Home | History | Annotate | Line # | Download | only in kern
kern_ntptime.c revision 1.48
      1 /*	$NetBSD: kern_ntptime.c,v 1.48 2008/04/21 12:56:31 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*-
     37  ***********************************************************************
     38  *								       *
     39  * Copyright (c) David L. Mills 1993-2001			       *
     40  *								       *
     41  * Permission to use, copy, modify, and distribute this software and   *
     42  * its documentation for any purpose and without fee is hereby	       *
     43  * granted, provided that the above copyright notice appears in all    *
     44  * copies and that both the copyright notice and this permission       *
     45  * notice appear in supporting documentation, and that the name	       *
     46  * University of Delaware not be used in advertising or publicity      *
     47  * pertaining to distribution of the software without specific,	       *
     48  * written prior permission. The University of Delaware makes no       *
     49  * representations about the suitability this software for any	       *
     50  * purpose. It is provided "as is" without express or implied	       *
     51  * warranty.							       *
     52  *								       *
     53  **********************************************************************/
     54 
     55 /*
     56  * Adapted from the original sources for FreeBSD and timecounters by:
     57  * Poul-Henning Kamp <phk (at) FreeBSD.org>.
     58  *
     59  * The 32bit version of the "LP" macros seems a bit past its "sell by"
     60  * date so I have retained only the 64bit version and included it directly
     61  * in this file.
     62  *
     63  * Only minor changes done to interface with the timecounters over in
     64  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
     65  * confusing and/or plain wrong in that context.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
     70 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.48 2008/04/21 12:56:31 ad Exp $");
     71 
     72 #include "opt_ntp.h"
     73 #include "opt_compat_netbsd.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/resourcevar.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/proc.h>
     80 #include <sys/sysctl.h>
     81 #include <sys/timex.h>
     82 #include <sys/vnode.h>
     83 #include <sys/kauth.h>
     84 #include <sys/mount.h>
     85 #include <sys/syscallargs.h>
     86 #include <sys/cpu.h>
     87 
     88 #ifdef COMPAT_30
     89 #include <compat/sys/timex.h>
     90 #endif
     91 
     92 /*
     93  * Single-precision macros for 64-bit machines
     94  */
     95 typedef int64_t l_fp;
     96 #define L_ADD(v, u)	((v) += (u))
     97 #define L_SUB(v, u)	((v) -= (u))
     98 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
     99 #define L_NEG(v)	((v) = -(v))
    100 #define L_RSHIFT(v, n) \
    101 	do { \
    102 		if ((v) < 0) \
    103 			(v) = -(-(v) >> (n)); \
    104 		else \
    105 			(v) = (v) >> (n); \
    106 	} while (0)
    107 #define L_MPY(v, a)	((v) *= (a))
    108 #define L_CLR(v)	((v) = 0)
    109 #define L_ISNEG(v)	((v) < 0)
    110 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
    111 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
    112 
    113 #ifdef NTP
    114 /*
    115  * Generic NTP kernel interface
    116  *
    117  * These routines constitute the Network Time Protocol (NTP) interfaces
    118  * for user and daemon application programs. The ntp_gettime() routine
    119  * provides the time, maximum error (synch distance) and estimated error
    120  * (dispersion) to client user application programs. The ntp_adjtime()
    121  * routine is used by the NTP daemon to adjust the system clock to an
    122  * externally derived time. The time offset and related variables set by
    123  * this routine are used by other routines in this module to adjust the
    124  * phase and frequency of the clock discipline loop which controls the
    125  * system clock.
    126  *
    127  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
    128  * defined), the time at each tick interrupt is derived directly from
    129  * the kernel time variable. When the kernel time is reckoned in
    130  * microseconds, (NTP_NANO undefined), the time is derived from the
    131  * kernel time variable together with a variable representing the
    132  * leftover nanoseconds at the last tick interrupt. In either case, the
    133  * current nanosecond time is reckoned from these values plus an
    134  * interpolated value derived by the clock routines in another
    135  * architecture-specific module. The interpolation can use either a
    136  * dedicated counter or a processor cycle counter (PCC) implemented in
    137  * some architectures.
    138  *
    139  * Note that all routines must run at priority splclock or higher.
    140  */
    141 /*
    142  * Phase/frequency-lock loop (PLL/FLL) definitions
    143  *
    144  * The nanosecond clock discipline uses two variable types, time
    145  * variables and frequency variables. Both types are represented as 64-
    146  * bit fixed-point quantities with the decimal point between two 32-bit
    147  * halves. On a 32-bit machine, each half is represented as a single
    148  * word and mathematical operations are done using multiple-precision
    149  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
    150  * used.
    151  *
    152  * A time variable is a signed 64-bit fixed-point number in ns and
    153  * fraction. It represents the remaining time offset to be amortized
    154  * over succeeding tick interrupts. The maximum time offset is about
    155  * 0.5 s and the resolution is about 2.3e-10 ns.
    156  *
    157  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    158  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    159  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    160  * |s s s|			 ns				   |
    161  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    162  * |			    fraction				   |
    163  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    164  *
    165  * A frequency variable is a signed 64-bit fixed-point number in ns/s
    166  * and fraction. It represents the ns and fraction to be added to the
    167  * kernel time variable at each second. The maximum frequency offset is
    168  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
    169  *
    170  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    171  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    172  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    173  * |s s s s s s s s s s s s s|	          ns/s			   |
    174  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    175  * |			    fraction				   |
    176  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    177  */
    178 /*
    179  * The following variables establish the state of the PLL/FLL and the
    180  * residual time and frequency offset of the local clock.
    181  */
    182 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
    183 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
    184 
    185 static int time_state = TIME_OK;	/* clock state */
    186 static int time_status = STA_UNSYNC;	/* clock status bits */
    187 static long time_tai;			/* TAI offset (s) */
    188 static long time_monitor;		/* last time offset scaled (ns) */
    189 static long time_constant;		/* poll interval (shift) (s) */
    190 static long time_precision = 1;		/* clock precision (ns) */
    191 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
    192 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
    193 static long time_reftime;		/* time at last adjustment (s) */
    194 static l_fp time_offset;		/* time offset (ns) */
    195 static l_fp time_freq;			/* frequency offset (ns/s) */
    196 #endif /* NTP */
    197 
    198 static l_fp time_adj;			/* tick adjust (ns/s) */
    199 int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
    200 
    201 extern int time_adjusted;	/* ntp might have changed the system time */
    202 
    203 #ifdef NTP
    204 #ifdef PPS_SYNC
    205 /*
    206  * The following variables are used when a pulse-per-second (PPS) signal
    207  * is available and connected via a modem control lead. They establish
    208  * the engineering parameters of the clock discipline loop when
    209  * controlled by the PPS signal.
    210  */
    211 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
    212 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
    213 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
    214 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
    215 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
    216 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
    217 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
    218 
    219 static struct timespec pps_tf[3];	/* phase median filter */
    220 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
    221 static long pps_fcount;			/* frequency accumulator */
    222 static long pps_jitter;			/* nominal jitter (ns) */
    223 static long pps_stabil;			/* nominal stability (scaled ns/s) */
    224 static long pps_lastsec;		/* time at last calibration (s) */
    225 static int pps_valid;			/* signal watchdog counter */
    226 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
    227 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
    228 static int pps_intcnt;			/* wander counter */
    229 
    230 /*
    231  * PPS signal quality monitors
    232  */
    233 static long pps_calcnt;			/* calibration intervals */
    234 static long pps_jitcnt;			/* jitter limit exceeded */
    235 static long pps_stbcnt;			/* stability limit exceeded */
    236 static long pps_errcnt;			/* calibration errors */
    237 #endif /* PPS_SYNC */
    238 /*
    239  * End of phase/frequency-lock loop (PLL/FLL) definitions
    240  */
    241 
    242 static void hardupdate(long offset);
    243 
    244 /*
    245  * ntp_gettime() - NTP user application interface
    246  */
    247 void
    248 ntp_gettime(struct ntptimeval *ntv)
    249 {
    250 
    251 	mutex_spin_enter(&timecounter_lock);
    252 	nanotime(&ntv->time);
    253 	ntv->maxerror = time_maxerror;
    254 	ntv->esterror = time_esterror;
    255 	ntv->tai = time_tai;
    256 	ntv->time_state = time_state;
    257 	mutex_spin_exit(&timecounter_lock);
    258 }
    259 
    260 /* ARGSUSED */
    261 /*
    262  * ntp_adjtime() - NTP daemon application interface
    263  */
    264 int
    265 sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
    266 {
    267 	/* {
    268 		syscallarg(struct timex *) tp;
    269 	} */
    270 	struct timex ntv;
    271 	int error = 0;
    272 
    273 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
    274 	if (error != 0)
    275 		return (error);
    276 
    277 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
    278 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
    279 	    NULL, NULL)) != 0)
    280 		return (error);
    281 
    282 	ntp_adjtime1(&ntv);
    283 
    284 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
    285 	if (!error)
    286 		*retval = ntp_timestatus();
    287 
    288 	return error;
    289 }
    290 
    291 void
    292 ntp_adjtime1(struct timex *ntv)
    293 {
    294 	long freq;
    295 	int modes;
    296 
    297 	/*
    298 	 * Update selected clock variables - only the superuser can
    299 	 * change anything. Note that there is no error checking here on
    300 	 * the assumption the superuser should know what it is doing.
    301 	 * Note that either the time constant or TAI offset are loaded
    302 	 * from the ntv.constant member, depending on the mode bits. If
    303 	 * the STA_PLL bit in the status word is cleared, the state and
    304 	 * status words are reset to the initial values at boot.
    305 	 */
    306 	mutex_spin_enter(&timecounter_lock);
    307 	modes = ntv->modes;
    308 	if (modes != 0)
    309 		/* We need to save the system time during shutdown */
    310 		time_adjusted |= 2;
    311 	if (modes & MOD_MAXERROR)
    312 		time_maxerror = ntv->maxerror;
    313 	if (modes & MOD_ESTERROR)
    314 		time_esterror = ntv->esterror;
    315 	if (modes & MOD_STATUS) {
    316 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
    317 			time_state = TIME_OK;
    318 			time_status = STA_UNSYNC;
    319 #ifdef PPS_SYNC
    320 			pps_shift = PPS_FAVG;
    321 #endif /* PPS_SYNC */
    322 		}
    323 		time_status &= STA_RONLY;
    324 		time_status |= ntv->status & ~STA_RONLY;
    325 	}
    326 	if (modes & MOD_TIMECONST) {
    327 		if (ntv->constant < 0)
    328 			time_constant = 0;
    329 		else if (ntv->constant > MAXTC)
    330 			time_constant = MAXTC;
    331 		else
    332 			time_constant = ntv->constant;
    333 	}
    334 	if (modes & MOD_TAI) {
    335 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
    336 			time_tai = ntv->constant;
    337 	}
    338 #ifdef PPS_SYNC
    339 	if (modes & MOD_PPSMAX) {
    340 		if (ntv->shift < PPS_FAVG)
    341 			pps_shiftmax = PPS_FAVG;
    342 		else if (ntv->shift > PPS_FAVGMAX)
    343 			pps_shiftmax = PPS_FAVGMAX;
    344 		else
    345 			pps_shiftmax = ntv->shift;
    346 	}
    347 #endif /* PPS_SYNC */
    348 	if (modes & MOD_NANO)
    349 		time_status |= STA_NANO;
    350 	if (modes & MOD_MICRO)
    351 		time_status &= ~STA_NANO;
    352 	if (modes & MOD_CLKB)
    353 		time_status |= STA_CLK;
    354 	if (modes & MOD_CLKA)
    355 		time_status &= ~STA_CLK;
    356 	if (modes & MOD_FREQUENCY) {
    357 		freq = (ntv->freq * 1000LL) >> 16;
    358 		if (freq > MAXFREQ)
    359 			L_LINT(time_freq, MAXFREQ);
    360 		else if (freq < -MAXFREQ)
    361 			L_LINT(time_freq, -MAXFREQ);
    362 		else {
    363 			/*
    364 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
    365 			 * time_freq is [ns/s * 2^32]
    366 			 */
    367 			time_freq = ntv->freq * 1000LL * 65536LL;
    368 		}
    369 #ifdef PPS_SYNC
    370 		pps_freq = time_freq;
    371 #endif /* PPS_SYNC */
    372 	}
    373 	if (modes & MOD_OFFSET) {
    374 		if (time_status & STA_NANO)
    375 			hardupdate(ntv->offset);
    376 		else
    377 			hardupdate(ntv->offset * 1000);
    378 	}
    379 
    380 	/*
    381 	 * Retrieve all clock variables. Note that the TAI offset is
    382 	 * returned only by ntp_gettime();
    383 	 */
    384 	if (time_status & STA_NANO)
    385 		ntv->offset = L_GINT(time_offset);
    386 	else
    387 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
    388 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
    389 	ntv->maxerror = time_maxerror;
    390 	ntv->esterror = time_esterror;
    391 	ntv->status = time_status;
    392 	ntv->constant = time_constant;
    393 	if (time_status & STA_NANO)
    394 		ntv->precision = time_precision;
    395 	else
    396 		ntv->precision = time_precision / 1000;
    397 	ntv->tolerance = MAXFREQ * SCALE_PPM;
    398 #ifdef PPS_SYNC
    399 	ntv->shift = pps_shift;
    400 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
    401 	if (time_status & STA_NANO)
    402 		ntv->jitter = pps_jitter;
    403 	else
    404 		ntv->jitter = pps_jitter / 1000;
    405 	ntv->stabil = pps_stabil;
    406 	ntv->calcnt = pps_calcnt;
    407 	ntv->errcnt = pps_errcnt;
    408 	ntv->jitcnt = pps_jitcnt;
    409 	ntv->stbcnt = pps_stbcnt;
    410 #endif /* PPS_SYNC */
    411 	mutex_spin_exit(&timecounter_lock);
    412 }
    413 #endif /* NTP */
    414 
    415 /*
    416  * second_overflow() - called after ntp_tick_adjust()
    417  *
    418  * This routine is ordinarily called immediately following the above
    419  * routine ntp_tick_adjust(). While these two routines are normally
    420  * combined, they are separated here only for the purposes of
    421  * simulation.
    422  */
    423 void
    424 ntp_update_second(int64_t *adjustment, time_t *newsec)
    425 {
    426 	int tickrate;
    427 	l_fp ftemp;		/* 32/64-bit temporary */
    428 
    429 	KASSERT(mutex_owned(&timecounter_lock));
    430 
    431 #ifdef NTP
    432 
    433 	/*
    434 	 * On rollover of the second both the nanosecond and microsecond
    435 	 * clocks are updated and the state machine cranked as
    436 	 * necessary. The phase adjustment to be used for the next
    437 	 * second is calculated and the maximum error is increased by
    438 	 * the tolerance.
    439 	 */
    440 	time_maxerror += MAXFREQ / 1000;
    441 
    442 	/*
    443 	 * Leap second processing. If in leap-insert state at
    444 	 * the end of the day, the system clock is set back one
    445 	 * second; if in leap-delete state, the system clock is
    446 	 * set ahead one second. The nano_time() routine or
    447 	 * external clock driver will insure that reported time
    448 	 * is always monotonic.
    449 	 */
    450 	switch (time_state) {
    451 
    452 		/*
    453 		 * No warning.
    454 		 */
    455 		case TIME_OK:
    456 		if (time_status & STA_INS)
    457 			time_state = TIME_INS;
    458 		else if (time_status & STA_DEL)
    459 			time_state = TIME_DEL;
    460 		break;
    461 
    462 		/*
    463 		 * Insert second 23:59:60 following second
    464 		 * 23:59:59.
    465 		 */
    466 		case TIME_INS:
    467 		if (!(time_status & STA_INS))
    468 			time_state = TIME_OK;
    469 		else if ((*newsec) % 86400 == 0) {
    470 			(*newsec)--;
    471 			time_state = TIME_OOP;
    472 			time_tai++;
    473 		}
    474 		break;
    475 
    476 		/*
    477 		 * Delete second 23:59:59.
    478 		 */
    479 		case TIME_DEL:
    480 		if (!(time_status & STA_DEL))
    481 			time_state = TIME_OK;
    482 		else if (((*newsec) + 1) % 86400 == 0) {
    483 			(*newsec)++;
    484 			time_tai--;
    485 			time_state = TIME_WAIT;
    486 		}
    487 		break;
    488 
    489 		/*
    490 		 * Insert second in progress.
    491 		 */
    492 		case TIME_OOP:
    493 			time_state = TIME_WAIT;
    494 		break;
    495 
    496 		/*
    497 		 * Wait for status bits to clear.
    498 		 */
    499 		case TIME_WAIT:
    500 		if (!(time_status & (STA_INS | STA_DEL)))
    501 			time_state = TIME_OK;
    502 	}
    503 
    504 	/*
    505 	 * Compute the total time adjustment for the next second
    506 	 * in ns. The offset is reduced by a factor depending on
    507 	 * whether the PPS signal is operating. Note that the
    508 	 * value is in effect scaled by the clock frequency,
    509 	 * since the adjustment is added at each tick interrupt.
    510 	 */
    511 	ftemp = time_offset;
    512 #ifdef PPS_SYNC
    513 	/* XXX even if PPS signal dies we should finish adjustment ? */
    514 	if (time_status & STA_PPSTIME && time_status &
    515 	    STA_PPSSIGNAL)
    516 		L_RSHIFT(ftemp, pps_shift);
    517 	else
    518 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    519 #else
    520 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    521 #endif /* PPS_SYNC */
    522 	time_adj = ftemp;
    523 	L_SUB(time_offset, ftemp);
    524 	L_ADD(time_adj, time_freq);
    525 
    526 #ifdef PPS_SYNC
    527 	if (pps_valid > 0)
    528 		pps_valid--;
    529 	else
    530 		time_status &= ~STA_PPSSIGNAL;
    531 #endif /* PPS_SYNC */
    532 #else  /* !NTP */
    533 	L_CLR(time_adj);
    534 #endif /* !NTP */
    535 
    536 	/*
    537 	 * Apply any correction from adjtime(2).  If more than one second
    538 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
    539 	 * until the last second is slewed the final < 500 usecs.
    540 	 */
    541 	if (time_adjtime != 0) {
    542 		if (time_adjtime > 1000000)
    543 			tickrate = 5000;
    544 		else if (time_adjtime < -1000000)
    545 			tickrate = -5000;
    546 		else if (time_adjtime > 500)
    547 			tickrate = 500;
    548 		else if (time_adjtime < -500)
    549 			tickrate = -500;
    550 		else
    551 			tickrate = time_adjtime;
    552 		time_adjtime -= tickrate;
    553 		L_LINT(ftemp, tickrate * 1000);
    554 		L_ADD(time_adj, ftemp);
    555 	}
    556 	*adjustment = time_adj;
    557 }
    558 
    559 /*
    560  * ntp_init() - initialize variables and structures
    561  *
    562  * This routine must be called after the kernel variables hz and tick
    563  * are set or changed and before the next tick interrupt. In this
    564  * particular implementation, these values are assumed set elsewhere in
    565  * the kernel. The design allows the clock frequency and tick interval
    566  * to be changed while the system is running. So, this routine should
    567  * probably be integrated with the code that does that.
    568  */
    569 void
    570 ntp_init(void)
    571 {
    572 
    573 	/*
    574 	 * The following variables are initialized only at startup. Only
    575 	 * those structures not cleared by the compiler need to be
    576 	 * initialized, and these only in the simulator. In the actual
    577 	 * kernel, any nonzero values here will quickly evaporate.
    578 	 */
    579 	L_CLR(time_adj);
    580 #ifdef NTP
    581 	L_CLR(time_offset);
    582 	L_CLR(time_freq);
    583 #ifdef PPS_SYNC
    584 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
    585 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
    586 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
    587 	pps_fcount = 0;
    588 	L_CLR(pps_freq);
    589 #endif /* PPS_SYNC */
    590 #endif
    591 }
    592 
    593 #ifdef NTP
    594 /*
    595  * hardupdate() - local clock update
    596  *
    597  * This routine is called by ntp_adjtime() to update the local clock
    598  * phase and frequency. The implementation is of an adaptive-parameter,
    599  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    600  * time and frequency offset estimates for each call. If the kernel PPS
    601  * discipline code is configured (PPS_SYNC), the PPS signal itself
    602  * determines the new time offset, instead of the calling argument.
    603  * Presumably, calls to ntp_adjtime() occur only when the caller
    604  * believes the local clock is valid within some bound (+-128 ms with
    605  * NTP). If the caller's time is far different than the PPS time, an
    606  * argument will ensue, and it's not clear who will lose.
    607  *
    608  * For uncompensated quartz crystal oscillators and nominal update
    609  * intervals less than 256 s, operation should be in phase-lock mode,
    610  * where the loop is disciplined to phase. For update intervals greater
    611  * than 1024 s, operation should be in frequency-lock mode, where the
    612  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
    613  * is selected by the STA_MODE status bit.
    614  *
    615  * Note: splclock() is in effect.
    616  */
    617 void
    618 hardupdate(long offset)
    619 {
    620 	long mtemp;
    621 	l_fp ftemp;
    622 
    623 	KASSERT(mutex_owned(&timecounter_lock));
    624 
    625 	/*
    626 	 * Select how the phase is to be controlled and from which
    627 	 * source. If the PPS signal is present and enabled to
    628 	 * discipline the time, the PPS offset is used; otherwise, the
    629 	 * argument offset is used.
    630 	 */
    631 	if (!(time_status & STA_PLL))
    632 		return;
    633 	if (!(time_status & STA_PPSTIME && time_status &
    634 	    STA_PPSSIGNAL)) {
    635 		if (offset > MAXPHASE)
    636 			time_monitor = MAXPHASE;
    637 		else if (offset < -MAXPHASE)
    638 			time_monitor = -MAXPHASE;
    639 		else
    640 			time_monitor = offset;
    641 		L_LINT(time_offset, time_monitor);
    642 	}
    643 
    644 	/*
    645 	 * Select how the frequency is to be controlled and in which
    646 	 * mode (PLL or FLL). If the PPS signal is present and enabled
    647 	 * to discipline the frequency, the PPS frequency is used;
    648 	 * otherwise, the argument offset is used to compute it.
    649 	 */
    650 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
    651 		time_reftime = time_second;
    652 		return;
    653 	}
    654 	if (time_status & STA_FREQHOLD || time_reftime == 0)
    655 		time_reftime = time_second;
    656 	mtemp = time_second - time_reftime;
    657 	L_LINT(ftemp, time_monitor);
    658 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
    659 	L_MPY(ftemp, mtemp);
    660 	L_ADD(time_freq, ftemp);
    661 	time_status &= ~STA_MODE;
    662 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
    663 	    MAXSEC)) {
    664 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
    665 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
    666 		L_ADD(time_freq, ftemp);
    667 		time_status |= STA_MODE;
    668 	}
    669 	time_reftime = time_second;
    670 	if (L_GINT(time_freq) > MAXFREQ)
    671 		L_LINT(time_freq, MAXFREQ);
    672 	else if (L_GINT(time_freq) < -MAXFREQ)
    673 		L_LINT(time_freq, -MAXFREQ);
    674 }
    675 
    676 #ifdef PPS_SYNC
    677 /*
    678  * hardpps() - discipline CPU clock oscillator to external PPS signal
    679  *
    680  * This routine is called at each PPS interrupt in order to discipline
    681  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
    682  * and leaves it in a handy spot for the hardclock() routine. It
    683  * integrates successive PPS phase differences and calculates the
    684  * frequency offset. This is used in hardclock() to discipline the CPU
    685  * clock oscillator so that intrinsic frequency error is cancelled out.
    686  * The code requires the caller to capture the time and hardware counter
    687  * value at the on-time PPS signal transition.
    688  *
    689  * Note that, on some Unix systems, this routine runs at an interrupt
    690  * priority level higher than the timer interrupt routine hardclock().
    691  * Therefore, the variables used are distinct from the hardclock()
    692  * variables, except for certain exceptions: The PPS frequency pps_freq
    693  * and phase pps_offset variables are determined by this routine and
    694  * updated atomically. The time_tolerance variable can be considered a
    695  * constant, since it is infrequently changed, and then only when the
    696  * PPS signal is disabled. The watchdog counter pps_valid is updated
    697  * once per second by hardclock() and is atomically cleared in this
    698  * routine.
    699  */
    700 void
    701 hardpps(struct timespec *tsp,		/* time at PPS */
    702 	long nsec			/* hardware counter at PPS */)
    703 {
    704 	long u_sec, u_nsec, v_nsec; /* temps */
    705 	l_fp ftemp;
    706 
    707 	KASSERT(mutex_owned(&timecounter_lock));
    708 
    709 	/*
    710 	 * The signal is first processed by a range gate and frequency
    711 	 * discriminator. The range gate rejects noise spikes outside
    712 	 * the range +-500 us. The frequency discriminator rejects input
    713 	 * signals with apparent frequency outside the range 1 +-500
    714 	 * PPM. If two hits occur in the same second, we ignore the
    715 	 * later hit; if not and a hit occurs outside the range gate,
    716 	 * keep the later hit for later comparison, but do not process
    717 	 * it.
    718 	 */
    719 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
    720 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
    721 	pps_valid = PPS_VALID;
    722 	u_sec = tsp->tv_sec;
    723 	u_nsec = tsp->tv_nsec;
    724 	if (u_nsec >= (NANOSECOND >> 1)) {
    725 		u_nsec -= NANOSECOND;
    726 		u_sec++;
    727 	}
    728 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
    729 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
    730 	    MAXFREQ)
    731 		return;
    732 	pps_tf[2] = pps_tf[1];
    733 	pps_tf[1] = pps_tf[0];
    734 	pps_tf[0].tv_sec = u_sec;
    735 	pps_tf[0].tv_nsec = u_nsec;
    736 
    737 	/*
    738 	 * Compute the difference between the current and previous
    739 	 * counter values. If the difference exceeds 0.5 s, assume it
    740 	 * has wrapped around, so correct 1.0 s. If the result exceeds
    741 	 * the tick interval, the sample point has crossed a tick
    742 	 * boundary during the last second, so correct the tick. Very
    743 	 * intricate.
    744 	 */
    745 	u_nsec = nsec;
    746 	if (u_nsec > (NANOSECOND >> 1))
    747 		u_nsec -= NANOSECOND;
    748 	else if (u_nsec < -(NANOSECOND >> 1))
    749 		u_nsec += NANOSECOND;
    750 	pps_fcount += u_nsec;
    751 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
    752 		return;
    753 	time_status &= ~STA_PPSJITTER;
    754 
    755 	/*
    756 	 * A three-stage median filter is used to help denoise the PPS
    757 	 * time. The median sample becomes the time offset estimate; the
    758 	 * difference between the other two samples becomes the time
    759 	 * dispersion (jitter) estimate.
    760 	 */
    761 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
    762 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
    763 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
    764 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
    765 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
    766 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
    767 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
    768 		} else {
    769 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
    770 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
    771 		}
    772 	} else {
    773 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
    774 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
    775 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
    776 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
    777 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
    778 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
    779 		} else {
    780 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
    781 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
    782 		}
    783 	}
    784 
    785 	/*
    786 	 * Nominal jitter is due to PPS signal noise and interrupt
    787 	 * latency. If it exceeds the popcorn threshold, the sample is
    788 	 * discarded. otherwise, if so enabled, the time offset is
    789 	 * updated. We can tolerate a modest loss of data here without
    790 	 * much degrading time accuracy.
    791 	 */
    792 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
    793 		time_status |= STA_PPSJITTER;
    794 		pps_jitcnt++;
    795 	} else if (time_status & STA_PPSTIME) {
    796 		time_monitor = -v_nsec;
    797 		L_LINT(time_offset, time_monitor);
    798 	}
    799 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
    800 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
    801 	if (u_sec < (1 << pps_shift))
    802 		return;
    803 
    804 	/*
    805 	 * At the end of the calibration interval the difference between
    806 	 * the first and last counter values becomes the scaled
    807 	 * frequency. It will later be divided by the length of the
    808 	 * interval to determine the frequency update. If the frequency
    809 	 * exceeds a sanity threshold, or if the actual calibration
    810 	 * interval is not equal to the expected length, the data are
    811 	 * discarded. We can tolerate a modest loss of data here without
    812 	 * much degrading frequency accuracy.
    813 	 */
    814 	pps_calcnt++;
    815 	v_nsec = -pps_fcount;
    816 	pps_lastsec = pps_tf[0].tv_sec;
    817 	pps_fcount = 0;
    818 	u_nsec = MAXFREQ << pps_shift;
    819 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
    820 	    pps_shift)) {
    821 		time_status |= STA_PPSERROR;
    822 		pps_errcnt++;
    823 		return;
    824 	}
    825 
    826 	/*
    827 	 * Here the raw frequency offset and wander (stability) is
    828 	 * calculated. If the wander is less than the wander threshold
    829 	 * for four consecutive averaging intervals, the interval is
    830 	 * doubled; if it is greater than the threshold for four
    831 	 * consecutive intervals, the interval is halved. The scaled
    832 	 * frequency offset is converted to frequency offset. The
    833 	 * stability metric is calculated as the average of recent
    834 	 * frequency changes, but is used only for performance
    835 	 * monitoring.
    836 	 */
    837 	L_LINT(ftemp, v_nsec);
    838 	L_RSHIFT(ftemp, pps_shift);
    839 	L_SUB(ftemp, pps_freq);
    840 	u_nsec = L_GINT(ftemp);
    841 	if (u_nsec > PPS_MAXWANDER) {
    842 		L_LINT(ftemp, PPS_MAXWANDER);
    843 		pps_intcnt--;
    844 		time_status |= STA_PPSWANDER;
    845 		pps_stbcnt++;
    846 	} else if (u_nsec < -PPS_MAXWANDER) {
    847 		L_LINT(ftemp, -PPS_MAXWANDER);
    848 		pps_intcnt--;
    849 		time_status |= STA_PPSWANDER;
    850 		pps_stbcnt++;
    851 	} else {
    852 		pps_intcnt++;
    853 	}
    854 	if (pps_intcnt >= 4) {
    855 		pps_intcnt = 4;
    856 		if (pps_shift < pps_shiftmax) {
    857 			pps_shift++;
    858 			pps_intcnt = 0;
    859 		}
    860 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
    861 		pps_intcnt = -4;
    862 		if (pps_shift > PPS_FAVG) {
    863 			pps_shift--;
    864 			pps_intcnt = 0;
    865 		}
    866 	}
    867 	if (u_nsec < 0)
    868 		u_nsec = -u_nsec;
    869 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
    870 
    871 	/*
    872 	 * The PPS frequency is recalculated and clamped to the maximum
    873 	 * MAXFREQ. If enabled, the system clock frequency is updated as
    874 	 * well.
    875 	 */
    876 	L_ADD(pps_freq, ftemp);
    877 	u_nsec = L_GINT(pps_freq);
    878 	if (u_nsec > MAXFREQ)
    879 		L_LINT(pps_freq, MAXFREQ);
    880 	else if (u_nsec < -MAXFREQ)
    881 		L_LINT(pps_freq, -MAXFREQ);
    882 	if (time_status & STA_PPSFREQ)
    883 		time_freq = pps_freq;
    884 }
    885 #endif /* PPS_SYNC */
    886 #endif /* NTP */
    887 
    888 #ifdef NTP
    889 int
    890 ntp_timestatus(void)
    891 {
    892 	int rv;
    893 
    894 	/*
    895 	 * Status word error decode. If any of these conditions
    896 	 * occur, an error is returned, instead of the status
    897 	 * word. Most applications will care only about the fact
    898 	 * the system clock may not be trusted, not about the
    899 	 * details.
    900 	 *
    901 	 * Hardware or software error
    902 	 */
    903 	mutex_spin_enter(&timecounter_lock);
    904 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    905 
    906 	/*
    907 	 * PPS signal lost when either time or frequency
    908 	 * synchronization requested
    909 	 */
    910 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    911 	     !(time_status & STA_PPSSIGNAL)) ||
    912 
    913 	/*
    914 	 * PPS jitter exceeded when time synchronization
    915 	 * requested
    916 	 */
    917 	    (time_status & STA_PPSTIME &&
    918 	     time_status & STA_PPSJITTER) ||
    919 
    920 	/*
    921 	 * PPS wander exceeded or calibration error when
    922 	 * frequency synchronization requested
    923 	 */
    924 	    (time_status & STA_PPSFREQ &&
    925 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
    926 		rv = TIME_ERROR;
    927 	else
    928 		rv = time_state;
    929 	mutex_spin_exit(&timecounter_lock);
    930 
    931 	return rv;
    932 }
    933 
    934 /*ARGSUSED*/
    935 /*
    936  * ntp_gettime() - NTP user application interface
    937  */
    938 int
    939 sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
    940 {
    941 	/* {
    942 		syscallarg(struct ntptimeval *) ntvp;
    943 	} */
    944 	struct ntptimeval ntv;
    945 	int error = 0;
    946 
    947 	if (SCARG(uap, ntvp)) {
    948 		ntp_gettime(&ntv);
    949 
    950 		error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
    951 				sizeof(ntv));
    952 	}
    953 	if (!error) {
    954 		*retval = ntp_timestatus();
    955 	}
    956 	return(error);
    957 }
    958 
    959 #ifdef COMPAT_30
    960 int
    961 compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
    962 {
    963 	/* {
    964 		syscallarg(struct ntptimeval30 *) ontvp;
    965 	} */
    966 	struct ntptimeval ntv;
    967 	struct ntptimeval30 ontv;
    968 	int error = 0;
    969 
    970 	if (SCARG(uap, ntvp)) {
    971 		ntp_gettime(&ntv);
    972 		TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
    973 		ontv.maxerror = ntv.maxerror;
    974 		ontv.esterror = ntv.esterror;
    975 
    976 		error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
    977 				sizeof(ontv));
    978  	}
    979 	if (!error)
    980 		*retval = ntp_timestatus();
    981 
    982 	return (error);
    983 }
    984 #endif
    985 
    986 /*
    987  * return information about kernel precision timekeeping
    988  */
    989 static int
    990 sysctl_kern_ntptime(SYSCTLFN_ARGS)
    991 {
    992 	struct sysctlnode node;
    993 	struct ntptimeval ntv;
    994 
    995 	ntp_gettime(&ntv);
    996 
    997 	node = *rnode;
    998 	node.sysctl_data = &ntv;
    999 	node.sysctl_size = sizeof(ntv);
   1000 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
   1001 }
   1002 
   1003 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
   1004 {
   1005 
   1006 	sysctl_createv(clog, 0, NULL, NULL,
   1007 		       CTLFLAG_PERMANENT,
   1008 		       CTLTYPE_NODE, "kern", NULL,
   1009 		       NULL, 0, NULL, 0,
   1010 		       CTL_KERN, CTL_EOL);
   1011 
   1012 	sysctl_createv(clog, 0, NULL, NULL,
   1013 		       CTLFLAG_PERMANENT,
   1014 		       CTLTYPE_STRUCT, "ntptime",
   1015 		       SYSCTL_DESCR("Kernel clock values for NTP"),
   1016 		       sysctl_kern_ntptime, 0, NULL,
   1017 		       sizeof(struct ntptimeval),
   1018 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
   1019 }
   1020 #else /* !NTP */
   1021 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
   1022 
   1023 int
   1024 sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
   1025 {
   1026 
   1027 	return(ENOSYS);
   1028 }
   1029 
   1030 #ifdef COMPAT_30
   1031 int
   1032 compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
   1033 {
   1034 
   1035  	return(ENOSYS);
   1036 }
   1037 #endif
   1038 #endif /* !NTP */
   1039