kern_ntptime.c revision 1.4 1 /* $NetBSD: kern_ntptime.c,v 1.4 1996/12/06 20:10:51 thorpej Exp $ */
2
3 /******************************************************************************
4 * *
5 * Copyright (c) David L. Mills 1993, 1994 *
6 * *
7 * Permission to use, copy, modify, and distribute this software and its *
8 * documentation for any purpose and without fee is hereby granted, provided *
9 * that the above copyright notice appears in all copies and that both the *
10 * copyright notice and this permission notice appear in supporting *
11 * documentation, and that the name University of Delaware not be used in *
12 * advertising or publicity pertaining to distribution of the software *
13 * without specific, written prior permission. The University of Delaware *
14 * makes no representations about the suitability this software for any *
15 * purpose. It is provided "as is" without express or implied warranty. *
16 * *
17 ******************************************************************************/
18
19 /*
20 * Modification history kern_ntptime.c
21 *
22 * 24 Sep 94 David L. Mills
23 * Tightened code at exits.
24 *
25 * 24 Mar 94 David L. Mills
26 * Revised syscall interface to include new variables for PPS
27 * time discipline.
28 *
29 * 14 Feb 94 David L. Mills
30 * Added code for external clock
31 *
32 * 28 Nov 93 David L. Mills
33 * Revised frequency scaling to conform with adjusted parameters
34 *
35 * 17 Sep 93 David L. Mills
36 * Created file
37 */
38 /*
39 * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
40 * V4.1.1 and V4.1.3
41 *
42 * These routines consitute the Network Time Protocol (NTP) interfaces
43 * for user and daemon application programs. The ntp_gettime() routine
44 * provides the time, maximum error (synch distance) and estimated error
45 * (dispersion) to client user application programs. The ntp_adjtime()
46 * routine is used by the NTP daemon to adjust the system clock to an
47 * externally derived time. The time offset and related variables set by
48 * this routine are used by hardclock() to adjust the phase and
49 * frequency of the phase-lock loop which controls the system clock.
50 */
51 #include <sys/param.h>
52 #include <sys/resourcevar.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/proc.h>
56 #include <sys/timex.h>
57 #include <sys/vnode.h>
58
59 #include <sys/mount.h>
60 #include <sys/syscallargs.h>
61
62 #include <machine/cpu.h>
63
64 #include <vm/vm.h>
65 #include <sys/sysctl.h>
66
67 #ifdef NTP
68
69 /*
70 * The following variables are used by the hardclock() routine in the
71 * kern_clock.c module and are described in that module.
72 */
73 extern struct timeval time; /* kernel time variable */
74 extern int time_state; /* clock state */
75 extern int time_status; /* clock status bits */
76 extern long time_offset; /* time adjustment (us) */
77 extern long time_freq; /* frequency offset (scaled ppm) */
78 extern long time_maxerror; /* maximum error (us) */
79 extern long time_esterror; /* estimated error (us) */
80 extern long time_constant; /* pll time constant */
81 extern long time_precision; /* clock precision (us) */
82 extern long time_tolerance; /* frequency tolerance (scaled ppm) */
83
84 #ifdef PPS_SYNC
85 /*
86 * The following variables are used only if the PPS signal discipline
87 * is configured in the kernel.
88 */
89 extern int pps_shift; /* interval duration (s) (shift) */
90 extern long pps_freq; /* pps frequency offset (scaled ppm) */
91 extern long pps_jitter; /* pps jitter (us) */
92 extern long pps_stabil; /* pps stability (scaled ppm) */
93 extern long pps_jitcnt; /* jitter limit exceeded */
94 extern long pps_calcnt; /* calibration intervals */
95 extern long pps_errcnt; /* calibration errors */
96 extern long pps_stbcnt; /* stability limit exceeded */
97 #endif /* PPS_SYNC */
98
99
100
101 /*ARGSUSED*/
102 /*
103 * ntp_gettime() - NTP user application interface
104 */
105 int
106 sys_ntp_gettime(p, v, retval)
107 struct proc *p;
108 void *v;
109 register_t *retval;
110
111 {
112 struct sys_ntp_gettime_args /* {
113 syscallarg(struct timex *) tp;
114 } */ *uap = v;
115 struct timeval atv;
116 struct ntptimeval ntv;
117 int error = 0;
118 int s;
119
120 if (SCARG(uap, tp)) {
121 s = splclock();
122 #ifdef EXT_CLOCK
123 /*
124 * The microtime() external clock routine returns a
125 * status code. If less than zero, we declare an error
126 * in the clock status word and return the kernel
127 * (software) time variable. While there are other
128 * places that call microtime(), this is the only place
129 * that matters from an application point of view.
130 */
131 if (microtime(&atv) < 0) {
132 time_status |= STA_CLOCKERR;
133 ntv.time = time;
134 } else
135 time_status &= ~STA_CLOCKERR;
136 #else /* EXT_CLOCK */
137 microtime(&atv);
138 #endif /* EXT_CLOCK */
139 ntv.time = atv;
140 ntv.maxerror = time_maxerror;
141 ntv.esterror = time_esterror;
142 (void) splx(s);
143
144 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp),
145 sizeof (ntv));
146 }
147 if (!error) {
148
149 /*
150 * Status word error decode. If any of these conditions
151 * occur, an error is returned, instead of the status
152 * word. Most applications will care only about the fact
153 * the system clock may not be trusted, not about the
154 * details.
155 *
156 * Hardware or software error
157 */
158 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
159
160 /*
161 * PPS signal lost when either time or frequency
162 * synchronization requested
163 */
164 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
165 !(time_status & STA_PPSSIGNAL)) ||
166
167 /*
168 * PPS jitter exceeded when time synchronization
169 * requested
170 */
171 (time_status & STA_PPSTIME &&
172 time_status & STA_PPSJITTER) ||
173
174 /*
175 * PPS wander exceeded or calibration error when
176 * frequency synchronization requested
177 */
178 (time_status & STA_PPSFREQ &&
179 time_status & (STA_PPSWANDER | STA_PPSERROR)))
180 *retval = TIME_ERROR;
181 else
182 *retval = (register_t)time_state;
183 }
184 return(error);
185 }
186
187
188 /* ARGSUSED */
189 /*
190 * ntp_adjtime() - NTP daemon application interface
191 */
192 int
193 sys_ntp_adjtime(p, v, retval)
194 struct proc *p;
195 void *v;
196 register_t *retval;
197 {
198 struct sys_ntp_adjtime_args /* {
199 syscallarg(struct timex *) tp;
200 } */ *uap = v;
201 struct timex ntv;
202 int error = 0;
203 int modes;
204 int s;
205
206 if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
207 sizeof(ntv))))
208 return (error);
209
210 /*
211 * Update selected clock variables - only the superuser can
212 * change anything. Note that there is no error checking here on
213 * the assumption the superuser should know what it is doing.
214 */
215 modes = ntv.modes;
216 if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
217 return (error);
218
219 s = splclock();
220 if (modes & MOD_FREQUENCY)
221 #ifdef PPS_SYNC
222 time_freq = ntv.freq - pps_freq;
223 #else /* PPS_SYNC */
224 time_freq = ntv.freq;
225 #endif /* PPS_SYNC */
226 if (modes & MOD_MAXERROR)
227 time_maxerror = ntv.maxerror;
228 if (modes & MOD_ESTERROR)
229 time_esterror = ntv.esterror;
230 if (modes & MOD_STATUS) {
231 time_status &= STA_RONLY;
232 time_status |= ntv.status & ~STA_RONLY;
233 }
234 if (modes & MOD_TIMECONST)
235 time_constant = ntv.constant;
236 if (modes & MOD_OFFSET)
237 hardupdate(ntv.offset);
238
239 /*
240 * Retrieve all clock variables
241 */
242 if (time_offset < 0)
243 ntv.offset = -(-time_offset >> SHIFT_UPDATE);
244 else
245 ntv.offset = time_offset >> SHIFT_UPDATE;
246 #ifdef PPS_SYNC
247 ntv.freq = time_freq + pps_freq;
248 #else /* PPS_SYNC */
249 ntv.freq = time_freq;
250 #endif /* PPS_SYNC */
251 ntv.maxerror = time_maxerror;
252 ntv.esterror = time_esterror;
253 ntv.status = time_status;
254 ntv.constant = time_constant;
255 ntv.precision = time_precision;
256 ntv.tolerance = time_tolerance;
257 #ifdef PPS_SYNC
258 ntv.shift = pps_shift;
259 ntv.ppsfreq = pps_freq;
260 ntv.jitter = pps_jitter >> PPS_AVG;
261 ntv.stabil = pps_stabil;
262 ntv.calcnt = pps_calcnt;
263 ntv.errcnt = pps_errcnt;
264 ntv.jitcnt = pps_jitcnt;
265 ntv.stbcnt = pps_stbcnt;
266 #endif /* PPS_SYNC */
267 (void)splx(s);
268
269 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
270 if (!error) {
271
272 /*
273 * Status word error decode. See comments in
274 * ntp_gettime() routine.
275 */
276 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
277 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
278 !(time_status & STA_PPSSIGNAL)) ||
279 (time_status & STA_PPSTIME &&
280 time_status & STA_PPSJITTER) ||
281 (time_status & STA_PPSFREQ &&
282 time_status & (STA_PPSWANDER | STA_PPSERROR)))
283 *retval = TIME_ERROR;
284 else
285 *retval = (register_t)time_state;
286 }
287 return error;
288 }
289
290
291
292 /*
293 * return information about kernel precision timekeeping
294 */
295 int
296 sysctl_ntptime(where, sizep)
297 register char *where;
298 size_t *sizep;
299 {
300 struct timeval atv;
301 struct ntptimeval ntv;
302 int s;
303
304 /*
305 * Construct ntp_timeval.
306 */
307
308 s = splclock();
309 #ifdef EXT_CLOCK
310 /*
311 * The microtime() external clock routine returns a
312 * status code. If less than zero, we declare an error
313 * in the clock status word and return the kernel
314 * (software) time variable. While there are other
315 * places that call microtime(), this is the only place
316 * that matters from an application point of view.
317 */
318 if (microtime(&atv) < 0) {
319 time_status |= STA_CLOCKERR;
320 ntv.time = time;
321 } else {
322 time_status &= ~STA_CLOCKERR;
323 }
324 #else /* EXT_CLOCK */
325 microtime(&atv);
326 #endif /* EXT_CLOCK */
327 ntv.time = atv;
328 ntv.maxerror = time_maxerror;
329 ntv.esterror = time_esterror;
330 splx(s);
331
332 #ifdef notyet
333 /*
334 * Status word error decode. If any of these conditions
335 * occur, an error is returned, instead of the status
336 * word. Most applications will care only about the fact
337 * the system clock may not be trusted, not about the
338 * details.
339 *
340 * Hardware or software error
341 */
342 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
343 ntv.time_state = TIME_ERROR;
344
345 /*
346 * PPS signal lost when either time or frequency
347 * synchronization requested
348 */
349 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
350 !(time_status & STA_PPSSIGNAL)) ||
351
352 /*
353 * PPS jitter exceeded when time synchronization
354 * requested
355 */
356 (time_status & STA_PPSTIME &&
357 time_status & STA_PPSJITTER) ||
358
359 /*
360 * PPS wander exceeded or calibration error when
361 * frequency synchronization requested
362 */
363 (time_status & STA_PPSFREQ &&
364 time_status & (STA_PPSWANDER | STA_PPSERROR)))
365 ntv.time_state = TIME_ERROR;
366 else
367 ntv.time_state = time_state;
368 #endif /* notyet */
369 return (sysctl_rdstruct(where, sizep, NULL, &ntv, sizeof(ntv)));
370 }
371
372 #else /* !NTP */
373
374 /*
375 * For kernels configured without the NTP option, emulate the behavior
376 * of a kernel with no NTP support (i.e., sys_nosys()). On systems
377 * where kernel NTP support appears present when xntpd is compiled,
378 * (e.g., sys/timex.h is present), xntpd relies on getting a SIGSYS
379 * signal in response to an ntp_adjtime() syscal, to inform xntpd that
380 * NTP support is not really present, and xntpd should fall back to
381 * using a user-level phase-locked loop to discipline the clock.
382 */
383 int
384 sys_ntp_gettime(p, v, retval)
385 struct proc *p;
386 void *v;
387 register_t *retval;
388 {
389 return(ENOSYS);
390 }
391
392 int
393 sys_ntp_adjtime(p, v, retval)
394 struct proc *p;
395 void *v;
396 register_t *retval;
397 {
398 return(sys_nosys(p, v, retval));
399 }
400
401 int
402 sysctl_ntptime(where, sizep)
403 register char *where;
404 size_t *sizep;
405 {
406 return (ENOSYS);
407 }
408 #endif /* NTP */
409