQ. If enabled, the system clock frequency is updated as
    842 	 * well.
    843 	 */
    844 	L_ADD(pps_freq, ftemp);
    845 	u_nsec = L_GINT(pps_freq);
    846 	if (u_nsec > MAXFREQ)
    847 		L_LINT(pps_freq, MAXFREQ);
    848 	else if (u_nsec < -MAXFREQ)
    849 		L_LINT(pps_freq, -MAXFREQ);
    850 	if (time_status & STA_PPSFREQ)
    851 		time_freq = pps_freq;
    852 }
    853 #endif /* PPS_SYNC */
    854 #endif /* NTP */
    855 #else /* !__HAVE_TIMECOUNTER */
    856 /******************************************************************************
    857  *                                                                            *
    858  * Copyright (c) David L. Mills 1993, 1994                                    *
    859  *                                                                            *
    860  * Permission to use, copy, modify, and distribute this software and its      *
    861  * documentation for any purpose and without fee is hereby granted, provided  *
    862  * that the above copyright notice appears in all copies and that both the    *
    863  * copyright notice and this permission notice appear in supporting           *
    864  * documentation, and that the name University of Delaware not be used in     *
    865  * advertising or publicity pertaining to distribution of the software        *
    866  * without specific, written prior permission.  The University of Delaware    *
    867  * makes no representations about the suitability this software for any       *
    868  * purpose.  It is provided "as is" without express or implied warranty.      *
    869  *                                                                            *
    870  ******************************************************************************/
    871 
    872 /*
    873  * Modification history kern_ntptime.c
    874  *
    875  * 24 Sep 94	David L. Mills
    876  *	Tightened code at exits.
    877  *
    878  * 24 Mar 94	David L. Mills
    879  *	Revised syscall interface to include new variables for PPS
    880  *	time discipline.
    881  *
    882  * 14 Feb 94	David L. Mills
    883  *	Added code for external clock
    884  *
    885  * 28 Nov 93	David L. Mills
    886  *	Revised frequency scaling to conform with adjusted parameters
    887  *
    888  * 17 Sep 93	David L. Mills
    889  *	Created file
    890  */
    891 /*
    892  * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
    893  * V4.1.1 and V4.1.3
    894  *
    895  * These routines consitute the Network Time Protocol (NTP) interfaces
    896  * for user and daemon application programs. The ntp_gettime() routine
    897  * provides the time, maximum error (synch distance) and estimated error
    898  * (dispersion) to client user application programs. The ntp_adjtime()
    899  * routine is used by the NTP daemon to adjust the system clock to an
    900  * externally derived time. The time offset and related variables set by
    901  * this routine are used by hardclock() to adjust the phase and
    902  * frequency of the phase-lock loop which controls the system clock.
    903  */
    904 
    905 #include <sys/cdefs.h>
    906 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.35 2006/07/23 22:06:11 ad Exp $");
    907 
    908 #include "opt_ntp.h"
    909 #include "opt_compat_netbsd.h"
    910 
    911 #include <sys/param.h>
    912 #include <sys/resourcevar.h>
    913 #include <sys/systm.h>
    914 #include <sys/kernel.h>
    915 #include <sys/proc.h>
    916 #include <sys/sysctl.h>
    917 #include <sys/timex.h>
    918 #ifdef COMPAT_30
    919 #include <compat/sys/timex.h>
    920 #endif
    921 #include <sys/vnode.h>
    922 #include <sys/kauth.h>
    923 
    924 #include <sys/mount.h>
    925 #include <sys/sa.h>
    926 #include <sys/syscallargs.h>
    927 
    928 #include <machine/cpu.h>
    929 
    930 #ifdef NTP
    931 /*
    932  * The following variables are used by the hardclock() routine in the
    933  * kern_clock.c module and are described in that module.
    934  */
    935 extern int time_state;		/* clock state */
    936 extern int time_status;		/* clock status bits */
    937 extern long time_offset;	/* time adjustment (us) */
    938 extern long time_freq;		/* frequency offset (scaled ppm) */
    939 extern long time_maxerror;	/* maximum error (us) */
    940 extern long time_esterror;	/* estimated error (us) */
    941 extern long time_constant;	/* pll time constant */
    942 extern long time_precision;	/* clock precision (us) */
    943 extern long time_tolerance;	/* frequency tolerance (scaled ppm) */
    944 extern int time_adjusted;	/* ntp might have changed the system time */
    945 
    946 #ifdef PPS_SYNC
    947 /*
    948  * The following variables are used only if the PPS signal discipline
    949  * is configured in the kernel.
    950  */
    951 extern int pps_shift;		/* interval duration (s) (shift) */
    952 extern long pps_freq;		/* pps frequency offset (scaled ppm) */
    953 extern long pps_jitter;		/* pps jitter (us) */
    954 extern long pps_stabil;		/* pps stability (scaled ppm) */
    955 extern long pps_jitcnt;		/* jitter limit exceeded */
    956 extern long pps_calcnt;		/* calibration intervals */
    957 extern long pps_errcnt;		/* calibration errors */
    958 extern long pps_stbcnt;		/* stability limit exceeded */
    959 #endif /* PPS_SYNC */
    960 
    961 /*ARGSUSED*/
    962 /*
    963  * ntp_gettime() - NTP user application interface
    964  */
    965 void
    966 ntp_gettime(ntvp)
    967 	struct ntptimeval *ntvp;
    968 {
    969 	struct timeval atv;
    970 	int s;
    971 
    972 	memset(ntvp, 0, sizeof(struct ntptimeval));
    973 
    974 	s = splclock();
    975 #ifdef EXT_CLOCK
    976 	/*
    977 	 * The microtime() external clock routine returns a
    978 	 * status code. If less than zero, we declare an error
    979 	 * in the clock status word and return the kernel
    980 	 * (software) time variable. While there are other
    981 	 * places that call microtime(), this is the only place
    982 	 * that matters from an application point of view.
    983 	 */
    984 	if (microtime(&atv) < 0) {
    985 		time_status |= STA_CLOCKERR;
    986 		ntvp->time = time;
    987 	} else
    988 		time_status &= ~STA_CLOCKERR;
    989 #else /* EXT_CLOCK */
    990 	microtime(&atv);
    991 #endif /* EXT_CLOCK */
    992 	ntvp->maxerror = time_maxerror;
    993 	ntvp->esterror = time_esterror;
    994 	(void) splx(s);
    995 	TIMEVAL_TO_TIMESPEC(&atv, &ntvp->time);
    996 }
    997 
    998 
    999 /* ARGSUSED */
   1000 /*
   1001  * ntp_adjtime() - NTP daemon application interface
   1002  */
   1003 int
   1004 sys_ntp_adjtime(l, v, retval)
   1005 	struct lwp *l;
   1006 	void *v;
   1007 	register_t *retval;
   1008 {
   1009 	struct sys_ntp_adjtime_args /* {
   1010 		syscallarg(struct timex *) tp;
   1011 	} */ *uap = v;
   1012 	struct timex ntv;
   1013 	int error = 0;
   1014 
   1015 	error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv, sizeof(ntv));
   1016 	if (error != 0)
   1017 		return (error);
   1018 
   1019 	if (ntv.modes != 0 && (error = kauth_authorize_generic(l->l_cred,
   1020 	    KAUTH_GENERIC_ISSUSER, &l->l_acflag)) != 0)
   1021 		return (error);
   1022 
   1023 	ntp_adjtime1(&ntv);
   1024 
   1025 	error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
   1026 	if (error == 0)
   1027 		*retval = ntp_timestatus();
   1028 
   1029 	return error;
   1030 }
   1031 
   1032 void
   1033 ntp_adjtime1(ntv)
   1034 	struct timex *ntv;
   1035 {
   1036 	int modes;
   1037 	int s;
   1038 
   1039 	/*
   1040 	 * Update selected clock variables. Note that there is no error
   1041 	 * checking here on the assumption the superuser should know
   1042 	 * what it is doing.
   1043 	 */
   1044 	modes = ntv->modes;
   1045 	if (modes != 0)
   1046 		/* We need to save the system time during shutdown */
   1047 		time_adjusted |= 2;
   1048 	s = splclock();
   1049 	if (modes & MOD_FREQUENCY)
   1050 #ifdef PPS_SYNC
   1051 		time_freq = ntv->freq - pps_freq;
   1052 #else /* PPS_SYNC */
   1053 		time_freq = ntv->freq;
   1054 #endif /* PPS_SYNC */
   1055 	if (modes & MOD_MAXERROR)
   1056 		time_maxerror = ntv->maxerror;
   1057 	if (modes & MOD_ESTERROR)
   1058 		time_esterror = ntv->esterror;
   1059 	if (modes & MOD_STATUS) {
   1060 		time_status &= STA_RONLY;
   1061 		time_status |= ntv->status & ~STA_RONLY;
   1062 	}
   1063 	if (modes & MOD_TIMECONST)
   1064 		time_constant = ntv->constant;
   1065 	if (modes & MOD_OFFSET)
   1066 		hardupdate(ntv->offset);
   1067 
   1068 	/*
   1069 	 * Retrieve all clock variables
   1070 	 */
   1071 	if (time_offset < 0)
   1072 		ntv->offset = -(-time_offset >> SHIFT_UPDATE);
   1073 	else
   1074 		ntv->offset = time_offset >> SHIFT_UPDATE;
   1075 #ifdef PPS_SYNC
   1076 	ntv->freq = time_freq + pps_freq;
   1077 #else /* PPS_SYNC */
   1078 	ntv->freq = time_freq;
   1079 #endif /* PPS_SYNC */
   1080 	ntv->maxerror = time_maxerror;
   1081 	ntv->esterror = time_esterror;
   1082 	ntv->status = time_status;
   1083 	ntv->constant = time_constant;
   1084 	ntv->precision = time_precision;
   1085 	ntv->tolerance = time_tolerance;
   1086 #ifdef PPS_SYNC
   1087 	ntv->shift = pps_shift;
   1088 	ntv->ppsfreq = pps_freq;
   1089 	ntv->jitter = pps_jitter >> PPS_AVG;
   1090 	ntv->stabil = pps_stabil;
   1091 	ntv->calcnt = pps_calcnt;
   1092 	ntv->errcnt = pps_errcnt;
   1093 	ntv->jitcnt = pps_jitcnt;
   1094 	ntv->stbcnt = pps_stbcnt;
   1095 #endif /* PPS_SYNC */
   1096 	(void)splx(s);
   1097 }
   1098 #endif /* NTP */
   1099 #endif /* !__HAVE_TIMECOUNTER */
   1100 
   1101 #ifdef NTP
   1102 int
   1103 ntp_timestatus()
   1104 {
   1105 	/*
   1106 	 * Status word error decode. If any of these conditions
   1107 	 * occur, an error is returned, instead of the status
   1108 	 * word. Most applications will care only about the fact
   1109 	 * the system clock may not be trusted, not about the
   1110 	 * details.
   1111 	 *
   1112 	 * Hardware or software error
   1113 	 */
   1114 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
   1115 
   1116 	/*
   1117 	 * PPS signal lost when either time or frequency
   1118 	 * synchronization requested
   1119 	 */
   1120 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
   1121 	     !(time_status & STA_PPSSIGNAL)) ||
   1122 
   1123 	/*
   1124 	 * PPS jitter exceeded when time synchronization
   1125 	 * requested
   1126 	 */
   1127 	    (time_status & STA_PPSTIME &&
   1128 	     time_status & STA_PPSJITTER) ||
   1129 
   1130 	/*
   1131 	 * PPS wander exceeded or calibration error when
   1132 	 * frequency synchronization requested
   1133 	 */
   1134 	    (time_status & STA_PPSFREQ &&
   1135 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
   1136 		return (TIME_ERROR);
   1137 	else
   1138 		return (time_state);
   1139 }
   1140 
   1141 /*ARGSUSED*/
   1142 /*
   1143  * ntp_gettime() - NTP user application interface
   1144  */
   1145 int
   1146 sys___ntp_gettime30(l, v, retval)
   1147 	struct lwp *l;
   1148 	void *v;
   1149 	register_t *retval;
   1150 {
   1151 	struct sys___ntp_gettime30_args /* {
   1152 		syscallarg(struct ntptimeval *) ntvp;
   1153 	} */ *uap = v;
   1154 	struct ntptimeval ntv;
   1155 	int error = 0;
   1156 
   1157 	if (SCARG(uap, ntvp)) {
   1158 		ntp_gettime(&ntv);
   1159 
   1160 		error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
   1161 				sizeof(ntv));
   1162 	}
   1163 	if (!error) {
   1164 		*retval = ntp_timestatus();
   1165 	}
   1166 	return(error);
   1167 }
   1168 
   1169 #ifdef COMPAT_30
   1170 int
   1171 compat_30_sys_ntp_gettime(l, v, retval)
   1172 	struct lwp *l;
   1173 	void *v;
   1174 	register_t *retval;
   1175 {
   1176 	struct compat_30_sys_ntp_gettime_args /* {
   1177 		syscallarg(struct ntptimeval30 *) ontvp;
   1178 	} */ *uap = v;
   1179 	struct ntptimeval ntv;
   1180 	struct ntptimeval30 ontv;
   1181 	int error = 0;
   1182 
   1183 	if (SCARG(uap, ntvp)) {
   1184 		ntp_gettime(&ntv);
   1185 		TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
   1186 		ontv.maxerror = ntv.maxerror;
   1187 		ontv.esterror = ntv.esterror;
   1188 
   1189 		error = copyout((caddr_t)&ontv, (caddr_t)SCARG(uap, ntvp),
   1190 				sizeof(ontv));
   1191  	}
   1192 	if (!error)
   1193 		*retval = ntp_timestatus();
   1194 
   1195 	return (error);
   1196 }
   1197 #endif
   1198 
   1199 /*
   1200  * return information about kernel precision timekeeping
   1201  */
   1202 static int
   1203 sysctl_kern_ntptime(SYSCTLFN_ARGS)
   1204 {
   1205 	struct sysctlnode node;
   1206 	struct ntptimeval ntv;
   1207 
   1208 	ntp_gettime(&ntv);
   1209 
   1210 	node = *rnode;
   1211 	node.sysctl_data = &ntv;
   1212 	node.sysctl_size = sizeof(ntv);
   1213 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
   1214 }
   1215 
   1216 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
   1217 {
   1218 
   1219 	sysctl_createv(clog, 0, NULL, NULL,
   1220 		       CTLFLAG_PERMANENT,
   1221 		       CTLTYPE_NODE, "kern", NULL,
   1222 		       NULL, 0, NULL, 0,
   1223 		       CTL_KERN, CTL_EOL);
   1224 
   1225 	sysctl_createv(clog, 0, NULL, NULL,
   1226 		       CTLFLAG_PERMANENT,
   1227 		       CTLTYPE_STRUCT, "ntptime",
   1228 		       SYSCTL_DESCR("Kernel clock values for NTP"),
   1229 		       sysctl_kern_ntptime, 0, NULL,
   1230 		       sizeof(struct ntptimeval),
   1231 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
   1232 }
   1233 #else /* !NTP */
   1234 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
   1235 
   1236 int
   1237 sys___ntp_gettime30(l, v, retval)
   1238 	struct lwp *l;
   1239 	void *v;
   1240 	register_t *retval;
   1241 {
   1242 
   1243 	return(ENOSYS);
   1244 }
   1245 
   1246 #ifdef COMPAT_30
   1247 int
   1248 compat_30_sys_ntp_gettime(l, v, retval)
   1249  	struct lwp *l;
   1250  	void *v;
   1251  	register_t *retval;
   1252 {
   1253 
   1254  	return(ENOSYS);
   1255 }
   1256 #endif
   1257 #endif /* !NTP */
   1258