kern_ntptime.c revision 1.47 1 /* $NetBSD: kern_ntptime.c,v 1.47 2008/02/27 19:55:59 matt Exp $ */
2
3 /*-
4 ***********************************************************************
5 * *
6 * Copyright (c) David L. Mills 1993-2001 *
7 * *
8 * Permission to use, copy, modify, and distribute this software and *
9 * its documentation for any purpose and without fee is hereby *
10 * granted, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission *
12 * notice appear in supporting documentation, and that the name *
13 * University of Delaware not be used in advertising or publicity *
14 * pertaining to distribution of the software without specific, *
15 * written prior permission. The University of Delaware makes no *
16 * representations about the suitability this software for any *
17 * purpose. It is provided "as is" without express or implied *
18 * warranty. *
19 * *
20 **********************************************************************/
21
22 /*
23 * Adapted from the original sources for FreeBSD and timecounters by:
24 * Poul-Henning Kamp <phk (at) FreeBSD.org>.
25 *
26 * The 32bit version of the "LP" macros seems a bit past its "sell by"
27 * date so I have retained only the 64bit version and included it directly
28 * in this file.
29 *
30 * Only minor changes done to interface with the timecounters over in
31 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
32 * confusing and/or plain wrong in that context.
33 */
34
35 #include <sys/cdefs.h>
36 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
37 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.47 2008/02/27 19:55:59 matt Exp $");
38
39 #include "opt_ntp.h"
40 #include "opt_compat_netbsd.h"
41
42 #include <sys/param.h>
43 #include <sys/resourcevar.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/sysctl.h>
48 #include <sys/timex.h>
49 #ifdef COMPAT_30
50 #include <compat/sys/timex.h>
51 #endif
52 #include <sys/vnode.h>
53 #include <sys/kauth.h>
54
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57
58 #include <sys/cpu.h>
59
60 /*
61 * Single-precision macros for 64-bit machines
62 */
63 typedef int64_t l_fp;
64 #define L_ADD(v, u) ((v) += (u))
65 #define L_SUB(v, u) ((v) -= (u))
66 #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
67 #define L_NEG(v) ((v) = -(v))
68 #define L_RSHIFT(v, n) \
69 do { \
70 if ((v) < 0) \
71 (v) = -(-(v) >> (n)); \
72 else \
73 (v) = (v) >> (n); \
74 } while (0)
75 #define L_MPY(v, a) ((v) *= (a))
76 #define L_CLR(v) ((v) = 0)
77 #define L_ISNEG(v) ((v) < 0)
78 #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
79 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
80
81 #ifdef NTP
82 /*
83 * Generic NTP kernel interface
84 *
85 * These routines constitute the Network Time Protocol (NTP) interfaces
86 * for user and daemon application programs. The ntp_gettime() routine
87 * provides the time, maximum error (synch distance) and estimated error
88 * (dispersion) to client user application programs. The ntp_adjtime()
89 * routine is used by the NTP daemon to adjust the system clock to an
90 * externally derived time. The time offset and related variables set by
91 * this routine are used by other routines in this module to adjust the
92 * phase and frequency of the clock discipline loop which controls the
93 * system clock.
94 *
95 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
96 * defined), the time at each tick interrupt is derived directly from
97 * the kernel time variable. When the kernel time is reckoned in
98 * microseconds, (NTP_NANO undefined), the time is derived from the
99 * kernel time variable together with a variable representing the
100 * leftover nanoseconds at the last tick interrupt. In either case, the
101 * current nanosecond time is reckoned from these values plus an
102 * interpolated value derived by the clock routines in another
103 * architecture-specific module. The interpolation can use either a
104 * dedicated counter or a processor cycle counter (PCC) implemented in
105 * some architectures.
106 *
107 * Note that all routines must run at priority splclock or higher.
108 */
109 /*
110 * Phase/frequency-lock loop (PLL/FLL) definitions
111 *
112 * The nanosecond clock discipline uses two variable types, time
113 * variables and frequency variables. Both types are represented as 64-
114 * bit fixed-point quantities with the decimal point between two 32-bit
115 * halves. On a 32-bit machine, each half is represented as a single
116 * word and mathematical operations are done using multiple-precision
117 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
118 * used.
119 *
120 * A time variable is a signed 64-bit fixed-point number in ns and
121 * fraction. It represents the remaining time offset to be amortized
122 * over succeeding tick interrupts. The maximum time offset is about
123 * 0.5 s and the resolution is about 2.3e-10 ns.
124 *
125 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
126 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
127 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
128 * |s s s| ns |
129 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130 * | fraction |
131 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132 *
133 * A frequency variable is a signed 64-bit fixed-point number in ns/s
134 * and fraction. It represents the ns and fraction to be added to the
135 * kernel time variable at each second. The maximum frequency offset is
136 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
137 *
138 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
139 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
140 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
141 * |s s s s s s s s s s s s s| ns/s |
142 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
143 * | fraction |
144 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
145 */
146 /*
147 * The following variables establish the state of the PLL/FLL and the
148 * residual time and frequency offset of the local clock.
149 */
150 #define SHIFT_PLL 4 /* PLL loop gain (shift) */
151 #define SHIFT_FLL 2 /* FLL loop gain (shift) */
152
153 static int time_state = TIME_OK; /* clock state */
154 static int time_status = STA_UNSYNC; /* clock status bits */
155 static long time_tai; /* TAI offset (s) */
156 static long time_monitor; /* last time offset scaled (ns) */
157 static long time_constant; /* poll interval (shift) (s) */
158 static long time_precision = 1; /* clock precision (ns) */
159 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
160 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
161 static long time_reftime; /* time at last adjustment (s) */
162 static l_fp time_offset; /* time offset (ns) */
163 static l_fp time_freq; /* frequency offset (ns/s) */
164 #endif /* NTP */
165
166 static l_fp time_adj; /* tick adjust (ns/s) */
167 int64_t time_adjtime; /* correction from adjtime(2) (usec) */
168
169 extern int time_adjusted; /* ntp might have changed the system time */
170
171 #ifdef NTP
172 #ifdef PPS_SYNC
173 /*
174 * The following variables are used when a pulse-per-second (PPS) signal
175 * is available and connected via a modem control lead. They establish
176 * the engineering parameters of the clock discipline loop when
177 * controlled by the PPS signal.
178 */
179 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
180 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
181 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
182 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
183 #define PPS_VALID 120 /* PPS signal watchdog max (s) */
184 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
185 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
186
187 static struct timespec pps_tf[3]; /* phase median filter */
188 static l_fp pps_freq; /* scaled frequency offset (ns/s) */
189 static long pps_fcount; /* frequency accumulator */
190 static long pps_jitter; /* nominal jitter (ns) */
191 static long pps_stabil; /* nominal stability (scaled ns/s) */
192 static long pps_lastsec; /* time at last calibration (s) */
193 static int pps_valid; /* signal watchdog counter */
194 static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
195 static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
196 static int pps_intcnt; /* wander counter */
197
198 /*
199 * PPS signal quality monitors
200 */
201 static long pps_calcnt; /* calibration intervals */
202 static long pps_jitcnt; /* jitter limit exceeded */
203 static long pps_stbcnt; /* stability limit exceeded */
204 static long pps_errcnt; /* calibration errors */
205 #endif /* PPS_SYNC */
206 /*
207 * End of phase/frequency-lock loop (PLL/FLL) definitions
208 */
209
210 static void hardupdate(long offset);
211
212 /*
213 * ntp_gettime() - NTP user application interface
214 */
215 void
216 ntp_gettime(struct ntptimeval *ntv)
217 {
218 nanotime(&ntv->time);
219 ntv->maxerror = time_maxerror;
220 ntv->esterror = time_esterror;
221 ntv->tai = time_tai;
222 ntv->time_state = time_state;
223 }
224
225 /* ARGSUSED */
226 /*
227 * ntp_adjtime() - NTP daemon application interface
228 */
229 int
230 sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
231 {
232 /* {
233 syscallarg(struct timex *) tp;
234 } */
235 struct timex ntv;
236 int error = 0;
237
238 error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
239 if (error != 0)
240 return (error);
241
242 if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
243 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
244 NULL, NULL)) != 0)
245 return (error);
246
247 ntp_adjtime1(&ntv);
248
249 error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
250 if (!error)
251 *retval = ntp_timestatus();
252
253 return error;
254 }
255
256 void
257 ntp_adjtime1(struct timex *ntv)
258 {
259 long freq;
260 int modes;
261 int s;
262
263 /*
264 * Update selected clock variables - only the superuser can
265 * change anything. Note that there is no error checking here on
266 * the assumption the superuser should know what it is doing.
267 * Note that either the time constant or TAI offset are loaded
268 * from the ntv.constant member, depending on the mode bits. If
269 * the STA_PLL bit in the status word is cleared, the state and
270 * status words are reset to the initial values at boot.
271 */
272 modes = ntv->modes;
273 if (modes != 0)
274 /* We need to save the system time during shutdown */
275 time_adjusted |= 2;
276 s = splclock();
277 if (modes & MOD_MAXERROR)
278 time_maxerror = ntv->maxerror;
279 if (modes & MOD_ESTERROR)
280 time_esterror = ntv->esterror;
281 if (modes & MOD_STATUS) {
282 if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
283 time_state = TIME_OK;
284 time_status = STA_UNSYNC;
285 #ifdef PPS_SYNC
286 pps_shift = PPS_FAVG;
287 #endif /* PPS_SYNC */
288 }
289 time_status &= STA_RONLY;
290 time_status |= ntv->status & ~STA_RONLY;
291 }
292 if (modes & MOD_TIMECONST) {
293 if (ntv->constant < 0)
294 time_constant = 0;
295 else if (ntv->constant > MAXTC)
296 time_constant = MAXTC;
297 else
298 time_constant = ntv->constant;
299 }
300 if (modes & MOD_TAI) {
301 if (ntv->constant > 0) /* XXX zero & negative numbers ? */
302 time_tai = ntv->constant;
303 }
304 #ifdef PPS_SYNC
305 if (modes & MOD_PPSMAX) {
306 if (ntv->shift < PPS_FAVG)
307 pps_shiftmax = PPS_FAVG;
308 else if (ntv->shift > PPS_FAVGMAX)
309 pps_shiftmax = PPS_FAVGMAX;
310 else
311 pps_shiftmax = ntv->shift;
312 }
313 #endif /* PPS_SYNC */
314 if (modes & MOD_NANO)
315 time_status |= STA_NANO;
316 if (modes & MOD_MICRO)
317 time_status &= ~STA_NANO;
318 if (modes & MOD_CLKB)
319 time_status |= STA_CLK;
320 if (modes & MOD_CLKA)
321 time_status &= ~STA_CLK;
322 if (modes & MOD_FREQUENCY) {
323 freq = (ntv->freq * 1000LL) >> 16;
324 if (freq > MAXFREQ)
325 L_LINT(time_freq, MAXFREQ);
326 else if (freq < -MAXFREQ)
327 L_LINT(time_freq, -MAXFREQ);
328 else {
329 /*
330 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
331 * time_freq is [ns/s * 2^32]
332 */
333 time_freq = ntv->freq * 1000LL * 65536LL;
334 }
335 #ifdef PPS_SYNC
336 pps_freq = time_freq;
337 #endif /* PPS_SYNC */
338 }
339 if (modes & MOD_OFFSET) {
340 if (time_status & STA_NANO)
341 hardupdate(ntv->offset);
342 else
343 hardupdate(ntv->offset * 1000);
344 }
345
346 /*
347 * Retrieve all clock variables. Note that the TAI offset is
348 * returned only by ntp_gettime();
349 */
350 if (time_status & STA_NANO)
351 ntv->offset = L_GINT(time_offset);
352 else
353 ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
354 ntv->freq = L_GINT((time_freq / 1000LL) << 16);
355 ntv->maxerror = time_maxerror;
356 ntv->esterror = time_esterror;
357 ntv->status = time_status;
358 ntv->constant = time_constant;
359 if (time_status & STA_NANO)
360 ntv->precision = time_precision;
361 else
362 ntv->precision = time_precision / 1000;
363 ntv->tolerance = MAXFREQ * SCALE_PPM;
364 #ifdef PPS_SYNC
365 ntv->shift = pps_shift;
366 ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
367 if (time_status & STA_NANO)
368 ntv->jitter = pps_jitter;
369 else
370 ntv->jitter = pps_jitter / 1000;
371 ntv->stabil = pps_stabil;
372 ntv->calcnt = pps_calcnt;
373 ntv->errcnt = pps_errcnt;
374 ntv->jitcnt = pps_jitcnt;
375 ntv->stbcnt = pps_stbcnt;
376 #endif /* PPS_SYNC */
377 splx(s);
378 }
379 #endif /* NTP */
380
381 /*
382 * second_overflow() - called after ntp_tick_adjust()
383 *
384 * This routine is ordinarily called immediately following the above
385 * routine ntp_tick_adjust(). While these two routines are normally
386 * combined, they are separated here only for the purposes of
387 * simulation.
388 */
389 void
390 ntp_update_second(int64_t *adjustment, time_t *newsec)
391 {
392 int tickrate;
393 l_fp ftemp; /* 32/64-bit temporary */
394
395 #ifdef NTP
396
397 /*
398 * On rollover of the second both the nanosecond and microsecond
399 * clocks are updated and the state machine cranked as
400 * necessary. The phase adjustment to be used for the next
401 * second is calculated and the maximum error is increased by
402 * the tolerance.
403 */
404 time_maxerror += MAXFREQ / 1000;
405
406 /*
407 * Leap second processing. If in leap-insert state at
408 * the end of the day, the system clock is set back one
409 * second; if in leap-delete state, the system clock is
410 * set ahead one second. The nano_time() routine or
411 * external clock driver will insure that reported time
412 * is always monotonic.
413 */
414 switch (time_state) {
415
416 /*
417 * No warning.
418 */
419 case TIME_OK:
420 if (time_status & STA_INS)
421 time_state = TIME_INS;
422 else if (time_status & STA_DEL)
423 time_state = TIME_DEL;
424 break;
425
426 /*
427 * Insert second 23:59:60 following second
428 * 23:59:59.
429 */
430 case TIME_INS:
431 if (!(time_status & STA_INS))
432 time_state = TIME_OK;
433 else if ((*newsec) % 86400 == 0) {
434 (*newsec)--;
435 time_state = TIME_OOP;
436 time_tai++;
437 }
438 break;
439
440 /*
441 * Delete second 23:59:59.
442 */
443 case TIME_DEL:
444 if (!(time_status & STA_DEL))
445 time_state = TIME_OK;
446 else if (((*newsec) + 1) % 86400 == 0) {
447 (*newsec)++;
448 time_tai--;
449 time_state = TIME_WAIT;
450 }
451 break;
452
453 /*
454 * Insert second in progress.
455 */
456 case TIME_OOP:
457 time_state = TIME_WAIT;
458 break;
459
460 /*
461 * Wait for status bits to clear.
462 */
463 case TIME_WAIT:
464 if (!(time_status & (STA_INS | STA_DEL)))
465 time_state = TIME_OK;
466 }
467
468 /*
469 * Compute the total time adjustment for the next second
470 * in ns. The offset is reduced by a factor depending on
471 * whether the PPS signal is operating. Note that the
472 * value is in effect scaled by the clock frequency,
473 * since the adjustment is added at each tick interrupt.
474 */
475 ftemp = time_offset;
476 #ifdef PPS_SYNC
477 /* XXX even if PPS signal dies we should finish adjustment ? */
478 if (time_status & STA_PPSTIME && time_status &
479 STA_PPSSIGNAL)
480 L_RSHIFT(ftemp, pps_shift);
481 else
482 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
483 #else
484 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
485 #endif /* PPS_SYNC */
486 time_adj = ftemp;
487 L_SUB(time_offset, ftemp);
488 L_ADD(time_adj, time_freq);
489
490 #ifdef PPS_SYNC
491 if (pps_valid > 0)
492 pps_valid--;
493 else
494 time_status &= ~STA_PPSSIGNAL;
495 #endif /* PPS_SYNC */
496 #else /* !NTP */
497 L_CLR(time_adj);
498 #endif /* !NTP */
499
500 /*
501 * Apply any correction from adjtime(2). If more than one second
502 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
503 * until the last second is slewed the final < 500 usecs.
504 */
505 if (time_adjtime != 0) {
506 if (time_adjtime > 1000000)
507 tickrate = 5000;
508 else if (time_adjtime < -1000000)
509 tickrate = -5000;
510 else if (time_adjtime > 500)
511 tickrate = 500;
512 else if (time_adjtime < -500)
513 tickrate = -500;
514 else
515 tickrate = time_adjtime;
516 time_adjtime -= tickrate;
517 L_LINT(ftemp, tickrate * 1000);
518 L_ADD(time_adj, ftemp);
519 }
520 *adjustment = time_adj;
521 }
522
523 /*
524 * ntp_init() - initialize variables and structures
525 *
526 * This routine must be called after the kernel variables hz and tick
527 * are set or changed and before the next tick interrupt. In this
528 * particular implementation, these values are assumed set elsewhere in
529 * the kernel. The design allows the clock frequency and tick interval
530 * to be changed while the system is running. So, this routine should
531 * probably be integrated with the code that does that.
532 */
533 void
534 ntp_init(void)
535 {
536
537 /*
538 * The following variables are initialized only at startup. Only
539 * those structures not cleared by the compiler need to be
540 * initialized, and these only in the simulator. In the actual
541 * kernel, any nonzero values here will quickly evaporate.
542 */
543 L_CLR(time_adj);
544 #ifdef NTP
545 L_CLR(time_offset);
546 L_CLR(time_freq);
547 #ifdef PPS_SYNC
548 pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
549 pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
550 pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
551 pps_fcount = 0;
552 L_CLR(pps_freq);
553 #endif /* PPS_SYNC */
554 #endif
555 }
556
557 #ifdef NTP
558 /*
559 * hardupdate() - local clock update
560 *
561 * This routine is called by ntp_adjtime() to update the local clock
562 * phase and frequency. The implementation is of an adaptive-parameter,
563 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
564 * time and frequency offset estimates for each call. If the kernel PPS
565 * discipline code is configured (PPS_SYNC), the PPS signal itself
566 * determines the new time offset, instead of the calling argument.
567 * Presumably, calls to ntp_adjtime() occur only when the caller
568 * believes the local clock is valid within some bound (+-128 ms with
569 * NTP). If the caller's time is far different than the PPS time, an
570 * argument will ensue, and it's not clear who will lose.
571 *
572 * For uncompensated quartz crystal oscillators and nominal update
573 * intervals less than 256 s, operation should be in phase-lock mode,
574 * where the loop is disciplined to phase. For update intervals greater
575 * than 1024 s, operation should be in frequency-lock mode, where the
576 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
577 * is selected by the STA_MODE status bit.
578 *
579 * Note: splclock() is in effect.
580 */
581 void
582 hardupdate(long offset)
583 {
584 long mtemp;
585 l_fp ftemp;
586
587 /*
588 * Select how the phase is to be controlled and from which
589 * source. If the PPS signal is present and enabled to
590 * discipline the time, the PPS offset is used; otherwise, the
591 * argument offset is used.
592 */
593 if (!(time_status & STA_PLL))
594 return;
595 if (!(time_status & STA_PPSTIME && time_status &
596 STA_PPSSIGNAL)) {
597 if (offset > MAXPHASE)
598 time_monitor = MAXPHASE;
599 else if (offset < -MAXPHASE)
600 time_monitor = -MAXPHASE;
601 else
602 time_monitor = offset;
603 L_LINT(time_offset, time_monitor);
604 }
605
606 /*
607 * Select how the frequency is to be controlled and in which
608 * mode (PLL or FLL). If the PPS signal is present and enabled
609 * to discipline the frequency, the PPS frequency is used;
610 * otherwise, the argument offset is used to compute it.
611 */
612 if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
613 time_reftime = time_second;
614 return;
615 }
616 if (time_status & STA_FREQHOLD || time_reftime == 0)
617 time_reftime = time_second;
618 mtemp = time_second - time_reftime;
619 L_LINT(ftemp, time_monitor);
620 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
621 L_MPY(ftemp, mtemp);
622 L_ADD(time_freq, ftemp);
623 time_status &= ~STA_MODE;
624 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
625 MAXSEC)) {
626 L_LINT(ftemp, (time_monitor << 4) / mtemp);
627 L_RSHIFT(ftemp, SHIFT_FLL + 4);
628 L_ADD(time_freq, ftemp);
629 time_status |= STA_MODE;
630 }
631 time_reftime = time_second;
632 if (L_GINT(time_freq) > MAXFREQ)
633 L_LINT(time_freq, MAXFREQ);
634 else if (L_GINT(time_freq) < -MAXFREQ)
635 L_LINT(time_freq, -MAXFREQ);
636 }
637
638 #ifdef PPS_SYNC
639 /*
640 * hardpps() - discipline CPU clock oscillator to external PPS signal
641 *
642 * This routine is called at each PPS interrupt in order to discipline
643 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
644 * and leaves it in a handy spot for the hardclock() routine. It
645 * integrates successive PPS phase differences and calculates the
646 * frequency offset. This is used in hardclock() to discipline the CPU
647 * clock oscillator so that intrinsic frequency error is cancelled out.
648 * The code requires the caller to capture the time and hardware counter
649 * value at the on-time PPS signal transition.
650 *
651 * Note that, on some Unix systems, this routine runs at an interrupt
652 * priority level higher than the timer interrupt routine hardclock().
653 * Therefore, the variables used are distinct from the hardclock()
654 * variables, except for certain exceptions: The PPS frequency pps_freq
655 * and phase pps_offset variables are determined by this routine and
656 * updated atomically. The time_tolerance variable can be considered a
657 * constant, since it is infrequently changed, and then only when the
658 * PPS signal is disabled. The watchdog counter pps_valid is updated
659 * once per second by hardclock() and is atomically cleared in this
660 * routine.
661 */
662 void
663 hardpps(struct timespec *tsp, /* time at PPS */
664 long nsec /* hardware counter at PPS */)
665 {
666 long u_sec, u_nsec, v_nsec; /* temps */
667 l_fp ftemp;
668
669 /*
670 * The signal is first processed by a range gate and frequency
671 * discriminator. The range gate rejects noise spikes outside
672 * the range +-500 us. The frequency discriminator rejects input
673 * signals with apparent frequency outside the range 1 +-500
674 * PPM. If two hits occur in the same second, we ignore the
675 * later hit; if not and a hit occurs outside the range gate,
676 * keep the later hit for later comparison, but do not process
677 * it.
678 */
679 time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
680 time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
681 pps_valid = PPS_VALID;
682 u_sec = tsp->tv_sec;
683 u_nsec = tsp->tv_nsec;
684 if (u_nsec >= (NANOSECOND >> 1)) {
685 u_nsec -= NANOSECOND;
686 u_sec++;
687 }
688 v_nsec = u_nsec - pps_tf[0].tv_nsec;
689 if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
690 MAXFREQ)
691 return;
692 pps_tf[2] = pps_tf[1];
693 pps_tf[1] = pps_tf[0];
694 pps_tf[0].tv_sec = u_sec;
695 pps_tf[0].tv_nsec = u_nsec;
696
697 /*
698 * Compute the difference between the current and previous
699 * counter values. If the difference exceeds 0.5 s, assume it
700 * has wrapped around, so correct 1.0 s. If the result exceeds
701 * the tick interval, the sample point has crossed a tick
702 * boundary during the last second, so correct the tick. Very
703 * intricate.
704 */
705 u_nsec = nsec;
706 if (u_nsec > (NANOSECOND >> 1))
707 u_nsec -= NANOSECOND;
708 else if (u_nsec < -(NANOSECOND >> 1))
709 u_nsec += NANOSECOND;
710 pps_fcount += u_nsec;
711 if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
712 return;
713 time_status &= ~STA_PPSJITTER;
714
715 /*
716 * A three-stage median filter is used to help denoise the PPS
717 * time. The median sample becomes the time offset estimate; the
718 * difference between the other two samples becomes the time
719 * dispersion (jitter) estimate.
720 */
721 if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
722 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
723 v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
724 u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
725 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
726 v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
727 u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
728 } else {
729 v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
730 u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
731 }
732 } else {
733 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
734 v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
735 u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
736 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
737 v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
738 u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
739 } else {
740 v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
741 u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
742 }
743 }
744
745 /*
746 * Nominal jitter is due to PPS signal noise and interrupt
747 * latency. If it exceeds the popcorn threshold, the sample is
748 * discarded. otherwise, if so enabled, the time offset is
749 * updated. We can tolerate a modest loss of data here without
750 * much degrading time accuracy.
751 */
752 if (u_nsec > (pps_jitter << PPS_POPCORN)) {
753 time_status |= STA_PPSJITTER;
754 pps_jitcnt++;
755 } else if (time_status & STA_PPSTIME) {
756 time_monitor = -v_nsec;
757 L_LINT(time_offset, time_monitor);
758 }
759 pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
760 u_sec = pps_tf[0].tv_sec - pps_lastsec;
761 if (u_sec < (1 << pps_shift))
762 return;
763
764 /*
765 * At the end of the calibration interval the difference between
766 * the first and last counter values becomes the scaled
767 * frequency. It will later be divided by the length of the
768 * interval to determine the frequency update. If the frequency
769 * exceeds a sanity threshold, or if the actual calibration
770 * interval is not equal to the expected length, the data are
771 * discarded. We can tolerate a modest loss of data here without
772 * much degrading frequency accuracy.
773 */
774 pps_calcnt++;
775 v_nsec = -pps_fcount;
776 pps_lastsec = pps_tf[0].tv_sec;
777 pps_fcount = 0;
778 u_nsec = MAXFREQ << pps_shift;
779 if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
780 pps_shift)) {
781 time_status |= STA_PPSERROR;
782 pps_errcnt++;
783 return;
784 }
785
786 /*
787 * Here the raw frequency offset and wander (stability) is
788 * calculated. If the wander is less than the wander threshold
789 * for four consecutive averaging intervals, the interval is
790 * doubled; if it is greater than the threshold for four
791 * consecutive intervals, the interval is halved. The scaled
792 * frequency offset is converted to frequency offset. The
793 * stability metric is calculated as the average of recent
794 * frequency changes, but is used only for performance
795 * monitoring.
796 */
797 L_LINT(ftemp, v_nsec);
798 L_RSHIFT(ftemp, pps_shift);
799 L_SUB(ftemp, pps_freq);
800 u_nsec = L_GINT(ftemp);
801 if (u_nsec > PPS_MAXWANDER) {
802 L_LINT(ftemp, PPS_MAXWANDER);
803 pps_intcnt--;
804 time_status |= STA_PPSWANDER;
805 pps_stbcnt++;
806 } else if (u_nsec < -PPS_MAXWANDER) {
807 L_LINT(ftemp, -PPS_MAXWANDER);
808 pps_intcnt--;
809 time_status |= STA_PPSWANDER;
810 pps_stbcnt++;
811 } else {
812 pps_intcnt++;
813 }
814 if (pps_intcnt >= 4) {
815 pps_intcnt = 4;
816 if (pps_shift < pps_shiftmax) {
817 pps_shift++;
818 pps_intcnt = 0;
819 }
820 } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
821 pps_intcnt = -4;
822 if (pps_shift > PPS_FAVG) {
823 pps_shift--;
824 pps_intcnt = 0;
825 }
826 }
827 if (u_nsec < 0)
828 u_nsec = -u_nsec;
829 pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
830
831 /*
832 * The PPS frequency is recalculated and clamped to the maximum
833 * MAXFREQ. If enabled, the system clock frequency is updated as
834 * well.
835 */
836 L_ADD(pps_freq, ftemp);
837 u_nsec = L_GINT(pps_freq);
838 if (u_nsec > MAXFREQ)
839 L_LINT(pps_freq, MAXFREQ);
840 else if (u_nsec < -MAXFREQ)
841 L_LINT(pps_freq, -MAXFREQ);
842 if (time_status & STA_PPSFREQ)
843 time_freq = pps_freq;
844 }
845 #endif /* PPS_SYNC */
846 #endif /* NTP */
847
848 #ifdef NTP
849 int
850 ntp_timestatus(void)
851 {
852 /*
853 * Status word error decode. If any of these conditions
854 * occur, an error is returned, instead of the status
855 * word. Most applications will care only about the fact
856 * the system clock may not be trusted, not about the
857 * details.
858 *
859 * Hardware or software error
860 */
861 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
862
863 /*
864 * PPS signal lost when either time or frequency
865 * synchronization requested
866 */
867 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
868 !(time_status & STA_PPSSIGNAL)) ||
869
870 /*
871 * PPS jitter exceeded when time synchronization
872 * requested
873 */
874 (time_status & STA_PPSTIME &&
875 time_status & STA_PPSJITTER) ||
876
877 /*
878 * PPS wander exceeded or calibration error when
879 * frequency synchronization requested
880 */
881 (time_status & STA_PPSFREQ &&
882 time_status & (STA_PPSWANDER | STA_PPSERROR)))
883 return (TIME_ERROR);
884 else
885 return (time_state);
886 }
887
888 /*ARGSUSED*/
889 /*
890 * ntp_gettime() - NTP user application interface
891 */
892 int
893 sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
894 {
895 /* {
896 syscallarg(struct ntptimeval *) ntvp;
897 } */
898 struct ntptimeval ntv;
899 int error = 0;
900
901 if (SCARG(uap, ntvp)) {
902 ntp_gettime(&ntv);
903
904 error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
905 sizeof(ntv));
906 }
907 if (!error) {
908 *retval = ntp_timestatus();
909 }
910 return(error);
911 }
912
913 #ifdef COMPAT_30
914 int
915 compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
916 {
917 /* {
918 syscallarg(struct ntptimeval30 *) ontvp;
919 } */
920 struct ntptimeval ntv;
921 struct ntptimeval30 ontv;
922 int error = 0;
923
924 if (SCARG(uap, ntvp)) {
925 ntp_gettime(&ntv);
926 TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
927 ontv.maxerror = ntv.maxerror;
928 ontv.esterror = ntv.esterror;
929
930 error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
931 sizeof(ontv));
932 }
933 if (!error)
934 *retval = ntp_timestatus();
935
936 return (error);
937 }
938 #endif
939
940 /*
941 * return information about kernel precision timekeeping
942 */
943 static int
944 sysctl_kern_ntptime(SYSCTLFN_ARGS)
945 {
946 struct sysctlnode node;
947 struct ntptimeval ntv;
948
949 ntp_gettime(&ntv);
950
951 node = *rnode;
952 node.sysctl_data = &ntv;
953 node.sysctl_size = sizeof(ntv);
954 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
955 }
956
957 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
958 {
959
960 sysctl_createv(clog, 0, NULL, NULL,
961 CTLFLAG_PERMANENT,
962 CTLTYPE_NODE, "kern", NULL,
963 NULL, 0, NULL, 0,
964 CTL_KERN, CTL_EOL);
965
966 sysctl_createv(clog, 0, NULL, NULL,
967 CTLFLAG_PERMANENT,
968 CTLTYPE_STRUCT, "ntptime",
969 SYSCTL_DESCR("Kernel clock values for NTP"),
970 sysctl_kern_ntptime, 0, NULL,
971 sizeof(struct ntptimeval),
972 CTL_KERN, KERN_NTPTIME, CTL_EOL);
973 }
974 #else /* !NTP */
975 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
976
977 int
978 sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
979 {
980
981 return(ENOSYS);
982 }
983
984 #ifdef COMPAT_30
985 int
986 compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
987 {
988
989 return(ENOSYS);
990 }
991 #endif
992 #endif /* !NTP */
993