Home | History | Annotate | Line # | Download | only in kern
kern_ntptime.c revision 1.44.8.1
      1 /*	$NetBSD: kern_ntptime.c,v 1.44.8.1 2008/01/02 21:55:54 bouyer Exp $	*/
      2 #include <sys/types.h> 	/* XXX to get __HAVE_TIMECOUNTER, remove
      3 			   after all ports are converted. */
      4 #ifdef __HAVE_TIMECOUNTER
      5 
      6 /*-
      7  ***********************************************************************
      8  *								       *
      9  * Copyright (c) David L. Mills 1993-2001			       *
     10  *								       *
     11  * Permission to use, copy, modify, and distribute this software and   *
     12  * its documentation for any purpose and without fee is hereby	       *
     13  * granted, provided that the above copyright notice appears in all    *
     14  * copies and that both the copyright notice and this permission       *
     15  * notice appear in supporting documentation, and that the name	       *
     16  * University of Delaware not be used in advertising or publicity      *
     17  * pertaining to distribution of the software without specific,	       *
     18  * written prior permission. The University of Delaware makes no       *
     19  * representations about the suitability this software for any	       *
     20  * purpose. It is provided "as is" without express or implied	       *
     21  * warranty.							       *
     22  *								       *
     23  **********************************************************************/
     24 
     25 /*
     26  * Adapted from the original sources for FreeBSD and timecounters by:
     27  * Poul-Henning Kamp <phk (at) FreeBSD.org>.
     28  *
     29  * The 32bit version of the "LP" macros seems a bit past its "sell by"
     30  * date so I have retained only the 64bit version and included it directly
     31  * in this file.
     32  *
     33  * Only minor changes done to interface with the timecounters over in
     34  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
     35  * confusing and/or plain wrong in that context.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
     40 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.44.8.1 2008/01/02 21:55:54 bouyer Exp $");
     41 
     42 #include "opt_ntp.h"
     43 #include "opt_compat_netbsd.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/systm.h>
     48 #include <sys/kernel.h>
     49 #include <sys/proc.h>
     50 #include <sys/sysctl.h>
     51 #include <sys/timex.h>
     52 #ifdef COMPAT_30
     53 #include <compat/sys/timex.h>
     54 #endif
     55 #include <sys/vnode.h>
     56 #include <sys/kauth.h>
     57 
     58 #include <sys/mount.h>
     59 #include <sys/syscallargs.h>
     60 
     61 #include <sys/cpu.h>
     62 
     63 /*
     64  * Single-precision macros for 64-bit machines
     65  */
     66 typedef int64_t l_fp;
     67 #define L_ADD(v, u)	((v) += (u))
     68 #define L_SUB(v, u)	((v) -= (u))
     69 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
     70 #define L_NEG(v)	((v) = -(v))
     71 #define L_RSHIFT(v, n) \
     72 	do { \
     73 		if ((v) < 0) \
     74 			(v) = -(-(v) >> (n)); \
     75 		else \
     76 			(v) = (v) >> (n); \
     77 	} while (0)
     78 #define L_MPY(v, a)	((v) *= (a))
     79 #define L_CLR(v)	((v) = 0)
     80 #define L_ISNEG(v)	((v) < 0)
     81 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
     82 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
     83 
     84 #ifdef NTP
     85 /*
     86  * Generic NTP kernel interface
     87  *
     88  * These routines constitute the Network Time Protocol (NTP) interfaces
     89  * for user and daemon application programs. The ntp_gettime() routine
     90  * provides the time, maximum error (synch distance) and estimated error
     91  * (dispersion) to client user application programs. The ntp_adjtime()
     92  * routine is used by the NTP daemon to adjust the system clock to an
     93  * externally derived time. The time offset and related variables set by
     94  * this routine are used by other routines in this module to adjust the
     95  * phase and frequency of the clock discipline loop which controls the
     96  * system clock.
     97  *
     98  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
     99  * defined), the time at each tick interrupt is derived directly from
    100  * the kernel time variable. When the kernel time is reckoned in
    101  * microseconds, (NTP_NANO undefined), the time is derived from the
    102  * kernel time variable together with a variable representing the
    103  * leftover nanoseconds at the last tick interrupt. In either case, the
    104  * current nanosecond time is reckoned from these values plus an
    105  * interpolated value derived by the clock routines in another
    106  * architecture-specific module. The interpolation can use either a
    107  * dedicated counter or a processor cycle counter (PCC) implemented in
    108  * some architectures.
    109  *
    110  * Note that all routines must run at priority splclock or higher.
    111  */
    112 /*
    113  * Phase/frequency-lock loop (PLL/FLL) definitions
    114  *
    115  * The nanosecond clock discipline uses two variable types, time
    116  * variables and frequency variables. Both types are represented as 64-
    117  * bit fixed-point quantities with the decimal point between two 32-bit
    118  * halves. On a 32-bit machine, each half is represented as a single
    119  * word and mathematical operations are done using multiple-precision
    120  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
    121  * used.
    122  *
    123  * A time variable is a signed 64-bit fixed-point number in ns and
    124  * fraction. It represents the remaining time offset to be amortized
    125  * over succeeding tick interrupts. The maximum time offset is about
    126  * 0.5 s and the resolution is about 2.3e-10 ns.
    127  *
    128  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    129  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    130  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    131  * |s s s|			 ns				   |
    132  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    133  * |			    fraction				   |
    134  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    135  *
    136  * A frequency variable is a signed 64-bit fixed-point number in ns/s
    137  * and fraction. It represents the ns and fraction to be added to the
    138  * kernel time variable at each second. The maximum frequency offset is
    139  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
    140  *
    141  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    142  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    143  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    144  * |s s s s s s s s s s s s s|	          ns/s			   |
    145  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    146  * |			    fraction				   |
    147  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    148  */
    149 /*
    150  * The following variables establish the state of the PLL/FLL and the
    151  * residual time and frequency offset of the local clock.
    152  */
    153 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
    154 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
    155 
    156 static int time_state = TIME_OK;	/* clock state */
    157 static int time_status = STA_UNSYNC;	/* clock status bits */
    158 static long time_tai;			/* TAI offset (s) */
    159 static long time_monitor;		/* last time offset scaled (ns) */
    160 static long time_constant;		/* poll interval (shift) (s) */
    161 static long time_precision = 1;		/* clock precision (ns) */
    162 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
    163 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
    164 static long time_reftime;		/* time at last adjustment (s) */
    165 static l_fp time_offset;		/* time offset (ns) */
    166 static l_fp time_freq;			/* frequency offset (ns/s) */
    167 #endif /* NTP */
    168 
    169 static l_fp time_adj;			/* tick adjust (ns/s) */
    170 int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
    171 
    172 extern int time_adjusted;	/* ntp might have changed the system time */
    173 
    174 #ifdef NTP
    175 #ifdef PPS_SYNC
    176 /*
    177  * The following variables are used when a pulse-per-second (PPS) signal
    178  * is available and connected via a modem control lead. They establish
    179  * the engineering parameters of the clock discipline loop when
    180  * controlled by the PPS signal.
    181  */
    182 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
    183 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
    184 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
    185 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
    186 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
    187 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
    188 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
    189 
    190 static struct timespec pps_tf[3];	/* phase median filter */
    191 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
    192 static long pps_fcount;			/* frequency accumulator */
    193 static long pps_jitter;			/* nominal jitter (ns) */
    194 static long pps_stabil;			/* nominal stability (scaled ns/s) */
    195 static long pps_lastsec;		/* time at last calibration (s) */
    196 static int pps_valid;			/* signal watchdog counter */
    197 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
    198 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
    199 static int pps_intcnt;			/* wander counter */
    200 
    201 /*
    202  * PPS signal quality monitors
    203  */
    204 static long pps_calcnt;			/* calibration intervals */
    205 static long pps_jitcnt;			/* jitter limit exceeded */
    206 static long pps_stbcnt;			/* stability limit exceeded */
    207 static long pps_errcnt;			/* calibration errors */
    208 #endif /* PPS_SYNC */
    209 /*
    210  * End of phase/frequency-lock loop (PLL/FLL) definitions
    211  */
    212 
    213 static void hardupdate(long offset);
    214 
    215 /*
    216  * ntp_gettime() - NTP user application interface
    217  */
    218 void
    219 ntp_gettime(struct ntptimeval *ntv)
    220 {
    221 	nanotime(&ntv->time);
    222 	ntv->maxerror = time_maxerror;
    223 	ntv->esterror = time_esterror;
    224 	ntv->tai = time_tai;
    225 	ntv->time_state = time_state;
    226 }
    227 
    228 /* ARGSUSED */
    229 /*
    230  * ntp_adjtime() - NTP daemon application interface
    231  */
    232 int
    233 sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
    234 {
    235 	/* {
    236 		syscallarg(struct timex *) tp;
    237 	} */
    238 	struct timex ntv;
    239 	int error = 0;
    240 
    241 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
    242 	if (error != 0)
    243 		return (error);
    244 
    245 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
    246 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
    247 	    NULL, NULL)) != 0)
    248 		return (error);
    249 
    250 	ntp_adjtime1(&ntv);
    251 
    252 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
    253 	if (!error)
    254 		*retval = ntp_timestatus();
    255 
    256 	return error;
    257 }
    258 
    259 void
    260 ntp_adjtime1(struct timex *ntv)
    261 {
    262 	long freq;
    263 	int modes;
    264 	int s;
    265 
    266 	/*
    267 	 * Update selected clock variables - only the superuser can
    268 	 * change anything. Note that there is no error checking here on
    269 	 * the assumption the superuser should know what it is doing.
    270 	 * Note that either the time constant or TAI offset are loaded
    271 	 * from the ntv.constant member, depending on the mode bits. If
    272 	 * the STA_PLL bit in the status word is cleared, the state and
    273 	 * status words are reset to the initial values at boot.
    274 	 */
    275 	modes = ntv->modes;
    276 	if (modes != 0)
    277 		/* We need to save the system time during shutdown */
    278 		time_adjusted |= 2;
    279 	s = splclock();
    280 	if (modes & MOD_MAXERROR)
    281 		time_maxerror = ntv->maxerror;
    282 	if (modes & MOD_ESTERROR)
    283 		time_esterror = ntv->esterror;
    284 	if (modes & MOD_STATUS) {
    285 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
    286 			time_state = TIME_OK;
    287 			time_status = STA_UNSYNC;
    288 #ifdef PPS_SYNC
    289 			pps_shift = PPS_FAVG;
    290 #endif /* PPS_SYNC */
    291 		}
    292 		time_status &= STA_RONLY;
    293 		time_status |= ntv->status & ~STA_RONLY;
    294 	}
    295 	if (modes & MOD_TIMECONST) {
    296 		if (ntv->constant < 0)
    297 			time_constant = 0;
    298 		else if (ntv->constant > MAXTC)
    299 			time_constant = MAXTC;
    300 		else
    301 			time_constant = ntv->constant;
    302 	}
    303 	if (modes & MOD_TAI) {
    304 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
    305 			time_tai = ntv->constant;
    306 	}
    307 #ifdef PPS_SYNC
    308 	if (modes & MOD_PPSMAX) {
    309 		if (ntv->shift < PPS_FAVG)
    310 			pps_shiftmax = PPS_FAVG;
    311 		else if (ntv->shift > PPS_FAVGMAX)
    312 			pps_shiftmax = PPS_FAVGMAX;
    313 		else
    314 			pps_shiftmax = ntv->shift;
    315 	}
    316 #endif /* PPS_SYNC */
    317 	if (modes & MOD_NANO)
    318 		time_status |= STA_NANO;
    319 	if (modes & MOD_MICRO)
    320 		time_status &= ~STA_NANO;
    321 	if (modes & MOD_CLKB)
    322 		time_status |= STA_CLK;
    323 	if (modes & MOD_CLKA)
    324 		time_status &= ~STA_CLK;
    325 	if (modes & MOD_FREQUENCY) {
    326 		freq = (ntv->freq * 1000LL) >> 16;
    327 		if (freq > MAXFREQ)
    328 			L_LINT(time_freq, MAXFREQ);
    329 		else if (freq < -MAXFREQ)
    330 			L_LINT(time_freq, -MAXFREQ);
    331 		else {
    332 			/*
    333 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
    334 			 * time_freq is [ns/s * 2^32]
    335 			 */
    336 			time_freq = ntv->freq * 1000LL * 65536LL;
    337 		}
    338 #ifdef PPS_SYNC
    339 		pps_freq = time_freq;
    340 #endif /* PPS_SYNC */
    341 	}
    342 	if (modes & MOD_OFFSET) {
    343 		if (time_status & STA_NANO)
    344 			hardupdate(ntv->offset);
    345 		else
    346 			hardupdate(ntv->offset * 1000);
    347 	}
    348 
    349 	/*
    350 	 * Retrieve all clock variables. Note that the TAI offset is
    351 	 * returned only by ntp_gettime();
    352 	 */
    353 	if (time_status & STA_NANO)
    354 		ntv->offset = L_GINT(time_offset);
    355 	else
    356 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
    357 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
    358 	ntv->maxerror = time_maxerror;
    359 	ntv->esterror = time_esterror;
    360 	ntv->status = time_status;
    361 	ntv->constant = time_constant;
    362 	if (time_status & STA_NANO)
    363 		ntv->precision = time_precision;
    364 	else
    365 		ntv->precision = time_precision / 1000;
    366 	ntv->tolerance = MAXFREQ * SCALE_PPM;
    367 #ifdef PPS_SYNC
    368 	ntv->shift = pps_shift;
    369 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
    370 	if (time_status & STA_NANO)
    371 		ntv->jitter = pps_jitter;
    372 	else
    373 		ntv->jitter = pps_jitter / 1000;
    374 	ntv->stabil = pps_stabil;
    375 	ntv->calcnt = pps_calcnt;
    376 	ntv->errcnt = pps_errcnt;
    377 	ntv->jitcnt = pps_jitcnt;
    378 	ntv->stbcnt = pps_stbcnt;
    379 #endif /* PPS_SYNC */
    380 	splx(s);
    381 }
    382 #endif /* NTP */
    383 
    384 /*
    385  * second_overflow() - called after ntp_tick_adjust()
    386  *
    387  * This routine is ordinarily called immediately following the above
    388  * routine ntp_tick_adjust(). While these two routines are normally
    389  * combined, they are separated here only for the purposes of
    390  * simulation.
    391  */
    392 void
    393 ntp_update_second(int64_t *adjustment, time_t *newsec)
    394 {
    395 	int tickrate;
    396 	l_fp ftemp;		/* 32/64-bit temporary */
    397 
    398 #ifdef NTP
    399 
    400 	/*
    401 	 * On rollover of the second both the nanosecond and microsecond
    402 	 * clocks are updated and the state machine cranked as
    403 	 * necessary. The phase adjustment to be used for the next
    404 	 * second is calculated and the maximum error is increased by
    405 	 * the tolerance.
    406 	 */
    407 	time_maxerror += MAXFREQ / 1000;
    408 
    409 	/*
    410 	 * Leap second processing. If in leap-insert state at
    411 	 * the end of the day, the system clock is set back one
    412 	 * second; if in leap-delete state, the system clock is
    413 	 * set ahead one second. The nano_time() routine or
    414 	 * external clock driver will insure that reported time
    415 	 * is always monotonic.
    416 	 */
    417 	switch (time_state) {
    418 
    419 		/*
    420 		 * No warning.
    421 		 */
    422 		case TIME_OK:
    423 		if (time_status & STA_INS)
    424 			time_state = TIME_INS;
    425 		else if (time_status & STA_DEL)
    426 			time_state = TIME_DEL;
    427 		break;
    428 
    429 		/*
    430 		 * Insert second 23:59:60 following second
    431 		 * 23:59:59.
    432 		 */
    433 		case TIME_INS:
    434 		if (!(time_status & STA_INS))
    435 			time_state = TIME_OK;
    436 		else if ((*newsec) % 86400 == 0) {
    437 			(*newsec)--;
    438 			time_state = TIME_OOP;
    439 			time_tai++;
    440 		}
    441 		break;
    442 
    443 		/*
    444 		 * Delete second 23:59:59.
    445 		 */
    446 		case TIME_DEL:
    447 		if (!(time_status & STA_DEL))
    448 			time_state = TIME_OK;
    449 		else if (((*newsec) + 1) % 86400 == 0) {
    450 			(*newsec)++;
    451 			time_tai--;
    452 			time_state = TIME_WAIT;
    453 		}
    454 		break;
    455 
    456 		/*
    457 		 * Insert second in progress.
    458 		 */
    459 		case TIME_OOP:
    460 			time_state = TIME_WAIT;
    461 		break;
    462 
    463 		/*
    464 		 * Wait for status bits to clear.
    465 		 */
    466 		case TIME_WAIT:
    467 		if (!(time_status & (STA_INS | STA_DEL)))
    468 			time_state = TIME_OK;
    469 	}
    470 
    471 	/*
    472 	 * Compute the total time adjustment for the next second
    473 	 * in ns. The offset is reduced by a factor depending on
    474 	 * whether the PPS signal is operating. Note that the
    475 	 * value is in effect scaled by the clock frequency,
    476 	 * since the adjustment is added at each tick interrupt.
    477 	 */
    478 	ftemp = time_offset;
    479 #ifdef PPS_SYNC
    480 	/* XXX even if PPS signal dies we should finish adjustment ? */
    481 	if (time_status & STA_PPSTIME && time_status &
    482 	    STA_PPSSIGNAL)
    483 		L_RSHIFT(ftemp, pps_shift);
    484 	else
    485 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    486 #else
    487 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    488 #endif /* PPS_SYNC */
    489 	time_adj = ftemp;
    490 	L_SUB(time_offset, ftemp);
    491 	L_ADD(time_adj, time_freq);
    492 
    493 #ifdef PPS_SYNC
    494 	if (pps_valid > 0)
    495 		pps_valid--;
    496 	else
    497 		time_status &= ~STA_PPSSIGNAL;
    498 #endif /* PPS_SYNC */
    499 #else  /* !NTP */
    500 	L_CLR(time_adj);
    501 #endif /* !NTP */
    502 
    503 	/*
    504 	 * Apply any correction from adjtime(2).  If more than one second
    505 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
    506 	 * until the last second is slewed the final < 500 usecs.
    507 	 */
    508 	if (time_adjtime != 0) {
    509 		if (time_adjtime > 1000000)
    510 			tickrate = 5000;
    511 		else if (time_adjtime < -1000000)
    512 			tickrate = -5000;
    513 		else if (time_adjtime > 500)
    514 			tickrate = 500;
    515 		else if (time_adjtime < -500)
    516 			tickrate = -500;
    517 		else
    518 			tickrate = time_adjtime;
    519 		time_adjtime -= tickrate;
    520 		L_LINT(ftemp, tickrate * 1000);
    521 		L_ADD(time_adj, ftemp);
    522 	}
    523 	*adjustment = time_adj;
    524 }
    525 
    526 /*
    527  * ntp_init() - initialize variables and structures
    528  *
    529  * This routine must be called after the kernel variables hz and tick
    530  * are set or changed and before the next tick interrupt. In this
    531  * particular implementation, these values are assumed set elsewhere in
    532  * the kernel. The design allows the clock frequency and tick interval
    533  * to be changed while the system is running. So, this routine should
    534  * probably be integrated with the code that does that.
    535  */
    536 void
    537 ntp_init(void)
    538 {
    539 
    540 	/*
    541 	 * The following variables are initialized only at startup. Only
    542 	 * those structures not cleared by the compiler need to be
    543 	 * initialized, and these only in the simulator. In the actual
    544 	 * kernel, any nonzero values here will quickly evaporate.
    545 	 */
    546 	L_CLR(time_adj);
    547 #ifdef NTP
    548 	L_CLR(time_offset);
    549 	L_CLR(time_freq);
    550 #ifdef PPS_SYNC
    551 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
    552 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
    553 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
    554 	pps_fcount = 0;
    555 	L_CLR(pps_freq);
    556 #endif /* PPS_SYNC */
    557 #endif
    558 }
    559 
    560 #ifdef NTP
    561 /*
    562  * hardupdate() - local clock update
    563  *
    564  * This routine is called by ntp_adjtime() to update the local clock
    565  * phase and frequency. The implementation is of an adaptive-parameter,
    566  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    567  * time and frequency offset estimates for each call. If the kernel PPS
    568  * discipline code is configured (PPS_SYNC), the PPS signal itself
    569  * determines the new time offset, instead of the calling argument.
    570  * Presumably, calls to ntp_adjtime() occur only when the caller
    571  * believes the local clock is valid within some bound (+-128 ms with
    572  * NTP). If the caller's time is far different than the PPS time, an
    573  * argument will ensue, and it's not clear who will lose.
    574  *
    575  * For uncompensated quartz crystal oscillators and nominal update
    576  * intervals less than 256 s, operation should be in phase-lock mode,
    577  * where the loop is disciplined to phase. For update intervals greater
    578  * than 1024 s, operation should be in frequency-lock mode, where the
    579  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
    580  * is selected by the STA_MODE status bit.
    581  *
    582  * Note: splclock() is in effect.
    583  */
    584 void
    585 hardupdate(long offset)
    586 {
    587 	long mtemp;
    588 	l_fp ftemp;
    589 
    590 	/*
    591 	 * Select how the phase is to be controlled and from which
    592 	 * source. If the PPS signal is present and enabled to
    593 	 * discipline the time, the PPS offset is used; otherwise, the
    594 	 * argument offset is used.
    595 	 */
    596 	if (!(time_status & STA_PLL))
    597 		return;
    598 	if (!(time_status & STA_PPSTIME && time_status &
    599 	    STA_PPSSIGNAL)) {
    600 		if (offset > MAXPHASE)
    601 			time_monitor = MAXPHASE;
    602 		else if (offset < -MAXPHASE)
    603 			time_monitor = -MAXPHASE;
    604 		else
    605 			time_monitor = offset;
    606 		L_LINT(time_offset, time_monitor);
    607 	}
    608 
    609 	/*
    610 	 * Select how the frequency is to be controlled and in which
    611 	 * mode (PLL or FLL). If the PPS signal is present and enabled
    612 	 * to discipline the frequency, the PPS frequency is used;
    613 	 * otherwise, the argument offset is used to compute it.
    614 	 */
    615 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
    616 		time_reftime = time_second;
    617 		return;
    618 	}
    619 	if (time_status & STA_FREQHOLD || time_reftime == 0)
    620 		time_reftime = time_second;
    621 	mtemp = time_second - time_reftime;
    622 	L_LINT(ftemp, time_monitor);
    623 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
    624 	L_MPY(ftemp, mtemp);
    625 	L_ADD(time_freq, ftemp);
    626 	time_status &= ~STA_MODE;
    627 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
    628 	    MAXSEC)) {
    629 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
    630 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
    631 		L_ADD(time_freq, ftemp);
    632 		time_status |= STA_MODE;
    633 	}
    634 	time_reftime = time_second;
    635 	if (L_GINT(time_freq) > MAXFREQ)
    636 		L_LINT(time_freq, MAXFREQ);
    637 	else if (L_GINT(time_freq) < -MAXFREQ)
    638 		L_LINT(time_freq, -MAXFREQ);
    639 }
    640 
    641 #ifdef PPS_SYNC
    642 /*
    643  * hardpps() - discipline CPU clock oscillator to external PPS signal
    644  *
    645  * This routine is called at each PPS interrupt in order to discipline
    646  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
    647  * and leaves it in a handy spot for the hardclock() routine. It
    648  * integrates successive PPS phase differences and calculates the
    649  * frequency offset. This is used in hardclock() to discipline the CPU
    650  * clock oscillator so that intrinsic frequency error is cancelled out.
    651  * The code requires the caller to capture the time and hardware counter
    652  * value at the on-time PPS signal transition.
    653  *
    654  * Note that, on some Unix systems, this routine runs at an interrupt
    655  * priority level higher than the timer interrupt routine hardclock().
    656  * Therefore, the variables used are distinct from the hardclock()
    657  * variables, except for certain exceptions: The PPS frequency pps_freq
    658  * and phase pps_offset variables are determined by this routine and
    659  * updated atomically. The time_tolerance variable can be considered a
    660  * constant, since it is infrequently changed, and then only when the
    661  * PPS signal is disabled. The watchdog counter pps_valid is updated
    662  * once per second by hardclock() and is atomically cleared in this
    663  * routine.
    664  */
    665 void
    666 hardpps(struct timespec *tsp,		/* time at PPS */
    667 	long nsec			/* hardware counter at PPS */)
    668 {
    669 	long u_sec, u_nsec, v_nsec; /* temps */
    670 	l_fp ftemp;
    671 
    672 	/*
    673 	 * The signal is first processed by a range gate and frequency
    674 	 * discriminator. The range gate rejects noise spikes outside
    675 	 * the range +-500 us. The frequency discriminator rejects input
    676 	 * signals with apparent frequency outside the range 1 +-500
    677 	 * PPM. If two hits occur in the same second, we ignore the
    678 	 * later hit; if not and a hit occurs outside the range gate,
    679 	 * keep the later hit for later comparison, but do not process
    680 	 * it.
    681 	 */
    682 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
    683 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
    684 	pps_valid = PPS_VALID;
    685 	u_sec = tsp->tv_sec;
    686 	u_nsec = tsp->tv_nsec;
    687 	if (u_nsec >= (NANOSECOND >> 1)) {
    688 		u_nsec -= NANOSECOND;
    689 		u_sec++;
    690 	}
    691 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
    692 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
    693 	    MAXFREQ)
    694 		return;
    695 	pps_tf[2] = pps_tf[1];
    696 	pps_tf[1] = pps_tf[0];
    697 	pps_tf[0].tv_sec = u_sec;
    698 	pps_tf[0].tv_nsec = u_nsec;
    699 
    700 	/*
    701 	 * Compute the difference between the current and previous
    702 	 * counter values. If the difference exceeds 0.5 s, assume it
    703 	 * has wrapped around, so correct 1.0 s. If the result exceeds
    704 	 * the tick interval, the sample point has crossed a tick
    705 	 * boundary during the last second, so correct the tick. Very
    706 	 * intricate.
    707 	 */
    708 	u_nsec = nsec;
    709 	if (u_nsec > (NANOSECOND >> 1))
    710 		u_nsec -= NANOSECOND;
    711 	else if (u_nsec < -(NANOSECOND >> 1))
    712 		u_nsec += NANOSECOND;
    713 	pps_fcount += u_nsec;
    714 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
    715 		return;
    716 	time_status &= ~STA_PPSJITTER;
    717 
    718 	/*
    719 	 * A three-stage median filter is used to help denoise the PPS
    720 	 * time. The median sample becomes the time offset estimate; the
    721 	 * difference between the other two samples becomes the time
    722 	 * dispersion (jitter) estimate.
    723 	 */
    724 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
    725 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
    726 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
    727 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
    728 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
    729 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
    730 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
    731 		} else {
    732 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
    733 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
    734 		}
    735 	} else {
    736 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
    737 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
    738 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
    739 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
    740 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
    741 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
    742 		} else {
    743 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
    744 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
    745 		}
    746 	}
    747 
    748 	/*
    749 	 * Nominal jitter is due to PPS signal noise and interrupt
    750 	 * latency. If it exceeds the popcorn threshold, the sample is
    751 	 * discarded. otherwise, if so enabled, the time offset is
    752 	 * updated. We can tolerate a modest loss of data here without
    753 	 * much degrading time accuracy.
    754 	 */
    755 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
    756 		time_status |= STA_PPSJITTER;
    757 		pps_jitcnt++;
    758 	} else if (time_status & STA_PPSTIME) {
    759 		time_monitor = -v_nsec;
    760 		L_LINT(time_offset, time_monitor);
    761 	}
    762 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
    763 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
    764 	if (u_sec < (1 << pps_shift))
    765 		return;
    766 
    767 	/*
    768 	 * At the end of the calibration interval the difference between
    769 	 * the first and last counter values becomes the scaled
    770 	 * frequency. It will later be divided by the length of the
    771 	 * interval to determine the frequency update. If the frequency
    772 	 * exceeds a sanity threshold, or if the actual calibration
    773 	 * interval is not equal to the expected length, the data are
    774 	 * discarded. We can tolerate a modest loss of data here without
    775 	 * much degrading frequency accuracy.
    776 	 */
    777 	pps_calcnt++;
    778 	v_nsec = -pps_fcount;
    779 	pps_lastsec = pps_tf[0].tv_sec;
    780 	pps_fcount = 0;
    781 	u_nsec = MAXFREQ << pps_shift;
    782 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
    783 	    pps_shift)) {
    784 		time_status |= STA_PPSERROR;
    785 		pps_errcnt++;
    786 		return;
    787 	}
    788 
    789 	/*
    790 	 * Here the raw frequency offset and wander (stability) is
    791 	 * calculated. If the wander is less than the wander threshold
    792 	 * for four consecutive averaging intervals, the interval is
    793 	 * doubled; if it is greater than the threshold for four
    794 	 * consecutive intervals, the interval is halved. The scaled
    795 	 * frequency offset is converted to frequency offset. The
    796 	 * stability metric is calculated as the average of recent
    797 	 * frequency changes, but is used only for performance
    798 	 * monitoring.
    799 	 */
    800 	L_LINT(ftemp, v_nsec);
    801 	L_RSHIFT(ftemp, pps_shift);
    802 	L_SUB(ftemp, pps_freq);
    803 	u_nsec = L_GINT(ftemp);
    804 	if (u_nsec > PPS_MAXWANDER) {
    805 		L_LINT(ftemp, PPS_MAXWANDER);
    806 		pps_intcnt--;
    807 		time_status |= STA_PPSWANDER;
    808 		pps_stbcnt++;
    809 	} else if (u_nsec < -PPS_MAXWANDER) {
    810 		L_LINT(ftemp, -PPS_MAXWANDER);
    811 		pps_intcnt--;
    812 		time_status |= STA_PPSWANDER;
    813 		pps_stbcnt++;
    814 	} else {
    815 		pps_intcnt++;
    816 	}
    817 	if (pps_intcnt >= 4) {
    818 		pps_intcnt = 4;
    819 		if (pps_shift < pps_shiftmax) {
    820 			pps_shift++;
    821 			pps_intcnt = 0;
    822 		}
    823 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
    824 		pps_intcnt = -4;
    825 		if (pps_shift > PPS_FAVG) {
    826 			pps_shift--;
    827 			pps_intcnt = 0;
    828 		}
    829 	}
    830 	if (u_nsec < 0)
    831 		u_nsec = -u_nsec;
    832 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
    833 
    834 	/*
    835 	 * The PPS frequency is recalculated and clamped to the maximum
    836 	 * MAXFREQ. If enabled, the system clock frequency is updated as
    837 	 * well.
    838 	 */
    839 	L_ADD(pps_freq, ftemp);
    840 	u_nsec = L_GINT(pps_freq);
    841 	if (u_nsec > MAXFREQ)
    842 		L_LINT(pps_freq, MAXFREQ);
    843 	else if (u_nsec < -MAXFREQ)
    844 		L_LINT(pps_freq, -MAXFREQ);
    845 	if (time_status & STA_PPSFREQ)
    846 		time_freq = pps_freq;
    847 }
    848 #endif /* PPS_SYNC */
    849 #endif /* NTP */
    850 #else /* !__HAVE_TIMECOUNTER */
    851 /******************************************************************************
    852  *                                                                            *
    853  * Copyright (c) David L. Mills 1993, 1994                                    *
    854  *                                                                            *
    855  * Permission to use, copy, modify, and distribute this software and its      *
    856  * documentation for any purpose and without fee is hereby granted, provided  *
    857  * that the above copyright notice appears in all copies and that both the    *
    858  * copyright notice and this permission notice appear in supporting           *
    859  * documentation, and that the name University of Delaware not be used in     *
    860  * advertising or publicity pertaining to distribution of the software        *
    861  * without specific, written prior permission.  The University of Delaware    *
    862  * makes no representations about the suitability this software for any       *
    863  * purpose.  It is provided "as is" without express or implied warranty.      *
    864  *                                                                            *
    865  ******************************************************************************/
    866 
    867 /*
    868  * Modification history kern_ntptime.c
    869  *
    870  * 24 Sep 94	David L. Mills
    871  *	Tightened code at exits.
    872  *
    873  * 24 Mar 94	David L. Mills
    874  *	Revised syscall interface to include new variables for PPS
    875  *	time discipline.
    876  *
    877  * 14 Feb 94	David L. Mills
    878  *	Added code for external clock
    879  *
    880  * 28 Nov 93	David L. Mills
    881  *	Revised frequency scaling to conform with adjusted parameters
    882  *
    883  * 17 Sep 93	David L. Mills
    884  *	Created file
    885  */
    886 /*
    887  * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
    888  * V4.1.1 and V4.1.3
    889  *
    890  * These routines consitute the Network Time Protocol (NTP) interfaces
    891  * for user and daemon application programs. The ntp_gettime() routine
    892  * provides the time, maximum error (synch distance) and estimated error
    893  * (dispersion) to client user application programs. The ntp_adjtime()
    894  * routine is used by the NTP daemon to adjust the system clock to an
    895  * externally derived time. The time offset and related variables set by
    896  * this routine are used by hardclock() to adjust the phase and
    897  * frequency of the phase-lock loop which controls the system clock.
    898  */
    899 
    900 #include <sys/cdefs.h>
    901 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.44.8.1 2008/01/02 21:55:54 bouyer Exp $");
    902 
    903 #include "opt_ntp.h"
    904 #include "opt_compat_netbsd.h"
    905 
    906 #include <sys/param.h>
    907 #include <sys/resourcevar.h>
    908 #include <sys/systm.h>
    909 #include <sys/kernel.h>
    910 #include <sys/proc.h>
    911 #include <sys/sysctl.h>
    912 #include <sys/timex.h>
    913 #ifdef COMPAT_30
    914 #include <compat/sys/timex.h>
    915 #endif
    916 #include <sys/vnode.h>
    917 #include <sys/kauth.h>
    918 
    919 #include <sys/mount.h>
    920 #include <sys/syscallargs.h>
    921 
    922 #include <sys/cpu.h>
    923 
    924 #ifdef NTP
    925 /*
    926  * The following variables are used by the hardclock() routine in the
    927  * kern_clock.c module and are described in that module.
    928  */
    929 extern int time_state;		/* clock state */
    930 extern int time_status;		/* clock status bits */
    931 extern long time_offset;	/* time adjustment (us) */
    932 extern long time_freq;		/* frequency offset (scaled ppm) */
    933 extern long time_maxerror;	/* maximum error (us) */
    934 extern long time_esterror;	/* estimated error (us) */
    935 extern long time_constant;	/* pll time constant */
    936 extern long time_precision;	/* clock precision (us) */
    937 extern long time_tolerance;	/* frequency tolerance (scaled ppm) */
    938 extern int time_adjusted;	/* ntp might have changed the system time */
    939 
    940 #ifdef PPS_SYNC
    941 /*
    942  * The following variables are used only if the PPS signal discipline
    943  * is configured in the kernel.
    944  */
    945 extern int pps_shift;		/* interval duration (s) (shift) */
    946 extern long pps_freq;		/* pps frequency offset (scaled ppm) */
    947 extern long pps_jitter;		/* pps jitter (us) */
    948 extern long pps_stabil;		/* pps stability (scaled ppm) */
    949 extern long pps_jitcnt;		/* jitter limit exceeded */
    950 extern long pps_calcnt;		/* calibration intervals */
    951 extern long pps_errcnt;		/* calibration errors */
    952 extern long pps_stbcnt;		/* stability limit exceeded */
    953 #endif /* PPS_SYNC */
    954 
    955 /*ARGSUSED*/
    956 /*
    957  * ntp_gettime() - NTP user application interface
    958  */
    959 void
    960 ntp_gettime(struct ntptimeval *ntvp)
    961 {
    962 	struct timeval atv;
    963 	int s;
    964 
    965 	memset(ntvp, 0, sizeof(struct ntptimeval));
    966 
    967 	s = splclock();
    968 #ifdef EXT_CLOCK
    969 	/*
    970 	 * The microtime() external clock routine returns a
    971 	 * status code. If less than zero, we declare an error
    972 	 * in the clock status word and return the kernel
    973 	 * (software) time variable. While there are other
    974 	 * places that call microtime(), this is the only place
    975 	 * that matters from an application point of view.
    976 	 */
    977 	if (microtime(&atv) < 0) {
    978 		time_status |= STA_CLOCKERR;
    979 		ntvp->time = time;
    980 	} else
    981 		time_status &= ~STA_CLOCKERR;
    982 #else /* EXT_CLOCK */
    983 	microtime(&atv);
    984 #endif /* EXT_CLOCK */
    985 	ntvp->maxerror = time_maxerror;
    986 	ntvp->esterror = time_esterror;
    987 	(void) splx(s);
    988 	TIMEVAL_TO_TIMESPEC(&atv, &ntvp->time);
    989 }
    990 
    991 
    992 /* ARGSUSED */
    993 /*
    994  * ntp_adjtime() - NTP daemon application interface
    995  */
    996 int
    997 sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
    998 {
    999 	/* {
   1000 		syscallarg(struct timex *) tp;
   1001 	} */
   1002 	struct timex ntv;
   1003 	int error = 0;
   1004 
   1005 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
   1006 	if (error != 0)
   1007 		return (error);
   1008 
   1009 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
   1010 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
   1011 	    NULL, NULL)) != 0)
   1012 		return (error);
   1013 
   1014 	ntp_adjtime1(&ntv);
   1015 
   1016 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
   1017 	if (error == 0)
   1018 		*retval = ntp_timestatus();
   1019 
   1020 	return error;
   1021 }
   1022 
   1023 void
   1024 ntp_adjtime1(struct timex *ntv)
   1025 {
   1026 	int modes;
   1027 	int s;
   1028 
   1029 	/*
   1030 	 * Update selected clock variables. Note that there is no error
   1031 	 * checking here on the assumption the superuser should know
   1032 	 * what it is doing.
   1033 	 */
   1034 	modes = ntv->modes;
   1035 	if (modes != 0)
   1036 		/* We need to save the system time during shutdown */
   1037 		time_adjusted |= 2;
   1038 	s = splclock();
   1039 	if (modes & MOD_FREQUENCY)
   1040 #ifdef PPS_SYNC
   1041 		time_freq = ntv->freq - pps_freq;
   1042 #else /* PPS_SYNC */
   1043 		time_freq = ntv->freq;
   1044 #endif /* PPS_SYNC */
   1045 	if (modes & MOD_MAXERROR)
   1046 		time_maxerror = ntv->maxerror;
   1047 	if (modes & MOD_ESTERROR)
   1048 		time_esterror = ntv->esterror;
   1049 	if (modes & MOD_STATUS) {
   1050 		time_status &= STA_RONLY;
   1051 		time_status |= ntv->status & ~STA_RONLY;
   1052 	}
   1053 	if (modes & MOD_TIMECONST)
   1054 		time_constant = ntv->constant;
   1055 	if (modes & MOD_OFFSET)
   1056 		hardupdate(ntv->offset);
   1057 
   1058 	/*
   1059 	 * Retrieve all clock variables
   1060 	 */
   1061 	if (time_offset < 0)
   1062 		ntv->offset = -(-time_offset >> SHIFT_UPDATE);
   1063 	else
   1064 		ntv->offset = time_offset >> SHIFT_UPDATE;
   1065 #ifdef PPS_SYNC
   1066 	ntv->freq = time_freq + pps_freq;
   1067 #else /* PPS_SYNC */
   1068 	ntv->freq = time_freq;
   1069 #endif /* PPS_SYNC */
   1070 	ntv->maxerror = time_maxerror;
   1071 	ntv->esterror = time_esterror;
   1072 	ntv->status = time_status;
   1073 	ntv->constant = time_constant;
   1074 	ntv->precision = time_precision;
   1075 	ntv->tolerance = time_tolerance;
   1076 #ifdef PPS_SYNC
   1077 	ntv->shift = pps_shift;
   1078 	ntv->ppsfreq = pps_freq;
   1079 	ntv->jitter = pps_jitter >> PPS_AVG;
   1080 	ntv->stabil = pps_stabil;
   1081 	ntv->calcnt = pps_calcnt;
   1082 	ntv->errcnt = pps_errcnt;
   1083 	ntv->jitcnt = pps_jitcnt;
   1084 	ntv->stbcnt = pps_stbcnt;
   1085 #endif /* PPS_SYNC */
   1086 	(void)splx(s);
   1087 }
   1088 #endif /* NTP */
   1089 #endif /* !__HAVE_TIMECOUNTER */
   1090 
   1091 #ifdef NTP
   1092 int
   1093 ntp_timestatus()
   1094 {
   1095 	/*
   1096 	 * Status word error decode. If any of these conditions
   1097 	 * occur, an error is returned, instead of the status
   1098 	 * word. Most applications will care only about the fact
   1099 	 * the system clock may not be trusted, not about the
   1100 	 * details.
   1101 	 *
   1102 	 * Hardware or software error
   1103 	 */
   1104 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
   1105 
   1106 	/*
   1107 	 * PPS signal lost when either time or frequency
   1108 	 * synchronization requested
   1109 	 */
   1110 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
   1111 	     !(time_status & STA_PPSSIGNAL)) ||
   1112 
   1113 	/*
   1114 	 * PPS jitter exceeded when time synchronization
   1115 	 * requested
   1116 	 */
   1117 	    (time_status & STA_PPSTIME &&
   1118 	     time_status & STA_PPSJITTER) ||
   1119 
   1120 	/*
   1121 	 * PPS wander exceeded or calibration error when
   1122 	 * frequency synchronization requested
   1123 	 */
   1124 	    (time_status & STA_PPSFREQ &&
   1125 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
   1126 		return (TIME_ERROR);
   1127 	else
   1128 		return (time_state);
   1129 }
   1130 
   1131 /*ARGSUSED*/
   1132 /*
   1133  * ntp_gettime() - NTP user application interface
   1134  */
   1135 int
   1136 sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
   1137 {
   1138 	/* {
   1139 		syscallarg(struct ntptimeval *) ntvp;
   1140 	} */
   1141 	struct ntptimeval ntv;
   1142 	int error = 0;
   1143 
   1144 	if (SCARG(uap, ntvp)) {
   1145 		ntp_gettime(&ntv);
   1146 
   1147 		error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
   1148 				sizeof(ntv));
   1149 	}
   1150 	if (!error) {
   1151 		*retval = ntp_timestatus();
   1152 	}
   1153 	return(error);
   1154 }
   1155 
   1156 #ifdef COMPAT_30
   1157 int
   1158 compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
   1159 {
   1160 	/* {
   1161 		syscallarg(struct ntptimeval30 *) ontvp;
   1162 	} */
   1163 	struct ntptimeval ntv;
   1164 	struct ntptimeval30 ontv;
   1165 	int error = 0;
   1166 
   1167 	if (SCARG(uap, ntvp)) {
   1168 		ntp_gettime(&ntv);
   1169 		TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
   1170 		ontv.maxerror = ntv.maxerror;
   1171 		ontv.esterror = ntv.esterror;
   1172 
   1173 		error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
   1174 				sizeof(ontv));
   1175  	}
   1176 	if (!error)
   1177 		*retval = ntp_timestatus();
   1178 
   1179 	return (error);
   1180 }
   1181 #endif
   1182 
   1183 /*
   1184  * return information about kernel precision timekeeping
   1185  */
   1186 static int
   1187 sysctl_kern_ntptime(SYSCTLFN_ARGS)
   1188 {
   1189 	struct sysctlnode node;
   1190 	struct ntptimeval ntv;
   1191 
   1192 	ntp_gettime(&ntv);
   1193 
   1194 	node = *rnode;
   1195 	node.sysctl_data = &ntv;
   1196 	node.sysctl_size = sizeof(ntv);
   1197 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
   1198 }
   1199 
   1200 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
   1201 {
   1202 
   1203 	sysctl_createv(clog, 0, NULL, NULL,
   1204 		       CTLFLAG_PERMANENT,
   1205 		       CTLTYPE_NODE, "kern", NULL,
   1206 		       NULL, 0, NULL, 0,
   1207 		       CTL_KERN, CTL_EOL);
   1208 
   1209 	sysctl_createv(clog, 0, NULL, NULL,
   1210 		       CTLFLAG_PERMANENT,
   1211 		       CTLTYPE_STRUCT, "ntptime",
   1212 		       SYSCTL_DESCR("Kernel clock values for NTP"),
   1213 		       sysctl_kern_ntptime, 0, NULL,
   1214 		       sizeof(struct ntptimeval),
   1215 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
   1216 }
   1217 #else /* !NTP */
   1218 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
   1219 
   1220 int
   1221 sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
   1222 {
   1223 
   1224 	return(ENOSYS);
   1225 }
   1226 
   1227 #ifdef COMPAT_30
   1228 int
   1229 compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
   1230 {
   1231 
   1232  	return(ENOSYS);
   1233 }
   1234 #endif
   1235 #endif /* !NTP */
   1236