Home | History | Annotate | Line # | Download | only in kern
kern_ntptime.c revision 1.49.2.1
      1 /*	$NetBSD: kern_ntptime.c,v 1.49.2.1 2008/05/10 23:49:04 wrstuden Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*-
     30  ***********************************************************************
     31  *								       *
     32  * Copyright (c) David L. Mills 1993-2001			       *
     33  *								       *
     34  * Permission to use, copy, modify, and distribute this software and   *
     35  * its documentation for any purpose and without fee is hereby	       *
     36  * granted, provided that the above copyright notice appears in all    *
     37  * copies and that both the copyright notice and this permission       *
     38  * notice appear in supporting documentation, and that the name	       *
     39  * University of Delaware not be used in advertising or publicity      *
     40  * pertaining to distribution of the software without specific,	       *
     41  * written prior permission. The University of Delaware makes no       *
     42  * representations about the suitability this software for any	       *
     43  * purpose. It is provided "as is" without express or implied	       *
     44  * warranty.							       *
     45  *								       *
     46  **********************************************************************/
     47 
     48 /*
     49  * Adapted from the original sources for FreeBSD and timecounters by:
     50  * Poul-Henning Kamp <phk (at) FreeBSD.org>.
     51  *
     52  * The 32bit version of the "LP" macros seems a bit past its "sell by"
     53  * date so I have retained only the 64bit version and included it directly
     54  * in this file.
     55  *
     56  * Only minor changes done to interface with the timecounters over in
     57  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
     58  * confusing and/or plain wrong in that context.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
     63 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.49.2.1 2008/05/10 23:49:04 wrstuden Exp $");
     64 
     65 #include "opt_ntp.h"
     66 #include "opt_compat_netbsd.h"
     67 
     68 #include <sys/param.h>
     69 #include <sys/resourcevar.h>
     70 #include <sys/systm.h>
     71 #include <sys/kernel.h>
     72 #include <sys/proc.h>
     73 #include <sys/sysctl.h>
     74 #include <sys/timex.h>
     75 #include <sys/vnode.h>
     76 #include <sys/kauth.h>
     77 #include <sys/mount.h>
     78 #include <sys/sa.h>
     79 #include <sys/syscallargs.h>
     80 #include <sys/cpu.h>
     81 
     82 #ifdef COMPAT_30
     83 #include <compat/sys/timex.h>
     84 #endif
     85 
     86 /*
     87  * Single-precision macros for 64-bit machines
     88  */
     89 typedef int64_t l_fp;
     90 #define L_ADD(v, u)	((v) += (u))
     91 #define L_SUB(v, u)	((v) -= (u))
     92 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
     93 #define L_NEG(v)	((v) = -(v))
     94 #define L_RSHIFT(v, n) \
     95 	do { \
     96 		if ((v) < 0) \
     97 			(v) = -(-(v) >> (n)); \
     98 		else \
     99 			(v) = (v) >> (n); \
    100 	} while (0)
    101 #define L_MPY(v, a)	((v) *= (a))
    102 #define L_CLR(v)	((v) = 0)
    103 #define L_ISNEG(v)	((v) < 0)
    104 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
    105 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
    106 
    107 #ifdef NTP
    108 /*
    109  * Generic NTP kernel interface
    110  *
    111  * These routines constitute the Network Time Protocol (NTP) interfaces
    112  * for user and daemon application programs. The ntp_gettime() routine
    113  * provides the time, maximum error (synch distance) and estimated error
    114  * (dispersion) to client user application programs. The ntp_adjtime()
    115  * routine is used by the NTP daemon to adjust the system clock to an
    116  * externally derived time. The time offset and related variables set by
    117  * this routine are used by other routines in this module to adjust the
    118  * phase and frequency of the clock discipline loop which controls the
    119  * system clock.
    120  *
    121  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
    122  * defined), the time at each tick interrupt is derived directly from
    123  * the kernel time variable. When the kernel time is reckoned in
    124  * microseconds, (NTP_NANO undefined), the time is derived from the
    125  * kernel time variable together with a variable representing the
    126  * leftover nanoseconds at the last tick interrupt. In either case, the
    127  * current nanosecond time is reckoned from these values plus an
    128  * interpolated value derived by the clock routines in another
    129  * architecture-specific module. The interpolation can use either a
    130  * dedicated counter or a processor cycle counter (PCC) implemented in
    131  * some architectures.
    132  *
    133  * Note that all routines must run at priority splclock or higher.
    134  */
    135 /*
    136  * Phase/frequency-lock loop (PLL/FLL) definitions
    137  *
    138  * The nanosecond clock discipline uses two variable types, time
    139  * variables and frequency variables. Both types are represented as 64-
    140  * bit fixed-point quantities with the decimal point between two 32-bit
    141  * halves. On a 32-bit machine, each half is represented as a single
    142  * word and mathematical operations are done using multiple-precision
    143  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
    144  * used.
    145  *
    146  * A time variable is a signed 64-bit fixed-point number in ns and
    147  * fraction. It represents the remaining time offset to be amortized
    148  * over succeeding tick interrupts. The maximum time offset is about
    149  * 0.5 s and the resolution is about 2.3e-10 ns.
    150  *
    151  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    152  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    153  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    154  * |s s s|			 ns				   |
    155  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    156  * |			    fraction				   |
    157  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    158  *
    159  * A frequency variable is a signed 64-bit fixed-point number in ns/s
    160  * and fraction. It represents the ns and fraction to be added to the
    161  * kernel time variable at each second. The maximum frequency offset is
    162  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
    163  *
    164  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    165  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    166  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    167  * |s s s s s s s s s s s s s|	          ns/s			   |
    168  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    169  * |			    fraction				   |
    170  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    171  */
    172 /*
    173  * The following variables establish the state of the PLL/FLL and the
    174  * residual time and frequency offset of the local clock.
    175  */
    176 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
    177 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
    178 
    179 static int time_state = TIME_OK;	/* clock state */
    180 static int time_status = STA_UNSYNC;	/* clock status bits */
    181 static long time_tai;			/* TAI offset (s) */
    182 static long time_monitor;		/* last time offset scaled (ns) */
    183 static long time_constant;		/* poll interval (shift) (s) */
    184 static long time_precision = 1;		/* clock precision (ns) */
    185 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
    186 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
    187 static long time_reftime;		/* time at last adjustment (s) */
    188 static l_fp time_offset;		/* time offset (ns) */
    189 static l_fp time_freq;			/* frequency offset (ns/s) */
    190 #endif /* NTP */
    191 
    192 static l_fp time_adj;			/* tick adjust (ns/s) */
    193 int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
    194 
    195 extern int time_adjusted;	/* ntp might have changed the system time */
    196 
    197 #ifdef NTP
    198 #ifdef PPS_SYNC
    199 /*
    200  * The following variables are used when a pulse-per-second (PPS) signal
    201  * is available and connected via a modem control lead. They establish
    202  * the engineering parameters of the clock discipline loop when
    203  * controlled by the PPS signal.
    204  */
    205 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
    206 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
    207 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
    208 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
    209 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
    210 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
    211 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
    212 
    213 static struct timespec pps_tf[3];	/* phase median filter */
    214 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
    215 static long pps_fcount;			/* frequency accumulator */
    216 static long pps_jitter;			/* nominal jitter (ns) */
    217 static long pps_stabil;			/* nominal stability (scaled ns/s) */
    218 static long pps_lastsec;		/* time at last calibration (s) */
    219 static int pps_valid;			/* signal watchdog counter */
    220 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
    221 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
    222 static int pps_intcnt;			/* wander counter */
    223 
    224 /*
    225  * PPS signal quality monitors
    226  */
    227 static long pps_calcnt;			/* calibration intervals */
    228 static long pps_jitcnt;			/* jitter limit exceeded */
    229 static long pps_stbcnt;			/* stability limit exceeded */
    230 static long pps_errcnt;			/* calibration errors */
    231 #endif /* PPS_SYNC */
    232 /*
    233  * End of phase/frequency-lock loop (PLL/FLL) definitions
    234  */
    235 
    236 static void hardupdate(long offset);
    237 
    238 /*
    239  * ntp_gettime() - NTP user application interface
    240  */
    241 void
    242 ntp_gettime(struct ntptimeval *ntv)
    243 {
    244 
    245 	mutex_spin_enter(&timecounter_lock);
    246 	nanotime(&ntv->time);
    247 	ntv->maxerror = time_maxerror;
    248 	ntv->esterror = time_esterror;
    249 	ntv->tai = time_tai;
    250 	ntv->time_state = time_state;
    251 	mutex_spin_exit(&timecounter_lock);
    252 }
    253 
    254 /* ARGSUSED */
    255 /*
    256  * ntp_adjtime() - NTP daemon application interface
    257  */
    258 int
    259 sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
    260 {
    261 	/* {
    262 		syscallarg(struct timex *) tp;
    263 	} */
    264 	struct timex ntv;
    265 	int error = 0;
    266 
    267 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
    268 	if (error != 0)
    269 		return (error);
    270 
    271 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
    272 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
    273 	    NULL, NULL)) != 0)
    274 		return (error);
    275 
    276 	ntp_adjtime1(&ntv);
    277 
    278 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
    279 	if (!error)
    280 		*retval = ntp_timestatus();
    281 
    282 	return error;
    283 }
    284 
    285 void
    286 ntp_adjtime1(struct timex *ntv)
    287 {
    288 	long freq;
    289 	int modes;
    290 
    291 	/*
    292 	 * Update selected clock variables - only the superuser can
    293 	 * change anything. Note that there is no error checking here on
    294 	 * the assumption the superuser should know what it is doing.
    295 	 * Note that either the time constant or TAI offset are loaded
    296 	 * from the ntv.constant member, depending on the mode bits. If
    297 	 * the STA_PLL bit in the status word is cleared, the state and
    298 	 * status words are reset to the initial values at boot.
    299 	 */
    300 	mutex_spin_enter(&timecounter_lock);
    301 	modes = ntv->modes;
    302 	if (modes != 0)
    303 		/* We need to save the system time during shutdown */
    304 		time_adjusted |= 2;
    305 	if (modes & MOD_MAXERROR)
    306 		time_maxerror = ntv->maxerror;
    307 	if (modes & MOD_ESTERROR)
    308 		time_esterror = ntv->esterror;
    309 	if (modes & MOD_STATUS) {
    310 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
    311 			time_state = TIME_OK;
    312 			time_status = STA_UNSYNC;
    313 #ifdef PPS_SYNC
    314 			pps_shift = PPS_FAVG;
    315 #endif /* PPS_SYNC */
    316 		}
    317 		time_status &= STA_RONLY;
    318 		time_status |= ntv->status & ~STA_RONLY;
    319 	}
    320 	if (modes & MOD_TIMECONST) {
    321 		if (ntv->constant < 0)
    322 			time_constant = 0;
    323 		else if (ntv->constant > MAXTC)
    324 			time_constant = MAXTC;
    325 		else
    326 			time_constant = ntv->constant;
    327 	}
    328 	if (modes & MOD_TAI) {
    329 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
    330 			time_tai = ntv->constant;
    331 	}
    332 #ifdef PPS_SYNC
    333 	if (modes & MOD_PPSMAX) {
    334 		if (ntv->shift < PPS_FAVG)
    335 			pps_shiftmax = PPS_FAVG;
    336 		else if (ntv->shift > PPS_FAVGMAX)
    337 			pps_shiftmax = PPS_FAVGMAX;
    338 		else
    339 			pps_shiftmax = ntv->shift;
    340 	}
    341 #endif /* PPS_SYNC */
    342 	if (modes & MOD_NANO)
    343 		time_status |= STA_NANO;
    344 	if (modes & MOD_MICRO)
    345 		time_status &= ~STA_NANO;
    346 	if (modes & MOD_CLKB)
    347 		time_status |= STA_CLK;
    348 	if (modes & MOD_CLKA)
    349 		time_status &= ~STA_CLK;
    350 	if (modes & MOD_FREQUENCY) {
    351 		freq = (ntv->freq * 1000LL) >> 16;
    352 		if (freq > MAXFREQ)
    353 			L_LINT(time_freq, MAXFREQ);
    354 		else if (freq < -MAXFREQ)
    355 			L_LINT(time_freq, -MAXFREQ);
    356 		else {
    357 			/*
    358 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
    359 			 * time_freq is [ns/s * 2^32]
    360 			 */
    361 			time_freq = ntv->freq * 1000LL * 65536LL;
    362 		}
    363 #ifdef PPS_SYNC
    364 		pps_freq = time_freq;
    365 #endif /* PPS_SYNC */
    366 	}
    367 	if (modes & MOD_OFFSET) {
    368 		if (time_status & STA_NANO)
    369 			hardupdate(ntv->offset);
    370 		else
    371 			hardupdate(ntv->offset * 1000);
    372 	}
    373 
    374 	/*
    375 	 * Retrieve all clock variables. Note that the TAI offset is
    376 	 * returned only by ntp_gettime();
    377 	 */
    378 	if (time_status & STA_NANO)
    379 		ntv->offset = L_GINT(time_offset);
    380 	else
    381 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
    382 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
    383 	ntv->maxerror = time_maxerror;
    384 	ntv->esterror = time_esterror;
    385 	ntv->status = time_status;
    386 	ntv->constant = time_constant;
    387 	if (time_status & STA_NANO)
    388 		ntv->precision = time_precision;
    389 	else
    390 		ntv->precision = time_precision / 1000;
    391 	ntv->tolerance = MAXFREQ * SCALE_PPM;
    392 #ifdef PPS_SYNC
    393 	ntv->shift = pps_shift;
    394 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
    395 	if (time_status & STA_NANO)
    396 		ntv->jitter = pps_jitter;
    397 	else
    398 		ntv->jitter = pps_jitter / 1000;
    399 	ntv->stabil = pps_stabil;
    400 	ntv->calcnt = pps_calcnt;
    401 	ntv->errcnt = pps_errcnt;
    402 	ntv->jitcnt = pps_jitcnt;
    403 	ntv->stbcnt = pps_stbcnt;
    404 #endif /* PPS_SYNC */
    405 	mutex_spin_exit(&timecounter_lock);
    406 }
    407 #endif /* NTP */
    408 
    409 /*
    410  * second_overflow() - called after ntp_tick_adjust()
    411  *
    412  * This routine is ordinarily called immediately following the above
    413  * routine ntp_tick_adjust(). While these two routines are normally
    414  * combined, they are separated here only for the purposes of
    415  * simulation.
    416  */
    417 void
    418 ntp_update_second(int64_t *adjustment, time_t *newsec)
    419 {
    420 	int tickrate;
    421 	l_fp ftemp;		/* 32/64-bit temporary */
    422 
    423 	KASSERT(mutex_owned(&timecounter_lock));
    424 
    425 #ifdef NTP
    426 
    427 	/*
    428 	 * On rollover of the second both the nanosecond and microsecond
    429 	 * clocks are updated and the state machine cranked as
    430 	 * necessary. The phase adjustment to be used for the next
    431 	 * second is calculated and the maximum error is increased by
    432 	 * the tolerance.
    433 	 */
    434 	time_maxerror += MAXFREQ / 1000;
    435 
    436 	/*
    437 	 * Leap second processing. If in leap-insert state at
    438 	 * the end of the day, the system clock is set back one
    439 	 * second; if in leap-delete state, the system clock is
    440 	 * set ahead one second. The nano_time() routine or
    441 	 * external clock driver will insure that reported time
    442 	 * is always monotonic.
    443 	 */
    444 	switch (time_state) {
    445 
    446 		/*
    447 		 * No warning.
    448 		 */
    449 		case TIME_OK:
    450 		if (time_status & STA_INS)
    451 			time_state = TIME_INS;
    452 		else if (time_status & STA_DEL)
    453 			time_state = TIME_DEL;
    454 		break;
    455 
    456 		/*
    457 		 * Insert second 23:59:60 following second
    458 		 * 23:59:59.
    459 		 */
    460 		case TIME_INS:
    461 		if (!(time_status & STA_INS))
    462 			time_state = TIME_OK;
    463 		else if ((*newsec) % 86400 == 0) {
    464 			(*newsec)--;
    465 			time_state = TIME_OOP;
    466 			time_tai++;
    467 		}
    468 		break;
    469 
    470 		/*
    471 		 * Delete second 23:59:59.
    472 		 */
    473 		case TIME_DEL:
    474 		if (!(time_status & STA_DEL))
    475 			time_state = TIME_OK;
    476 		else if (((*newsec) + 1) % 86400 == 0) {
    477 			(*newsec)++;
    478 			time_tai--;
    479 			time_state = TIME_WAIT;
    480 		}
    481 		break;
    482 
    483 		/*
    484 		 * Insert second in progress.
    485 		 */
    486 		case TIME_OOP:
    487 			time_state = TIME_WAIT;
    488 		break;
    489 
    490 		/*
    491 		 * Wait for status bits to clear.
    492 		 */
    493 		case TIME_WAIT:
    494 		if (!(time_status & (STA_INS | STA_DEL)))
    495 			time_state = TIME_OK;
    496 	}
    497 
    498 	/*
    499 	 * Compute the total time adjustment for the next second
    500 	 * in ns. The offset is reduced by a factor depending on
    501 	 * whether the PPS signal is operating. Note that the
    502 	 * value is in effect scaled by the clock frequency,
    503 	 * since the adjustment is added at each tick interrupt.
    504 	 */
    505 	ftemp = time_offset;
    506 #ifdef PPS_SYNC
    507 	/* XXX even if PPS signal dies we should finish adjustment ? */
    508 	if (time_status & STA_PPSTIME && time_status &
    509 	    STA_PPSSIGNAL)
    510 		L_RSHIFT(ftemp, pps_shift);
    511 	else
    512 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    513 #else
    514 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    515 #endif /* PPS_SYNC */
    516 	time_adj = ftemp;
    517 	L_SUB(time_offset, ftemp);
    518 	L_ADD(time_adj, time_freq);
    519 
    520 #ifdef PPS_SYNC
    521 	if (pps_valid > 0)
    522 		pps_valid--;
    523 	else
    524 		time_status &= ~STA_PPSSIGNAL;
    525 #endif /* PPS_SYNC */
    526 #else  /* !NTP */
    527 	L_CLR(time_adj);
    528 #endif /* !NTP */
    529 
    530 	/*
    531 	 * Apply any correction from adjtime(2).  If more than one second
    532 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
    533 	 * until the last second is slewed the final < 500 usecs.
    534 	 */
    535 	if (time_adjtime != 0) {
    536 		if (time_adjtime > 1000000)
    537 			tickrate = 5000;
    538 		else if (time_adjtime < -1000000)
    539 			tickrate = -5000;
    540 		else if (time_adjtime > 500)
    541 			tickrate = 500;
    542 		else if (time_adjtime < -500)
    543 			tickrate = -500;
    544 		else
    545 			tickrate = time_adjtime;
    546 		time_adjtime -= tickrate;
    547 		L_LINT(ftemp, tickrate * 1000);
    548 		L_ADD(time_adj, ftemp);
    549 	}
    550 	*adjustment = time_adj;
    551 }
    552 
    553 /*
    554  * ntp_init() - initialize variables and structures
    555  *
    556  * This routine must be called after the kernel variables hz and tick
    557  * are set or changed and before the next tick interrupt. In this
    558  * particular implementation, these values are assumed set elsewhere in
    559  * the kernel. The design allows the clock frequency and tick interval
    560  * to be changed while the system is running. So, this routine should
    561  * probably be integrated with the code that does that.
    562  */
    563 void
    564 ntp_init(void)
    565 {
    566 
    567 	/*
    568 	 * The following variables are initialized only at startup. Only
    569 	 * those structures not cleared by the compiler need to be
    570 	 * initialized, and these only in the simulator. In the actual
    571 	 * kernel, any nonzero values here will quickly evaporate.
    572 	 */
    573 	L_CLR(time_adj);
    574 #ifdef NTP
    575 	L_CLR(time_offset);
    576 	L_CLR(time_freq);
    577 #ifdef PPS_SYNC
    578 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
    579 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
    580 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
    581 	pps_fcount = 0;
    582 	L_CLR(pps_freq);
    583 #endif /* PPS_SYNC */
    584 #endif
    585 }
    586 
    587 #ifdef NTP
    588 /*
    589  * hardupdate() - local clock update
    590  *
    591  * This routine is called by ntp_adjtime() to update the local clock
    592  * phase and frequency. The implementation is of an adaptive-parameter,
    593  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    594  * time and frequency offset estimates for each call. If the kernel PPS
    595  * discipline code is configured (PPS_SYNC), the PPS signal itself
    596  * determines the new time offset, instead of the calling argument.
    597  * Presumably, calls to ntp_adjtime() occur only when the caller
    598  * believes the local clock is valid within some bound (+-128 ms with
    599  * NTP). If the caller's time is far different than the PPS time, an
    600  * argument will ensue, and it's not clear who will lose.
    601  *
    602  * For uncompensated quartz crystal oscillators and nominal update
    603  * intervals less than 256 s, operation should be in phase-lock mode,
    604  * where the loop is disciplined to phase. For update intervals greater
    605  * than 1024 s, operation should be in frequency-lock mode, where the
    606  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
    607  * is selected by the STA_MODE status bit.
    608  *
    609  * Note: splclock() is in effect.
    610  */
    611 void
    612 hardupdate(long offset)
    613 {
    614 	long mtemp;
    615 	l_fp ftemp;
    616 
    617 	KASSERT(mutex_owned(&timecounter_lock));
    618 
    619 	/*
    620 	 * Select how the phase is to be controlled and from which
    621 	 * source. If the PPS signal is present and enabled to
    622 	 * discipline the time, the PPS offset is used; otherwise, the
    623 	 * argument offset is used.
    624 	 */
    625 	if (!(time_status & STA_PLL))
    626 		return;
    627 	if (!(time_status & STA_PPSTIME && time_status &
    628 	    STA_PPSSIGNAL)) {
    629 		if (offset > MAXPHASE)
    630 			time_monitor = MAXPHASE;
    631 		else if (offset < -MAXPHASE)
    632 			time_monitor = -MAXPHASE;
    633 		else
    634 			time_monitor = offset;
    635 		L_LINT(time_offset, time_monitor);
    636 	}
    637 
    638 	/*
    639 	 * Select how the frequency is to be controlled and in which
    640 	 * mode (PLL or FLL). If the PPS signal is present and enabled
    641 	 * to discipline the frequency, the PPS frequency is used;
    642 	 * otherwise, the argument offset is used to compute it.
    643 	 */
    644 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
    645 		time_reftime = time_second;
    646 		return;
    647 	}
    648 	if (time_status & STA_FREQHOLD || time_reftime == 0)
    649 		time_reftime = time_second;
    650 	mtemp = time_second - time_reftime;
    651 	L_LINT(ftemp, time_monitor);
    652 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
    653 	L_MPY(ftemp, mtemp);
    654 	L_ADD(time_freq, ftemp);
    655 	time_status &= ~STA_MODE;
    656 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
    657 	    MAXSEC)) {
    658 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
    659 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
    660 		L_ADD(time_freq, ftemp);
    661 		time_status |= STA_MODE;
    662 	}
    663 	time_reftime = time_second;
    664 	if (L_GINT(time_freq) > MAXFREQ)
    665 		L_LINT(time_freq, MAXFREQ);
    666 	else if (L_GINT(time_freq) < -MAXFREQ)
    667 		L_LINT(time_freq, -MAXFREQ);
    668 }
    669 
    670 #ifdef PPS_SYNC
    671 /*
    672  * hardpps() - discipline CPU clock oscillator to external PPS signal
    673  *
    674  * This routine is called at each PPS interrupt in order to discipline
    675  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
    676  * and leaves it in a handy spot for the hardclock() routine. It
    677  * integrates successive PPS phase differences and calculates the
    678  * frequency offset. This is used in hardclock() to discipline the CPU
    679  * clock oscillator so that intrinsic frequency error is cancelled out.
    680  * The code requires the caller to capture the time and hardware counter
    681  * value at the on-time PPS signal transition.
    682  *
    683  * Note that, on some Unix systems, this routine runs at an interrupt
    684  * priority level higher than the timer interrupt routine hardclock().
    685  * Therefore, the variables used are distinct from the hardclock()
    686  * variables, except for certain exceptions: The PPS frequency pps_freq
    687  * and phase pps_offset variables are determined by this routine and
    688  * updated atomically. The time_tolerance variable can be considered a
    689  * constant, since it is infrequently changed, and then only when the
    690  * PPS signal is disabled. The watchdog counter pps_valid is updated
    691  * once per second by hardclock() and is atomically cleared in this
    692  * routine.
    693  */
    694 void
    695 hardpps(struct timespec *tsp,		/* time at PPS */
    696 	long nsec			/* hardware counter at PPS */)
    697 {
    698 	long u_sec, u_nsec, v_nsec; /* temps */
    699 	l_fp ftemp;
    700 
    701 	KASSERT(mutex_owned(&timecounter_lock));
    702 
    703 	/*
    704 	 * The signal is first processed by a range gate and frequency
    705 	 * discriminator. The range gate rejects noise spikes outside
    706 	 * the range +-500 us. The frequency discriminator rejects input
    707 	 * signals with apparent frequency outside the range 1 +-500
    708 	 * PPM. If two hits occur in the same second, we ignore the
    709 	 * later hit; if not and a hit occurs outside the range gate,
    710 	 * keep the later hit for later comparison, but do not process
    711 	 * it.
    712 	 */
    713 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
    714 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
    715 	pps_valid = PPS_VALID;
    716 	u_sec = tsp->tv_sec;
    717 	u_nsec = tsp->tv_nsec;
    718 	if (u_nsec >= (NANOSECOND >> 1)) {
    719 		u_nsec -= NANOSECOND;
    720 		u_sec++;
    721 	}
    722 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
    723 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
    724 	    MAXFREQ)
    725 		return;
    726 	pps_tf[2] = pps_tf[1];
    727 	pps_tf[1] = pps_tf[0];
    728 	pps_tf[0].tv_sec = u_sec;
    729 	pps_tf[0].tv_nsec = u_nsec;
    730 
    731 	/*
    732 	 * Compute the difference between the current and previous
    733 	 * counter values. If the difference exceeds 0.5 s, assume it
    734 	 * has wrapped around, so correct 1.0 s. If the result exceeds
    735 	 * the tick interval, the sample point has crossed a tick
    736 	 * boundary during the last second, so correct the tick. Very
    737 	 * intricate.
    738 	 */
    739 	u_nsec = nsec;
    740 	if (u_nsec > (NANOSECOND >> 1))
    741 		u_nsec -= NANOSECOND;
    742 	else if (u_nsec < -(NANOSECOND >> 1))
    743 		u_nsec += NANOSECOND;
    744 	pps_fcount += u_nsec;
    745 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
    746 		return;
    747 	time_status &= ~STA_PPSJITTER;
    748 
    749 	/*
    750 	 * A three-stage median filter is used to help denoise the PPS
    751 	 * time. The median sample becomes the time offset estimate; the
    752 	 * difference between the other two samples becomes the time
    753 	 * dispersion (jitter) estimate.
    754 	 */
    755 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
    756 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
    757 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
    758 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
    759 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
    760 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
    761 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
    762 		} else {
    763 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
    764 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
    765 		}
    766 	} else {
    767 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
    768 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
    769 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
    770 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
    771 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
    772 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
    773 		} else {
    774 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
    775 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
    776 		}
    777 	}
    778 
    779 	/*
    780 	 * Nominal jitter is due to PPS signal noise and interrupt
    781 	 * latency. If it exceeds the popcorn threshold, the sample is
    782 	 * discarded. otherwise, if so enabled, the time offset is
    783 	 * updated. We can tolerate a modest loss of data here without
    784 	 * much degrading time accuracy.
    785 	 */
    786 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
    787 		time_status |= STA_PPSJITTER;
    788 		pps_jitcnt++;
    789 	} else if (time_status & STA_PPSTIME) {
    790 		time_monitor = -v_nsec;
    791 		L_LINT(time_offset, time_monitor);
    792 	}
    793 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
    794 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
    795 	if (u_sec < (1 << pps_shift))
    796 		return;
    797 
    798 	/*
    799 	 * At the end of the calibration interval the difference between
    800 	 * the first and last counter values becomes the scaled
    801 	 * frequency. It will later be divided by the length of the
    802 	 * interval to determine the frequency update. If the frequency
    803 	 * exceeds a sanity threshold, or if the actual calibration
    804 	 * interval is not equal to the expected length, the data are
    805 	 * discarded. We can tolerate a modest loss of data here without
    806 	 * much degrading frequency accuracy.
    807 	 */
    808 	pps_calcnt++;
    809 	v_nsec = -pps_fcount;
    810 	pps_lastsec = pps_tf[0].tv_sec;
    811 	pps_fcount = 0;
    812 	u_nsec = MAXFREQ << pps_shift;
    813 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
    814 	    pps_shift)) {
    815 		time_status |= STA_PPSERROR;
    816 		pps_errcnt++;
    817 		return;
    818 	}
    819 
    820 	/*
    821 	 * Here the raw frequency offset and wander (stability) is
    822 	 * calculated. If the wander is less than the wander threshold
    823 	 * for four consecutive averaging intervals, the interval is
    824 	 * doubled; if it is greater than the threshold for four
    825 	 * consecutive intervals, the interval is halved. The scaled
    826 	 * frequency offset is converted to frequency offset. The
    827 	 * stability metric is calculated as the average of recent
    828 	 * frequency changes, but is used only for performance
    829 	 * monitoring.
    830 	 */
    831 	L_LINT(ftemp, v_nsec);
    832 	L_RSHIFT(ftemp, pps_shift);
    833 	L_SUB(ftemp, pps_freq);
    834 	u_nsec = L_GINT(ftemp);
    835 	if (u_nsec > PPS_MAXWANDER) {
    836 		L_LINT(ftemp, PPS_MAXWANDER);
    837 		pps_intcnt--;
    838 		time_status |= STA_PPSWANDER;
    839 		pps_stbcnt++;
    840 	} else if (u_nsec < -PPS_MAXWANDER) {
    841 		L_LINT(ftemp, -PPS_MAXWANDER);
    842 		pps_intcnt--;
    843 		time_status |= STA_PPSWANDER;
    844 		pps_stbcnt++;
    845 	} else {
    846 		pps_intcnt++;
    847 	}
    848 	if (pps_intcnt >= 4) {
    849 		pps_intcnt = 4;
    850 		if (pps_shift < pps_shiftmax) {
    851 			pps_shift++;
    852 			pps_intcnt = 0;
    853 		}
    854 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
    855 		pps_intcnt = -4;
    856 		if (pps_shift > PPS_FAVG) {
    857 			pps_shift--;
    858 			pps_intcnt = 0;
    859 		}
    860 	}
    861 	if (u_nsec < 0)
    862 		u_nsec = -u_nsec;
    863 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
    864 
    865 	/*
    866 	 * The PPS frequency is recalculated and clamped to the maximum
    867 	 * MAXFREQ. If enabled, the system clock frequency is updated as
    868 	 * well.
    869 	 */
    870 	L_ADD(pps_freq, ftemp);
    871 	u_nsec = L_GINT(pps_freq);
    872 	if (u_nsec > MAXFREQ)
    873 		L_LINT(pps_freq, MAXFREQ);
    874 	else if (u_nsec < -MAXFREQ)
    875 		L_LINT(pps_freq, -MAXFREQ);
    876 	if (time_status & STA_PPSFREQ)
    877 		time_freq = pps_freq;
    878 }
    879 #endif /* PPS_SYNC */
    880 #endif /* NTP */
    881 
    882 #ifdef NTP
    883 int
    884 ntp_timestatus(void)
    885 {
    886 	int rv;
    887 
    888 	/*
    889 	 * Status word error decode. If any of these conditions
    890 	 * occur, an error is returned, instead of the status
    891 	 * word. Most applications will care only about the fact
    892 	 * the system clock may not be trusted, not about the
    893 	 * details.
    894 	 *
    895 	 * Hardware or software error
    896 	 */
    897 	mutex_spin_enter(&timecounter_lock);
    898 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    899 
    900 	/*
    901 	 * PPS signal lost when either time or frequency
    902 	 * synchronization requested
    903 	 */
    904 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    905 	     !(time_status & STA_PPSSIGNAL)) ||
    906 
    907 	/*
    908 	 * PPS jitter exceeded when time synchronization
    909 	 * requested
    910 	 */
    911 	    (time_status & STA_PPSTIME &&
    912 	     time_status & STA_PPSJITTER) ||
    913 
    914 	/*
    915 	 * PPS wander exceeded or calibration error when
    916 	 * frequency synchronization requested
    917 	 */
    918 	    (time_status & STA_PPSFREQ &&
    919 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
    920 		rv = TIME_ERROR;
    921 	else
    922 		rv = time_state;
    923 	mutex_spin_exit(&timecounter_lock);
    924 
    925 	return rv;
    926 }
    927 
    928 /*ARGSUSED*/
    929 /*
    930  * ntp_gettime() - NTP user application interface
    931  */
    932 int
    933 sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
    934 {
    935 	/* {
    936 		syscallarg(struct ntptimeval *) ntvp;
    937 	} */
    938 	struct ntptimeval ntv;
    939 	int error = 0;
    940 
    941 	if (SCARG(uap, ntvp)) {
    942 		ntp_gettime(&ntv);
    943 
    944 		error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
    945 				sizeof(ntv));
    946 	}
    947 	if (!error) {
    948 		*retval = ntp_timestatus();
    949 	}
    950 	return(error);
    951 }
    952 
    953 #ifdef COMPAT_30
    954 int
    955 compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
    956 {
    957 	/* {
    958 		syscallarg(struct ntptimeval30 *) ontvp;
    959 	} */
    960 	struct ntptimeval ntv;
    961 	struct ntptimeval30 ontv;
    962 	int error = 0;
    963 
    964 	if (SCARG(uap, ntvp)) {
    965 		ntp_gettime(&ntv);
    966 		TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
    967 		ontv.maxerror = ntv.maxerror;
    968 		ontv.esterror = ntv.esterror;
    969 
    970 		error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
    971 				sizeof(ontv));
    972  	}
    973 	if (!error)
    974 		*retval = ntp_timestatus();
    975 
    976 	return (error);
    977 }
    978 #endif
    979 
    980 /*
    981  * return information about kernel precision timekeeping
    982  */
    983 static int
    984 sysctl_kern_ntptime(SYSCTLFN_ARGS)
    985 {
    986 	struct sysctlnode node;
    987 	struct ntptimeval ntv;
    988 
    989 	ntp_gettime(&ntv);
    990 
    991 	node = *rnode;
    992 	node.sysctl_data = &ntv;
    993 	node.sysctl_size = sizeof(ntv);
    994 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
    995 }
    996 
    997 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
    998 {
    999 
   1000 	sysctl_createv(clog, 0, NULL, NULL,
   1001 		       CTLFLAG_PERMANENT,
   1002 		       CTLTYPE_NODE, "kern", NULL,
   1003 		       NULL, 0, NULL, 0,
   1004 		       CTL_KERN, CTL_EOL);
   1005 
   1006 	sysctl_createv(clog, 0, NULL, NULL,
   1007 		       CTLFLAG_PERMANENT,
   1008 		       CTLTYPE_STRUCT, "ntptime",
   1009 		       SYSCTL_DESCR("Kernel clock values for NTP"),
   1010 		       sysctl_kern_ntptime, 0, NULL,
   1011 		       sizeof(struct ntptimeval),
   1012 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
   1013 }
   1014 #else /* !NTP */
   1015 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
   1016 
   1017 int
   1018 sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
   1019 {
   1020 
   1021 	return(ENOSYS);
   1022 }
   1023 
   1024 #ifdef COMPAT_30
   1025 int
   1026 compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
   1027 {
   1028 
   1029  	return(ENOSYS);
   1030 }
   1031 #endif
   1032 #endif /* !NTP */
   1033