kern_ntptime.c revision 1.39 1 /* $NetBSD: kern_ntptime.c,v 1.39 2006/10/13 16:53:36 dogcow Exp $ */
2 #include <sys/types.h> /* XXX to get __HAVE_TIMECOUNTER, remove
3 after all ports are converted. */
4 #ifdef __HAVE_TIMECOUNTER
5
6 /*-
7 ***********************************************************************
8 * *
9 * Copyright (c) David L. Mills 1993-2001 *
10 * *
11 * Permission to use, copy, modify, and distribute this software and *
12 * its documentation for any purpose and without fee is hereby *
13 * granted, provided that the above copyright notice appears in all *
14 * copies and that both the copyright notice and this permission *
15 * notice appear in supporting documentation, and that the name *
16 * University of Delaware not be used in advertising or publicity *
17 * pertaining to distribution of the software without specific, *
18 * written prior permission. The University of Delaware makes no *
19 * representations about the suitability this software for any *
20 * purpose. It is provided "as is" without express or implied *
21 * warranty. *
22 * *
23 **********************************************************************/
24
25 /*
26 * Adapted from the original sources for FreeBSD and timecounters by:
27 * Poul-Henning Kamp <phk (at) FreeBSD.org>.
28 *
29 * The 32bit version of the "LP" macros seems a bit past its "sell by"
30 * date so I have retained only the 64bit version and included it directly
31 * in this file.
32 *
33 * Only minor changes done to interface with the timecounters over in
34 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
35 * confusing and/or plain wrong in that context.
36 */
37
38 #include <sys/cdefs.h>
39 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
40 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.39 2006/10/13 16:53:36 dogcow Exp $");
41
42 #include "opt_ntp.h"
43 #include "opt_compat_netbsd.h"
44
45 #include <sys/param.h>
46 #include <sys/resourcevar.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/sysctl.h>
51 #include <sys/timex.h>
52 #ifdef COMPAT_30
53 #include <compat/sys/timex.h>
54 #endif
55 #include <sys/vnode.h>
56 #include <sys/kauth.h>
57
58 #include <sys/mount.h>
59 #include <sys/sa.h>
60 #include <sys/syscallargs.h>
61
62 #include <machine/cpu.h>
63
64 /*
65 * Single-precision macros for 64-bit machines
66 */
67 typedef int64_t l_fp;
68 #define L_ADD(v, u) ((v) += (u))
69 #define L_SUB(v, u) ((v) -= (u))
70 #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
71 #define L_NEG(v) ((v) = -(v))
72 #define L_RSHIFT(v, n) \
73 do { \
74 if ((v) < 0) \
75 (v) = -(-(v) >> (n)); \
76 else \
77 (v) = (v) >> (n); \
78 } while (0)
79 #define L_MPY(v, a) ((v) *= (a))
80 #define L_CLR(v) ((v) = 0)
81 #define L_ISNEG(v) ((v) < 0)
82 #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
83 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
84
85 #ifdef NTP
86 /*
87 * Generic NTP kernel interface
88 *
89 * These routines constitute the Network Time Protocol (NTP) interfaces
90 * for user and daemon application programs. The ntp_gettime() routine
91 * provides the time, maximum error (synch distance) and estimated error
92 * (dispersion) to client user application programs. The ntp_adjtime()
93 * routine is used by the NTP daemon to adjust the system clock to an
94 * externally derived time. The time offset and related variables set by
95 * this routine are used by other routines in this module to adjust the
96 * phase and frequency of the clock discipline loop which controls the
97 * system clock.
98 *
99 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
100 * defined), the time at each tick interrupt is derived directly from
101 * the kernel time variable. When the kernel time is reckoned in
102 * microseconds, (NTP_NANO undefined), the time is derived from the
103 * kernel time variable together with a variable representing the
104 * leftover nanoseconds at the last tick interrupt. In either case, the
105 * current nanosecond time is reckoned from these values plus an
106 * interpolated value derived by the clock routines in another
107 * architecture-specific module. The interpolation can use either a
108 * dedicated counter or a processor cycle counter (PCC) implemented in
109 * some architectures.
110 *
111 * Note that all routines must run at priority splclock or higher.
112 */
113 /*
114 * Phase/frequency-lock loop (PLL/FLL) definitions
115 *
116 * The nanosecond clock discipline uses two variable types, time
117 * variables and frequency variables. Both types are represented as 64-
118 * bit fixed-point quantities with the decimal point between two 32-bit
119 * halves. On a 32-bit machine, each half is represented as a single
120 * word and mathematical operations are done using multiple-precision
121 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
122 * used.
123 *
124 * A time variable is a signed 64-bit fixed-point number in ns and
125 * fraction. It represents the remaining time offset to be amortized
126 * over succeeding tick interrupts. The maximum time offset is about
127 * 0.5 s and the resolution is about 2.3e-10 ns.
128 *
129 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
130 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
131 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132 * |s s s| ns |
133 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134 * | fraction |
135 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
136 *
137 * A frequency variable is a signed 64-bit fixed-point number in ns/s
138 * and fraction. It represents the ns and fraction to be added to the
139 * kernel time variable at each second. The maximum frequency offset is
140 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
141 *
142 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
143 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
144 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
145 * |s s s s s s s s s s s s s| ns/s |
146 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
147 * | fraction |
148 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
149 */
150 /*
151 * The following variables establish the state of the PLL/FLL and the
152 * residual time and frequency offset of the local clock.
153 */
154 #define SHIFT_PLL 4 /* PLL loop gain (shift) */
155 #define SHIFT_FLL 2 /* FLL loop gain (shift) */
156
157 static int time_state = TIME_OK; /* clock state */
158 static int time_status = STA_UNSYNC; /* clock status bits */
159 static long time_tai; /* TAI offset (s) */
160 static long time_monitor; /* last time offset scaled (ns) */
161 static long time_constant; /* poll interval (shift) (s) */
162 static long time_precision = 1; /* clock precision (ns) */
163 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
164 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
165 static long time_reftime; /* time at last adjustment (s) */
166 static l_fp time_offset; /* time offset (ns) */
167 static l_fp time_freq; /* frequency offset (ns/s) */
168 #endif /* NTP */
169
170 static l_fp time_adj; /* tick adjust (ns/s) */
171 int64_t time_adjtime; /* correction from adjtime(2) (usec) */
172
173 extern int time_adjusted; /* ntp might have changed the system time */
174
175 #ifdef NTP
176 #ifdef PPS_SYNC
177 /*
178 * The following variables are used when a pulse-per-second (PPS) signal
179 * is available and connected via a modem control lead. They establish
180 * the engineering parameters of the clock discipline loop when
181 * controlled by the PPS signal.
182 */
183 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
184 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
185 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
186 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
187 #define PPS_VALID 120 /* PPS signal watchdog max (s) */
188 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
189 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
190
191 static struct timespec pps_tf[3]; /* phase median filter */
192 static l_fp pps_freq; /* scaled frequency offset (ns/s) */
193 static long pps_fcount; /* frequency accumulator */
194 static long pps_jitter; /* nominal jitter (ns) */
195 static long pps_stabil; /* nominal stability (scaled ns/s) */
196 static long pps_lastsec; /* time at last calibration (s) */
197 static int pps_valid; /* signal watchdog counter */
198 static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
199 static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
200 static int pps_intcnt; /* wander counter */
201
202 /*
203 * PPS signal quality monitors
204 */
205 static long pps_calcnt; /* calibration intervals */
206 static long pps_jitcnt; /* jitter limit exceeded */
207 static long pps_stbcnt; /* stability limit exceeded */
208 static long pps_errcnt; /* calibration errors */
209 #endif /* PPS_SYNC */
210 /*
211 * End of phase/frequency-lock loop (PLL/FLL) definitions
212 */
213
214 static void hardupdate(long offset);
215
216 /*
217 * ntp_gettime() - NTP user application interface
218 */
219 void
220 ntp_gettime(ntv)
221 struct ntptimeval *ntv;
222 {
223 nanotime(&ntv->time);
224 ntv->maxerror = time_maxerror;
225 ntv->esterror = time_esterror;
226 ntv->tai = time_tai;
227 ntv->time_state = time_state;
228 }
229
230 /* ARGSUSED */
231 /*
232 * ntp_adjtime() - NTP daemon application interface
233 */
234 int
235 sys_ntp_adjtime(l, v, retval)
236 struct lwp *l;
237 void *v;
238 register_t *retval;
239 {
240 struct sys_ntp_adjtime_args /* {
241 syscallarg(struct timex *) tp;
242 } */ *uap = v;
243 struct timex ntv;
244 int error = 0;
245
246 error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv, sizeof(ntv));
247 if (error != 0)
248 return (error);
249
250 if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
251 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
252 NULL, NULL)) != 0)
253 return (error);
254
255 ntp_adjtime1(&ntv);
256
257 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
258 if (!error)
259 *retval = ntp_timestatus();
260
261 return error;
262 }
263
264 void
265 ntp_adjtime1(ntv)
266 struct timex *ntv;
267 {
268 long freq;
269 int modes;
270 int s;
271
272 /*
273 * Update selected clock variables - only the superuser can
274 * change anything. Note that there is no error checking here on
275 * the assumption the superuser should know what it is doing.
276 * Note that either the time constant or TAI offset are loaded
277 * from the ntv.constant member, depending on the mode bits. If
278 * the STA_PLL bit in the status word is cleared, the state and
279 * status words are reset to the initial values at boot.
280 */
281 modes = ntv->modes;
282 if (modes != 0)
283 /* We need to save the system time during shutdown */
284 time_adjusted |= 2;
285 s = splclock();
286 if (modes & MOD_MAXERROR)
287 time_maxerror = ntv->maxerror;
288 if (modes & MOD_ESTERROR)
289 time_esterror = ntv->esterror;
290 if (modes & MOD_STATUS) {
291 if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
292 time_state = TIME_OK;
293 time_status = STA_UNSYNC;
294 #ifdef PPS_SYNC
295 pps_shift = PPS_FAVG;
296 #endif /* PPS_SYNC */
297 }
298 time_status &= STA_RONLY;
299 time_status |= ntv->status & ~STA_RONLY;
300 }
301 if (modes & MOD_TIMECONST) {
302 if (ntv->constant < 0)
303 time_constant = 0;
304 else if (ntv->constant > MAXTC)
305 time_constant = MAXTC;
306 else
307 time_constant = ntv->constant;
308 }
309 if (modes & MOD_TAI) {
310 if (ntv->constant > 0) /* XXX zero & negative numbers ? */
311 time_tai = ntv->constant;
312 }
313 #ifdef PPS_SYNC
314 if (modes & MOD_PPSMAX) {
315 if (ntv->shift < PPS_FAVG)
316 pps_shiftmax = PPS_FAVG;
317 else if (ntv->shift > PPS_FAVGMAX)
318 pps_shiftmax = PPS_FAVGMAX;
319 else
320 pps_shiftmax = ntv->shift;
321 }
322 #endif /* PPS_SYNC */
323 if (modes & MOD_NANO)
324 time_status |= STA_NANO;
325 if (modes & MOD_MICRO)
326 time_status &= ~STA_NANO;
327 if (modes & MOD_CLKB)
328 time_status |= STA_CLK;
329 if (modes & MOD_CLKA)
330 time_status &= ~STA_CLK;
331 if (modes & MOD_FREQUENCY) {
332 freq = (ntv->freq * 1000LL) >> 16;
333 if (freq > MAXFREQ)
334 L_LINT(time_freq, MAXFREQ);
335 else if (freq < -MAXFREQ)
336 L_LINT(time_freq, -MAXFREQ);
337 else {
338 /*
339 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
340 * time_freq is [ns/s * 2^32]
341 */
342 time_freq = ntv->freq * 1000LL * 65536LL;
343 }
344 #ifdef PPS_SYNC
345 pps_freq = time_freq;
346 #endif /* PPS_SYNC */
347 }
348 if (modes & MOD_OFFSET) {
349 if (time_status & STA_NANO)
350 hardupdate(ntv->offset);
351 else
352 hardupdate(ntv->offset * 1000);
353 }
354
355 /*
356 * Retrieve all clock variables. Note that the TAI offset is
357 * returned only by ntp_gettime();
358 */
359 if (time_status & STA_NANO)
360 ntv->offset = L_GINT(time_offset);
361 else
362 ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
363 ntv->freq = L_GINT((time_freq / 1000LL) << 16);
364 ntv->maxerror = time_maxerror;
365 ntv->esterror = time_esterror;
366 ntv->status = time_status;
367 ntv->constant = time_constant;
368 if (time_status & STA_NANO)
369 ntv->precision = time_precision;
370 else
371 ntv->precision = time_precision / 1000;
372 ntv->tolerance = MAXFREQ * SCALE_PPM;
373 #ifdef PPS_SYNC
374 ntv->shift = pps_shift;
375 ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
376 if (time_status & STA_NANO)
377 ntv->jitter = pps_jitter;
378 else
379 ntv->jitter = pps_jitter / 1000;
380 ntv->stabil = pps_stabil;
381 ntv->calcnt = pps_calcnt;
382 ntv->errcnt = pps_errcnt;
383 ntv->jitcnt = pps_jitcnt;
384 ntv->stbcnt = pps_stbcnt;
385 #endif /* PPS_SYNC */
386 splx(s);
387 }
388 #endif /* NTP */
389
390 /*
391 * second_overflow() - called after ntp_tick_adjust()
392 *
393 * This routine is ordinarily called immediately following the above
394 * routine ntp_tick_adjust(). While these two routines are normally
395 * combined, they are separated here only for the purposes of
396 * simulation.
397 */
398 void
399 ntp_update_second(int64_t *adjustment, time_t *newsec)
400 {
401 int tickrate;
402 l_fp ftemp; /* 32/64-bit temporary */
403
404 #ifdef NTP
405
406 /*
407 * On rollover of the second both the nanosecond and microsecond
408 * clocks are updated and the state machine cranked as
409 * necessary. The phase adjustment to be used for the next
410 * second is calculated and the maximum error is increased by
411 * the tolerance.
412 */
413 time_maxerror += MAXFREQ / 1000;
414
415 /*
416 * Leap second processing. If in leap-insert state at
417 * the end of the day, the system clock is set back one
418 * second; if in leap-delete state, the system clock is
419 * set ahead one second. The nano_time() routine or
420 * external clock driver will insure that reported time
421 * is always monotonic.
422 */
423 switch (time_state) {
424
425 /*
426 * No warning.
427 */
428 case TIME_OK:
429 if (time_status & STA_INS)
430 time_state = TIME_INS;
431 else if (time_status & STA_DEL)
432 time_state = TIME_DEL;
433 break;
434
435 /*
436 * Insert second 23:59:60 following second
437 * 23:59:59.
438 */
439 case TIME_INS:
440 if (!(time_status & STA_INS))
441 time_state = TIME_OK;
442 else if ((*newsec) % 86400 == 0) {
443 (*newsec)--;
444 time_state = TIME_OOP;
445 time_tai++;
446 }
447 break;
448
449 /*
450 * Delete second 23:59:59.
451 */
452 case TIME_DEL:
453 if (!(time_status & STA_DEL))
454 time_state = TIME_OK;
455 else if (((*newsec) + 1) % 86400 == 0) {
456 (*newsec)++;
457 time_tai--;
458 time_state = TIME_WAIT;
459 }
460 break;
461
462 /*
463 * Insert second in progress.
464 */
465 case TIME_OOP:
466 time_state = TIME_WAIT;
467 break;
468
469 /*
470 * Wait for status bits to clear.
471 */
472 case TIME_WAIT:
473 if (!(time_status & (STA_INS | STA_DEL)))
474 time_state = TIME_OK;
475 }
476
477 /*
478 * Compute the total time adjustment for the next second
479 * in ns. The offset is reduced by a factor depending on
480 * whether the PPS signal is operating. Note that the
481 * value is in effect scaled by the clock frequency,
482 * since the adjustment is added at each tick interrupt.
483 */
484 ftemp = time_offset;
485 #ifdef PPS_SYNC
486 /* XXX even if PPS signal dies we should finish adjustment ? */
487 if (time_status & STA_PPSTIME && time_status &
488 STA_PPSSIGNAL)
489 L_RSHIFT(ftemp, pps_shift);
490 else
491 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
492 #else
493 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
494 #endif /* PPS_SYNC */
495 time_adj = ftemp;
496 L_SUB(time_offset, ftemp);
497 L_ADD(time_adj, time_freq);
498
499 #ifdef PPS_SYNC
500 if (pps_valid > 0)
501 pps_valid--;
502 else
503 time_status &= ~STA_PPSSIGNAL;
504 #endif /* PPS_SYNC */
505 #else /* !NTP */
506 do { if (&newsec) {} } while (/* CONSTCOND */ 0); /* quiet -Wunused */
507 L_CLR(time_adj);
508 #endif /* !NTP */
509
510 /*
511 * Apply any correction from adjtime(2). If more than one second
512 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
513 * until the last second is slewed the final < 500 usecs.
514 */
515 if (time_adjtime != 0) {
516 if (time_adjtime > 1000000)
517 tickrate = 5000;
518 else if (time_adjtime < -1000000)
519 tickrate = -5000;
520 else if (time_adjtime > 500)
521 tickrate = 500;
522 else if (time_adjtime < -500)
523 tickrate = -500;
524 else
525 tickrate = time_adjtime;
526 time_adjtime -= tickrate;
527 L_LINT(ftemp, tickrate * 1000);
528 L_ADD(time_adj, ftemp);
529 }
530 *adjustment = time_adj;
531 }
532
533 /*
534 * ntp_init() - initialize variables and structures
535 *
536 * This routine must be called after the kernel variables hz and tick
537 * are set or changed and before the next tick interrupt. In this
538 * particular implementation, these values are assumed set elsewhere in
539 * the kernel. The design allows the clock frequency and tick interval
540 * to be changed while the system is running. So, this routine should
541 * probably be integrated with the code that does that.
542 */
543 void
544 ntp_init(void)
545 {
546
547 /*
548 * The following variables are initialized only at startup. Only
549 * those structures not cleared by the compiler need to be
550 * initialized, and these only in the simulator. In the actual
551 * kernel, any nonzero values here will quickly evaporate.
552 */
553 L_CLR(time_adj);
554 #ifdef NTP
555 L_CLR(time_offset);
556 L_CLR(time_freq);
557 #ifdef PPS_SYNC
558 pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
559 pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
560 pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
561 pps_fcount = 0;
562 L_CLR(pps_freq);
563 #endif /* PPS_SYNC */
564 #endif
565 }
566
567 #ifdef NTP
568 /*
569 * hardupdate() - local clock update
570 *
571 * This routine is called by ntp_adjtime() to update the local clock
572 * phase and frequency. The implementation is of an adaptive-parameter,
573 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
574 * time and frequency offset estimates for each call. If the kernel PPS
575 * discipline code is configured (PPS_SYNC), the PPS signal itself
576 * determines the new time offset, instead of the calling argument.
577 * Presumably, calls to ntp_adjtime() occur only when the caller
578 * believes the local clock is valid within some bound (+-128 ms with
579 * NTP). If the caller's time is far different than the PPS time, an
580 * argument will ensue, and it's not clear who will lose.
581 *
582 * For uncompensated quartz crystal oscillators and nominal update
583 * intervals less than 256 s, operation should be in phase-lock mode,
584 * where the loop is disciplined to phase. For update intervals greater
585 * than 1024 s, operation should be in frequency-lock mode, where the
586 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
587 * is selected by the STA_MODE status bit.
588 *
589 * Note: splclock() is in effect.
590 */
591 void
592 hardupdate(long offset)
593 {
594 long mtemp;
595 l_fp ftemp;
596
597 /*
598 * Select how the phase is to be controlled and from which
599 * source. If the PPS signal is present and enabled to
600 * discipline the time, the PPS offset is used; otherwise, the
601 * argument offset is used.
602 */
603 if (!(time_status & STA_PLL))
604 return;
605 if (!(time_status & STA_PPSTIME && time_status &
606 STA_PPSSIGNAL)) {
607 if (offset > MAXPHASE)
608 time_monitor = MAXPHASE;
609 else if (offset < -MAXPHASE)
610 time_monitor = -MAXPHASE;
611 else
612 time_monitor = offset;
613 L_LINT(time_offset, time_monitor);
614 }
615
616 /*
617 * Select how the frequency is to be controlled and in which
618 * mode (PLL or FLL). If the PPS signal is present and enabled
619 * to discipline the frequency, the PPS frequency is used;
620 * otherwise, the argument offset is used to compute it.
621 */
622 if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
623 time_reftime = time_second;
624 return;
625 }
626 if (time_status & STA_FREQHOLD || time_reftime == 0)
627 time_reftime = time_second;
628 mtemp = time_second - time_reftime;
629 L_LINT(ftemp, time_monitor);
630 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
631 L_MPY(ftemp, mtemp);
632 L_ADD(time_freq, ftemp);
633 time_status &= ~STA_MODE;
634 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
635 MAXSEC)) {
636 L_LINT(ftemp, (time_monitor << 4) / mtemp);
637 L_RSHIFT(ftemp, SHIFT_FLL + 4);
638 L_ADD(time_freq, ftemp);
639 time_status |= STA_MODE;
640 }
641 time_reftime = time_second;
642 if (L_GINT(time_freq) > MAXFREQ)
643 L_LINT(time_freq, MAXFREQ);
644 else if (L_GINT(time_freq) < -MAXFREQ)
645 L_LINT(time_freq, -MAXFREQ);
646 }
647
648 #ifdef PPS_SYNC
649 /*
650 * hardpps() - discipline CPU clock oscillator to external PPS signal
651 *
652 * This routine is called at each PPS interrupt in order to discipline
653 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
654 * and leaves it in a handy spot for the hardclock() routine. It
655 * integrates successive PPS phase differences and calculates the
656 * frequency offset. This is used in hardclock() to discipline the CPU
657 * clock oscillator so that intrinsic frequency error is cancelled out.
658 * The code requires the caller to capture the time and hardware counter
659 * value at the on-time PPS signal transition.
660 *
661 * Note that, on some Unix systems, this routine runs at an interrupt
662 * priority level higher than the timer interrupt routine hardclock().
663 * Therefore, the variables used are distinct from the hardclock()
664 * variables, except for certain exceptions: The PPS frequency pps_freq
665 * and phase pps_offset variables are determined by this routine and
666 * updated atomically. The time_tolerance variable can be considered a
667 * constant, since it is infrequently changed, and then only when the
668 * PPS signal is disabled. The watchdog counter pps_valid is updated
669 * once per second by hardclock() and is atomically cleared in this
670 * routine.
671 */
672 void
673 hardpps(struct timespec *tsp, /* time at PPS */
674 long nsec /* hardware counter at PPS */)
675 {
676 long u_sec, u_nsec, v_nsec; /* temps */
677 l_fp ftemp;
678
679 /*
680 * The signal is first processed by a range gate and frequency
681 * discriminator. The range gate rejects noise spikes outside
682 * the range +-500 us. The frequency discriminator rejects input
683 * signals with apparent frequency outside the range 1 +-500
684 * PPM. If two hits occur in the same second, we ignore the
685 * later hit; if not and a hit occurs outside the range gate,
686 * keep the later hit for later comparison, but do not process
687 * it.
688 */
689 time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
690 time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
691 pps_valid = PPS_VALID;
692 u_sec = tsp->tv_sec;
693 u_nsec = tsp->tv_nsec;
694 if (u_nsec >= (NANOSECOND >> 1)) {
695 u_nsec -= NANOSECOND;
696 u_sec++;
697 }
698 v_nsec = u_nsec - pps_tf[0].tv_nsec;
699 if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
700 MAXFREQ)
701 return;
702 pps_tf[2] = pps_tf[1];
703 pps_tf[1] = pps_tf[0];
704 pps_tf[0].tv_sec = u_sec;
705 pps_tf[0].tv_nsec = u_nsec;
706
707 /*
708 * Compute the difference between the current and previous
709 * counter values. If the difference exceeds 0.5 s, assume it
710 * has wrapped around, so correct 1.0 s. If the result exceeds
711 * the tick interval, the sample point has crossed a tick
712 * boundary during the last second, so correct the tick. Very
713 * intricate.
714 */
715 u_nsec = nsec;
716 if (u_nsec > (NANOSECOND >> 1))
717 u_nsec -= NANOSECOND;
718 else if (u_nsec < -(NANOSECOND >> 1))
719 u_nsec += NANOSECOND;
720 pps_fcount += u_nsec;
721 if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
722 return;
723 time_status &= ~STA_PPSJITTER;
724
725 /*
726 * A three-stage median filter is used to help denoise the PPS
727 * time. The median sample becomes the time offset estimate; the
728 * difference between the other two samples becomes the time
729 * dispersion (jitter) estimate.
730 */
731 if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
732 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
733 v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
734 u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
735 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
736 v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
737 u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
738 } else {
739 v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
740 u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
741 }
742 } else {
743 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
744 v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
745 u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
746 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
747 v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
748 u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
749 } else {
750 v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
751 u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
752 }
753 }
754
755 /*
756 * Nominal jitter is due to PPS signal noise and interrupt
757 * latency. If it exceeds the popcorn threshold, the sample is
758 * discarded. otherwise, if so enabled, the time offset is
759 * updated. We can tolerate a modest loss of data here without
760 * much degrading time accuracy.
761 */
762 if (u_nsec > (pps_jitter << PPS_POPCORN)) {
763 time_status |= STA_PPSJITTER;
764 pps_jitcnt++;
765 } else if (time_status & STA_PPSTIME) {
766 time_monitor = -v_nsec;
767 L_LINT(time_offset, time_monitor);
768 }
769 pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
770 u_sec = pps_tf[0].tv_sec - pps_lastsec;
771 if (u_sec < (1 << pps_shift))
772 return;
773
774 /*
775 * At the end of the calibration interval the difference between
776 * the first and last counter values becomes the scaled
777 * frequency. It will later be divided by the length of the
778 * interval to determine the frequency update. If the frequency
779 * exceeds a sanity threshold, or if the actual calibration
780 * interval is not equal to the expected length, the data are
781 * discarded. We can tolerate a modest loss of data here without
782 * much degrading frequency accuracy.
783 */
784 pps_calcnt++;
785 v_nsec = -pps_fcount;
786 pps_lastsec = pps_tf[0].tv_sec;
787 pps_fcount = 0;
788 u_nsec = MAXFREQ << pps_shift;
789 if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
790 pps_shift)) {
791 time_status |= STA_PPSERROR;
792 pps_errcnt++;
793 return;
794 }
795
796 /*
797 * Here the raw frequency offset and wander (stability) is
798 * calculated. If the wander is less than the wander threshold
799 * for four consecutive averaging intervals, the interval is
800 * doubled; if it is greater than the threshold for four
801 * consecutive intervals, the interval is halved. The scaled
802 * frequency offset is converted to frequency offset. The
803 * stability metric is calculated as the average of recent
804 * frequency changes, but is used only for performance
805 * monitoring.
806 */
807 L_LINT(ftemp, v_nsec);
808 L_RSHIFT(ftemp, pps_shift);
809 L_SUB(ftemp, pps_freq);
810 u_nsec = L_GINT(ftemp);
811 if (u_nsec > PPS_MAXWANDER) {
812 L_LINT(ftemp, PPS_MAXWANDER);
813 pps_intcnt--;
814 time_status |= STA_PPSWANDER;
815 pps_stbcnt++;
816 } else if (u_nsec < -PPS_MAXWANDER) {
817 L_LINT(ftemp, -PPS_MAXWANDER);
818 pps_intcnt--;
819 time_status |= STA_PPSWANDER;
820 pps_stbcnt++;
821 } else {
822 pps_intcnt++;
823 }
824 if (pps_intcnt >= 4) {
825 pps_intcnt = 4;
826 if (pps_shift < pps_shiftmax) {
827 pps_shift++;
828 pps_intcnt = 0;
829 }
830 } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
831 pps_intcnt = -4;
832 if (pps_shift > PPS_FAVG) {
833 pps_shift--;
834 pps_intcnt = 0;
835 }
836 }
837 if (u_nsec < 0)
838 u_nsec = -u_nsec;
839 pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
840
841 /*
842 * The PPS frequency is recalculated and clamped to the maximum
843 * MAXFREQ. If enabled, the system clock frequency is updated as
844 * well.
845 */
846 L_ADD(pps_freq, ftemp);
847 u_nsec = L_GINT(pps_freq);
848 if (u_nsec > MAXFREQ)
849 L_LINT(pps_freq, MAXFREQ);
850 else if (u_nsec < -MAXFREQ)
851 L_LINT(pps_freq, -MAXFREQ);
852 if (time_status & STA_PPSFREQ)
853 time_freq = pps_freq;
854 }
855 #endif /* PPS_SYNC */
856 #endif /* NTP */
857 #else /* !__HAVE_TIMECOUNTER */
858 /******************************************************************************
859 * *
860 * Copyright (c) David L. Mills 1993, 1994 *
861 * *
862 * Permission to use, copy, modify, and distribute this software and its *
863 * documentation for any purpose and without fee is hereby granted, provided *
864 * that the above copyright notice appears in all copies and that both the *
865 * copyright notice and this permission notice appear in supporting *
866 * documentation, and that the name University of Delaware not be used in *
867 * advertising or publicity pertaining to distribution of the software *
868 * without specific, written prior permission. The University of Delaware *
869 * makes no representations about the suitability this software for any *
870 * purpose. It is provided "as is" without express or implied warranty. *
871 * *
872 ******************************************************************************/
873
874 /*
875 * Modification history kern_ntptime.c
876 *
877 * 24 Sep 94 David L. Mills
878 * Tightened code at exits.
879 *
880 * 24 Mar 94 David L. Mills
881 * Revised syscall interface to include new variables for PPS
882 * time discipline.
883 *
884 * 14 Feb 94 David L. Mills
885 * Added code for external clock
886 *
887 * 28 Nov 93 David L. Mills
888 * Revised frequency scaling to conform with adjusted parameters
889 *
890 * 17 Sep 93 David L. Mills
891 * Created file
892 */
893 /*
894 * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
895 * V4.1.1 and V4.1.3
896 *
897 * These routines consitute the Network Time Protocol (NTP) interfaces
898 * for user and daemon application programs. The ntp_gettime() routine
899 * provides the time, maximum error (synch distance) and estimated error
900 * (dispersion) to client user application programs. The ntp_adjtime()
901 * routine is used by the NTP daemon to adjust the system clock to an
902 * externally derived time. The time offset and related variables set by
903 * this routine are used by hardclock() to adjust the phase and
904 * frequency of the phase-lock loop which controls the system clock.
905 */
906
907 #include <sys/cdefs.h>
908 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.39 2006/10/13 16:53:36 dogcow Exp $");
909
910 #include "opt_ntp.h"
911 #include "opt_compat_netbsd.h"
912
913 #include <sys/param.h>
914 #include <sys/resourcevar.h>
915 #include <sys/systm.h>
916 #include <sys/kernel.h>
917 #include <sys/proc.h>
918 #include <sys/sysctl.h>
919 #include <sys/timex.h>
920 #ifdef COMPAT_30
921 #include <compat/sys/timex.h>
922 #endif
923 #include <sys/vnode.h>
924 #include <sys/kauth.h>
925
926 #include <sys/mount.h>
927 #include <sys/sa.h>
928 #include <sys/syscallargs.h>
929
930 #include <machine/cpu.h>
931
932 #ifdef NTP
933 /*
934 * The following variables are used by the hardclock() routine in the
935 * kern_clock.c module and are described in that module.
936 */
937 extern int time_state; /* clock state */
938 extern int time_status; /* clock status bits */
939 extern long time_offset; /* time adjustment (us) */
940 extern long time_freq; /* frequency offset (scaled ppm) */
941 extern long time_maxerror; /* maximum error (us) */
942 extern long time_esterror; /* estimated error (us) */
943 extern long time_constant; /* pll time constant */
944 extern long time_precision; /* clock precision (us) */
945 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
946 extern int time_adjusted; /* ntp might have changed the system time */
947
948 #ifdef PPS_SYNC
949 /*
950 * The following variables are used only if the PPS signal discipline
951 * is configured in the kernel.
952 */
953 extern int pps_shift; /* interval duration (s) (shift) */
954 extern long pps_freq; /* pps frequency offset (scaled ppm) */
955 extern long pps_jitter; /* pps jitter (us) */
956 extern long pps_stabil; /* pps stability (scaled ppm) */
957 extern long pps_jitcnt; /* jitter limit exceeded */
958 extern long pps_calcnt; /* calibration intervals */
959 extern long pps_errcnt; /* calibration errors */
960 extern long pps_stbcnt; /* stability limit exceeded */
961 #endif /* PPS_SYNC */
962
963 /*ARGSUSED*/
964 /*
965 * ntp_gettime() - NTP user application interface
966 */
967 void
968 ntp_gettime(ntvp)
969 struct ntptimeval *ntvp;
970 {
971 struct timeval atv;
972 int s;
973
974 memset(ntvp, 0, sizeof(struct ntptimeval));
975
976 s = splclock();
977 #ifdef EXT_CLOCK
978 /*
979 * The microtime() external clock routine returns a
980 * status code. If less than zero, we declare an error
981 * in the clock status word and return the kernel
982 * (software) time variable. While there are other
983 * places that call microtime(), this is the only place
984 * that matters from an application point of view.
985 */
986 if (microtime(&atv) < 0) {
987 time_status |= STA_CLOCKERR;
988 ntvp->time = time;
989 } else
990 time_status &= ~STA_CLOCKERR;
991 #else /* EXT_CLOCK */
992 microtime(&atv);
993 #endif /* EXT_CLOCK */
994 ntvp->maxerror = time_maxerror;
995 ntvp->esterror = time_esterror;
996 (void) splx(s);
997 TIMEVAL_TO_TIMESPEC(&atv, &ntvp->time);
998 }
999
1000
1001 /* ARGSUSED */
1002 /*
1003 * ntp_adjtime() - NTP daemon application interface
1004 */
1005 int
1006 sys_ntp_adjtime(l, v, retval)
1007 struct lwp *l;
1008 void *v;
1009 register_t *retval;
1010 {
1011 struct sys_ntp_adjtime_args /* {
1012 syscallarg(struct timex *) tp;
1013 } */ *uap = v;
1014 struct timex ntv;
1015 int error = 0;
1016
1017 error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv, sizeof(ntv));
1018 if (error != 0)
1019 return (error);
1020
1021 if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
1022 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
1023 NULL, NULL)) != 0)
1024 return (error);
1025
1026 ntp_adjtime1(&ntv);
1027
1028 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
1029 if (error == 0)
1030 *retval = ntp_timestatus();
1031
1032 return error;
1033 }
1034
1035 void
1036 ntp_adjtime1(ntv)
1037 struct timex *ntv;
1038 {
1039 int modes;
1040 int s;
1041
1042 /*
1043 * Update selected clock variables. Note that there is no error
1044 * checking here on the assumption the superuser should know
1045 * what it is doing.
1046 */
1047 modes = ntv->modes;
1048 if (modes != 0)
1049 /* We need to save the system time during shutdown */
1050 time_adjusted |= 2;
1051 s = splclock();
1052 if (modes & MOD_FREQUENCY)
1053 #ifdef PPS_SYNC
1054 time_freq = ntv->freq - pps_freq;
1055 #else /* PPS_SYNC */
1056 time_freq = ntv->freq;
1057 #endif /* PPS_SYNC */
1058 if (modes & MOD_MAXERROR)
1059 time_maxerror = ntv->maxerror;
1060 if (modes & MOD_ESTERROR)
1061 time_esterror = ntv->esterror;
1062 if (modes & MOD_STATUS) {
1063 time_status &= STA_RONLY;
1064 time_status |= ntv->status & ~STA_RONLY;
1065 }
1066 if (modes & MOD_TIMECONST)
1067 time_constant = ntv->constant;
1068 if (modes & MOD_OFFSET)
1069 hardupdate(ntv->offset);
1070
1071 /*
1072 * Retrieve all clock variables
1073 */
1074 if (time_offset < 0)
1075 ntv->offset = -(-time_offset >> SHIFT_UPDATE);
1076 else
1077 ntv->offset = time_offset >> SHIFT_UPDATE;
1078 #ifdef PPS_SYNC
1079 ntv->freq = time_freq + pps_freq;
1080 #else /* PPS_SYNC */
1081 ntv->freq = time_freq;
1082 #endif /* PPS_SYNC */
1083 ntv->maxerror = time_maxerror;
1084 ntv->esterror = time_esterror;
1085 ntv->status = time_status;
1086 ntv->constant = time_constant;
1087 ntv->precision = time_precision;
1088 ntv->tolerance = time_tolerance;
1089 #ifdef PPS_SYNC
1090 ntv->shift = pps_shift;
1091 ntv->ppsfreq = pps_freq;
1092 ntv->jitter = pps_jitter >> PPS_AVG;
1093 ntv->stabil = pps_stabil;
1094 ntv->calcnt = pps_calcnt;
1095 ntv->errcnt = pps_errcnt;
1096 ntv->jitcnt = pps_jitcnt;
1097 ntv->stbcnt = pps_stbcnt;
1098 #endif /* PPS_SYNC */
1099 (void)splx(s);
1100 }
1101 #endif /* NTP */
1102 #endif /* !__HAVE_TIMECOUNTER */
1103
1104 #ifdef NTP
1105 int
1106 ntp_timestatus()
1107 {
1108 /*
1109 * Status word error decode. If any of these conditions
1110 * occur, an error is returned, instead of the status
1111 * word. Most applications will care only about the fact
1112 * the system clock may not be trusted, not about the
1113 * details.
1114 *
1115 * Hardware or software error
1116 */
1117 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1118
1119 /*
1120 * PPS signal lost when either time or frequency
1121 * synchronization requested
1122 */
1123 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1124 !(time_status & STA_PPSSIGNAL)) ||
1125
1126 /*
1127 * PPS jitter exceeded when time synchronization
1128 * requested
1129 */
1130 (time_status & STA_PPSTIME &&
1131 time_status & STA_PPSJITTER) ||
1132
1133 /*
1134 * PPS wander exceeded or calibration error when
1135 * frequency synchronization requested
1136 */
1137 (time_status & STA_PPSFREQ &&
1138 time_status & (STA_PPSWANDER | STA_PPSERROR)))
1139 return (TIME_ERROR);
1140 else
1141 return (time_state);
1142 }
1143
1144 /*ARGSUSED*/
1145 /*
1146 * ntp_gettime() - NTP user application interface
1147 */
1148 int
1149 sys___ntp_gettime30(struct lwp *l __unused, void *v, register_t *retval)
1150 {
1151 struct sys___ntp_gettime30_args /* {
1152 syscallarg(struct ntptimeval *) ntvp;
1153 } */ *uap = v;
1154 struct ntptimeval ntv;
1155 int error = 0;
1156
1157 if (SCARG(uap, ntvp)) {
1158 ntp_gettime(&ntv);
1159
1160 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
1161 sizeof(ntv));
1162 }
1163 if (!error) {
1164 *retval = ntp_timestatus();
1165 }
1166 return(error);
1167 }
1168
1169 #ifdef COMPAT_30
1170 int
1171 compat_30_sys_ntp_gettime(struct lwp *l __unused, void *v, register_t *retval)
1172 {
1173 struct compat_30_sys_ntp_gettime_args /* {
1174 syscallarg(struct ntptimeval30 *) ontvp;
1175 } */ *uap = v;
1176 struct ntptimeval ntv;
1177 struct ntptimeval30 ontv;
1178 int error = 0;
1179
1180 if (SCARG(uap, ntvp)) {
1181 ntp_gettime(&ntv);
1182 TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
1183 ontv.maxerror = ntv.maxerror;
1184 ontv.esterror = ntv.esterror;
1185
1186 error = copyout((caddr_t)&ontv, (caddr_t)SCARG(uap, ntvp),
1187 sizeof(ontv));
1188 }
1189 if (!error)
1190 *retval = ntp_timestatus();
1191
1192 return (error);
1193 }
1194 #endif
1195
1196 /*
1197 * return information about kernel precision timekeeping
1198 */
1199 static int
1200 sysctl_kern_ntptime(SYSCTLFN_ARGS)
1201 {
1202 struct sysctlnode node;
1203 struct ntptimeval ntv;
1204
1205 ntp_gettime(&ntv);
1206
1207 node = *rnode;
1208 node.sysctl_data = &ntv;
1209 node.sysctl_size = sizeof(ntv);
1210 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1211 }
1212
1213 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
1214 {
1215
1216 sysctl_createv(clog, 0, NULL, NULL,
1217 CTLFLAG_PERMANENT,
1218 CTLTYPE_NODE, "kern", NULL,
1219 NULL, 0, NULL, 0,
1220 CTL_KERN, CTL_EOL);
1221
1222 sysctl_createv(clog, 0, NULL, NULL,
1223 CTLFLAG_PERMANENT,
1224 CTLTYPE_STRUCT, "ntptime",
1225 SYSCTL_DESCR("Kernel clock values for NTP"),
1226 sysctl_kern_ntptime, 0, NULL,
1227 sizeof(struct ntptimeval),
1228 CTL_KERN, KERN_NTPTIME, CTL_EOL);
1229 }
1230 #else /* !NTP */
1231 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
1232
1233 int
1234 sys___ntp_gettime30(l, v, retval)
1235 struct lwp *l __unused;
1236 void *v __unused;
1237 register_t *retval __unused;
1238 {
1239
1240 return(ENOSYS);
1241 }
1242
1243 #ifdef COMPAT_30
1244 int
1245 compat_30_sys_ntp_gettime(l, v, retval)
1246 struct lwp *l __unused;
1247 void *v __unused;
1248 register_t *retval __unused;
1249 {
1250
1251 return(ENOSYS);
1252 }
1253 #endif
1254 #endif /* !NTP */
1255