kern_ntptime.c revision 1.44.2.1 1 /* $NetBSD: kern_ntptime.c,v 1.44.2.1 2008/02/18 21:06:46 mjf Exp $ */
2
3 /*-
4 ***********************************************************************
5 * *
6 * Copyright (c) David L. Mills 1993-2001 *
7 * *
8 * Permission to use, copy, modify, and distribute this software and *
9 * its documentation for any purpose and without fee is hereby *
10 * granted, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission *
12 * notice appear in supporting documentation, and that the name *
13 * University of Delaware not be used in advertising or publicity *
14 * pertaining to distribution of the software without specific, *
15 * written prior permission. The University of Delaware makes no *
16 * representations about the suitability this software for any *
17 * purpose. It is provided "as is" without express or implied *
18 * warranty. *
19 * *
20 **********************************************************************/
21
22 /*
23 * Adapted from the original sources for FreeBSD and timecounters by:
24 * Poul-Henning Kamp <phk (at) FreeBSD.org>.
25 *
26 * The 32bit version of the "LP" macros seems a bit past its "sell by"
27 * date so I have retained only the 64bit version and included it directly
28 * in this file.
29 *
30 * Only minor changes done to interface with the timecounters over in
31 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
32 * confusing and/or plain wrong in that context.
33 */
34
35 #include <sys/cdefs.h>
36 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
37 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.44.2.1 2008/02/18 21:06:46 mjf Exp $");
38
39 #include "opt_ntp.h"
40 #include "opt_compat_netbsd.h"
41
42 #include <sys/param.h>
43 #include <sys/resourcevar.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/sysctl.h>
48 #include <sys/timex.h>
49 #ifdef COMPAT_30
50 #include <compat/sys/timex.h>
51 #endif
52 #include <sys/vnode.h>
53 #include <sys/kauth.h>
54
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57
58 #include <sys/cpu.h>
59
60 /*
61 * Single-precision macros for 64-bit machines
62 */
63 typedef int64_t l_fp;
64 #define L_ADD(v, u) ((v) += (u))
65 #define L_SUB(v, u) ((v) -= (u))
66 #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
67 #define L_NEG(v) ((v) = -(v))
68 #define L_RSHIFT(v, n) \
69 do { \
70 if ((v) < 0) \
71 (v) = -(-(v) >> (n)); \
72 else \
73 (v) = (v) >> (n); \
74 } while (0)
75 #define L_MPY(v, a) ((v) *= (a))
76 #define L_CLR(v) ((v) = 0)
77 #define L_ISNEG(v) ((v) < 0)
78 #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
79 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
80
81 #ifdef NTP
82 /*
83 * Generic NTP kernel interface
84 *
85 * These routines constitute the Network Time Protocol (NTP) interfaces
86 * for user and daemon application programs. The ntp_gettime() routine
87 * provides the time, maximum error (synch distance) and estimated error
88 * (dispersion) to client user application programs. The ntp_adjtime()
89 * routine is used by the NTP daemon to adjust the system clock to an
90 * externally derived time. The time offset and related variables set by
91 * this routine are used by other routines in this module to adjust the
92 * phase and frequency of the clock discipline loop which controls the
93 * system clock.
94 *
95 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
96 * defined), the time at each tick interrupt is derived directly from
97 * the kernel time variable. When the kernel time is reckoned in
98 * microseconds, (NTP_NANO undefined), the time is derived from the
99 * kernel time variable together with a variable representing the
100 * leftover nanoseconds at the last tick interrupt. In either case, the
101 * current nanosecond time is reckoned from these values plus an
102 * interpolated value derived by the clock routines in another
103 * architecture-specific module. The interpolation can use either a
104 * dedicated counter or a processor cycle counter (PCC) implemented in
105 * some architectures.
106 *
107 * Note that all routines must run at priority splclock or higher.
108 */
109 /*
110 * Phase/frequency-lock loop (PLL/FLL) definitions
111 *
112 * The nanosecond clock discipline uses two variable types, time
113 * variables and frequency variables. Both types are represented as 64-
114 * bit fixed-point quantities with the decimal point between two 32-bit
115 * halves. On a 32-bit machine, each half is represented as a single
116 * word and mathematical operations are done using multiple-precision
117 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
118 * used.
119 *
120 * A time variable is a signed 64-bit fixed-point number in ns and
121 * fraction. It represents the remaining time offset to be amortized
122 * over succeeding tick interrupts. The maximum time offset is about
123 * 0.5 s and the resolution is about 2.3e-10 ns.
124 *
125 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
126 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
127 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
128 * |s s s| ns |
129 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130 * | fraction |
131 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132 *
133 * A frequency variable is a signed 64-bit fixed-point number in ns/s
134 * and fraction. It represents the ns and fraction to be added to the
135 * kernel time variable at each second. The maximum frequency offset is
136 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
137 *
138 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
139 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
140 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
141 * |s s s s s s s s s s s s s| ns/s |
142 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
143 * | fraction |
144 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
145 */
146 /*
147 * The following variables establish the state of the PLL/FLL and the
148 * residual time and frequency offset of the local clock.
149 */
150 #define SHIFT_PLL 4 /* PLL loop gain (shift) */
151 #define SHIFT_FLL 2 /* FLL loop gain (shift) */
152
153 static int time_state = TIME_OK; /* clock state */
154 static int time_status = STA_UNSYNC; /* clock status bits */
155 static long time_tai; /* TAI offset (s) */
156 static long time_monitor; /* last time offset scaled (ns) */
157 static long time_constant; /* poll interval (shift) (s) */
158 static long time_precision = 1; /* clock precision (ns) */
159 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
160 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
161 static long time_reftime; /* time at last adjustment (s) */
162 static l_fp time_offset; /* time offset (ns) */
163 static l_fp time_freq; /* frequency offset (ns/s) */
164 #endif /* NTP */
165
166 static l_fp time_adj; /* tick adjust (ns/s) */
167 int64_t time_adjtime; /* correction from adjtime(2) (usec) */
168
169 extern int time_adjusted; /* ntp might have changed the system time */
170
171 #ifdef NTP
172 #ifdef PPS_SYNC
173 /*
174 * The following variables are used when a pulse-per-second (PPS) signal
175 * is available and connected via a modem control lead. They establish
176 * the engineering parameters of the clock discipline loop when
177 * controlled by the PPS signal.
178 */
179 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
180 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
181 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
182 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
183 #define PPS_VALID 120 /* PPS signal watchdog max (s) */
184 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
185 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
186
187 static struct timespec pps_tf[3]; /* phase median filter */
188 static l_fp pps_freq; /* scaled frequency offset (ns/s) */
189 static long pps_fcount; /* frequency accumulator */
190 static long pps_jitter; /* nominal jitter (ns) */
191 static long pps_stabil; /* nominal stability (scaled ns/s) */
192 static long pps_lastsec; /* time at last calibration (s) */
193 static int pps_valid; /* signal watchdog counter */
194 static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
195 static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
196 static int pps_intcnt; /* wander counter */
197
198 /*
199 * PPS signal quality monitors
200 */
201 static long pps_calcnt; /* calibration intervals */
202 static long pps_jitcnt; /* jitter limit exceeded */
203 static long pps_stbcnt; /* stability limit exceeded */
204 static long pps_errcnt; /* calibration errors */
205 #endif /* PPS_SYNC */
206 /*
207 * End of phase/frequency-lock loop (PLL/FLL) definitions
208 */
209
210 static void hardupdate(long offset);
211
212 /*
213 * ntp_gettime() - NTP user application interface
214 */
215 void
216 ntp_gettime(ntv)
217 struct ntptimeval *ntv;
218 {
219 nanotime(&ntv->time);
220 ntv->maxerror = time_maxerror;
221 ntv->esterror = time_esterror;
222 ntv->tai = time_tai;
223 ntv->time_state = time_state;
224 }
225
226 /* ARGSUSED */
227 /*
228 * ntp_adjtime() - NTP daemon application interface
229 */
230 int
231 sys_ntp_adjtime(l, v, retval)
232 struct lwp *l;
233 void *v;
234 register_t *retval;
235 {
236 struct sys_ntp_adjtime_args /* {
237 syscallarg(struct timex *) tp;
238 } */ *uap = v;
239 struct timex ntv;
240 int error = 0;
241
242 error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
243 if (error != 0)
244 return (error);
245
246 if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
247 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
248 NULL, NULL)) != 0)
249 return (error);
250
251 ntp_adjtime1(&ntv);
252
253 error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
254 if (!error)
255 *retval = ntp_timestatus();
256
257 return error;
258 }
259
260 void
261 ntp_adjtime1(ntv)
262 struct timex *ntv;
263 {
264 long freq;
265 int modes;
266 int s;
267
268 /*
269 * Update selected clock variables - only the superuser can
270 * change anything. Note that there is no error checking here on
271 * the assumption the superuser should know what it is doing.
272 * Note that either the time constant or TAI offset are loaded
273 * from the ntv.constant member, depending on the mode bits. If
274 * the STA_PLL bit in the status word is cleared, the state and
275 * status words are reset to the initial values at boot.
276 */
277 modes = ntv->modes;
278 if (modes != 0)
279 /* We need to save the system time during shutdown */
280 time_adjusted |= 2;
281 s = splclock();
282 if (modes & MOD_MAXERROR)
283 time_maxerror = ntv->maxerror;
284 if (modes & MOD_ESTERROR)
285 time_esterror = ntv->esterror;
286 if (modes & MOD_STATUS) {
287 if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
288 time_state = TIME_OK;
289 time_status = STA_UNSYNC;
290 #ifdef PPS_SYNC
291 pps_shift = PPS_FAVG;
292 #endif /* PPS_SYNC */
293 }
294 time_status &= STA_RONLY;
295 time_status |= ntv->status & ~STA_RONLY;
296 }
297 if (modes & MOD_TIMECONST) {
298 if (ntv->constant < 0)
299 time_constant = 0;
300 else if (ntv->constant > MAXTC)
301 time_constant = MAXTC;
302 else
303 time_constant = ntv->constant;
304 }
305 if (modes & MOD_TAI) {
306 if (ntv->constant > 0) /* XXX zero & negative numbers ? */
307 time_tai = ntv->constant;
308 }
309 #ifdef PPS_SYNC
310 if (modes & MOD_PPSMAX) {
311 if (ntv->shift < PPS_FAVG)
312 pps_shiftmax = PPS_FAVG;
313 else if (ntv->shift > PPS_FAVGMAX)
314 pps_shiftmax = PPS_FAVGMAX;
315 else
316 pps_shiftmax = ntv->shift;
317 }
318 #endif /* PPS_SYNC */
319 if (modes & MOD_NANO)
320 time_status |= STA_NANO;
321 if (modes & MOD_MICRO)
322 time_status &= ~STA_NANO;
323 if (modes & MOD_CLKB)
324 time_status |= STA_CLK;
325 if (modes & MOD_CLKA)
326 time_status &= ~STA_CLK;
327 if (modes & MOD_FREQUENCY) {
328 freq = (ntv->freq * 1000LL) >> 16;
329 if (freq > MAXFREQ)
330 L_LINT(time_freq, MAXFREQ);
331 else if (freq < -MAXFREQ)
332 L_LINT(time_freq, -MAXFREQ);
333 else {
334 /*
335 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
336 * time_freq is [ns/s * 2^32]
337 */
338 time_freq = ntv->freq * 1000LL * 65536LL;
339 }
340 #ifdef PPS_SYNC
341 pps_freq = time_freq;
342 #endif /* PPS_SYNC */
343 }
344 if (modes & MOD_OFFSET) {
345 if (time_status & STA_NANO)
346 hardupdate(ntv->offset);
347 else
348 hardupdate(ntv->offset * 1000);
349 }
350
351 /*
352 * Retrieve all clock variables. Note that the TAI offset is
353 * returned only by ntp_gettime();
354 */
355 if (time_status & STA_NANO)
356 ntv->offset = L_GINT(time_offset);
357 else
358 ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
359 ntv->freq = L_GINT((time_freq / 1000LL) << 16);
360 ntv->maxerror = time_maxerror;
361 ntv->esterror = time_esterror;
362 ntv->status = time_status;
363 ntv->constant = time_constant;
364 if (time_status & STA_NANO)
365 ntv->precision = time_precision;
366 else
367 ntv->precision = time_precision / 1000;
368 ntv->tolerance = MAXFREQ * SCALE_PPM;
369 #ifdef PPS_SYNC
370 ntv->shift = pps_shift;
371 ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
372 if (time_status & STA_NANO)
373 ntv->jitter = pps_jitter;
374 else
375 ntv->jitter = pps_jitter / 1000;
376 ntv->stabil = pps_stabil;
377 ntv->calcnt = pps_calcnt;
378 ntv->errcnt = pps_errcnt;
379 ntv->jitcnt = pps_jitcnt;
380 ntv->stbcnt = pps_stbcnt;
381 #endif /* PPS_SYNC */
382 splx(s);
383 }
384 #endif /* NTP */
385
386 /*
387 * second_overflow() - called after ntp_tick_adjust()
388 *
389 * This routine is ordinarily called immediately following the above
390 * routine ntp_tick_adjust(). While these two routines are normally
391 * combined, they are separated here only for the purposes of
392 * simulation.
393 */
394 void
395 ntp_update_second(int64_t *adjustment, time_t *newsec)
396 {
397 int tickrate;
398 l_fp ftemp; /* 32/64-bit temporary */
399
400 #ifdef NTP
401
402 /*
403 * On rollover of the second both the nanosecond and microsecond
404 * clocks are updated and the state machine cranked as
405 * necessary. The phase adjustment to be used for the next
406 * second is calculated and the maximum error is increased by
407 * the tolerance.
408 */
409 time_maxerror += MAXFREQ / 1000;
410
411 /*
412 * Leap second processing. If in leap-insert state at
413 * the end of the day, the system clock is set back one
414 * second; if in leap-delete state, the system clock is
415 * set ahead one second. The nano_time() routine or
416 * external clock driver will insure that reported time
417 * is always monotonic.
418 */
419 switch (time_state) {
420
421 /*
422 * No warning.
423 */
424 case TIME_OK:
425 if (time_status & STA_INS)
426 time_state = TIME_INS;
427 else if (time_status & STA_DEL)
428 time_state = TIME_DEL;
429 break;
430
431 /*
432 * Insert second 23:59:60 following second
433 * 23:59:59.
434 */
435 case TIME_INS:
436 if (!(time_status & STA_INS))
437 time_state = TIME_OK;
438 else if ((*newsec) % 86400 == 0) {
439 (*newsec)--;
440 time_state = TIME_OOP;
441 time_tai++;
442 }
443 break;
444
445 /*
446 * Delete second 23:59:59.
447 */
448 case TIME_DEL:
449 if (!(time_status & STA_DEL))
450 time_state = TIME_OK;
451 else if (((*newsec) + 1) % 86400 == 0) {
452 (*newsec)++;
453 time_tai--;
454 time_state = TIME_WAIT;
455 }
456 break;
457
458 /*
459 * Insert second in progress.
460 */
461 case TIME_OOP:
462 time_state = TIME_WAIT;
463 break;
464
465 /*
466 * Wait for status bits to clear.
467 */
468 case TIME_WAIT:
469 if (!(time_status & (STA_INS | STA_DEL)))
470 time_state = TIME_OK;
471 }
472
473 /*
474 * Compute the total time adjustment for the next second
475 * in ns. The offset is reduced by a factor depending on
476 * whether the PPS signal is operating. Note that the
477 * value is in effect scaled by the clock frequency,
478 * since the adjustment is added at each tick interrupt.
479 */
480 ftemp = time_offset;
481 #ifdef PPS_SYNC
482 /* XXX even if PPS signal dies we should finish adjustment ? */
483 if (time_status & STA_PPSTIME && time_status &
484 STA_PPSSIGNAL)
485 L_RSHIFT(ftemp, pps_shift);
486 else
487 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
488 #else
489 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
490 #endif /* PPS_SYNC */
491 time_adj = ftemp;
492 L_SUB(time_offset, ftemp);
493 L_ADD(time_adj, time_freq);
494
495 #ifdef PPS_SYNC
496 if (pps_valid > 0)
497 pps_valid--;
498 else
499 time_status &= ~STA_PPSSIGNAL;
500 #endif /* PPS_SYNC */
501 #else /* !NTP */
502 L_CLR(time_adj);
503 #endif /* !NTP */
504
505 /*
506 * Apply any correction from adjtime(2). If more than one second
507 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
508 * until the last second is slewed the final < 500 usecs.
509 */
510 if (time_adjtime != 0) {
511 if (time_adjtime > 1000000)
512 tickrate = 5000;
513 else if (time_adjtime < -1000000)
514 tickrate = -5000;
515 else if (time_adjtime > 500)
516 tickrate = 500;
517 else if (time_adjtime < -500)
518 tickrate = -500;
519 else
520 tickrate = time_adjtime;
521 time_adjtime -= tickrate;
522 L_LINT(ftemp, tickrate * 1000);
523 L_ADD(time_adj, ftemp);
524 }
525 *adjustment = time_adj;
526 }
527
528 /*
529 * ntp_init() - initialize variables and structures
530 *
531 * This routine must be called after the kernel variables hz and tick
532 * are set or changed and before the next tick interrupt. In this
533 * particular implementation, these values are assumed set elsewhere in
534 * the kernel. The design allows the clock frequency and tick interval
535 * to be changed while the system is running. So, this routine should
536 * probably be integrated with the code that does that.
537 */
538 void
539 ntp_init(void)
540 {
541
542 /*
543 * The following variables are initialized only at startup. Only
544 * those structures not cleared by the compiler need to be
545 * initialized, and these only in the simulator. In the actual
546 * kernel, any nonzero values here will quickly evaporate.
547 */
548 L_CLR(time_adj);
549 #ifdef NTP
550 L_CLR(time_offset);
551 L_CLR(time_freq);
552 #ifdef PPS_SYNC
553 pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
554 pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
555 pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
556 pps_fcount = 0;
557 L_CLR(pps_freq);
558 #endif /* PPS_SYNC */
559 #endif
560 }
561
562 #ifdef NTP
563 /*
564 * hardupdate() - local clock update
565 *
566 * This routine is called by ntp_adjtime() to update the local clock
567 * phase and frequency. The implementation is of an adaptive-parameter,
568 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
569 * time and frequency offset estimates for each call. If the kernel PPS
570 * discipline code is configured (PPS_SYNC), the PPS signal itself
571 * determines the new time offset, instead of the calling argument.
572 * Presumably, calls to ntp_adjtime() occur only when the caller
573 * believes the local clock is valid within some bound (+-128 ms with
574 * NTP). If the caller's time is far different than the PPS time, an
575 * argument will ensue, and it's not clear who will lose.
576 *
577 * For uncompensated quartz crystal oscillators and nominal update
578 * intervals less than 256 s, operation should be in phase-lock mode,
579 * where the loop is disciplined to phase. For update intervals greater
580 * than 1024 s, operation should be in frequency-lock mode, where the
581 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
582 * is selected by the STA_MODE status bit.
583 *
584 * Note: splclock() is in effect.
585 */
586 void
587 hardupdate(long offset)
588 {
589 long mtemp;
590 l_fp ftemp;
591
592 /*
593 * Select how the phase is to be controlled and from which
594 * source. If the PPS signal is present and enabled to
595 * discipline the time, the PPS offset is used; otherwise, the
596 * argument offset is used.
597 */
598 if (!(time_status & STA_PLL))
599 return;
600 if (!(time_status & STA_PPSTIME && time_status &
601 STA_PPSSIGNAL)) {
602 if (offset > MAXPHASE)
603 time_monitor = MAXPHASE;
604 else if (offset < -MAXPHASE)
605 time_monitor = -MAXPHASE;
606 else
607 time_monitor = offset;
608 L_LINT(time_offset, time_monitor);
609 }
610
611 /*
612 * Select how the frequency is to be controlled and in which
613 * mode (PLL or FLL). If the PPS signal is present and enabled
614 * to discipline the frequency, the PPS frequency is used;
615 * otherwise, the argument offset is used to compute it.
616 */
617 if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
618 time_reftime = time_second;
619 return;
620 }
621 if (time_status & STA_FREQHOLD || time_reftime == 0)
622 time_reftime = time_second;
623 mtemp = time_second - time_reftime;
624 L_LINT(ftemp, time_monitor);
625 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
626 L_MPY(ftemp, mtemp);
627 L_ADD(time_freq, ftemp);
628 time_status &= ~STA_MODE;
629 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
630 MAXSEC)) {
631 L_LINT(ftemp, (time_monitor << 4) / mtemp);
632 L_RSHIFT(ftemp, SHIFT_FLL + 4);
633 L_ADD(time_freq, ftemp);
634 time_status |= STA_MODE;
635 }
636 time_reftime = time_second;
637 if (L_GINT(time_freq) > MAXFREQ)
638 L_LINT(time_freq, MAXFREQ);
639 else if (L_GINT(time_freq) < -MAXFREQ)
640 L_LINT(time_freq, -MAXFREQ);
641 }
642
643 #ifdef PPS_SYNC
644 /*
645 * hardpps() - discipline CPU clock oscillator to external PPS signal
646 *
647 * This routine is called at each PPS interrupt in order to discipline
648 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
649 * and leaves it in a handy spot for the hardclock() routine. It
650 * integrates successive PPS phase differences and calculates the
651 * frequency offset. This is used in hardclock() to discipline the CPU
652 * clock oscillator so that intrinsic frequency error is cancelled out.
653 * The code requires the caller to capture the time and hardware counter
654 * value at the on-time PPS signal transition.
655 *
656 * Note that, on some Unix systems, this routine runs at an interrupt
657 * priority level higher than the timer interrupt routine hardclock().
658 * Therefore, the variables used are distinct from the hardclock()
659 * variables, except for certain exceptions: The PPS frequency pps_freq
660 * and phase pps_offset variables are determined by this routine and
661 * updated atomically. The time_tolerance variable can be considered a
662 * constant, since it is infrequently changed, and then only when the
663 * PPS signal is disabled. The watchdog counter pps_valid is updated
664 * once per second by hardclock() and is atomically cleared in this
665 * routine.
666 */
667 void
668 hardpps(struct timespec *tsp, /* time at PPS */
669 long nsec /* hardware counter at PPS */)
670 {
671 long u_sec, u_nsec, v_nsec; /* temps */
672 l_fp ftemp;
673
674 /*
675 * The signal is first processed by a range gate and frequency
676 * discriminator. The range gate rejects noise spikes outside
677 * the range +-500 us. The frequency discriminator rejects input
678 * signals with apparent frequency outside the range 1 +-500
679 * PPM. If two hits occur in the same second, we ignore the
680 * later hit; if not and a hit occurs outside the range gate,
681 * keep the later hit for later comparison, but do not process
682 * it.
683 */
684 time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
685 time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
686 pps_valid = PPS_VALID;
687 u_sec = tsp->tv_sec;
688 u_nsec = tsp->tv_nsec;
689 if (u_nsec >= (NANOSECOND >> 1)) {
690 u_nsec -= NANOSECOND;
691 u_sec++;
692 }
693 v_nsec = u_nsec - pps_tf[0].tv_nsec;
694 if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
695 MAXFREQ)
696 return;
697 pps_tf[2] = pps_tf[1];
698 pps_tf[1] = pps_tf[0];
699 pps_tf[0].tv_sec = u_sec;
700 pps_tf[0].tv_nsec = u_nsec;
701
702 /*
703 * Compute the difference between the current and previous
704 * counter values. If the difference exceeds 0.5 s, assume it
705 * has wrapped around, so correct 1.0 s. If the result exceeds
706 * the tick interval, the sample point has crossed a tick
707 * boundary during the last second, so correct the tick. Very
708 * intricate.
709 */
710 u_nsec = nsec;
711 if (u_nsec > (NANOSECOND >> 1))
712 u_nsec -= NANOSECOND;
713 else if (u_nsec < -(NANOSECOND >> 1))
714 u_nsec += NANOSECOND;
715 pps_fcount += u_nsec;
716 if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
717 return;
718 time_status &= ~STA_PPSJITTER;
719
720 /*
721 * A three-stage median filter is used to help denoise the PPS
722 * time. The median sample becomes the time offset estimate; the
723 * difference between the other two samples becomes the time
724 * dispersion (jitter) estimate.
725 */
726 if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
727 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
728 v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
729 u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
730 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
731 v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
732 u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
733 } else {
734 v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
735 u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
736 }
737 } else {
738 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
739 v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
740 u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
741 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
742 v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
743 u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
744 } else {
745 v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
746 u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
747 }
748 }
749
750 /*
751 * Nominal jitter is due to PPS signal noise and interrupt
752 * latency. If it exceeds the popcorn threshold, the sample is
753 * discarded. otherwise, if so enabled, the time offset is
754 * updated. We can tolerate a modest loss of data here without
755 * much degrading time accuracy.
756 */
757 if (u_nsec > (pps_jitter << PPS_POPCORN)) {
758 time_status |= STA_PPSJITTER;
759 pps_jitcnt++;
760 } else if (time_status & STA_PPSTIME) {
761 time_monitor = -v_nsec;
762 L_LINT(time_offset, time_monitor);
763 }
764 pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
765 u_sec = pps_tf[0].tv_sec - pps_lastsec;
766 if (u_sec < (1 << pps_shift))
767 return;
768
769 /*
770 * At the end of the calibration interval the difference between
771 * the first and last counter values becomes the scaled
772 * frequency. It will later be divided by the length of the
773 * interval to determine the frequency update. If the frequency
774 * exceeds a sanity threshold, or if the actual calibration
775 * interval is not equal to the expected length, the data are
776 * discarded. We can tolerate a modest loss of data here without
777 * much degrading frequency accuracy.
778 */
779 pps_calcnt++;
780 v_nsec = -pps_fcount;
781 pps_lastsec = pps_tf[0].tv_sec;
782 pps_fcount = 0;
783 u_nsec = MAXFREQ << pps_shift;
784 if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
785 pps_shift)) {
786 time_status |= STA_PPSERROR;
787 pps_errcnt++;
788 return;
789 }
790
791 /*
792 * Here the raw frequency offset and wander (stability) is
793 * calculated. If the wander is less than the wander threshold
794 * for four consecutive averaging intervals, the interval is
795 * doubled; if it is greater than the threshold for four
796 * consecutive intervals, the interval is halved. The scaled
797 * frequency offset is converted to frequency offset. The
798 * stability metric is calculated as the average of recent
799 * frequency changes, but is used only for performance
800 * monitoring.
801 */
802 L_LINT(ftemp, v_nsec);
803 L_RSHIFT(ftemp, pps_shift);
804 L_SUB(ftemp, pps_freq);
805 u_nsec = L_GINT(ftemp);
806 if (u_nsec > PPS_MAXWANDER) {
807 L_LINT(ftemp, PPS_MAXWANDER);
808 pps_intcnt--;
809 time_status |= STA_PPSWANDER;
810 pps_stbcnt++;
811 } else if (u_nsec < -PPS_MAXWANDER) {
812 L_LINT(ftemp, -PPS_MAXWANDER);
813 pps_intcnt--;
814 time_status |= STA_PPSWANDER;
815 pps_stbcnt++;
816 } else {
817 pps_intcnt++;
818 }
819 if (pps_intcnt >= 4) {
820 pps_intcnt = 4;
821 if (pps_shift < pps_shiftmax) {
822 pps_shift++;
823 pps_intcnt = 0;
824 }
825 } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
826 pps_intcnt = -4;
827 if (pps_shift > PPS_FAVG) {
828 pps_shift--;
829 pps_intcnt = 0;
830 }
831 }
832 if (u_nsec < 0)
833 u_nsec = -u_nsec;
834 pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
835
836 /*
837 * The PPS frequency is recalculated and clamped to the maximum
838 * MAXFREQ. If enabled, the system clock frequency is updated as
839 * well.
840 */
841 L_ADD(pps_freq, ftemp);
842 u_nsec = L_GINT(pps_freq);
843 if (u_nsec > MAXFREQ)
844 L_LINT(pps_freq, MAXFREQ);
845 else if (u_nsec < -MAXFREQ)
846 L_LINT(pps_freq, -MAXFREQ);
847 if (time_status & STA_PPSFREQ)
848 time_freq = pps_freq;
849 }
850 #endif /* PPS_SYNC */
851 #endif /* NTP */
852
853 #ifdef NTP
854 int
855 ntp_timestatus()
856 {
857 /*
858 * Status word error decode. If any of these conditions
859 * occur, an error is returned, instead of the status
860 * word. Most applications will care only about the fact
861 * the system clock may not be trusted, not about the
862 * details.
863 *
864 * Hardware or software error
865 */
866 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
867
868 /*
869 * PPS signal lost when either time or frequency
870 * synchronization requested
871 */
872 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
873 !(time_status & STA_PPSSIGNAL)) ||
874
875 /*
876 * PPS jitter exceeded when time synchronization
877 * requested
878 */
879 (time_status & STA_PPSTIME &&
880 time_status & STA_PPSJITTER) ||
881
882 /*
883 * PPS wander exceeded or calibration error when
884 * frequency synchronization requested
885 */
886 (time_status & STA_PPSFREQ &&
887 time_status & (STA_PPSWANDER | STA_PPSERROR)))
888 return (TIME_ERROR);
889 else
890 return (time_state);
891 }
892
893 /*ARGSUSED*/
894 /*
895 * ntp_gettime() - NTP user application interface
896 */
897 int
898 sys___ntp_gettime30(struct lwp *l, void *v, register_t *retval)
899 {
900 struct sys___ntp_gettime30_args /* {
901 syscallarg(struct ntptimeval *) ntvp;
902 } */ *uap = v;
903 struct ntptimeval ntv;
904 int error = 0;
905
906 if (SCARG(uap, ntvp)) {
907 ntp_gettime(&ntv);
908
909 error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
910 sizeof(ntv));
911 }
912 if (!error) {
913 *retval = ntp_timestatus();
914 }
915 return(error);
916 }
917
918 #ifdef COMPAT_30
919 int
920 compat_30_sys_ntp_gettime(struct lwp *l, void *v, register_t *retval)
921 {
922 struct compat_30_sys_ntp_gettime_args /* {
923 syscallarg(struct ntptimeval30 *) ontvp;
924 } */ *uap = v;
925 struct ntptimeval ntv;
926 struct ntptimeval30 ontv;
927 int error = 0;
928
929 if (SCARG(uap, ntvp)) {
930 ntp_gettime(&ntv);
931 TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
932 ontv.maxerror = ntv.maxerror;
933 ontv.esterror = ntv.esterror;
934
935 error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
936 sizeof(ontv));
937 }
938 if (!error)
939 *retval = ntp_timestatus();
940
941 return (error);
942 }
943 #endif
944
945 /*
946 * return information about kernel precision timekeeping
947 */
948 static int
949 sysctl_kern_ntptime(SYSCTLFN_ARGS)
950 {
951 struct sysctlnode node;
952 struct ntptimeval ntv;
953
954 ntp_gettime(&ntv);
955
956 node = *rnode;
957 node.sysctl_data = &ntv;
958 node.sysctl_size = sizeof(ntv);
959 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
960 }
961
962 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
963 {
964
965 sysctl_createv(clog, 0, NULL, NULL,
966 CTLFLAG_PERMANENT,
967 CTLTYPE_NODE, "kern", NULL,
968 NULL, 0, NULL, 0,
969 CTL_KERN, CTL_EOL);
970
971 sysctl_createv(clog, 0, NULL, NULL,
972 CTLFLAG_PERMANENT,
973 CTLTYPE_STRUCT, "ntptime",
974 SYSCTL_DESCR("Kernel clock values for NTP"),
975 sysctl_kern_ntptime, 0, NULL,
976 sizeof(struct ntptimeval),
977 CTL_KERN, KERN_NTPTIME, CTL_EOL);
978 }
979 #else /* !NTP */
980 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
981
982 int
983 sys___ntp_gettime30(struct lwp *l, void *v, register_t *retval)
984 {
985
986 return(ENOSYS);
987 }
988
989 #ifdef COMPAT_30
990 int
991 compat_30_sys_ntp_gettime(struct lwp *l, void *v, register_t *retval)
992 {
993
994 return(ENOSYS);
995 }
996 #endif
997 #endif /* !NTP */
998