kern_ntptime.c revision 1.48 1 /* $NetBSD: kern_ntptime.c,v 1.48 2008/04/21 12:56:31 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*-
37 ***********************************************************************
38 * *
39 * Copyright (c) David L. Mills 1993-2001 *
40 * *
41 * Permission to use, copy, modify, and distribute this software and *
42 * its documentation for any purpose and without fee is hereby *
43 * granted, provided that the above copyright notice appears in all *
44 * copies and that both the copyright notice and this permission *
45 * notice appear in supporting documentation, and that the name *
46 * University of Delaware not be used in advertising or publicity *
47 * pertaining to distribution of the software without specific, *
48 * written prior permission. The University of Delaware makes no *
49 * representations about the suitability this software for any *
50 * purpose. It is provided "as is" without express or implied *
51 * warranty. *
52 * *
53 **********************************************************************/
54
55 /*
56 * Adapted from the original sources for FreeBSD and timecounters by:
57 * Poul-Henning Kamp <phk (at) FreeBSD.org>.
58 *
59 * The 32bit version of the "LP" macros seems a bit past its "sell by"
60 * date so I have retained only the 64bit version and included it directly
61 * in this file.
62 *
63 * Only minor changes done to interface with the timecounters over in
64 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
65 * confusing and/or plain wrong in that context.
66 */
67
68 #include <sys/cdefs.h>
69 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
70 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.48 2008/04/21 12:56:31 ad Exp $");
71
72 #include "opt_ntp.h"
73 #include "opt_compat_netbsd.h"
74
75 #include <sys/param.h>
76 #include <sys/resourcevar.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/sysctl.h>
81 #include <sys/timex.h>
82 #include <sys/vnode.h>
83 #include <sys/kauth.h>
84 #include <sys/mount.h>
85 #include <sys/syscallargs.h>
86 #include <sys/cpu.h>
87
88 #ifdef COMPAT_30
89 #include <compat/sys/timex.h>
90 #endif
91
92 /*
93 * Single-precision macros for 64-bit machines
94 */
95 typedef int64_t l_fp;
96 #define L_ADD(v, u) ((v) += (u))
97 #define L_SUB(v, u) ((v) -= (u))
98 #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
99 #define L_NEG(v) ((v) = -(v))
100 #define L_RSHIFT(v, n) \
101 do { \
102 if ((v) < 0) \
103 (v) = -(-(v) >> (n)); \
104 else \
105 (v) = (v) >> (n); \
106 } while (0)
107 #define L_MPY(v, a) ((v) *= (a))
108 #define L_CLR(v) ((v) = 0)
109 #define L_ISNEG(v) ((v) < 0)
110 #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
111 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
112
113 #ifdef NTP
114 /*
115 * Generic NTP kernel interface
116 *
117 * These routines constitute the Network Time Protocol (NTP) interfaces
118 * for user and daemon application programs. The ntp_gettime() routine
119 * provides the time, maximum error (synch distance) and estimated error
120 * (dispersion) to client user application programs. The ntp_adjtime()
121 * routine is used by the NTP daemon to adjust the system clock to an
122 * externally derived time. The time offset and related variables set by
123 * this routine are used by other routines in this module to adjust the
124 * phase and frequency of the clock discipline loop which controls the
125 * system clock.
126 *
127 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
128 * defined), the time at each tick interrupt is derived directly from
129 * the kernel time variable. When the kernel time is reckoned in
130 * microseconds, (NTP_NANO undefined), the time is derived from the
131 * kernel time variable together with a variable representing the
132 * leftover nanoseconds at the last tick interrupt. In either case, the
133 * current nanosecond time is reckoned from these values plus an
134 * interpolated value derived by the clock routines in another
135 * architecture-specific module. The interpolation can use either a
136 * dedicated counter or a processor cycle counter (PCC) implemented in
137 * some architectures.
138 *
139 * Note that all routines must run at priority splclock or higher.
140 */
141 /*
142 * Phase/frequency-lock loop (PLL/FLL) definitions
143 *
144 * The nanosecond clock discipline uses two variable types, time
145 * variables and frequency variables. Both types are represented as 64-
146 * bit fixed-point quantities with the decimal point between two 32-bit
147 * halves. On a 32-bit machine, each half is represented as a single
148 * word and mathematical operations are done using multiple-precision
149 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
150 * used.
151 *
152 * A time variable is a signed 64-bit fixed-point number in ns and
153 * fraction. It represents the remaining time offset to be amortized
154 * over succeeding tick interrupts. The maximum time offset is about
155 * 0.5 s and the resolution is about 2.3e-10 ns.
156 *
157 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
158 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
159 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
160 * |s s s| ns |
161 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
162 * | fraction |
163 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
164 *
165 * A frequency variable is a signed 64-bit fixed-point number in ns/s
166 * and fraction. It represents the ns and fraction to be added to the
167 * kernel time variable at each second. The maximum frequency offset is
168 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
169 *
170 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
171 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
172 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
173 * |s s s s s s s s s s s s s| ns/s |
174 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
175 * | fraction |
176 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
177 */
178 /*
179 * The following variables establish the state of the PLL/FLL and the
180 * residual time and frequency offset of the local clock.
181 */
182 #define SHIFT_PLL 4 /* PLL loop gain (shift) */
183 #define SHIFT_FLL 2 /* FLL loop gain (shift) */
184
185 static int time_state = TIME_OK; /* clock state */
186 static int time_status = STA_UNSYNC; /* clock status bits */
187 static long time_tai; /* TAI offset (s) */
188 static long time_monitor; /* last time offset scaled (ns) */
189 static long time_constant; /* poll interval (shift) (s) */
190 static long time_precision = 1; /* clock precision (ns) */
191 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
192 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
193 static long time_reftime; /* time at last adjustment (s) */
194 static l_fp time_offset; /* time offset (ns) */
195 static l_fp time_freq; /* frequency offset (ns/s) */
196 #endif /* NTP */
197
198 static l_fp time_adj; /* tick adjust (ns/s) */
199 int64_t time_adjtime; /* correction from adjtime(2) (usec) */
200
201 extern int time_adjusted; /* ntp might have changed the system time */
202
203 #ifdef NTP
204 #ifdef PPS_SYNC
205 /*
206 * The following variables are used when a pulse-per-second (PPS) signal
207 * is available and connected via a modem control lead. They establish
208 * the engineering parameters of the clock discipline loop when
209 * controlled by the PPS signal.
210 */
211 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
212 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
213 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
214 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
215 #define PPS_VALID 120 /* PPS signal watchdog max (s) */
216 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
217 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
218
219 static struct timespec pps_tf[3]; /* phase median filter */
220 static l_fp pps_freq; /* scaled frequency offset (ns/s) */
221 static long pps_fcount; /* frequency accumulator */
222 static long pps_jitter; /* nominal jitter (ns) */
223 static long pps_stabil; /* nominal stability (scaled ns/s) */
224 static long pps_lastsec; /* time at last calibration (s) */
225 static int pps_valid; /* signal watchdog counter */
226 static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
227 static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
228 static int pps_intcnt; /* wander counter */
229
230 /*
231 * PPS signal quality monitors
232 */
233 static long pps_calcnt; /* calibration intervals */
234 static long pps_jitcnt; /* jitter limit exceeded */
235 static long pps_stbcnt; /* stability limit exceeded */
236 static long pps_errcnt; /* calibration errors */
237 #endif /* PPS_SYNC */
238 /*
239 * End of phase/frequency-lock loop (PLL/FLL) definitions
240 */
241
242 static void hardupdate(long offset);
243
244 /*
245 * ntp_gettime() - NTP user application interface
246 */
247 void
248 ntp_gettime(struct ntptimeval *ntv)
249 {
250
251 mutex_spin_enter(&timecounter_lock);
252 nanotime(&ntv->time);
253 ntv->maxerror = time_maxerror;
254 ntv->esterror = time_esterror;
255 ntv->tai = time_tai;
256 ntv->time_state = time_state;
257 mutex_spin_exit(&timecounter_lock);
258 }
259
260 /* ARGSUSED */
261 /*
262 * ntp_adjtime() - NTP daemon application interface
263 */
264 int
265 sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
266 {
267 /* {
268 syscallarg(struct timex *) tp;
269 } */
270 struct timex ntv;
271 int error = 0;
272
273 error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
274 if (error != 0)
275 return (error);
276
277 if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
278 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
279 NULL, NULL)) != 0)
280 return (error);
281
282 ntp_adjtime1(&ntv);
283
284 error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
285 if (!error)
286 *retval = ntp_timestatus();
287
288 return error;
289 }
290
291 void
292 ntp_adjtime1(struct timex *ntv)
293 {
294 long freq;
295 int modes;
296
297 /*
298 * Update selected clock variables - only the superuser can
299 * change anything. Note that there is no error checking here on
300 * the assumption the superuser should know what it is doing.
301 * Note that either the time constant or TAI offset are loaded
302 * from the ntv.constant member, depending on the mode bits. If
303 * the STA_PLL bit in the status word is cleared, the state and
304 * status words are reset to the initial values at boot.
305 */
306 mutex_spin_enter(&timecounter_lock);
307 modes = ntv->modes;
308 if (modes != 0)
309 /* We need to save the system time during shutdown */
310 time_adjusted |= 2;
311 if (modes & MOD_MAXERROR)
312 time_maxerror = ntv->maxerror;
313 if (modes & MOD_ESTERROR)
314 time_esterror = ntv->esterror;
315 if (modes & MOD_STATUS) {
316 if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
317 time_state = TIME_OK;
318 time_status = STA_UNSYNC;
319 #ifdef PPS_SYNC
320 pps_shift = PPS_FAVG;
321 #endif /* PPS_SYNC */
322 }
323 time_status &= STA_RONLY;
324 time_status |= ntv->status & ~STA_RONLY;
325 }
326 if (modes & MOD_TIMECONST) {
327 if (ntv->constant < 0)
328 time_constant = 0;
329 else if (ntv->constant > MAXTC)
330 time_constant = MAXTC;
331 else
332 time_constant = ntv->constant;
333 }
334 if (modes & MOD_TAI) {
335 if (ntv->constant > 0) /* XXX zero & negative numbers ? */
336 time_tai = ntv->constant;
337 }
338 #ifdef PPS_SYNC
339 if (modes & MOD_PPSMAX) {
340 if (ntv->shift < PPS_FAVG)
341 pps_shiftmax = PPS_FAVG;
342 else if (ntv->shift > PPS_FAVGMAX)
343 pps_shiftmax = PPS_FAVGMAX;
344 else
345 pps_shiftmax = ntv->shift;
346 }
347 #endif /* PPS_SYNC */
348 if (modes & MOD_NANO)
349 time_status |= STA_NANO;
350 if (modes & MOD_MICRO)
351 time_status &= ~STA_NANO;
352 if (modes & MOD_CLKB)
353 time_status |= STA_CLK;
354 if (modes & MOD_CLKA)
355 time_status &= ~STA_CLK;
356 if (modes & MOD_FREQUENCY) {
357 freq = (ntv->freq * 1000LL) >> 16;
358 if (freq > MAXFREQ)
359 L_LINT(time_freq, MAXFREQ);
360 else if (freq < -MAXFREQ)
361 L_LINT(time_freq, -MAXFREQ);
362 else {
363 /*
364 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
365 * time_freq is [ns/s * 2^32]
366 */
367 time_freq = ntv->freq * 1000LL * 65536LL;
368 }
369 #ifdef PPS_SYNC
370 pps_freq = time_freq;
371 #endif /* PPS_SYNC */
372 }
373 if (modes & MOD_OFFSET) {
374 if (time_status & STA_NANO)
375 hardupdate(ntv->offset);
376 else
377 hardupdate(ntv->offset * 1000);
378 }
379
380 /*
381 * Retrieve all clock variables. Note that the TAI offset is
382 * returned only by ntp_gettime();
383 */
384 if (time_status & STA_NANO)
385 ntv->offset = L_GINT(time_offset);
386 else
387 ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
388 ntv->freq = L_GINT((time_freq / 1000LL) << 16);
389 ntv->maxerror = time_maxerror;
390 ntv->esterror = time_esterror;
391 ntv->status = time_status;
392 ntv->constant = time_constant;
393 if (time_status & STA_NANO)
394 ntv->precision = time_precision;
395 else
396 ntv->precision = time_precision / 1000;
397 ntv->tolerance = MAXFREQ * SCALE_PPM;
398 #ifdef PPS_SYNC
399 ntv->shift = pps_shift;
400 ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
401 if (time_status & STA_NANO)
402 ntv->jitter = pps_jitter;
403 else
404 ntv->jitter = pps_jitter / 1000;
405 ntv->stabil = pps_stabil;
406 ntv->calcnt = pps_calcnt;
407 ntv->errcnt = pps_errcnt;
408 ntv->jitcnt = pps_jitcnt;
409 ntv->stbcnt = pps_stbcnt;
410 #endif /* PPS_SYNC */
411 mutex_spin_exit(&timecounter_lock);
412 }
413 #endif /* NTP */
414
415 /*
416 * second_overflow() - called after ntp_tick_adjust()
417 *
418 * This routine is ordinarily called immediately following the above
419 * routine ntp_tick_adjust(). While these two routines are normally
420 * combined, they are separated here only for the purposes of
421 * simulation.
422 */
423 void
424 ntp_update_second(int64_t *adjustment, time_t *newsec)
425 {
426 int tickrate;
427 l_fp ftemp; /* 32/64-bit temporary */
428
429 KASSERT(mutex_owned(&timecounter_lock));
430
431 #ifdef NTP
432
433 /*
434 * On rollover of the second both the nanosecond and microsecond
435 * clocks are updated and the state machine cranked as
436 * necessary. The phase adjustment to be used for the next
437 * second is calculated and the maximum error is increased by
438 * the tolerance.
439 */
440 time_maxerror += MAXFREQ / 1000;
441
442 /*
443 * Leap second processing. If in leap-insert state at
444 * the end of the day, the system clock is set back one
445 * second; if in leap-delete state, the system clock is
446 * set ahead one second. The nano_time() routine or
447 * external clock driver will insure that reported time
448 * is always monotonic.
449 */
450 switch (time_state) {
451
452 /*
453 * No warning.
454 */
455 case TIME_OK:
456 if (time_status & STA_INS)
457 time_state = TIME_INS;
458 else if (time_status & STA_DEL)
459 time_state = TIME_DEL;
460 break;
461
462 /*
463 * Insert second 23:59:60 following second
464 * 23:59:59.
465 */
466 case TIME_INS:
467 if (!(time_status & STA_INS))
468 time_state = TIME_OK;
469 else if ((*newsec) % 86400 == 0) {
470 (*newsec)--;
471 time_state = TIME_OOP;
472 time_tai++;
473 }
474 break;
475
476 /*
477 * Delete second 23:59:59.
478 */
479 case TIME_DEL:
480 if (!(time_status & STA_DEL))
481 time_state = TIME_OK;
482 else if (((*newsec) + 1) % 86400 == 0) {
483 (*newsec)++;
484 time_tai--;
485 time_state = TIME_WAIT;
486 }
487 break;
488
489 /*
490 * Insert second in progress.
491 */
492 case TIME_OOP:
493 time_state = TIME_WAIT;
494 break;
495
496 /*
497 * Wait for status bits to clear.
498 */
499 case TIME_WAIT:
500 if (!(time_status & (STA_INS | STA_DEL)))
501 time_state = TIME_OK;
502 }
503
504 /*
505 * Compute the total time adjustment for the next second
506 * in ns. The offset is reduced by a factor depending on
507 * whether the PPS signal is operating. Note that the
508 * value is in effect scaled by the clock frequency,
509 * since the adjustment is added at each tick interrupt.
510 */
511 ftemp = time_offset;
512 #ifdef PPS_SYNC
513 /* XXX even if PPS signal dies we should finish adjustment ? */
514 if (time_status & STA_PPSTIME && time_status &
515 STA_PPSSIGNAL)
516 L_RSHIFT(ftemp, pps_shift);
517 else
518 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
519 #else
520 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
521 #endif /* PPS_SYNC */
522 time_adj = ftemp;
523 L_SUB(time_offset, ftemp);
524 L_ADD(time_adj, time_freq);
525
526 #ifdef PPS_SYNC
527 if (pps_valid > 0)
528 pps_valid--;
529 else
530 time_status &= ~STA_PPSSIGNAL;
531 #endif /* PPS_SYNC */
532 #else /* !NTP */
533 L_CLR(time_adj);
534 #endif /* !NTP */
535
536 /*
537 * Apply any correction from adjtime(2). If more than one second
538 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
539 * until the last second is slewed the final < 500 usecs.
540 */
541 if (time_adjtime != 0) {
542 if (time_adjtime > 1000000)
543 tickrate = 5000;
544 else if (time_adjtime < -1000000)
545 tickrate = -5000;
546 else if (time_adjtime > 500)
547 tickrate = 500;
548 else if (time_adjtime < -500)
549 tickrate = -500;
550 else
551 tickrate = time_adjtime;
552 time_adjtime -= tickrate;
553 L_LINT(ftemp, tickrate * 1000);
554 L_ADD(time_adj, ftemp);
555 }
556 *adjustment = time_adj;
557 }
558
559 /*
560 * ntp_init() - initialize variables and structures
561 *
562 * This routine must be called after the kernel variables hz and tick
563 * are set or changed and before the next tick interrupt. In this
564 * particular implementation, these values are assumed set elsewhere in
565 * the kernel. The design allows the clock frequency and tick interval
566 * to be changed while the system is running. So, this routine should
567 * probably be integrated with the code that does that.
568 */
569 void
570 ntp_init(void)
571 {
572
573 /*
574 * The following variables are initialized only at startup. Only
575 * those structures not cleared by the compiler need to be
576 * initialized, and these only in the simulator. In the actual
577 * kernel, any nonzero values here will quickly evaporate.
578 */
579 L_CLR(time_adj);
580 #ifdef NTP
581 L_CLR(time_offset);
582 L_CLR(time_freq);
583 #ifdef PPS_SYNC
584 pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
585 pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
586 pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
587 pps_fcount = 0;
588 L_CLR(pps_freq);
589 #endif /* PPS_SYNC */
590 #endif
591 }
592
593 #ifdef NTP
594 /*
595 * hardupdate() - local clock update
596 *
597 * This routine is called by ntp_adjtime() to update the local clock
598 * phase and frequency. The implementation is of an adaptive-parameter,
599 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
600 * time and frequency offset estimates for each call. If the kernel PPS
601 * discipline code is configured (PPS_SYNC), the PPS signal itself
602 * determines the new time offset, instead of the calling argument.
603 * Presumably, calls to ntp_adjtime() occur only when the caller
604 * believes the local clock is valid within some bound (+-128 ms with
605 * NTP). If the caller's time is far different than the PPS time, an
606 * argument will ensue, and it's not clear who will lose.
607 *
608 * For uncompensated quartz crystal oscillators and nominal update
609 * intervals less than 256 s, operation should be in phase-lock mode,
610 * where the loop is disciplined to phase. For update intervals greater
611 * than 1024 s, operation should be in frequency-lock mode, where the
612 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
613 * is selected by the STA_MODE status bit.
614 *
615 * Note: splclock() is in effect.
616 */
617 void
618 hardupdate(long offset)
619 {
620 long mtemp;
621 l_fp ftemp;
622
623 KASSERT(mutex_owned(&timecounter_lock));
624
625 /*
626 * Select how the phase is to be controlled and from which
627 * source. If the PPS signal is present and enabled to
628 * discipline the time, the PPS offset is used; otherwise, the
629 * argument offset is used.
630 */
631 if (!(time_status & STA_PLL))
632 return;
633 if (!(time_status & STA_PPSTIME && time_status &
634 STA_PPSSIGNAL)) {
635 if (offset > MAXPHASE)
636 time_monitor = MAXPHASE;
637 else if (offset < -MAXPHASE)
638 time_monitor = -MAXPHASE;
639 else
640 time_monitor = offset;
641 L_LINT(time_offset, time_monitor);
642 }
643
644 /*
645 * Select how the frequency is to be controlled and in which
646 * mode (PLL or FLL). If the PPS signal is present and enabled
647 * to discipline the frequency, the PPS frequency is used;
648 * otherwise, the argument offset is used to compute it.
649 */
650 if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
651 time_reftime = time_second;
652 return;
653 }
654 if (time_status & STA_FREQHOLD || time_reftime == 0)
655 time_reftime = time_second;
656 mtemp = time_second - time_reftime;
657 L_LINT(ftemp, time_monitor);
658 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
659 L_MPY(ftemp, mtemp);
660 L_ADD(time_freq, ftemp);
661 time_status &= ~STA_MODE;
662 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
663 MAXSEC)) {
664 L_LINT(ftemp, (time_monitor << 4) / mtemp);
665 L_RSHIFT(ftemp, SHIFT_FLL + 4);
666 L_ADD(time_freq, ftemp);
667 time_status |= STA_MODE;
668 }
669 time_reftime = time_second;
670 if (L_GINT(time_freq) > MAXFREQ)
671 L_LINT(time_freq, MAXFREQ);
672 else if (L_GINT(time_freq) < -MAXFREQ)
673 L_LINT(time_freq, -MAXFREQ);
674 }
675
676 #ifdef PPS_SYNC
677 /*
678 * hardpps() - discipline CPU clock oscillator to external PPS signal
679 *
680 * This routine is called at each PPS interrupt in order to discipline
681 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
682 * and leaves it in a handy spot for the hardclock() routine. It
683 * integrates successive PPS phase differences and calculates the
684 * frequency offset. This is used in hardclock() to discipline the CPU
685 * clock oscillator so that intrinsic frequency error is cancelled out.
686 * The code requires the caller to capture the time and hardware counter
687 * value at the on-time PPS signal transition.
688 *
689 * Note that, on some Unix systems, this routine runs at an interrupt
690 * priority level higher than the timer interrupt routine hardclock().
691 * Therefore, the variables used are distinct from the hardclock()
692 * variables, except for certain exceptions: The PPS frequency pps_freq
693 * and phase pps_offset variables are determined by this routine and
694 * updated atomically. The time_tolerance variable can be considered a
695 * constant, since it is infrequently changed, and then only when the
696 * PPS signal is disabled. The watchdog counter pps_valid is updated
697 * once per second by hardclock() and is atomically cleared in this
698 * routine.
699 */
700 void
701 hardpps(struct timespec *tsp, /* time at PPS */
702 long nsec /* hardware counter at PPS */)
703 {
704 long u_sec, u_nsec, v_nsec; /* temps */
705 l_fp ftemp;
706
707 KASSERT(mutex_owned(&timecounter_lock));
708
709 /*
710 * The signal is first processed by a range gate and frequency
711 * discriminator. The range gate rejects noise spikes outside
712 * the range +-500 us. The frequency discriminator rejects input
713 * signals with apparent frequency outside the range 1 +-500
714 * PPM. If two hits occur in the same second, we ignore the
715 * later hit; if not and a hit occurs outside the range gate,
716 * keep the later hit for later comparison, but do not process
717 * it.
718 */
719 time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
720 time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
721 pps_valid = PPS_VALID;
722 u_sec = tsp->tv_sec;
723 u_nsec = tsp->tv_nsec;
724 if (u_nsec >= (NANOSECOND >> 1)) {
725 u_nsec -= NANOSECOND;
726 u_sec++;
727 }
728 v_nsec = u_nsec - pps_tf[0].tv_nsec;
729 if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
730 MAXFREQ)
731 return;
732 pps_tf[2] = pps_tf[1];
733 pps_tf[1] = pps_tf[0];
734 pps_tf[0].tv_sec = u_sec;
735 pps_tf[0].tv_nsec = u_nsec;
736
737 /*
738 * Compute the difference between the current and previous
739 * counter values. If the difference exceeds 0.5 s, assume it
740 * has wrapped around, so correct 1.0 s. If the result exceeds
741 * the tick interval, the sample point has crossed a tick
742 * boundary during the last second, so correct the tick. Very
743 * intricate.
744 */
745 u_nsec = nsec;
746 if (u_nsec > (NANOSECOND >> 1))
747 u_nsec -= NANOSECOND;
748 else if (u_nsec < -(NANOSECOND >> 1))
749 u_nsec += NANOSECOND;
750 pps_fcount += u_nsec;
751 if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
752 return;
753 time_status &= ~STA_PPSJITTER;
754
755 /*
756 * A three-stage median filter is used to help denoise the PPS
757 * time. The median sample becomes the time offset estimate; the
758 * difference between the other two samples becomes the time
759 * dispersion (jitter) estimate.
760 */
761 if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
762 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
763 v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
764 u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
765 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
766 v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
767 u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
768 } else {
769 v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
770 u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
771 }
772 } else {
773 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
774 v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
775 u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
776 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
777 v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
778 u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
779 } else {
780 v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
781 u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
782 }
783 }
784
785 /*
786 * Nominal jitter is due to PPS signal noise and interrupt
787 * latency. If it exceeds the popcorn threshold, the sample is
788 * discarded. otherwise, if so enabled, the time offset is
789 * updated. We can tolerate a modest loss of data here without
790 * much degrading time accuracy.
791 */
792 if (u_nsec > (pps_jitter << PPS_POPCORN)) {
793 time_status |= STA_PPSJITTER;
794 pps_jitcnt++;
795 } else if (time_status & STA_PPSTIME) {
796 time_monitor = -v_nsec;
797 L_LINT(time_offset, time_monitor);
798 }
799 pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
800 u_sec = pps_tf[0].tv_sec - pps_lastsec;
801 if (u_sec < (1 << pps_shift))
802 return;
803
804 /*
805 * At the end of the calibration interval the difference between
806 * the first and last counter values becomes the scaled
807 * frequency. It will later be divided by the length of the
808 * interval to determine the frequency update. If the frequency
809 * exceeds a sanity threshold, or if the actual calibration
810 * interval is not equal to the expected length, the data are
811 * discarded. We can tolerate a modest loss of data here without
812 * much degrading frequency accuracy.
813 */
814 pps_calcnt++;
815 v_nsec = -pps_fcount;
816 pps_lastsec = pps_tf[0].tv_sec;
817 pps_fcount = 0;
818 u_nsec = MAXFREQ << pps_shift;
819 if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
820 pps_shift)) {
821 time_status |= STA_PPSERROR;
822 pps_errcnt++;
823 return;
824 }
825
826 /*
827 * Here the raw frequency offset and wander (stability) is
828 * calculated. If the wander is less than the wander threshold
829 * for four consecutive averaging intervals, the interval is
830 * doubled; if it is greater than the threshold for four
831 * consecutive intervals, the interval is halved. The scaled
832 * frequency offset is converted to frequency offset. The
833 * stability metric is calculated as the average of recent
834 * frequency changes, but is used only for performance
835 * monitoring.
836 */
837 L_LINT(ftemp, v_nsec);
838 L_RSHIFT(ftemp, pps_shift);
839 L_SUB(ftemp, pps_freq);
840 u_nsec = L_GINT(ftemp);
841 if (u_nsec > PPS_MAXWANDER) {
842 L_LINT(ftemp, PPS_MAXWANDER);
843 pps_intcnt--;
844 time_status |= STA_PPSWANDER;
845 pps_stbcnt++;
846 } else if (u_nsec < -PPS_MAXWANDER) {
847 L_LINT(ftemp, -PPS_MAXWANDER);
848 pps_intcnt--;
849 time_status |= STA_PPSWANDER;
850 pps_stbcnt++;
851 } else {
852 pps_intcnt++;
853 }
854 if (pps_intcnt >= 4) {
855 pps_intcnt = 4;
856 if (pps_shift < pps_shiftmax) {
857 pps_shift++;
858 pps_intcnt = 0;
859 }
860 } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
861 pps_intcnt = -4;
862 if (pps_shift > PPS_FAVG) {
863 pps_shift--;
864 pps_intcnt = 0;
865 }
866 }
867 if (u_nsec < 0)
868 u_nsec = -u_nsec;
869 pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
870
871 /*
872 * The PPS frequency is recalculated and clamped to the maximum
873 * MAXFREQ. If enabled, the system clock frequency is updated as
874 * well.
875 */
876 L_ADD(pps_freq, ftemp);
877 u_nsec = L_GINT(pps_freq);
878 if (u_nsec > MAXFREQ)
879 L_LINT(pps_freq, MAXFREQ);
880 else if (u_nsec < -MAXFREQ)
881 L_LINT(pps_freq, -MAXFREQ);
882 if (time_status & STA_PPSFREQ)
883 time_freq = pps_freq;
884 }
885 #endif /* PPS_SYNC */
886 #endif /* NTP */
887
888 #ifdef NTP
889 int
890 ntp_timestatus(void)
891 {
892 int rv;
893
894 /*
895 * Status word error decode. If any of these conditions
896 * occur, an error is returned, instead of the status
897 * word. Most applications will care only about the fact
898 * the system clock may not be trusted, not about the
899 * details.
900 *
901 * Hardware or software error
902 */
903 mutex_spin_enter(&timecounter_lock);
904 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
905
906 /*
907 * PPS signal lost when either time or frequency
908 * synchronization requested
909 */
910 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
911 !(time_status & STA_PPSSIGNAL)) ||
912
913 /*
914 * PPS jitter exceeded when time synchronization
915 * requested
916 */
917 (time_status & STA_PPSTIME &&
918 time_status & STA_PPSJITTER) ||
919
920 /*
921 * PPS wander exceeded or calibration error when
922 * frequency synchronization requested
923 */
924 (time_status & STA_PPSFREQ &&
925 time_status & (STA_PPSWANDER | STA_PPSERROR)))
926 rv = TIME_ERROR;
927 else
928 rv = time_state;
929 mutex_spin_exit(&timecounter_lock);
930
931 return rv;
932 }
933
934 /*ARGSUSED*/
935 /*
936 * ntp_gettime() - NTP user application interface
937 */
938 int
939 sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
940 {
941 /* {
942 syscallarg(struct ntptimeval *) ntvp;
943 } */
944 struct ntptimeval ntv;
945 int error = 0;
946
947 if (SCARG(uap, ntvp)) {
948 ntp_gettime(&ntv);
949
950 error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
951 sizeof(ntv));
952 }
953 if (!error) {
954 *retval = ntp_timestatus();
955 }
956 return(error);
957 }
958
959 #ifdef COMPAT_30
960 int
961 compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
962 {
963 /* {
964 syscallarg(struct ntptimeval30 *) ontvp;
965 } */
966 struct ntptimeval ntv;
967 struct ntptimeval30 ontv;
968 int error = 0;
969
970 if (SCARG(uap, ntvp)) {
971 ntp_gettime(&ntv);
972 TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
973 ontv.maxerror = ntv.maxerror;
974 ontv.esterror = ntv.esterror;
975
976 error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
977 sizeof(ontv));
978 }
979 if (!error)
980 *retval = ntp_timestatus();
981
982 return (error);
983 }
984 #endif
985
986 /*
987 * return information about kernel precision timekeeping
988 */
989 static int
990 sysctl_kern_ntptime(SYSCTLFN_ARGS)
991 {
992 struct sysctlnode node;
993 struct ntptimeval ntv;
994
995 ntp_gettime(&ntv);
996
997 node = *rnode;
998 node.sysctl_data = &ntv;
999 node.sysctl_size = sizeof(ntv);
1000 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1001 }
1002
1003 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
1004 {
1005
1006 sysctl_createv(clog, 0, NULL, NULL,
1007 CTLFLAG_PERMANENT,
1008 CTLTYPE_NODE, "kern", NULL,
1009 NULL, 0, NULL, 0,
1010 CTL_KERN, CTL_EOL);
1011
1012 sysctl_createv(clog, 0, NULL, NULL,
1013 CTLFLAG_PERMANENT,
1014 CTLTYPE_STRUCT, "ntptime",
1015 SYSCTL_DESCR("Kernel clock values for NTP"),
1016 sysctl_kern_ntptime, 0, NULL,
1017 sizeof(struct ntptimeval),
1018 CTL_KERN, KERN_NTPTIME, CTL_EOL);
1019 }
1020 #else /* !NTP */
1021 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
1022
1023 int
1024 sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
1025 {
1026
1027 return(ENOSYS);
1028 }
1029
1030 #ifdef COMPAT_30
1031 int
1032 compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
1033 {
1034
1035 return(ENOSYS);
1036 }
1037 #endif
1038 #endif /* !NTP */
1039