1 1.280 andvar /* $NetBSD: kern_proc.c,v 1.280 2025/06/02 16:27:04 andvar Exp $ */ 2 1.33 thorpej 3 1.33 thorpej /*- 4 1.272 ad * Copyright (c) 1999, 2006, 2007, 2008, 2020, 2023 5 1.272 ad * The NetBSD Foundation, Inc. 6 1.33 thorpej * All rights reserved. 7 1.33 thorpej * 8 1.33 thorpej * This code is derived from software contributed to The NetBSD Foundation 9 1.33 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 10 1.100 ad * NASA Ames Research Center, and by Andrew Doran. 11 1.33 thorpej * 12 1.33 thorpej * Redistribution and use in source and binary forms, with or without 13 1.33 thorpej * modification, are permitted provided that the following conditions 14 1.33 thorpej * are met: 15 1.33 thorpej * 1. Redistributions of source code must retain the above copyright 16 1.33 thorpej * notice, this list of conditions and the following disclaimer. 17 1.33 thorpej * 2. Redistributions in binary form must reproduce the above copyright 18 1.33 thorpej * notice, this list of conditions and the following disclaimer in the 19 1.33 thorpej * documentation and/or other materials provided with the distribution. 20 1.33 thorpej * 21 1.33 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 1.33 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 1.33 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 1.33 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 1.33 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 1.33 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 1.33 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 1.33 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 1.33 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 1.33 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 1.33 thorpej * POSSIBILITY OF SUCH DAMAGE. 32 1.33 thorpej */ 33 1.9 cgd 34 1.1 cgd /* 35 1.7 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993 36 1.7 cgd * The Regents of the University of California. All rights reserved. 37 1.1 cgd * 38 1.1 cgd * Redistribution and use in source and binary forms, with or without 39 1.1 cgd * modification, are permitted provided that the following conditions 40 1.1 cgd * are met: 41 1.1 cgd * 1. Redistributions of source code must retain the above copyright 42 1.1 cgd * notice, this list of conditions and the following disclaimer. 43 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright 44 1.1 cgd * notice, this list of conditions and the following disclaimer in the 45 1.1 cgd * documentation and/or other materials provided with the distribution. 46 1.65 agc * 3. Neither the name of the University nor the names of its contributors 47 1.1 cgd * may be used to endorse or promote products derived from this software 48 1.1 cgd * without specific prior written permission. 49 1.1 cgd * 50 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 1.1 cgd * SUCH DAMAGE. 61 1.1 cgd * 62 1.23 fvdl * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 63 1.1 cgd */ 64 1.45 lukem 65 1.45 lukem #include <sys/cdefs.h> 66 1.280 andvar __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.280 2025/06/02 16:27:04 andvar Exp $"); 67 1.48 yamt 68 1.165 pooka #ifdef _KERNEL_OPT 69 1.48 yamt #include "opt_kstack.h" 70 1.88 onoe #include "opt_maxuprc.h" 71 1.161 darran #include "opt_dtrace.h" 72 1.171 pooka #include "opt_compat_netbsd32.h" 73 1.222 christos #include "opt_kaslr.h" 74 1.165 pooka #endif 75 1.1 cgd 76 1.205 christos #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \ 77 1.205 christos && !defined(_RUMPKERNEL) 78 1.205 christos #define COMPAT_NETBSD32 79 1.205 christos #endif 80 1.205 christos 81 1.5 mycroft #include <sys/param.h> 82 1.277 riastrad #include <sys/types.h> 83 1.277 riastrad 84 1.277 riastrad #include <sys/acct.h> 85 1.277 riastrad #include <sys/atomic.h> 86 1.5 mycroft #include <sys/buf.h> 87 1.277 riastrad #include <sys/compat_stub.h> 88 1.277 riastrad #include <sys/cpu.h> 89 1.277 riastrad #include <sys/dtrace_bsd.h> 90 1.277 riastrad #include <sys/exec.h> 91 1.5 mycroft #include <sys/file.h> 92 1.277 riastrad #include <sys/filedesc.h> 93 1.277 riastrad #include <sys/futex.h> 94 1.277 riastrad #include <sys/ioctl.h> 95 1.277 riastrad #include <sys/kauth.h> 96 1.277 riastrad #include <sys/kernel.h> 97 1.277 riastrad #include <sys/kmem.h> 98 1.277 riastrad #include <sys/namei.h> 99 1.24 thorpej #include <sys/pool.h> 100 1.277 riastrad #include <sys/proc.h> 101 1.277 riastrad #include <sys/pserialize.h> 102 1.147 rmind #include <sys/pset.h> 103 1.277 riastrad #include <sys/ras.h> 104 1.277 riastrad #include <sys/resourcevar.h> 105 1.278 riastrad #include <sys/sdt.h> 106 1.11 cgd #include <sys/signalvar.h> 107 1.277 riastrad #include <sys/sleepq.h> 108 1.185 martin #include <sys/syscall_stats.h> 109 1.170 pooka #include <sys/sysctl.h> 110 1.277 riastrad #include <sys/systm.h> 111 1.277 riastrad #include <sys/tty.h> 112 1.277 riastrad #include <sys/uio.h> 113 1.277 riastrad #include <sys/wait.h> 114 1.277 riastrad #include <ufs/ufs/quota.h> 115 1.160 darran 116 1.169 uebayasi #include <uvm/uvm_extern.h> 117 1.5 mycroft 118 1.7 cgd /* 119 1.180 rmind * Process lists. 120 1.7 cgd */ 121 1.31 thorpej 122 1.180 rmind struct proclist allproc __cacheline_aligned; 123 1.180 rmind struct proclist zombproc __cacheline_aligned; 124 1.32 thorpej 125 1.271 simonb kmutex_t proc_lock __cacheline_aligned; 126 1.252 ad static pserialize_t proc_psz; 127 1.33 thorpej 128 1.33 thorpej /* 129 1.247 thorpej * pid to lwp/proc lookup is done by indexing the pid_table array. 130 1.61 dsl * Since pid numbers are only allocated when an empty slot 131 1.61 dsl * has been found, there is no need to search any lists ever. 132 1.61 dsl * (an orphaned pgrp will lock the slot, a session will lock 133 1.61 dsl * the pgrp with the same number.) 134 1.61 dsl * If the table is too small it is reallocated with twice the 135 1.61 dsl * previous size and the entries 'unzipped' into the two halves. 136 1.247 thorpej * A linked list of free entries is passed through the pt_lwp 137 1.247 thorpej * field of 'free' items - set odd to be an invalid ptr. Two 138 1.247 thorpej * additional bits are also used to indicate if the slot is 139 1.247 thorpej * currently occupied by a proc or lwp, and if the PID is 140 1.247 thorpej * hidden from certain kinds of lookups. We thus require a 141 1.247 thorpej * minimum alignment for proc and lwp structures (LWPs are 142 1.247 thorpej * at least 32-byte aligned). 143 1.61 dsl */ 144 1.61 dsl 145 1.61 dsl struct pid_table { 146 1.247 thorpej uintptr_t pt_slot; 147 1.61 dsl struct pgrp *pt_pgrp; 148 1.168 chs pid_t pt_pid; 149 1.72 junyoung }; 150 1.247 thorpej 151 1.248 thorpej #define PT_F_FREE ((uintptr_t)__BIT(0)) 152 1.247 thorpej #define PT_F_LWP 0 /* pseudo-flag */ 153 1.248 thorpej #define PT_F_PROC ((uintptr_t)__BIT(1)) 154 1.247 thorpej 155 1.247 thorpej #define PT_F_TYPEBITS (PT_F_FREE|PT_F_PROC) 156 1.251 thorpej #define PT_F_ALLBITS (PT_F_FREE|PT_F_PROC) 157 1.247 thorpej 158 1.247 thorpej #define PT_VALID(s) (((s) & PT_F_FREE) == 0) 159 1.247 thorpej #define PT_RESERVED(s) ((s) == 0) 160 1.247 thorpej #define PT_NEXT(s) ((u_int)(s) >> 1) 161 1.247 thorpej #define PT_SET_FREE(pid) (((pid) << 1) | PT_F_FREE) 162 1.247 thorpej #define PT_SET_LWP(l) ((uintptr_t)(l)) 163 1.247 thorpej #define PT_SET_PROC(p) (((uintptr_t)(p)) | PT_F_PROC) 164 1.247 thorpej #define PT_SET_RESERVED 0 165 1.247 thorpej #define PT_GET_LWP(s) ((struct lwp *)((s) & ~PT_F_ALLBITS)) 166 1.247 thorpej #define PT_GET_PROC(s) ((struct proc *)((s) & ~PT_F_ALLBITS)) 167 1.247 thorpej #define PT_GET_TYPE(s) ((s) & PT_F_TYPEBITS) 168 1.247 thorpej #define PT_IS_LWP(s) (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0) 169 1.247 thorpej #define PT_IS_PROC(s) (PT_GET_TYPE(s) == PT_F_PROC) 170 1.247 thorpej 171 1.247 thorpej #define MIN_PROC_ALIGNMENT (PT_F_ALLBITS + 1) 172 1.61 dsl 173 1.180 rmind /* 174 1.180 rmind * Table of process IDs (PIDs). 175 1.180 rmind */ 176 1.180 rmind static struct pid_table *pid_table __read_mostly; 177 1.180 rmind 178 1.180 rmind #define INITIAL_PID_TABLE_SIZE (1 << 5) 179 1.180 rmind 180 1.180 rmind /* Table mask, threshold for growing and number of allocated PIDs. */ 181 1.180 rmind static u_int pid_tbl_mask __read_mostly; 182 1.180 rmind static u_int pid_alloc_lim __read_mostly; 183 1.180 rmind static u_int pid_alloc_cnt __cacheline_aligned; 184 1.180 rmind 185 1.180 rmind /* Next free, last free and maximum PIDs. */ 186 1.180 rmind static u_int next_free_pt __cacheline_aligned; 187 1.180 rmind static u_int last_free_pt __cacheline_aligned; 188 1.180 rmind static pid_t pid_max __read_mostly; 189 1.31 thorpej 190 1.81 junyoung /* Components of the first process -- never freed. */ 191 1.123 matt 192 1.123 matt struct session session0 = { 193 1.123 matt .s_count = 1, 194 1.123 matt .s_sid = 0, 195 1.123 matt }; 196 1.123 matt struct pgrp pgrp0 = { 197 1.123 matt .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), 198 1.123 matt .pg_session = &session0, 199 1.123 matt }; 200 1.132 ad filedesc_t filedesc0; 201 1.123 matt struct cwdinfo cwdi0 = { 202 1.187 pooka .cwdi_cmask = CMASK, 203 1.123 matt .cwdi_refcnt = 1, 204 1.123 matt }; 205 1.143 gmcgarry struct plimit limit0; 206 1.81 junyoung struct pstats pstat0; 207 1.81 junyoung struct vmspace vmspace0; 208 1.81 junyoung struct sigacts sigacts0; 209 1.123 matt struct proc proc0 = { 210 1.123 matt .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), 211 1.123 matt .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), 212 1.123 matt .p_nlwps = 1, 213 1.123 matt .p_nrlwps = 1, 214 1.123 matt .p_pgrp = &pgrp0, 215 1.123 matt .p_comm = "system", 216 1.123 matt /* 217 1.123 matt * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) 218 1.123 matt * when they exit. init(8) can easily wait them out for us. 219 1.123 matt */ 220 1.123 matt .p_flag = PK_SYSTEM | PK_NOCLDWAIT, 221 1.123 matt .p_stat = SACTIVE, 222 1.123 matt .p_nice = NZERO, 223 1.123 matt .p_emul = &emul_netbsd, 224 1.123 matt .p_cwdi = &cwdi0, 225 1.123 matt .p_limit = &limit0, 226 1.132 ad .p_fd = &filedesc0, 227 1.123 matt .p_vmspace = &vmspace0, 228 1.123 matt .p_stats = &pstat0, 229 1.123 matt .p_sigacts = &sigacts0, 230 1.188 matt #ifdef PROC0_MD_INITIALIZERS 231 1.188 matt PROC0_MD_INITIALIZERS 232 1.188 matt #endif 233 1.123 matt }; 234 1.123 matt kauth_cred_t cred0; 235 1.81 junyoung 236 1.180 rmind static const int nofile = NOFILE; 237 1.180 rmind static const int maxuprc = MAXUPRC; 238 1.81 junyoung 239 1.170 pooka static int sysctl_doeproc(SYSCTLFN_PROTO); 240 1.170 pooka static int sysctl_kern_proc_args(SYSCTLFN_PROTO); 241 1.222 christos static int sysctl_security_expose_address(SYSCTLFN_PROTO); 242 1.170 pooka 243 1.222 christos #ifdef KASLR 244 1.223 christos static int kern_expose_address = 0; 245 1.222 christos #else 246 1.222 christos static int kern_expose_address = 1; 247 1.222 christos #endif 248 1.31 thorpej /* 249 1.31 thorpej * The process list descriptors, used during pid allocation and 250 1.31 thorpej * by sysctl. No locking on this data structure is needed since 251 1.31 thorpej * it is completely static. 252 1.31 thorpej */ 253 1.31 thorpej const struct proclist_desc proclists[] = { 254 1.31 thorpej { &allproc }, 255 1.31 thorpej { &zombproc }, 256 1.31 thorpej { NULL }, 257 1.31 thorpej }; 258 1.31 thorpej 259 1.151 rmind static struct pgrp * pg_remove(pid_t); 260 1.151 rmind static void pg_delete(pid_t); 261 1.151 rmind static void orphanpg(struct pgrp *); 262 1.13 christos 263 1.95 thorpej static specificdata_domain_t proc_specificdata_domain; 264 1.95 thorpej 265 1.128 ad static pool_cache_t proc_cache; 266 1.128 ad 267 1.153 elad static kauth_listener_t proc_listener; 268 1.153 elad 269 1.222 christos static void fill_proc(const struct proc *, struct proc *, bool); 270 1.194 christos static int fill_pathname(struct lwp *, pid_t, void *, size_t *); 271 1.229 kamil static int fill_cwd(struct lwp *, pid_t, void *, size_t *); 272 1.194 christos 273 1.153 elad static int 274 1.153 elad proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 275 1.153 elad void *arg0, void *arg1, void *arg2, void *arg3) 276 1.153 elad { 277 1.153 elad struct proc *p; 278 1.153 elad int result; 279 1.153 elad 280 1.153 elad result = KAUTH_RESULT_DEFER; 281 1.153 elad p = arg0; 282 1.153 elad 283 1.153 elad switch (action) { 284 1.153 elad case KAUTH_PROCESS_CANSEE: { 285 1.153 elad enum kauth_process_req req; 286 1.153 elad 287 1.241 joerg req = (enum kauth_process_req)(uintptr_t)arg1; 288 1.153 elad 289 1.153 elad switch (req) { 290 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_ARGS: 291 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_ENTRY: 292 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_OPENFILES: 293 1.213 maxv case KAUTH_REQ_PROCESS_CANSEE_EPROC: 294 1.153 elad result = KAUTH_RESULT_ALLOW; 295 1.153 elad break; 296 1.153 elad 297 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_ENV: 298 1.153 elad if (kauth_cred_getuid(cred) != 299 1.153 elad kauth_cred_getuid(p->p_cred) || 300 1.153 elad kauth_cred_getuid(cred) != 301 1.153 elad kauth_cred_getsvuid(p->p_cred)) 302 1.153 elad break; 303 1.153 elad 304 1.153 elad result = KAUTH_RESULT_ALLOW; 305 1.153 elad 306 1.153 elad break; 307 1.153 elad 308 1.215 maxv case KAUTH_REQ_PROCESS_CANSEE_KPTR: 309 1.222 christos if (!kern_expose_address) 310 1.222 christos break; 311 1.222 christos 312 1.222 christos if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM)) 313 1.222 christos break; 314 1.222 christos 315 1.222 christos result = KAUTH_RESULT_ALLOW; 316 1.222 christos 317 1.222 christos break; 318 1.222 christos 319 1.153 elad default: 320 1.153 elad break; 321 1.153 elad } 322 1.153 elad 323 1.153 elad break; 324 1.153 elad } 325 1.153 elad 326 1.153 elad case KAUTH_PROCESS_FORK: { 327 1.153 elad int lnprocs = (int)(unsigned long)arg2; 328 1.153 elad 329 1.153 elad /* 330 1.153 elad * Don't allow a nonprivileged user to use the last few 331 1.153 elad * processes. The variable lnprocs is the current number of 332 1.153 elad * processes, maxproc is the limit. 333 1.153 elad */ 334 1.153 elad if (__predict_false((lnprocs >= maxproc - 5))) 335 1.153 elad break; 336 1.153 elad 337 1.153 elad result = KAUTH_RESULT_ALLOW; 338 1.153 elad 339 1.153 elad break; 340 1.153 elad } 341 1.153 elad 342 1.153 elad case KAUTH_PROCESS_CORENAME: 343 1.153 elad case KAUTH_PROCESS_STOPFLAG: 344 1.153 elad if (proc_uidmatch(cred, p->p_cred) == 0) 345 1.153 elad result = KAUTH_RESULT_ALLOW; 346 1.153 elad 347 1.153 elad break; 348 1.153 elad 349 1.153 elad default: 350 1.153 elad break; 351 1.153 elad } 352 1.153 elad 353 1.153 elad return result; 354 1.153 elad } 355 1.153 elad 356 1.221 christos static int 357 1.221 christos proc_ctor(void *arg __unused, void *obj, int flags __unused) 358 1.221 christos { 359 1.263 thorpej struct proc *p = obj; 360 1.263 thorpej 361 1.263 thorpej memset(p, 0, sizeof(*p)); 362 1.263 thorpej klist_init(&p->p_klist); 363 1.263 thorpej 364 1.263 thorpej /* 365 1.263 thorpej * There is no need for a proc_dtor() to do a klist_fini(), 366 1.263 thorpej * since knote_proc_exit() ensures that p->p_klist is empty 367 1.263 thorpej * when a process exits. 368 1.263 thorpej */ 369 1.263 thorpej 370 1.221 christos return 0; 371 1.221 christos } 372 1.221 christos 373 1.247 thorpej static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t); 374 1.247 thorpej 375 1.10 mycroft /* 376 1.10 mycroft * Initialize global process hashing structures. 377 1.10 mycroft */ 378 1.11 cgd void 379 1.59 dsl procinit(void) 380 1.7 cgd { 381 1.31 thorpej const struct proclist_desc *pd; 382 1.150 rmind u_int i; 383 1.61 dsl #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 384 1.31 thorpej 385 1.31 thorpej for (pd = proclists; pd->pd_list != NULL; pd++) 386 1.31 thorpej LIST_INIT(pd->pd_list); 387 1.7 cgd 388 1.253 ad mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE); 389 1.247 thorpej 390 1.252 ad proc_psz = pserialize_create(); 391 1.247 thorpej 392 1.150 rmind pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE 393 1.150 rmind * sizeof(struct pid_table), KM_SLEEP); 394 1.180 rmind pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 395 1.180 rmind pid_max = PID_MAX; 396 1.33 thorpej 397 1.61 dsl /* Set free list running through table... 398 1.61 dsl Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 399 1.61 dsl for (i = 0; i <= pid_tbl_mask; i++) { 400 1.247 thorpej pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1); 401 1.61 dsl pid_table[i].pt_pgrp = 0; 402 1.168 chs pid_table[i].pt_pid = 0; 403 1.61 dsl } 404 1.61 dsl /* slot 0 is just grabbed */ 405 1.61 dsl next_free_pt = 1; 406 1.61 dsl /* Need to fix last entry. */ 407 1.61 dsl last_free_pt = pid_tbl_mask; 408 1.247 thorpej pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY); 409 1.61 dsl /* point at which we grow table - to avoid reusing pids too often */ 410 1.61 dsl pid_alloc_lim = pid_tbl_mask - 1; 411 1.61 dsl #undef LINK_EMPTY 412 1.61 dsl 413 1.247 thorpej /* Reserve PID 1 for init(8). */ /* XXX slightly gross */ 414 1.253 ad mutex_enter(&proc_lock); 415 1.247 thorpej if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1) 416 1.247 thorpej panic("failed to reserve PID 1 for init(8)"); 417 1.253 ad mutex_exit(&proc_lock); 418 1.247 thorpej 419 1.95 thorpej proc_specificdata_domain = specificdata_domain_create(); 420 1.95 thorpej KASSERT(proc_specificdata_domain != NULL); 421 1.128 ad 422 1.247 thorpej size_t proc_alignment = coherency_unit; 423 1.247 thorpej if (proc_alignment < MIN_PROC_ALIGNMENT) 424 1.247 thorpej proc_alignment = MIN_PROC_ALIGNMENT; 425 1.247 thorpej 426 1.247 thorpej proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0, 427 1.221 christos "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL); 428 1.153 elad 429 1.153 elad proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 430 1.153 elad proc_listener_cb, NULL); 431 1.7 cgd } 432 1.1 cgd 433 1.170 pooka void 434 1.170 pooka procinit_sysctl(void) 435 1.170 pooka { 436 1.170 pooka static struct sysctllog *clog; 437 1.170 pooka 438 1.170 pooka sysctl_createv(&clog, 0, NULL, NULL, 439 1.222 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 440 1.222 christos CTLTYPE_INT, "expose_address", 441 1.222 christos SYSCTL_DESCR("Enable exposing kernel addresses"), 442 1.222 christos sysctl_security_expose_address, 0, 443 1.222 christos &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL); 444 1.222 christos sysctl_createv(&clog, 0, NULL, NULL, 445 1.170 pooka CTLFLAG_PERMANENT, 446 1.170 pooka CTLTYPE_NODE, "proc", 447 1.170 pooka SYSCTL_DESCR("System-wide process information"), 448 1.170 pooka sysctl_doeproc, 0, NULL, 0, 449 1.170 pooka CTL_KERN, KERN_PROC, CTL_EOL); 450 1.170 pooka sysctl_createv(&clog, 0, NULL, NULL, 451 1.170 pooka CTLFLAG_PERMANENT, 452 1.170 pooka CTLTYPE_NODE, "proc2", 453 1.170 pooka SYSCTL_DESCR("Machine-independent process information"), 454 1.170 pooka sysctl_doeproc, 0, NULL, 0, 455 1.170 pooka CTL_KERN, KERN_PROC2, CTL_EOL); 456 1.170 pooka sysctl_createv(&clog, 0, NULL, NULL, 457 1.170 pooka CTLFLAG_PERMANENT, 458 1.170 pooka CTLTYPE_NODE, "proc_args", 459 1.170 pooka SYSCTL_DESCR("Process argument information"), 460 1.170 pooka sysctl_kern_proc_args, 0, NULL, 0, 461 1.170 pooka CTL_KERN, KERN_PROC_ARGS, CTL_EOL); 462 1.170 pooka 463 1.170 pooka /* 464 1.170 pooka "nodes" under these: 465 1.170 pooka 466 1.170 pooka KERN_PROC_ALL 467 1.170 pooka KERN_PROC_PID pid 468 1.170 pooka KERN_PROC_PGRP pgrp 469 1.170 pooka KERN_PROC_SESSION sess 470 1.170 pooka KERN_PROC_TTY tty 471 1.170 pooka KERN_PROC_UID uid 472 1.170 pooka KERN_PROC_RUID uid 473 1.170 pooka KERN_PROC_GID gid 474 1.170 pooka KERN_PROC_RGID gid 475 1.170 pooka 476 1.170 pooka all in all, probably not worth the effort... 477 1.170 pooka */ 478 1.170 pooka } 479 1.170 pooka 480 1.7 cgd /* 481 1.81 junyoung * Initialize process 0. 482 1.81 junyoung */ 483 1.81 junyoung void 484 1.81 junyoung proc0_init(void) 485 1.81 junyoung { 486 1.81 junyoung struct proc *p; 487 1.81 junyoung struct pgrp *pg; 488 1.177 rmind struct rlimit *rlim; 489 1.81 junyoung rlim_t lim; 490 1.143 gmcgarry int i; 491 1.81 junyoung 492 1.81 junyoung p = &proc0; 493 1.81 junyoung pg = &pgrp0; 494 1.123 matt 495 1.127 ad mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 496 1.129 ad mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 497 1.137 ad p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 498 1.107 ad 499 1.122 ad rw_init(&p->p_reflock); 500 1.100 ad cv_init(&p->p_waitcv, "wait"); 501 1.100 ad cv_init(&p->p_lwpcv, "lwpwait"); 502 1.100 ad 503 1.166 pooka LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling); 504 1.100 ad 505 1.247 thorpej KASSERT(lwp0.l_lid == 0); 506 1.247 thorpej pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0); 507 1.81 junyoung LIST_INSERT_HEAD(&allproc, p, p_list); 508 1.81 junyoung 509 1.247 thorpej pid_table[lwp0.l_lid].pt_pgrp = pg; 510 1.81 junyoung LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 511 1.81 junyoung 512 1.81 junyoung #ifdef __HAVE_SYSCALL_INTERN 513 1.81 junyoung (*p->p_emul->e_syscall_intern)(p); 514 1.81 junyoung #endif 515 1.81 junyoung 516 1.81 junyoung /* Create credentials. */ 517 1.89 elad cred0 = kauth_cred_alloc(); 518 1.89 elad p->p_cred = cred0; 519 1.81 junyoung 520 1.81 junyoung /* Create the CWD info. */ 521 1.246 ad rw_init(&cwdi0.cwdi_lock); 522 1.81 junyoung 523 1.81 junyoung /* Create the limits structures. */ 524 1.116 dsl mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); 525 1.177 rmind 526 1.177 rmind rlim = limit0.pl_rlimit; 527 1.177 rmind for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) { 528 1.177 rmind rlim[i].rlim_cur = RLIM_INFINITY; 529 1.177 rmind rlim[i].rlim_max = RLIM_INFINITY; 530 1.177 rmind } 531 1.177 rmind 532 1.177 rmind rlim[RLIMIT_NOFILE].rlim_max = maxfiles; 533 1.177 rmind rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile; 534 1.177 rmind 535 1.177 rmind rlim[RLIMIT_NPROC].rlim_max = maxproc; 536 1.177 rmind rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc; 537 1.81 junyoung 538 1.255 ad lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false))); 539 1.177 rmind rlim[RLIMIT_RSS].rlim_max = lim; 540 1.177 rmind rlim[RLIMIT_MEMLOCK].rlim_max = lim; 541 1.177 rmind rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 542 1.177 rmind 543 1.186 christos rlim[RLIMIT_NTHR].rlim_max = maxlwp; 544 1.267 mrg rlim[RLIMIT_NTHR].rlim_cur = maxlwp / 2; 545 1.186 christos 546 1.179 rmind /* Note that default core name has zero length. */ 547 1.177 rmind limit0.pl_corename = defcorename; 548 1.179 rmind limit0.pl_cnlen = 0; 549 1.177 rmind limit0.pl_refcnt = 1; 550 1.179 rmind limit0.pl_writeable = false; 551 1.143 gmcgarry limit0.pl_sv_limit = NULL; 552 1.81 junyoung 553 1.81 junyoung /* Configure virtual memory system, set vm rlimits. */ 554 1.81 junyoung uvm_init_limits(p); 555 1.81 junyoung 556 1.81 junyoung /* Initialize file descriptor table for proc0. */ 557 1.132 ad fd_init(&filedesc0); 558 1.81 junyoung 559 1.81 junyoung /* 560 1.81 junyoung * Initialize proc0's vmspace, which uses the kernel pmap. 561 1.81 junyoung * All kernel processes (which never have user space mappings) 562 1.81 junyoung * share proc0's vmspace, and thus, the kernel pmap. 563 1.81 junyoung */ 564 1.81 junyoung uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 565 1.197 maxv trunc_page(VM_MAXUSER_ADDRESS), 566 1.191 christos #ifdef __USE_TOPDOWN_VM 567 1.190 martin true 568 1.190 martin #else 569 1.190 martin false 570 1.190 martin #endif 571 1.190 martin ); 572 1.81 junyoung 573 1.127 ad /* Initialize signal state for proc0. XXX IPL_SCHED */ 574 1.127 ad mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 575 1.81 junyoung siginit(p); 576 1.96 christos 577 1.164 rmind proc_initspecific(p); 578 1.160 darran kdtrace_proc_ctor(NULL, p); 579 1.81 junyoung } 580 1.81 junyoung 581 1.81 junyoung /* 582 1.151 rmind * Session reference counting. 583 1.151 rmind */ 584 1.151 rmind 585 1.151 rmind void 586 1.151 rmind proc_sesshold(struct session *ss) 587 1.151 rmind { 588 1.151 rmind 589 1.253 ad KASSERT(mutex_owned(&proc_lock)); 590 1.151 rmind ss->s_count++; 591 1.151 rmind } 592 1.151 rmind 593 1.252 ad void 594 1.252 ad proc_sessrele(struct session *ss) 595 1.151 rmind { 596 1.247 thorpej struct pgrp *pg; 597 1.151 rmind 598 1.253 ad KASSERT(mutex_owned(&proc_lock)); 599 1.245 maxv KASSERT(ss->s_count > 0); 600 1.247 thorpej 601 1.151 rmind /* 602 1.151 rmind * We keep the pgrp with the same id as the session in order to 603 1.151 rmind * stop a process being given the same pid. Since the pgrp holds 604 1.151 rmind * a reference to the session, it must be a 'zombie' pgrp by now. 605 1.151 rmind */ 606 1.151 rmind if (--ss->s_count == 0) { 607 1.247 thorpej pg = pg_remove(ss->s_sid); 608 1.247 thorpej } else { 609 1.247 thorpej pg = NULL; 610 1.247 thorpej ss = NULL; 611 1.247 thorpej } 612 1.151 rmind 613 1.253 ad mutex_exit(&proc_lock); 614 1.151 rmind 615 1.247 thorpej if (pg) 616 1.151 rmind kmem_free(pg, sizeof(struct pgrp)); 617 1.247 thorpej if (ss) 618 1.151 rmind kmem_free(ss, sizeof(struct session)); 619 1.247 thorpej } 620 1.247 thorpej 621 1.151 rmind /* 622 1.74 junyoung * Check that the specified process group is in the session of the 623 1.60 dsl * specified process. 624 1.60 dsl * Treats -ve ids as process ids. 625 1.60 dsl * Used to validate TIOCSPGRP requests. 626 1.60 dsl */ 627 1.60 dsl int 628 1.60 dsl pgid_in_session(struct proc *p, pid_t pg_id) 629 1.60 dsl { 630 1.60 dsl struct pgrp *pgrp; 631 1.101 dsl struct session *session; 632 1.107 ad int error; 633 1.101 dsl 634 1.276 kre if (pg_id <= INT_MIN) 635 1.278 riastrad return SET_ERROR(EINVAL); 636 1.262 nia 637 1.253 ad mutex_enter(&proc_lock); 638 1.60 dsl if (pg_id < 0) { 639 1.167 rmind struct proc *p1 = proc_find(-pg_id); 640 1.167 rmind if (p1 == NULL) { 641 1.278 riastrad error = SET_ERROR(EINVAL); 642 1.167 rmind goto fail; 643 1.167 rmind } 644 1.60 dsl pgrp = p1->p_pgrp; 645 1.60 dsl } else { 646 1.167 rmind pgrp = pgrp_find(pg_id); 647 1.167 rmind if (pgrp == NULL) { 648 1.278 riastrad error = SET_ERROR(EINVAL); 649 1.167 rmind goto fail; 650 1.167 rmind } 651 1.60 dsl } 652 1.101 dsl session = pgrp->pg_session; 653 1.278 riastrad error = (session != p->p_pgrp->pg_session) ? SET_ERROR(EPERM) : 0; 654 1.167 rmind fail: 655 1.253 ad mutex_exit(&proc_lock); 656 1.107 ad return error; 657 1.7 cgd } 658 1.4 andrew 659 1.1 cgd /* 660 1.148 rmind * p_inferior: is p an inferior of q? 661 1.1 cgd */ 662 1.148 rmind static inline bool 663 1.148 rmind p_inferior(struct proc *p, struct proc *q) 664 1.1 cgd { 665 1.1 cgd 666 1.253 ad KASSERT(mutex_owned(&proc_lock)); 667 1.148 rmind 668 1.41 sommerfe for (; p != q; p = p->p_pptr) 669 1.1 cgd if (p->p_pid == 0) 670 1.148 rmind return false; 671 1.148 rmind return true; 672 1.1 cgd } 673 1.1 cgd 674 1.1 cgd /* 675 1.247 thorpej * proc_find_lwp: locate an lwp in said proc by the ID. 676 1.247 thorpej * 677 1.247 thorpej * => Must be called with p::p_lock held. 678 1.252 ad * => LSIDL lwps are not returned because they are only partially 679 1.247 thorpej * constructed while occupying the slot. 680 1.247 thorpej * => Callers need to be careful about lwp::l_stat of the returned 681 1.247 thorpej * lwp. 682 1.247 thorpej */ 683 1.247 thorpej struct lwp * 684 1.247 thorpej proc_find_lwp(proc_t *p, pid_t pid) 685 1.247 thorpej { 686 1.247 thorpej struct pid_table *pt; 687 1.265 riastrad unsigned pt_mask; 688 1.247 thorpej struct lwp *l = NULL; 689 1.247 thorpej uintptr_t slot; 690 1.252 ad int s; 691 1.247 thorpej 692 1.247 thorpej KASSERT(mutex_owned(p->p_lock)); 693 1.252 ad 694 1.252 ad /* 695 1.265 riastrad * Look in the pid_table. This is done unlocked inside a 696 1.265 riastrad * pserialize read section covering pid_table's memory 697 1.265 riastrad * allocation only, so take care to read things in the correct 698 1.265 riastrad * order: 699 1.265 riastrad * 700 1.265 riastrad * 1. First read the table mask -- this only ever increases, in 701 1.265 riastrad * expand_pid_table, so a stale value is safely 702 1.265 riastrad * conservative. 703 1.265 riastrad * 704 1.265 riastrad * 2. Next read the pid table -- this is always set _before_ 705 1.265 riastrad * the mask increases, so if we see a new table and stale 706 1.265 riastrad * mask, the mask is still valid for the table. 707 1.252 ad */ 708 1.252 ad s = pserialize_read_enter(); 709 1.265 riastrad pt_mask = atomic_load_acquire(&pid_tbl_mask); 710 1.265 riastrad pt = &atomic_load_consume(&pid_table)[pid & pt_mask]; 711 1.252 ad slot = atomic_load_consume(&pt->pt_slot); 712 1.252 ad if (__predict_false(!PT_IS_LWP(slot))) { 713 1.252 ad pserialize_read_exit(s); 714 1.252 ad return NULL; 715 1.252 ad } 716 1.252 ad 717 1.252 ad /* 718 1.252 ad * Check to see if the LWP is from the correct process. We won't 719 1.252 ad * see entries in pid_table from a prior process that also used "p", 720 1.252 ad * by virtue of the fact that allocating "p" means all prior updates 721 1.252 ad * to dependant data structures are visible to this thread. 722 1.252 ad */ 723 1.252 ad l = PT_GET_LWP(slot); 724 1.252 ad if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) { 725 1.252 ad pserialize_read_exit(s); 726 1.252 ad return NULL; 727 1.252 ad } 728 1.252 ad 729 1.252 ad /* 730 1.252 ad * We now know that p->p_lock holds this LWP stable. 731 1.252 ad * 732 1.252 ad * If the status is not LSIDL, it means the LWP is intended to be 733 1.252 ad * findable by LID and l_lid cannot change behind us. 734 1.252 ad * 735 1.252 ad * No need to acquire the LWP's lock to check for LSIDL, as 736 1.252 ad * p->p_lock must be held to transition in and out of LSIDL. 737 1.252 ad * Any other observed state of is no particular interest. 738 1.252 ad */ 739 1.252 ad pserialize_read_exit(s); 740 1.252 ad return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL; 741 1.252 ad } 742 1.252 ad 743 1.252 ad /* 744 1.252 ad * proc_find_lwp_unlocked: locate an lwp in said proc by the ID. 745 1.252 ad * 746 1.252 ad * => Called in a pserialize read section with no locks held. 747 1.252 ad * => LSIDL lwps are not returned because they are only partially 748 1.252 ad * constructed while occupying the slot. 749 1.252 ad * => Callers need to be careful about lwp::l_stat of the returned 750 1.252 ad * lwp. 751 1.252 ad * => If an LWP is found, it's returned locked. 752 1.252 ad */ 753 1.252 ad struct lwp * 754 1.252 ad proc_find_lwp_unlocked(proc_t *p, pid_t pid) 755 1.252 ad { 756 1.252 ad struct pid_table *pt; 757 1.265 riastrad unsigned pt_mask; 758 1.252 ad struct lwp *l = NULL; 759 1.252 ad uintptr_t slot; 760 1.252 ad 761 1.252 ad KASSERT(pserialize_in_read_section()); 762 1.252 ad 763 1.252 ad /* 764 1.265 riastrad * Look in the pid_table. This is done unlocked inside a 765 1.265 riastrad * pserialize read section covering pid_table's memory 766 1.265 riastrad * allocation only, so take care to read things in the correct 767 1.265 riastrad * order: 768 1.265 riastrad * 769 1.265 riastrad * 1. First read the table mask -- this only ever increases, in 770 1.265 riastrad * expand_pid_table, so a stale value is safely 771 1.265 riastrad * conservative. 772 1.265 riastrad * 773 1.265 riastrad * 2. Next read the pid table -- this is always set _before_ 774 1.265 riastrad * the mask increases, so if we see a new table and stale 775 1.265 riastrad * mask, the mask is still valid for the table. 776 1.252 ad */ 777 1.265 riastrad pt_mask = atomic_load_acquire(&pid_tbl_mask); 778 1.265 riastrad pt = &atomic_load_consume(&pid_table)[pid & pt_mask]; 779 1.252 ad slot = atomic_load_consume(&pt->pt_slot); 780 1.252 ad if (__predict_false(!PT_IS_LWP(slot))) { 781 1.252 ad return NULL; 782 1.252 ad } 783 1.252 ad 784 1.252 ad /* 785 1.252 ad * Lock the LWP we found to get it stable. If it's embryonic or 786 1.252 ad * reaped (LSIDL) then none of the other fields can safely be 787 1.252 ad * checked. 788 1.252 ad */ 789 1.252 ad l = PT_GET_LWP(slot); 790 1.252 ad lwp_lock(l); 791 1.252 ad if (__predict_false(l->l_stat == LSIDL)) { 792 1.252 ad lwp_unlock(l); 793 1.252 ad return NULL; 794 1.252 ad } 795 1.247 thorpej 796 1.252 ad /* 797 1.252 ad * l_proc and l_lid are now known stable because the LWP is not 798 1.252 ad * LSIDL, so check those fields too to make sure we found the 799 1.252 ad * right thing. 800 1.252 ad */ 801 1.252 ad if (__predict_false(l->l_proc != p || l->l_lid != pid)) { 802 1.252 ad lwp_unlock(l); 803 1.252 ad return NULL; 804 1.247 thorpej } 805 1.247 thorpej 806 1.252 ad /* Everything checks out, return it locked. */ 807 1.247 thorpej return l; 808 1.247 thorpej } 809 1.247 thorpej 810 1.247 thorpej /* 811 1.251 thorpej * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock 812 1.251 thorpej * on its containing proc. 813 1.247 thorpej * 814 1.251 thorpej * => Similar to proc_find_lwp(), but does not require you to have 815 1.251 thorpej * the proc a priori. 816 1.251 thorpej * => Also returns proc * to caller, with p::p_lock held. 817 1.251 thorpej * => Same caveats apply. 818 1.247 thorpej */ 819 1.247 thorpej struct lwp * 820 1.251 thorpej proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp) 821 1.247 thorpej { 822 1.247 thorpej struct pid_table *pt; 823 1.251 thorpej struct proc *p = NULL; 824 1.247 thorpej struct lwp *l = NULL; 825 1.247 thorpej uintptr_t slot; 826 1.247 thorpej 827 1.251 thorpej KASSERT(pp != NULL); 828 1.253 ad mutex_enter(&proc_lock); 829 1.247 thorpej pt = &pid_table[pid & pid_tbl_mask]; 830 1.247 thorpej 831 1.247 thorpej slot = pt->pt_slot; 832 1.251 thorpej if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) { 833 1.247 thorpej l = PT_GET_LWP(slot); 834 1.251 thorpej p = l->l_proc; 835 1.251 thorpej mutex_enter(p->p_lock); 836 1.252 ad if (__predict_false(l->l_stat == LSIDL)) { 837 1.251 thorpej mutex_exit(p->p_lock); 838 1.251 thorpej l = NULL; 839 1.251 thorpej p = NULL; 840 1.251 thorpej } 841 1.247 thorpej } 842 1.253 ad mutex_exit(&proc_lock); 843 1.247 thorpej 844 1.251 thorpej KASSERT(p == NULL || mutex_owned(p->p_lock)); 845 1.251 thorpej *pp = p; 846 1.247 thorpej return l; 847 1.247 thorpej } 848 1.247 thorpej 849 1.247 thorpej /* 850 1.247 thorpej * proc_find_raw_pid_table_locked: locate a process by the ID. 851 1.167 rmind * 852 1.252 ad * => Must be called with proc_lock held. 853 1.1 cgd */ 854 1.247 thorpej static proc_t * 855 1.251 thorpej proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid) 856 1.1 cgd { 857 1.168 chs struct pid_table *pt; 858 1.247 thorpej proc_t *p = NULL; 859 1.247 thorpej uintptr_t slot; 860 1.167 rmind 861 1.253 ad /* No - used by DDB. KASSERT(mutex_owned(&proc_lock)); */ 862 1.168 chs pt = &pid_table[pid & pid_tbl_mask]; 863 1.247 thorpej 864 1.247 thorpej slot = pt->pt_slot; 865 1.247 thorpej if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) { 866 1.247 thorpej /* 867 1.247 thorpej * When looking up processes, require a direct match 868 1.247 thorpej * on the PID assigned to the proc, not just one of 869 1.247 thorpej * its LWPs. 870 1.247 thorpej * 871 1.252 ad * N.B. We require lwp::l_proc of LSIDL LWPs to be 872 1.247 thorpej * valid here. 873 1.247 thorpej */ 874 1.247 thorpej p = PT_GET_LWP(slot)->l_proc; 875 1.251 thorpej if (__predict_false(p->p_pid != pid && !any_lwpid)) 876 1.247 thorpej p = NULL; 877 1.247 thorpej } else if (PT_IS_PROC(slot) && pt->pt_pid == pid) { 878 1.247 thorpej p = PT_GET_PROC(slot); 879 1.167 rmind } 880 1.167 rmind return p; 881 1.167 rmind } 882 1.1 cgd 883 1.167 rmind proc_t * 884 1.247 thorpej proc_find_raw(pid_t pid) 885 1.247 thorpej { 886 1.252 ad 887 1.252 ad return proc_find_raw_pid_table_locked(pid, false); 888 1.247 thorpej } 889 1.247 thorpej 890 1.247 thorpej static proc_t * 891 1.252 ad proc_find_internal(pid_t pid, bool any_lwpid) 892 1.167 rmind { 893 1.167 rmind proc_t *p; 894 1.100 ad 895 1.253 ad KASSERT(mutex_owned(&proc_lock)); 896 1.247 thorpej 897 1.251 thorpej p = proc_find_raw_pid_table_locked(pid, any_lwpid); 898 1.167 rmind if (__predict_false(p == NULL)) { 899 1.167 rmind return NULL; 900 1.167 rmind } 901 1.168 chs 902 1.167 rmind /* 903 1.167 rmind * Only allow live processes to be found by PID. 904 1.247 thorpej * XXX: p_stat might change, since proc unlocked. 905 1.167 rmind */ 906 1.167 rmind if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) { 907 1.68 dsl return p; 908 1.68 dsl } 909 1.68 dsl return NULL; 910 1.1 cgd } 911 1.1 cgd 912 1.251 thorpej proc_t * 913 1.251 thorpej proc_find(pid_t pid) 914 1.251 thorpej { 915 1.251 thorpej return proc_find_internal(pid, false); 916 1.251 thorpej } 917 1.251 thorpej 918 1.251 thorpej proc_t * 919 1.251 thorpej proc_find_lwpid(pid_t pid) 920 1.251 thorpej { 921 1.251 thorpej return proc_find_internal(pid, true); 922 1.251 thorpej } 923 1.251 thorpej 924 1.1 cgd /* 925 1.252 ad * pgrp_find: locate a process group by the ID. 926 1.167 rmind * 927 1.252 ad * => Must be called with proc_lock held. 928 1.1 cgd */ 929 1.252 ad struct pgrp * 930 1.252 ad pgrp_find(pid_t pgid) 931 1.1 cgd { 932 1.68 dsl struct pgrp *pg; 933 1.1 cgd 934 1.253 ad KASSERT(mutex_owned(&proc_lock)); 935 1.167 rmind 936 1.68 dsl pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 937 1.168 chs 938 1.61 dsl /* 939 1.167 rmind * Cannot look up a process group that only exists because the 940 1.167 rmind * session has not died yet (traditional). 941 1.61 dsl */ 942 1.68 dsl if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 943 1.68 dsl return NULL; 944 1.68 dsl } 945 1.68 dsl return pg; 946 1.1 cgd } 947 1.1 cgd 948 1.61 dsl static void 949 1.61 dsl expand_pid_table(void) 950 1.1 cgd { 951 1.150 rmind size_t pt_size, tsz; 952 1.61 dsl struct pid_table *n_pt, *new_pt; 953 1.247 thorpej uintptr_t slot; 954 1.61 dsl struct pgrp *pgrp; 955 1.168 chs pid_t pid, rpid; 956 1.150 rmind u_int i; 957 1.168 chs uint new_pt_mask; 958 1.1 cgd 959 1.253 ad KASSERT(mutex_owned(&proc_lock)); 960 1.247 thorpej 961 1.247 thorpej /* Unlock the pid_table briefly to allocate memory. */ 962 1.249 thorpej pt_size = pid_tbl_mask + 1; 963 1.253 ad mutex_exit(&proc_lock); 964 1.247 thorpej 965 1.150 rmind tsz = pt_size * 2 * sizeof(struct pid_table); 966 1.150 rmind new_pt = kmem_alloc(tsz, KM_SLEEP); 967 1.168 chs new_pt_mask = pt_size * 2 - 1; 968 1.61 dsl 969 1.280 andvar /* XXX For now. The practical limit is much lower anyway. */ 970 1.250 thorpej KASSERT(new_pt_mask <= FUTEX_TID_MASK); 971 1.250 thorpej 972 1.253 ad mutex_enter(&proc_lock); 973 1.61 dsl if (pt_size != pid_tbl_mask + 1) { 974 1.61 dsl /* Another process beat us to it... */ 975 1.253 ad mutex_exit(&proc_lock); 976 1.150 rmind kmem_free(new_pt, tsz); 977 1.247 thorpej goto out; 978 1.61 dsl } 979 1.72 junyoung 980 1.61 dsl /* 981 1.61 dsl * Copy entries from old table into new one. 982 1.61 dsl * If 'pid' is 'odd' we need to place in the upper half, 983 1.61 dsl * even pid's to the lower half. 984 1.61 dsl * Free items stay in the low half so we don't have to 985 1.61 dsl * fixup the reference to them. 986 1.61 dsl * We stuff free items on the front of the freelist 987 1.61 dsl * because we can't write to unmodified entries. 988 1.74 junyoung * Processing the table backwards maintains a semblance 989 1.168 chs * of issuing pid numbers that increase with time. 990 1.61 dsl */ 991 1.61 dsl i = pt_size - 1; 992 1.61 dsl n_pt = new_pt + i; 993 1.61 dsl for (; ; i--, n_pt--) { 994 1.247 thorpej slot = pid_table[i].pt_slot; 995 1.61 dsl pgrp = pid_table[i].pt_pgrp; 996 1.247 thorpej if (!PT_VALID(slot)) { 997 1.61 dsl /* Up 'use count' so that link is valid */ 998 1.247 thorpej pid = (PT_NEXT(slot) + pt_size) & ~pt_size; 999 1.168 chs rpid = 0; 1000 1.247 thorpej slot = PT_SET_FREE(pid); 1001 1.61 dsl if (pgrp) 1002 1.61 dsl pid = pgrp->pg_id; 1003 1.168 chs } else { 1004 1.168 chs pid = pid_table[i].pt_pid; 1005 1.168 chs rpid = pid; 1006 1.168 chs } 1007 1.72 junyoung 1008 1.61 dsl /* Save entry in appropriate half of table */ 1009 1.247 thorpej n_pt[pid & pt_size].pt_slot = slot; 1010 1.61 dsl n_pt[pid & pt_size].pt_pgrp = pgrp; 1011 1.168 chs n_pt[pid & pt_size].pt_pid = rpid; 1012 1.61 dsl 1013 1.61 dsl /* Put other piece on start of free list */ 1014 1.61 dsl pid = (pid ^ pt_size) & ~pid_tbl_mask; 1015 1.247 thorpej n_pt[pid & pt_size].pt_slot = 1016 1.247 thorpej PT_SET_FREE((pid & ~pt_size) | next_free_pt); 1017 1.61 dsl n_pt[pid & pt_size].pt_pgrp = 0; 1018 1.168 chs n_pt[pid & pt_size].pt_pid = 0; 1019 1.168 chs 1020 1.61 dsl next_free_pt = i | (pid & pt_size); 1021 1.61 dsl if (i == 0) 1022 1.61 dsl break; 1023 1.61 dsl } 1024 1.61 dsl 1025 1.150 rmind /* Save old table size and switch tables */ 1026 1.150 rmind tsz = pt_size * sizeof(struct pid_table); 1027 1.61 dsl n_pt = pid_table; 1028 1.264 riastrad atomic_store_release(&pid_table, new_pt); 1029 1.265 riastrad KASSERT(new_pt_mask >= pid_tbl_mask); 1030 1.265 riastrad atomic_store_release(&pid_tbl_mask, new_pt_mask); 1031 1.61 dsl 1032 1.61 dsl /* 1033 1.61 dsl * pid_max starts as PID_MAX (= 30000), once we have 16384 1034 1.61 dsl * allocated pids we need it to be larger! 1035 1.61 dsl */ 1036 1.61 dsl if (pid_tbl_mask > PID_MAX) { 1037 1.61 dsl pid_max = pid_tbl_mask * 2 + 1; 1038 1.61 dsl pid_alloc_lim |= pid_alloc_lim << 1; 1039 1.61 dsl } else 1040 1.61 dsl pid_alloc_lim <<= 1; /* doubles number of free slots... */ 1041 1.61 dsl 1042 1.253 ad mutex_exit(&proc_lock); 1043 1.252 ad 1044 1.252 ad /* 1045 1.252 ad * Make sure that unlocked access to the old pid_table is complete 1046 1.252 ad * and then free it. 1047 1.252 ad */ 1048 1.252 ad pserialize_perform(proc_psz); 1049 1.150 rmind kmem_free(n_pt, tsz); 1050 1.247 thorpej 1051 1.252 ad out: /* Return with proc_lock held again. */ 1052 1.253 ad mutex_enter(&proc_lock); 1053 1.61 dsl } 1054 1.61 dsl 1055 1.61 dsl struct proc * 1056 1.61 dsl proc_alloc(void) 1057 1.61 dsl { 1058 1.61 dsl struct proc *p; 1059 1.61 dsl 1060 1.128 ad p = pool_cache_get(proc_cache, PR_WAITOK); 1061 1.61 dsl p->p_stat = SIDL; /* protect against others */ 1062 1.96 christos proc_initspecific(p); 1063 1.164 rmind kdtrace_proc_ctor(NULL, p); 1064 1.247 thorpej 1065 1.247 thorpej /* 1066 1.247 thorpej * Allocate a placeholder in the pid_table. When we create the 1067 1.247 thorpej * first LWP for this process, it will take ownership of the 1068 1.247 thorpej * slot. 1069 1.247 thorpej */ 1070 1.247 thorpej if (__predict_false(proc_alloc_pid(p) == -1)) { 1071 1.247 thorpej /* Allocating the PID failed; unwind. */ 1072 1.247 thorpej proc_finispecific(p); 1073 1.247 thorpej proc_free_mem(p); 1074 1.247 thorpej p = NULL; 1075 1.247 thorpej } 1076 1.168 chs return p; 1077 1.168 chs } 1078 1.168 chs 1079 1.183 yamt /* 1080 1.275 andvar * proc_alloc_pid_slot: allocate PID and record the occupant so that 1081 1.183 yamt * proc_find_raw() can find it by the PID. 1082 1.183 yamt */ 1083 1.247 thorpej static pid_t __noinline 1084 1.247 thorpej proc_alloc_pid_slot(struct proc *p, uintptr_t slot) 1085 1.168 chs { 1086 1.168 chs struct pid_table *pt; 1087 1.168 chs pid_t pid; 1088 1.168 chs int nxt; 1089 1.61 dsl 1090 1.253 ad KASSERT(mutex_owned(&proc_lock)); 1091 1.247 thorpej 1092 1.61 dsl for (;;expand_pid_table()) { 1093 1.247 thorpej if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) { 1094 1.61 dsl /* ensure pids cycle through 2000+ values */ 1095 1.61 dsl continue; 1096 1.247 thorpej } 1097 1.247 thorpej /* 1098 1.247 thorpej * The first user process *must* be given PID 1. 1099 1.247 thorpej * it has already been reserved for us. This 1100 1.247 thorpej * will be coming in from the proc_alloc() call 1101 1.247 thorpej * above, and the entry will be usurped later when 1102 1.247 thorpej * the first user LWP is created. 1103 1.247 thorpej * XXX this is slightly gross. 1104 1.247 thorpej */ 1105 1.247 thorpej if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) && 1106 1.247 thorpej p != &proc0)) { 1107 1.247 thorpej KASSERT(PT_IS_PROC(slot)); 1108 1.247 thorpej pt = &pid_table[1]; 1109 1.247 thorpej pt->pt_slot = slot; 1110 1.247 thorpej return 1; 1111 1.247 thorpej } 1112 1.61 dsl pt = &pid_table[next_free_pt]; 1113 1.1 cgd #ifdef DIAGNOSTIC 1114 1.247 thorpej if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp)) 1115 1.61 dsl panic("proc_alloc: slot busy"); 1116 1.1 cgd #endif 1117 1.247 thorpej nxt = PT_NEXT(pt->pt_slot); 1118 1.61 dsl if (nxt & pid_tbl_mask) 1119 1.61 dsl break; 1120 1.61 dsl /* Table full - expand (NB last entry not used....) */ 1121 1.61 dsl } 1122 1.61 dsl 1123 1.61 dsl /* pid is 'saved use count' + 'size' + entry */ 1124 1.61 dsl pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; 1125 1.61 dsl if ((uint)pid > (uint)pid_max) 1126 1.61 dsl pid &= pid_tbl_mask; 1127 1.61 dsl next_free_pt = nxt & pid_tbl_mask; 1128 1.61 dsl 1129 1.280 andvar /* XXX For now. The practical limit is much lower anyway. */ 1130 1.250 thorpej KASSERT(pid <= FUTEX_TID_MASK); 1131 1.250 thorpej 1132 1.61 dsl /* Grab table slot */ 1133 1.247 thorpej pt->pt_slot = slot; 1134 1.168 chs 1135 1.168 chs KASSERT(pt->pt_pid == 0); 1136 1.168 chs pt->pt_pid = pid; 1137 1.247 thorpej pid_alloc_cnt++; 1138 1.247 thorpej 1139 1.247 thorpej return pid; 1140 1.247 thorpej } 1141 1.247 thorpej 1142 1.247 thorpej pid_t 1143 1.247 thorpej proc_alloc_pid(struct proc *p) 1144 1.247 thorpej { 1145 1.247 thorpej pid_t pid; 1146 1.247 thorpej 1147 1.247 thorpej KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0); 1148 1.252 ad KASSERT(p->p_stat == SIDL); 1149 1.247 thorpej 1150 1.253 ad mutex_enter(&proc_lock); 1151 1.247 thorpej pid = proc_alloc_pid_slot(p, PT_SET_PROC(p)); 1152 1.247 thorpej if (pid != -1) 1153 1.168 chs p->p_pid = pid; 1154 1.253 ad mutex_exit(&proc_lock); 1155 1.247 thorpej 1156 1.247 thorpej return pid; 1157 1.247 thorpej } 1158 1.247 thorpej 1159 1.247 thorpej pid_t 1160 1.247 thorpej proc_alloc_lwpid(struct proc *p, struct lwp *l) 1161 1.247 thorpej { 1162 1.247 thorpej struct pid_table *pt; 1163 1.247 thorpej pid_t pid; 1164 1.247 thorpej 1165 1.247 thorpej KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0); 1166 1.252 ad KASSERT(l->l_proc == p); 1167 1.252 ad KASSERT(l->l_stat == LSIDL); 1168 1.252 ad 1169 1.252 ad /* 1170 1.252 ad * For unlocked lookup in proc_find_lwp(), make sure l->l_proc 1171 1.252 ad * is globally visible before the LWP becomes visible via the 1172 1.252 ad * pid_table. 1173 1.252 ad */ 1174 1.252 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR 1175 1.252 ad membar_producer(); 1176 1.252 ad #endif 1177 1.247 thorpej 1178 1.247 thorpej /* 1179 1.247 thorpej * If the slot for p->p_pid currently points to the proc, 1180 1.247 thorpej * then we should usurp this ID for the LWP. This happens 1181 1.247 thorpej * at least once per process (for the first LWP), and can 1182 1.247 thorpej * happen again if the first LWP for a process exits and 1183 1.247 thorpej * before the process creates another. 1184 1.247 thorpej */ 1185 1.253 ad mutex_enter(&proc_lock); 1186 1.247 thorpej pid = p->p_pid; 1187 1.247 thorpej pt = &pid_table[pid & pid_tbl_mask]; 1188 1.247 thorpej KASSERT(pt->pt_pid == pid); 1189 1.247 thorpej if (PT_IS_PROC(pt->pt_slot)) { 1190 1.247 thorpej KASSERT(PT_GET_PROC(pt->pt_slot) == p); 1191 1.247 thorpej l->l_lid = pid; 1192 1.247 thorpej pt->pt_slot = PT_SET_LWP(l); 1193 1.247 thorpej } else { 1194 1.247 thorpej /* Need to allocate a new slot. */ 1195 1.247 thorpej pid = proc_alloc_pid_slot(p, PT_SET_LWP(l)); 1196 1.247 thorpej if (pid != -1) 1197 1.247 thorpej l->l_lid = pid; 1198 1.168 chs } 1199 1.253 ad mutex_exit(&proc_lock); 1200 1.61 dsl 1201 1.168 chs return pid; 1202 1.61 dsl } 1203 1.61 dsl 1204 1.247 thorpej static void __noinline 1205 1.247 thorpej proc_free_pid_internal(pid_t pid, uintptr_t type __diagused) 1206 1.61 dsl { 1207 1.61 dsl struct pid_table *pt; 1208 1.61 dsl 1209 1.265 riastrad KASSERT(mutex_owned(&proc_lock)); 1210 1.265 riastrad 1211 1.247 thorpej pt = &pid_table[pid & pid_tbl_mask]; 1212 1.61 dsl 1213 1.247 thorpej KASSERT(PT_GET_TYPE(pt->pt_slot) == type); 1214 1.247 thorpej KASSERT(pt->pt_pid == pid); 1215 1.168 chs 1216 1.61 dsl /* save pid use count in slot */ 1217 1.247 thorpej pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask); 1218 1.168 chs pt->pt_pid = 0; 1219 1.61 dsl 1220 1.61 dsl if (pt->pt_pgrp == NULL) { 1221 1.61 dsl /* link last freed entry onto ours */ 1222 1.61 dsl pid &= pid_tbl_mask; 1223 1.61 dsl pt = &pid_table[last_free_pt]; 1224 1.247 thorpej pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid); 1225 1.168 chs pt->pt_pid = 0; 1226 1.61 dsl last_free_pt = pid; 1227 1.61 dsl pid_alloc_cnt--; 1228 1.61 dsl } 1229 1.247 thorpej } 1230 1.247 thorpej 1231 1.247 thorpej /* 1232 1.247 thorpej * Free a process id - called from proc_free (in kern_exit.c) 1233 1.247 thorpej * 1234 1.247 thorpej * Called with the proc_lock held. 1235 1.247 thorpej */ 1236 1.247 thorpej void 1237 1.247 thorpej proc_free_pid(pid_t pid) 1238 1.247 thorpej { 1239 1.253 ad 1240 1.253 ad KASSERT(mutex_owned(&proc_lock)); 1241 1.247 thorpej proc_free_pid_internal(pid, PT_F_PROC); 1242 1.247 thorpej } 1243 1.247 thorpej 1244 1.247 thorpej /* 1245 1.247 thorpej * Free a process id used by an LWP. If this was the process's 1246 1.247 thorpej * first LWP, we convert the slot to point to the process; the 1247 1.247 thorpej * entry will get cleaned up later when the process finishes exiting. 1248 1.247 thorpej * 1249 1.247 thorpej * If not, then it's the same as proc_free_pid(). 1250 1.247 thorpej */ 1251 1.247 thorpej void 1252 1.247 thorpej proc_free_lwpid(struct proc *p, pid_t pid) 1253 1.247 thorpej { 1254 1.247 thorpej 1255 1.253 ad KASSERT(mutex_owned(&proc_lock)); 1256 1.247 thorpej 1257 1.247 thorpej if (__predict_true(p->p_pid == pid)) { 1258 1.247 thorpej struct pid_table *pt; 1259 1.247 thorpej 1260 1.247 thorpej pt = &pid_table[pid & pid_tbl_mask]; 1261 1.247 thorpej 1262 1.247 thorpej KASSERT(pt->pt_pid == pid); 1263 1.247 thorpej KASSERT(PT_IS_LWP(pt->pt_slot)); 1264 1.247 thorpej KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p); 1265 1.247 thorpej 1266 1.247 thorpej pt->pt_slot = PT_SET_PROC(p); 1267 1.247 thorpej return; 1268 1.247 thorpej } 1269 1.247 thorpej proc_free_pid_internal(pid, PT_F_LWP); 1270 1.61 dsl } 1271 1.61 dsl 1272 1.128 ad void 1273 1.128 ad proc_free_mem(struct proc *p) 1274 1.128 ad { 1275 1.128 ad 1276 1.160 darran kdtrace_proc_dtor(NULL, p); 1277 1.128 ad pool_cache_put(proc_cache, p); 1278 1.128 ad } 1279 1.128 ad 1280 1.61 dsl /* 1281 1.151 rmind * proc_enterpgrp: move p to a new or existing process group (and session). 1282 1.61 dsl * 1283 1.61 dsl * If we are creating a new pgrp, the pgid should equal 1284 1.72 junyoung * the calling process' pid. 1285 1.61 dsl * If is only valid to enter a process group that is in the session 1286 1.61 dsl * of the process. 1287 1.61 dsl * Also mksess should only be set if we are creating a process group 1288 1.61 dsl * 1289 1.181 martin * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return. 1290 1.61 dsl */ 1291 1.61 dsl int 1292 1.151 rmind proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess) 1293 1.61 dsl { 1294 1.61 dsl struct pgrp *new_pgrp, *pgrp; 1295 1.61 dsl struct session *sess; 1296 1.100 ad struct proc *p; 1297 1.61 dsl int rval; 1298 1.61 dsl pid_t pg_id = NO_PGID; 1299 1.61 dsl 1300 1.252 ad /* Allocate data areas we might need before doing any validity checks */ 1301 1.151 rmind sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL; 1302 1.252 ad new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP); 1303 1.61 dsl 1304 1.253 ad mutex_enter(&proc_lock); 1305 1.61 dsl 1306 1.61 dsl /* Check pgrp exists or can be created */ 1307 1.61 dsl pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; 1308 1.61 dsl if (pgrp != NULL && pgrp->pg_id != pgid) 1309 1.278 riastrad goto eperm; 1310 1.61 dsl 1311 1.61 dsl /* Can only set another process under restricted circumstances. */ 1312 1.100 ad if (pid != curp->p_pid) { 1313 1.167 rmind /* Must exist and be one of our children... */ 1314 1.252 ad p = proc_find_internal(pid, false); 1315 1.167 rmind if (p == NULL || !p_inferior(p, curp)) { 1316 1.278 riastrad rval = SET_ERROR(ESRCH); 1317 1.61 dsl goto done; 1318 1.61 dsl } 1319 1.61 dsl /* ... in the same session... */ 1320 1.61 dsl if (sess != NULL || p->p_session != curp->p_session) 1321 1.278 riastrad goto eperm; 1322 1.61 dsl /* ... existing pgid must be in same session ... */ 1323 1.61 dsl if (pgrp != NULL && pgrp->pg_session != p->p_session) 1324 1.278 riastrad goto eperm; 1325 1.61 dsl /* ... and not done an exec. */ 1326 1.102 pavel if (p->p_flag & PK_EXEC) { 1327 1.278 riastrad rval = SET_ERROR(EACCES); 1328 1.61 dsl goto done; 1329 1.49 enami } 1330 1.100 ad } else { 1331 1.100 ad /* ... setsid() cannot re-enter a pgrp */ 1332 1.100 ad if (mksess && (curp->p_pgid == curp->p_pid || 1333 1.252 ad pgrp_find(curp->p_pid))) 1334 1.278 riastrad goto eperm; 1335 1.100 ad p = curp; 1336 1.61 dsl } 1337 1.1 cgd 1338 1.61 dsl /* Changing the process group/session of a session 1339 1.61 dsl leader is definitely off limits. */ 1340 1.61 dsl if (SESS_LEADER(p)) { 1341 1.279 riastrad if (sess == NULL && p->p_pgrp == pgrp) { 1342 1.61 dsl /* unless it's a definite noop */ 1343 1.61 dsl rval = 0; 1344 1.279 riastrad goto done; 1345 1.279 riastrad } 1346 1.278 riastrad goto eperm; 1347 1.61 dsl } 1348 1.61 dsl 1349 1.61 dsl /* Can only create a process group with id of process */ 1350 1.61 dsl if (pgrp == NULL && pgid != pid) 1351 1.278 riastrad goto eperm; 1352 1.61 dsl 1353 1.61 dsl /* Can only create a session if creating pgrp */ 1354 1.61 dsl if (sess != NULL && pgrp != NULL) 1355 1.278 riastrad goto eperm; 1356 1.61 dsl 1357 1.61 dsl /* Check we allocated memory for a pgrp... */ 1358 1.61 dsl if (pgrp == NULL && new_pgrp == NULL) 1359 1.278 riastrad goto eperm; 1360 1.61 dsl 1361 1.61 dsl /* Don't attach to 'zombie' pgrp */ 1362 1.61 dsl if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) 1363 1.278 riastrad goto eperm; 1364 1.61 dsl 1365 1.61 dsl /* Expect to succeed now */ 1366 1.61 dsl rval = 0; 1367 1.61 dsl 1368 1.61 dsl if (pgrp == p->p_pgrp) 1369 1.61 dsl /* nothing to do */ 1370 1.279 riastrad goto done; 1371 1.61 dsl 1372 1.61 dsl /* Ok all setup, link up required structures */ 1373 1.100 ad 1374 1.61 dsl if (pgrp == NULL) { 1375 1.61 dsl pgrp = new_pgrp; 1376 1.141 yamt new_pgrp = NULL; 1377 1.61 dsl if (sess != NULL) { 1378 1.21 thorpej sess->s_sid = p->p_pid; 1379 1.1 cgd sess->s_leader = p; 1380 1.1 cgd sess->s_count = 1; 1381 1.1 cgd sess->s_ttyvp = NULL; 1382 1.1 cgd sess->s_ttyp = NULL; 1383 1.58 dsl sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; 1384 1.25 perry memcpy(sess->s_login, p->p_session->s_login, 1385 1.1 cgd sizeof(sess->s_login)); 1386 1.100 ad p->p_lflag &= ~PL_CONTROLT; 1387 1.1 cgd } else { 1388 1.61 dsl sess = p->p_pgrp->pg_session; 1389 1.151 rmind proc_sesshold(sess); 1390 1.1 cgd } 1391 1.61 dsl pgrp->pg_session = sess; 1392 1.141 yamt sess = NULL; 1393 1.61 dsl 1394 1.1 cgd pgrp->pg_id = pgid; 1395 1.10 mycroft LIST_INIT(&pgrp->pg_members); 1396 1.61 dsl #ifdef DIAGNOSTIC 1397 1.63 christos if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) 1398 1.61 dsl panic("enterpgrp: pgrp table slot in use"); 1399 1.63 christos if (__predict_false(mksess && p != curp)) 1400 1.63 christos panic("enterpgrp: mksession and p != curproc"); 1401 1.61 dsl #endif 1402 1.61 dsl pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; 1403 1.1 cgd pgrp->pg_jobc = 0; 1404 1.136 ad } 1405 1.1 cgd 1406 1.1 cgd /* 1407 1.1 cgd * Adjust eligibility of affected pgrps to participate in job control. 1408 1.1 cgd * Increment eligibility counts before decrementing, otherwise we 1409 1.1 cgd * could reach 0 spuriously during the first call. 1410 1.1 cgd */ 1411 1.1 cgd fixjobc(p, pgrp, 1); 1412 1.1 cgd fixjobc(p, p->p_pgrp, 0); 1413 1.1 cgd 1414 1.139 ad /* Interlock with ttread(). */ 1415 1.139 ad mutex_spin_enter(&tty_lock); 1416 1.139 ad 1417 1.100 ad /* Move process to requested group. */ 1418 1.10 mycroft LIST_REMOVE(p, p_pglist); 1419 1.52 matt if (LIST_EMPTY(&p->p_pgrp->pg_members)) 1420 1.61 dsl /* defer delete until we've dumped the lock */ 1421 1.61 dsl pg_id = p->p_pgrp->pg_id; 1422 1.1 cgd p->p_pgrp = pgrp; 1423 1.10 mycroft LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 1424 1.100 ad 1425 1.100 ad /* Done with the swap; we can release the tty mutex. */ 1426 1.128 ad mutex_spin_exit(&tty_lock); 1427 1.278 riastrad goto done; 1428 1.128 ad 1429 1.278 riastrad eperm: 1430 1.278 riastrad rval = SET_ERROR(EPERM); 1431 1.278 riastrad done: 1432 1.151 rmind if (pg_id != NO_PGID) { 1433 1.151 rmind /* Releases proc_lock. */ 1434 1.100 ad pg_delete(pg_id); 1435 1.151 rmind } else { 1436 1.253 ad mutex_exit(&proc_lock); 1437 1.151 rmind } 1438 1.61 dsl if (sess != NULL) 1439 1.131 ad kmem_free(sess, sizeof(*sess)); 1440 1.61 dsl if (new_pgrp != NULL) 1441 1.131 ad kmem_free(new_pgrp, sizeof(*new_pgrp)); 1442 1.63 christos #ifdef DEBUG_PGRP 1443 1.63 christos if (__predict_false(rval)) 1444 1.61 dsl printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n", 1445 1.61 dsl pid, pgid, mksess, curp->p_pid, rval); 1446 1.61 dsl #endif 1447 1.61 dsl return rval; 1448 1.1 cgd } 1449 1.1 cgd 1450 1.1 cgd /* 1451 1.151 rmind * proc_leavepgrp: remove a process from its process group. 1452 1.151 rmind * => must be called with the proc_lock held, which will be released; 1453 1.1 cgd */ 1454 1.100 ad void 1455 1.151 rmind proc_leavepgrp(struct proc *p) 1456 1.1 cgd { 1457 1.61 dsl struct pgrp *pgrp; 1458 1.1 cgd 1459 1.253 ad KASSERT(mutex_owned(&proc_lock)); 1460 1.100 ad 1461 1.139 ad /* Interlock with ttread() */ 1462 1.128 ad mutex_spin_enter(&tty_lock); 1463 1.61 dsl pgrp = p->p_pgrp; 1464 1.10 mycroft LIST_REMOVE(p, p_pglist); 1465 1.94 ad p->p_pgrp = NULL; 1466 1.128 ad mutex_spin_exit(&tty_lock); 1467 1.100 ad 1468 1.151 rmind if (LIST_EMPTY(&pgrp->pg_members)) { 1469 1.151 rmind /* Releases proc_lock. */ 1470 1.100 ad pg_delete(pgrp->pg_id); 1471 1.151 rmind } else { 1472 1.253 ad mutex_exit(&proc_lock); 1473 1.151 rmind } 1474 1.61 dsl } 1475 1.61 dsl 1476 1.100 ad /* 1477 1.151 rmind * pg_remove: remove a process group from the table. 1478 1.151 rmind * => must be called with the proc_lock held; 1479 1.151 rmind * => returns process group to free; 1480 1.100 ad */ 1481 1.151 rmind static struct pgrp * 1482 1.151 rmind pg_remove(pid_t pg_id) 1483 1.61 dsl { 1484 1.61 dsl struct pgrp *pgrp; 1485 1.61 dsl struct pid_table *pt; 1486 1.61 dsl 1487 1.253 ad KASSERT(mutex_owned(&proc_lock)); 1488 1.100 ad 1489 1.61 dsl pt = &pid_table[pg_id & pid_tbl_mask]; 1490 1.61 dsl pgrp = pt->pt_pgrp; 1491 1.151 rmind 1492 1.151 rmind KASSERT(pgrp != NULL); 1493 1.151 rmind KASSERT(pgrp->pg_id == pg_id); 1494 1.151 rmind KASSERT(LIST_EMPTY(&pgrp->pg_members)); 1495 1.151 rmind 1496 1.151 rmind pt->pt_pgrp = NULL; 1497 1.61 dsl 1498 1.247 thorpej if (!PT_VALID(pt->pt_slot)) { 1499 1.151 rmind /* Orphaned pgrp, put slot onto free list. */ 1500 1.247 thorpej KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0); 1501 1.61 dsl pg_id &= pid_tbl_mask; 1502 1.61 dsl pt = &pid_table[last_free_pt]; 1503 1.247 thorpej pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id); 1504 1.168 chs KASSERT(pt->pt_pid == 0); 1505 1.61 dsl last_free_pt = pg_id; 1506 1.61 dsl pid_alloc_cnt--; 1507 1.61 dsl } 1508 1.151 rmind return pgrp; 1509 1.1 cgd } 1510 1.1 cgd 1511 1.1 cgd /* 1512 1.151 rmind * pg_delete: delete and free a process group. 1513 1.151 rmind * => must be called with the proc_lock held, which will be released. 1514 1.1 cgd */ 1515 1.61 dsl static void 1516 1.61 dsl pg_delete(pid_t pg_id) 1517 1.61 dsl { 1518 1.151 rmind struct pgrp *pg; 1519 1.61 dsl struct tty *ttyp; 1520 1.61 dsl struct session *ss; 1521 1.100 ad 1522 1.253 ad KASSERT(mutex_owned(&proc_lock)); 1523 1.61 dsl 1524 1.151 rmind pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp; 1525 1.151 rmind if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) { 1526 1.253 ad mutex_exit(&proc_lock); 1527 1.61 dsl return; 1528 1.151 rmind } 1529 1.61 dsl 1530 1.151 rmind ss = pg->pg_session; 1531 1.71 pk 1532 1.61 dsl /* Remove reference (if any) from tty to this process group */ 1533 1.128 ad mutex_spin_enter(&tty_lock); 1534 1.71 pk ttyp = ss->s_ttyp; 1535 1.151 rmind if (ttyp != NULL && ttyp->t_pgrp == pg) { 1536 1.61 dsl ttyp->t_pgrp = NULL; 1537 1.151 rmind KASSERT(ttyp->t_session == ss); 1538 1.71 pk } 1539 1.128 ad mutex_spin_exit(&tty_lock); 1540 1.61 dsl 1541 1.71 pk /* 1542 1.252 ad * The leading process group in a session is freed by proc_sessrele(), 1543 1.252 ad * if last reference. It will also release the locks. 1544 1.71 pk */ 1545 1.151 rmind pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL; 1546 1.252 ad proc_sessrele(ss); 1547 1.61 dsl 1548 1.151 rmind if (pg != NULL) { 1549 1.247 thorpej /* Free it, if was not done above. */ 1550 1.151 rmind kmem_free(pg, sizeof(struct pgrp)); 1551 1.151 rmind } 1552 1.1 cgd } 1553 1.1 cgd 1554 1.1 cgd /* 1555 1.1 cgd * Adjust pgrp jobc counters when specified process changes process group. 1556 1.1 cgd * We count the number of processes in each process group that "qualify" 1557 1.1 cgd * the group for terminal job control (those with a parent in a different 1558 1.1 cgd * process group of the same session). If that count reaches zero, the 1559 1.1 cgd * process group becomes orphaned. Check both the specified process' 1560 1.1 cgd * process group and that of its children. 1561 1.1 cgd * entering == 0 => p is leaving specified group. 1562 1.1 cgd * entering == 1 => p is entering specified group. 1563 1.68 dsl * 1564 1.136 ad * Call with proc_lock held. 1565 1.1 cgd */ 1566 1.4 andrew void 1567 1.59 dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 1568 1.1 cgd { 1569 1.39 augustss struct pgrp *hispgrp; 1570 1.39 augustss struct session *mysession = pgrp->pg_session; 1571 1.68 dsl struct proc *child; 1572 1.1 cgd 1573 1.253 ad KASSERT(mutex_owned(&proc_lock)); 1574 1.100 ad 1575 1.1 cgd /* 1576 1.1 cgd * Check p's parent to see whether p qualifies its own process 1577 1.1 cgd * group; if so, adjust count for p's process group. 1578 1.1 cgd */ 1579 1.68 dsl hispgrp = p->p_pptr->p_pgrp; 1580 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession) { 1581 1.100 ad if (entering) { 1582 1.1 cgd pgrp->pg_jobc++; 1583 1.136 ad p->p_lflag &= ~PL_ORPHANPG; 1584 1.245 maxv } else { 1585 1.261 martin /* KASSERT(pgrp->pg_jobc > 0); */ 1586 1.245 maxv if (--pgrp->pg_jobc == 0) 1587 1.245 maxv orphanpg(pgrp); 1588 1.245 maxv } 1589 1.26 thorpej } 1590 1.1 cgd 1591 1.1 cgd /* 1592 1.1 cgd * Check this process' children to see whether they qualify 1593 1.1 cgd * their process groups; if so, adjust counts for children's 1594 1.1 cgd * process groups. 1595 1.1 cgd */ 1596 1.68 dsl LIST_FOREACH(child, &p->p_children, p_sibling) { 1597 1.68 dsl hispgrp = child->p_pgrp; 1598 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession && 1599 1.68 dsl !P_ZOMBIE(child)) { 1600 1.100 ad if (entering) { 1601 1.136 ad child->p_lflag &= ~PL_ORPHANPG; 1602 1.1 cgd hispgrp->pg_jobc++; 1603 1.245 maxv } else { 1604 1.245 maxv KASSERT(hispgrp->pg_jobc > 0); 1605 1.245 maxv if (--hispgrp->pg_jobc == 0) 1606 1.245 maxv orphanpg(hispgrp); 1607 1.245 maxv } 1608 1.26 thorpej } 1609 1.26 thorpej } 1610 1.1 cgd } 1611 1.1 cgd 1612 1.72 junyoung /* 1613 1.1 cgd * A process group has become orphaned; 1614 1.1 cgd * if there are any stopped processes in the group, 1615 1.1 cgd * hang-up all process in that group. 1616 1.68 dsl * 1617 1.136 ad * Call with proc_lock held. 1618 1.1 cgd */ 1619 1.4 andrew static void 1620 1.59 dsl orphanpg(struct pgrp *pg) 1621 1.1 cgd { 1622 1.39 augustss struct proc *p; 1623 1.100 ad 1624 1.253 ad KASSERT(mutex_owned(&proc_lock)); 1625 1.100 ad 1626 1.52 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1627 1.1 cgd if (p->p_stat == SSTOP) { 1628 1.136 ad p->p_lflag |= PL_ORPHANPG; 1629 1.100 ad psignal(p, SIGHUP); 1630 1.100 ad psignal(p, SIGCONT); 1631 1.35 bouyer } 1632 1.35 bouyer } 1633 1.35 bouyer } 1634 1.1 cgd 1635 1.61 dsl #ifdef DDB 1636 1.61 dsl #include <ddb/db_output.h> 1637 1.61 dsl void pidtbl_dump(void); 1638 1.14 christos void 1639 1.61 dsl pidtbl_dump(void) 1640 1.1 cgd { 1641 1.61 dsl struct pid_table *pt; 1642 1.61 dsl struct proc *p; 1643 1.39 augustss struct pgrp *pgrp; 1644 1.247 thorpej uintptr_t slot; 1645 1.61 dsl int id; 1646 1.1 cgd 1647 1.61 dsl db_printf("pid table %p size %x, next %x, last %x\n", 1648 1.61 dsl pid_table, pid_tbl_mask+1, 1649 1.61 dsl next_free_pt, last_free_pt); 1650 1.61 dsl for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1651 1.247 thorpej slot = pt->pt_slot; 1652 1.247 thorpej if (!PT_VALID(slot) && !pt->pt_pgrp) 1653 1.61 dsl continue; 1654 1.247 thorpej if (PT_IS_LWP(slot)) { 1655 1.247 thorpej p = PT_GET_LWP(slot)->l_proc; 1656 1.247 thorpej } else if (PT_IS_PROC(slot)) { 1657 1.247 thorpej p = PT_GET_PROC(slot); 1658 1.247 thorpej } else { 1659 1.247 thorpej p = NULL; 1660 1.247 thorpej } 1661 1.61 dsl db_printf(" id %x: ", id); 1662 1.247 thorpej if (p != NULL) 1663 1.168 chs db_printf("slotpid %d proc %p id %d (0x%x) %s\n", 1664 1.168 chs pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm); 1665 1.61 dsl else 1666 1.61 dsl db_printf("next %x use %x\n", 1667 1.247 thorpej PT_NEXT(slot) & pid_tbl_mask, 1668 1.247 thorpej PT_NEXT(slot) & ~pid_tbl_mask); 1669 1.61 dsl if ((pgrp = pt->pt_pgrp)) { 1670 1.61 dsl db_printf("\tsession %p, sid %d, count %d, login %s\n", 1671 1.61 dsl pgrp->pg_session, pgrp->pg_session->s_sid, 1672 1.61 dsl pgrp->pg_session->s_count, 1673 1.61 dsl pgrp->pg_session->s_login); 1674 1.61 dsl db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1675 1.61 dsl pgrp, pgrp->pg_id, pgrp->pg_jobc, 1676 1.135 yamt LIST_FIRST(&pgrp->pg_members)); 1677 1.135 yamt LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 1678 1.72 junyoung db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1679 1.61 dsl p->p_pid, p, p->p_pgrp, p->p_comm); 1680 1.10 mycroft } 1681 1.1 cgd } 1682 1.1 cgd } 1683 1.1 cgd } 1684 1.61 dsl #endif /* DDB */ 1685 1.48 yamt 1686 1.48 yamt #ifdef KSTACK_CHECK_MAGIC 1687 1.48 yamt 1688 1.48 yamt #define KSTACK_MAGIC 0xdeadbeaf 1689 1.48 yamt 1690 1.48 yamt /* XXX should be per process basis? */ 1691 1.149 rmind static int kstackleftmin = KSTACK_SIZE; 1692 1.149 rmind static int kstackleftthres = KSTACK_SIZE / 8; 1693 1.48 yamt 1694 1.48 yamt void 1695 1.56 yamt kstack_setup_magic(const struct lwp *l) 1696 1.48 yamt { 1697 1.85 perry uint32_t *ip; 1698 1.85 perry uint32_t const *end; 1699 1.48 yamt 1700 1.56 yamt KASSERT(l != NULL); 1701 1.56 yamt KASSERT(l != &lwp0); 1702 1.48 yamt 1703 1.48 yamt /* 1704 1.48 yamt * fill all the stack with magic number 1705 1.48 yamt * so that later modification on it can be detected. 1706 1.48 yamt */ 1707 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1708 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1709 1.48 yamt for (; ip < end; ip++) { 1710 1.48 yamt *ip = KSTACK_MAGIC; 1711 1.48 yamt } 1712 1.48 yamt } 1713 1.48 yamt 1714 1.48 yamt void 1715 1.56 yamt kstack_check_magic(const struct lwp *l) 1716 1.48 yamt { 1717 1.85 perry uint32_t const *ip, *end; 1718 1.48 yamt int stackleft; 1719 1.48 yamt 1720 1.56 yamt KASSERT(l != NULL); 1721 1.48 yamt 1722 1.48 yamt /* don't check proc0 */ /*XXX*/ 1723 1.56 yamt if (l == &lwp0) 1724 1.48 yamt return; 1725 1.48 yamt 1726 1.48 yamt #ifdef __MACHINE_STACK_GROWS_UP 1727 1.48 yamt /* stack grows upwards (eg. hppa) */ 1728 1.106 christos ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1729 1.85 perry end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1730 1.48 yamt for (ip--; ip >= end; ip--) 1731 1.48 yamt if (*ip != KSTACK_MAGIC) 1732 1.48 yamt break; 1733 1.72 junyoung 1734 1.106 christos stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; 1735 1.48 yamt #else /* __MACHINE_STACK_GROWS_UP */ 1736 1.48 yamt /* stack grows downwards (eg. i386) */ 1737 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1738 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1739 1.48 yamt for (; ip < end; ip++) 1740 1.48 yamt if (*ip != KSTACK_MAGIC) 1741 1.48 yamt break; 1742 1.48 yamt 1743 1.93 christos stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1744 1.48 yamt #endif /* __MACHINE_STACK_GROWS_UP */ 1745 1.48 yamt 1746 1.48 yamt if (kstackleftmin > stackleft) { 1747 1.48 yamt kstackleftmin = stackleft; 1748 1.48 yamt if (stackleft < kstackleftthres) 1749 1.56 yamt printf("warning: kernel stack left %d bytes" 1750 1.56 yamt "(pid %u:lid %u)\n", stackleft, 1751 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1752 1.48 yamt } 1753 1.48 yamt 1754 1.48 yamt if (stackleft <= 0) { 1755 1.56 yamt panic("magic on the top of kernel stack changed for " 1756 1.56 yamt "pid %u, lid %u: maybe kernel stack overflow", 1757 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1758 1.48 yamt } 1759 1.48 yamt } 1760 1.50 enami #endif /* KSTACK_CHECK_MAGIC */ 1761 1.79 yamt 1762 1.79 yamt int 1763 1.79 yamt proclist_foreach_call(struct proclist *list, 1764 1.79 yamt int (*callback)(struct proc *, void *arg), void *arg) 1765 1.79 yamt { 1766 1.79 yamt struct proc marker; 1767 1.79 yamt struct proc *p; 1768 1.79 yamt int ret = 0; 1769 1.79 yamt 1770 1.102 pavel marker.p_flag = PK_MARKER; 1771 1.253 ad mutex_enter(&proc_lock); 1772 1.79 yamt for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1773 1.102 pavel if (p->p_flag & PK_MARKER) { 1774 1.79 yamt p = LIST_NEXT(p, p_list); 1775 1.79 yamt continue; 1776 1.79 yamt } 1777 1.79 yamt LIST_INSERT_AFTER(p, &marker, p_list); 1778 1.79 yamt ret = (*callback)(p, arg); 1779 1.253 ad KASSERT(mutex_owned(&proc_lock)); 1780 1.79 yamt p = LIST_NEXT(&marker, p_list); 1781 1.79 yamt LIST_REMOVE(&marker, p_list); 1782 1.79 yamt } 1783 1.253 ad mutex_exit(&proc_lock); 1784 1.79 yamt 1785 1.79 yamt return ret; 1786 1.79 yamt } 1787 1.86 yamt 1788 1.86 yamt int 1789 1.86 yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1790 1.86 yamt { 1791 1.86 yamt 1792 1.86 yamt /* XXXCDC: how should locking work here? */ 1793 1.86 yamt 1794 1.87 yamt /* curproc exception is for coredump. */ 1795 1.87 yamt 1796 1.100 ad if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || 1797 1.254 kamil (p->p_vmspace->vm_refcnt < 1)) { 1798 1.278 riastrad return SET_ERROR(EFAULT); 1799 1.86 yamt } 1800 1.86 yamt 1801 1.86 yamt uvmspace_addref(p->p_vmspace); 1802 1.86 yamt *vm = p->p_vmspace; 1803 1.86 yamt 1804 1.86 yamt return 0; 1805 1.86 yamt } 1806 1.94 ad 1807 1.94 ad /* 1808 1.94 ad * Acquire a write lock on the process credential. 1809 1.94 ad */ 1810 1.258 riastrad void 1811 1.100 ad proc_crmod_enter(void) 1812 1.94 ad { 1813 1.100 ad struct lwp *l = curlwp; 1814 1.100 ad struct proc *p = l->l_proc; 1815 1.100 ad kauth_cred_t oc; 1816 1.94 ad 1817 1.117 dsl /* Reset what needs to be reset in plimit. */ 1818 1.117 dsl if (p->p_limit->pl_corename != defcorename) { 1819 1.178 rmind lim_setcorename(p, defcorename, 0); 1820 1.117 dsl } 1821 1.117 dsl 1822 1.137 ad mutex_enter(p->p_lock); 1823 1.100 ad 1824 1.100 ad /* Ensure the LWP cached credentials are up to date. */ 1825 1.100 ad if ((oc = l->l_cred) != p->p_cred) { 1826 1.273 ad l->l_cred = kauth_cred_hold(p->p_cred); 1827 1.100 ad kauth_cred_free(oc); 1828 1.100 ad } 1829 1.94 ad } 1830 1.94 ad 1831 1.94 ad /* 1832 1.100 ad * Set in a new process credential, and drop the write lock. The credential 1833 1.100 ad * must have a reference already. Optionally, free a no-longer required 1834 1.268 riastrad * credential. 1835 1.94 ad */ 1836 1.94 ad void 1837 1.104 thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) 1838 1.94 ad { 1839 1.133 ad struct lwp *l = curlwp, *l2; 1840 1.100 ad struct proc *p = l->l_proc; 1841 1.100 ad kauth_cred_t oc; 1842 1.100 ad 1843 1.137 ad KASSERT(mutex_owned(p->p_lock)); 1844 1.137 ad 1845 1.100 ad /* Is there a new credential to set in? */ 1846 1.100 ad if (scred != NULL) { 1847 1.100 ad p->p_cred = scred; 1848 1.133 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1849 1.274 ad if (l2 != l) { 1850 1.274 ad lwp_lock(l2); 1851 1.274 ad l2->l_flag |= LW_CACHECRED; 1852 1.274 ad lwp_need_userret(l2); 1853 1.274 ad lwp_unlock(l2); 1854 1.274 ad } 1855 1.133 ad } 1856 1.100 ad 1857 1.100 ad /* Ensure the LWP cached credentials are up to date. */ 1858 1.100 ad if ((oc = l->l_cred) != scred) { 1859 1.274 ad l->l_cred = kauth_cred_hold(scred); 1860 1.100 ad } 1861 1.100 ad } else 1862 1.100 ad oc = NULL; /* XXXgcc */ 1863 1.100 ad 1864 1.100 ad if (sugid) { 1865 1.100 ad /* 1866 1.100 ad * Mark process as having changed credentials, stops 1867 1.100 ad * tracing etc. 1868 1.100 ad */ 1869 1.102 pavel p->p_flag |= PK_SUGID; 1870 1.100 ad } 1871 1.94 ad 1872 1.137 ad mutex_exit(p->p_lock); 1873 1.100 ad 1874 1.100 ad /* If there is a credential to be released, free it now. */ 1875 1.100 ad if (fcred != NULL) { 1876 1.100 ad KASSERT(scred != NULL); 1877 1.94 ad kauth_cred_free(fcred); 1878 1.100 ad if (oc != scred) 1879 1.100 ad kauth_cred_free(oc); 1880 1.100 ad } 1881 1.100 ad } 1882 1.100 ad 1883 1.100 ad /* 1884 1.95 thorpej * proc_specific_key_create -- 1885 1.95 thorpej * Create a key for subsystem proc-specific data. 1886 1.95 thorpej */ 1887 1.95 thorpej int 1888 1.95 thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1889 1.95 thorpej { 1890 1.95 thorpej 1891 1.98 thorpej return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1892 1.95 thorpej } 1893 1.95 thorpej 1894 1.95 thorpej /* 1895 1.95 thorpej * proc_specific_key_delete -- 1896 1.95 thorpej * Delete a key for subsystem proc-specific data. 1897 1.95 thorpej */ 1898 1.95 thorpej void 1899 1.95 thorpej proc_specific_key_delete(specificdata_key_t key) 1900 1.95 thorpej { 1901 1.95 thorpej 1902 1.95 thorpej specificdata_key_delete(proc_specificdata_domain, key); 1903 1.95 thorpej } 1904 1.95 thorpej 1905 1.98 thorpej /* 1906 1.98 thorpej * proc_initspecific -- 1907 1.98 thorpej * Initialize a proc's specificdata container. 1908 1.98 thorpej */ 1909 1.96 christos void 1910 1.96 christos proc_initspecific(struct proc *p) 1911 1.96 christos { 1912 1.189 martin int error __diagused; 1913 1.98 thorpej 1914 1.96 christos error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1915 1.96 christos KASSERT(error == 0); 1916 1.96 christos } 1917 1.96 christos 1918 1.95 thorpej /* 1919 1.98 thorpej * proc_finispecific -- 1920 1.98 thorpej * Finalize a proc's specificdata container. 1921 1.98 thorpej */ 1922 1.98 thorpej void 1923 1.98 thorpej proc_finispecific(struct proc *p) 1924 1.98 thorpej { 1925 1.98 thorpej 1926 1.98 thorpej specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1927 1.98 thorpej } 1928 1.98 thorpej 1929 1.98 thorpej /* 1930 1.95 thorpej * proc_getspecific -- 1931 1.95 thorpej * Return proc-specific data corresponding to the specified key. 1932 1.95 thorpej */ 1933 1.95 thorpej void * 1934 1.95 thorpej proc_getspecific(struct proc *p, specificdata_key_t key) 1935 1.95 thorpej { 1936 1.95 thorpej 1937 1.95 thorpej return (specificdata_getspecific(proc_specificdata_domain, 1938 1.95 thorpej &p->p_specdataref, key)); 1939 1.95 thorpej } 1940 1.95 thorpej 1941 1.95 thorpej /* 1942 1.95 thorpej * proc_setspecific -- 1943 1.95 thorpej * Set proc-specific data corresponding to the specified key. 1944 1.95 thorpej */ 1945 1.95 thorpej void 1946 1.95 thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1947 1.95 thorpej { 1948 1.95 thorpej 1949 1.95 thorpej specificdata_setspecific(proc_specificdata_domain, 1950 1.95 thorpej &p->p_specdataref, key, data); 1951 1.95 thorpej } 1952 1.154 elad 1953 1.154 elad int 1954 1.154 elad proc_uidmatch(kauth_cred_t cred, kauth_cred_t target) 1955 1.154 elad { 1956 1.154 elad 1957 1.154 elad if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) || 1958 1.154 elad kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) { 1959 1.154 elad /* 1960 1.154 elad * suid proc of ours or proc not ours 1961 1.154 elad */ 1962 1.278 riastrad return SET_ERROR(EPERM); 1963 1.154 elad } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) { 1964 1.154 elad /* 1965 1.154 elad * sgid proc has sgid back to us temporarily 1966 1.154 elad */ 1967 1.278 riastrad return SET_ERROR(EPERM); 1968 1.154 elad } else { 1969 1.154 elad /* 1970 1.154 elad * our rgid must be in target's group list (ie, 1971 1.154 elad * sub-processes started by a sgid process) 1972 1.154 elad */ 1973 1.154 elad int ismember = 0; 1974 1.154 elad 1975 1.154 elad if (kauth_cred_ismember_gid(cred, 1976 1.154 elad kauth_cred_getgid(target), &ismember) != 0 || 1977 1.154 elad !ismember) 1978 1.278 riastrad return SET_ERROR(EPERM); 1979 1.154 elad } 1980 1.154 elad 1981 1.278 riastrad return 0; 1982 1.154 elad } 1983 1.170 pooka 1984 1.170 pooka /* 1985 1.170 pooka * sysctl stuff 1986 1.170 pooka */ 1987 1.170 pooka 1988 1.170 pooka #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc)) 1989 1.170 pooka 1990 1.170 pooka static const u_int sysctl_flagmap[] = { 1991 1.170 pooka PK_ADVLOCK, P_ADVLOCK, 1992 1.170 pooka PK_EXEC, P_EXEC, 1993 1.170 pooka PK_NOCLDWAIT, P_NOCLDWAIT, 1994 1.170 pooka PK_32, P_32, 1995 1.170 pooka PK_CLDSIGIGN, P_CLDSIGIGN, 1996 1.170 pooka PK_SUGID, P_SUGID, 1997 1.170 pooka 0 1998 1.170 pooka }; 1999 1.170 pooka 2000 1.170 pooka static const u_int sysctl_sflagmap[] = { 2001 1.170 pooka PS_NOCLDSTOP, P_NOCLDSTOP, 2002 1.170 pooka PS_WEXIT, P_WEXIT, 2003 1.170 pooka PS_STOPFORK, P_STOPFORK, 2004 1.170 pooka PS_STOPEXEC, P_STOPEXEC, 2005 1.170 pooka PS_STOPEXIT, P_STOPEXIT, 2006 1.170 pooka 0 2007 1.170 pooka }; 2008 1.170 pooka 2009 1.170 pooka static const u_int sysctl_slflagmap[] = { 2010 1.170 pooka PSL_TRACED, P_TRACED, 2011 1.170 pooka PSL_CHTRACED, P_CHTRACED, 2012 1.170 pooka PSL_SYSCALL, P_SYSCALL, 2013 1.170 pooka 0 2014 1.170 pooka }; 2015 1.170 pooka 2016 1.170 pooka static const u_int sysctl_lflagmap[] = { 2017 1.170 pooka PL_CONTROLT, P_CONTROLT, 2018 1.170 pooka PL_PPWAIT, P_PPWAIT, 2019 1.170 pooka 0 2020 1.170 pooka }; 2021 1.170 pooka 2022 1.170 pooka static const u_int sysctl_stflagmap[] = { 2023 1.170 pooka PST_PROFIL, P_PROFIL, 2024 1.170 pooka 0 2025 1.170 pooka 2026 1.170 pooka }; 2027 1.170 pooka 2028 1.170 pooka /* used by kern_lwp also */ 2029 1.170 pooka const u_int sysctl_lwpflagmap[] = { 2030 1.170 pooka LW_SINTR, L_SINTR, 2031 1.170 pooka LW_SYSTEM, L_SYSTEM, 2032 1.170 pooka 0 2033 1.170 pooka }; 2034 1.170 pooka 2035 1.170 pooka /* 2036 1.170 pooka * Find the most ``active'' lwp of a process and return it for ps display 2037 1.170 pooka * purposes 2038 1.170 pooka */ 2039 1.170 pooka static struct lwp * 2040 1.170 pooka proc_active_lwp(struct proc *p) 2041 1.170 pooka { 2042 1.170 pooka static const int ostat[] = { 2043 1.258 riastrad 0, 2044 1.170 pooka 2, /* LSIDL */ 2045 1.170 pooka 6, /* LSRUN */ 2046 1.170 pooka 5, /* LSSLEEP */ 2047 1.170 pooka 4, /* LSSTOP */ 2048 1.170 pooka 0, /* LSZOMB */ 2049 1.170 pooka 1, /* LSDEAD */ 2050 1.170 pooka 7, /* LSONPROC */ 2051 1.170 pooka 3 /* LSSUSPENDED */ 2052 1.170 pooka }; 2053 1.170 pooka 2054 1.170 pooka struct lwp *l, *lp = NULL; 2055 1.170 pooka LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2056 1.270 riastrad KASSERT(l->l_stat >= 0); 2057 1.270 riastrad KASSERT(l->l_stat < __arraycount(ostat)); 2058 1.170 pooka if (lp == NULL || 2059 1.170 pooka ostat[l->l_stat] > ostat[lp->l_stat] || 2060 1.170 pooka (ostat[l->l_stat] == ostat[lp->l_stat] && 2061 1.170 pooka l->l_cpticks > lp->l_cpticks)) { 2062 1.170 pooka lp = l; 2063 1.170 pooka continue; 2064 1.170 pooka } 2065 1.170 pooka } 2066 1.170 pooka return lp; 2067 1.170 pooka } 2068 1.170 pooka 2069 1.170 pooka static int 2070 1.170 pooka sysctl_doeproc(SYSCTLFN_ARGS) 2071 1.170 pooka { 2072 1.170 pooka union { 2073 1.170 pooka struct kinfo_proc kproc; 2074 1.170 pooka struct kinfo_proc2 kproc2; 2075 1.170 pooka } *kbuf; 2076 1.170 pooka struct proc *p, *next, *marker; 2077 1.170 pooka char *where, *dp; 2078 1.170 pooka int type, op, arg, error; 2079 1.170 pooka u_int elem_size, kelem_size, elem_count; 2080 1.170 pooka size_t buflen, needed; 2081 1.170 pooka bool match, zombie, mmmbrains; 2082 1.222 christos const bool allowaddr = get_expose_address(curproc); 2083 1.170 pooka 2084 1.170 pooka if (namelen == 1 && name[0] == CTL_QUERY) 2085 1.170 pooka return (sysctl_query(SYSCTLFN_CALL(rnode))); 2086 1.170 pooka 2087 1.170 pooka dp = where = oldp; 2088 1.170 pooka buflen = where != NULL ? *oldlenp : 0; 2089 1.170 pooka error = 0; 2090 1.170 pooka needed = 0; 2091 1.170 pooka type = rnode->sysctl_num; 2092 1.170 pooka 2093 1.170 pooka if (type == KERN_PROC) { 2094 1.194 christos if (namelen == 0) 2095 1.278 riastrad return SET_ERROR(EINVAL); 2096 1.194 christos switch (op = name[0]) { 2097 1.194 christos case KERN_PROC_ALL: 2098 1.194 christos if (namelen != 1) 2099 1.278 riastrad return SET_ERROR(EINVAL); 2100 1.194 christos arg = 0; 2101 1.194 christos break; 2102 1.194 christos default: 2103 1.194 christos if (namelen != 2) 2104 1.278 riastrad return SET_ERROR(EINVAL); 2105 1.170 pooka arg = name[1]; 2106 1.194 christos break; 2107 1.194 christos } 2108 1.210 kre elem_count = 0; /* Hush little compiler, don't you cry */ 2109 1.170 pooka kelem_size = elem_size = sizeof(kbuf->kproc); 2110 1.170 pooka } else { 2111 1.170 pooka if (namelen != 4) 2112 1.278 riastrad return SET_ERROR(EINVAL); 2113 1.170 pooka op = name[0]; 2114 1.170 pooka arg = name[1]; 2115 1.170 pooka elem_size = name[2]; 2116 1.170 pooka elem_count = name[3]; 2117 1.170 pooka kelem_size = sizeof(kbuf->kproc2); 2118 1.170 pooka } 2119 1.170 pooka 2120 1.170 pooka sysctl_unlock(); 2121 1.170 pooka 2122 1.221 christos kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP); 2123 1.170 pooka marker = kmem_alloc(sizeof(*marker), KM_SLEEP); 2124 1.170 pooka marker->p_flag = PK_MARKER; 2125 1.170 pooka 2126 1.253 ad mutex_enter(&proc_lock); 2127 1.211 kamil /* 2128 1.211 kamil * Start with zombies to prevent reporting processes twice, in case they 2129 1.211 kamil * are dying and being moved from the list of alive processes to zombies. 2130 1.211 kamil */ 2131 1.211 kamil mmmbrains = true; 2132 1.211 kamil for (p = LIST_FIRST(&zombproc);; p = next) { 2133 1.170 pooka if (p == NULL) { 2134 1.211 kamil if (mmmbrains) { 2135 1.211 kamil p = LIST_FIRST(&allproc); 2136 1.211 kamil mmmbrains = false; 2137 1.170 pooka } 2138 1.170 pooka if (p == NULL) 2139 1.170 pooka break; 2140 1.170 pooka } 2141 1.170 pooka next = LIST_NEXT(p, p_list); 2142 1.170 pooka if ((p->p_flag & PK_MARKER) != 0) 2143 1.170 pooka continue; 2144 1.170 pooka 2145 1.170 pooka /* 2146 1.170 pooka * Skip embryonic processes. 2147 1.170 pooka */ 2148 1.170 pooka if (p->p_stat == SIDL) 2149 1.170 pooka continue; 2150 1.170 pooka 2151 1.170 pooka mutex_enter(p->p_lock); 2152 1.170 pooka error = kauth_authorize_process(l->l_cred, 2153 1.170 pooka KAUTH_PROCESS_CANSEE, p, 2154 1.213 maxv KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL); 2155 1.170 pooka if (error != 0) { 2156 1.170 pooka mutex_exit(p->p_lock); 2157 1.170 pooka continue; 2158 1.170 pooka } 2159 1.170 pooka 2160 1.170 pooka /* 2161 1.211 kamil * Hande all the operations in one switch on the cost of 2162 1.211 kamil * algorithm complexity is on purpose. The win splitting this 2163 1.266 andvar * function into several similar copies makes maintenance 2164 1.266 andvar * burden, code grow and boost is negligible in practical 2165 1.266 andvar * systems. 2166 1.170 pooka */ 2167 1.170 pooka switch (op) { 2168 1.170 pooka case KERN_PROC_PID: 2169 1.170 pooka match = (p->p_pid == (pid_t)arg); 2170 1.170 pooka break; 2171 1.170 pooka 2172 1.170 pooka case KERN_PROC_PGRP: 2173 1.170 pooka match = (p->p_pgrp->pg_id == (pid_t)arg); 2174 1.170 pooka break; 2175 1.170 pooka 2176 1.170 pooka case KERN_PROC_SESSION: 2177 1.170 pooka match = (p->p_session->s_sid == (pid_t)arg); 2178 1.170 pooka break; 2179 1.170 pooka 2180 1.170 pooka case KERN_PROC_TTY: 2181 1.170 pooka match = true; 2182 1.170 pooka if (arg == (int) KERN_PROC_TTY_REVOKE) { 2183 1.170 pooka if ((p->p_lflag & PL_CONTROLT) == 0 || 2184 1.170 pooka p->p_session->s_ttyp == NULL || 2185 1.170 pooka p->p_session->s_ttyvp != NULL) { 2186 1.170 pooka match = false; 2187 1.170 pooka } 2188 1.170 pooka } else if ((p->p_lflag & PL_CONTROLT) == 0 || 2189 1.170 pooka p->p_session->s_ttyp == NULL) { 2190 1.170 pooka if ((dev_t)arg != KERN_PROC_TTY_NODEV) { 2191 1.170 pooka match = false; 2192 1.170 pooka } 2193 1.170 pooka } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) { 2194 1.170 pooka match = false; 2195 1.170 pooka } 2196 1.170 pooka break; 2197 1.170 pooka 2198 1.170 pooka case KERN_PROC_UID: 2199 1.170 pooka match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg); 2200 1.170 pooka break; 2201 1.170 pooka 2202 1.170 pooka case KERN_PROC_RUID: 2203 1.170 pooka match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg); 2204 1.170 pooka break; 2205 1.170 pooka 2206 1.170 pooka case KERN_PROC_GID: 2207 1.170 pooka match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg); 2208 1.170 pooka break; 2209 1.170 pooka 2210 1.170 pooka case KERN_PROC_RGID: 2211 1.170 pooka match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg); 2212 1.170 pooka break; 2213 1.170 pooka 2214 1.170 pooka case KERN_PROC_ALL: 2215 1.170 pooka match = true; 2216 1.170 pooka /* allow everything */ 2217 1.170 pooka break; 2218 1.170 pooka 2219 1.170 pooka default: 2220 1.278 riastrad error = SET_ERROR(EINVAL); 2221 1.170 pooka mutex_exit(p->p_lock); 2222 1.170 pooka goto cleanup; 2223 1.170 pooka } 2224 1.170 pooka if (!match) { 2225 1.170 pooka mutex_exit(p->p_lock); 2226 1.170 pooka continue; 2227 1.170 pooka } 2228 1.170 pooka 2229 1.170 pooka /* 2230 1.170 pooka * Grab a hold on the process. 2231 1.170 pooka */ 2232 1.258 riastrad if (mmmbrains) { 2233 1.170 pooka zombie = true; 2234 1.170 pooka } else { 2235 1.170 pooka zombie = !rw_tryenter(&p->p_reflock, RW_READER); 2236 1.170 pooka } 2237 1.170 pooka if (zombie) { 2238 1.170 pooka LIST_INSERT_AFTER(p, marker, p_list); 2239 1.170 pooka } 2240 1.170 pooka 2241 1.170 pooka if (buflen >= elem_size && 2242 1.170 pooka (type == KERN_PROC || elem_count > 0)) { 2243 1.234 kamil ruspace(p); /* Update process vm resource use */ 2244 1.234 kamil 2245 1.170 pooka if (type == KERN_PROC) { 2246 1.222 christos fill_proc(p, &kbuf->kproc.kp_proc, allowaddr); 2247 1.222 christos fill_eproc(p, &kbuf->kproc.kp_eproc, zombie, 2248 1.222 christos allowaddr); 2249 1.170 pooka } else { 2250 1.222 christos fill_kproc2(p, &kbuf->kproc2, zombie, 2251 1.222 christos allowaddr); 2252 1.170 pooka elem_count--; 2253 1.170 pooka } 2254 1.170 pooka mutex_exit(p->p_lock); 2255 1.253 ad mutex_exit(&proc_lock); 2256 1.170 pooka /* 2257 1.170 pooka * Copy out elem_size, but not larger than kelem_size 2258 1.170 pooka */ 2259 1.170 pooka error = sysctl_copyout(l, kbuf, dp, 2260 1.214 riastrad uimin(kelem_size, elem_size)); 2261 1.253 ad mutex_enter(&proc_lock); 2262 1.170 pooka if (error) { 2263 1.170 pooka goto bah; 2264 1.170 pooka } 2265 1.170 pooka dp += elem_size; 2266 1.170 pooka buflen -= elem_size; 2267 1.170 pooka } else { 2268 1.170 pooka mutex_exit(p->p_lock); 2269 1.170 pooka } 2270 1.170 pooka needed += elem_size; 2271 1.170 pooka 2272 1.170 pooka /* 2273 1.170 pooka * Release reference to process. 2274 1.170 pooka */ 2275 1.170 pooka if (zombie) { 2276 1.170 pooka next = LIST_NEXT(marker, p_list); 2277 1.170 pooka LIST_REMOVE(marker, p_list); 2278 1.170 pooka } else { 2279 1.170 pooka rw_exit(&p->p_reflock); 2280 1.170 pooka next = LIST_NEXT(p, p_list); 2281 1.170 pooka } 2282 1.211 kamil 2283 1.211 kamil /* 2284 1.211 kamil * Short-circuit break quickly! 2285 1.211 kamil */ 2286 1.211 kamil if (op == KERN_PROC_PID) 2287 1.211 kamil break; 2288 1.170 pooka } 2289 1.253 ad mutex_exit(&proc_lock); 2290 1.170 pooka 2291 1.170 pooka if (where != NULL) { 2292 1.170 pooka *oldlenp = dp - where; 2293 1.170 pooka if (needed > *oldlenp) { 2294 1.278 riastrad error = SET_ERROR(ENOMEM); 2295 1.170 pooka goto out; 2296 1.170 pooka } 2297 1.170 pooka } else { 2298 1.170 pooka needed += KERN_PROCSLOP; 2299 1.170 pooka *oldlenp = needed; 2300 1.170 pooka } 2301 1.211 kamil kmem_free(kbuf, sizeof(*kbuf)); 2302 1.211 kamil kmem_free(marker, sizeof(*marker)); 2303 1.170 pooka sysctl_relock(); 2304 1.170 pooka return 0; 2305 1.170 pooka bah: 2306 1.170 pooka if (zombie) 2307 1.170 pooka LIST_REMOVE(marker, p_list); 2308 1.170 pooka else 2309 1.170 pooka rw_exit(&p->p_reflock); 2310 1.170 pooka cleanup: 2311 1.253 ad mutex_exit(&proc_lock); 2312 1.170 pooka out: 2313 1.211 kamil kmem_free(kbuf, sizeof(*kbuf)); 2314 1.211 kamil kmem_free(marker, sizeof(*marker)); 2315 1.170 pooka sysctl_relock(); 2316 1.170 pooka return error; 2317 1.170 pooka } 2318 1.170 pooka 2319 1.172 joerg int 2320 1.172 joerg copyin_psstrings(struct proc *p, struct ps_strings *arginfo) 2321 1.172 joerg { 2322 1.225 pgoyette #if !defined(_RUMPKERNEL) 2323 1.225 pgoyette int retval; 2324 1.172 joerg 2325 1.172 joerg if (p->p_flag & PK_32) { 2326 1.228 pgoyette MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo), 2327 1.225 pgoyette enosys(), retval); 2328 1.225 pgoyette return retval; 2329 1.225 pgoyette } 2330 1.225 pgoyette #endif /* !defined(_RUMPKERNEL) */ 2331 1.172 joerg 2332 1.173 matt return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo)); 2333 1.172 joerg } 2334 1.172 joerg 2335 1.172 joerg static int 2336 1.172 joerg copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len) 2337 1.172 joerg { 2338 1.172 joerg void **cookie = cookie_; 2339 1.172 joerg struct lwp *l = cookie[0]; 2340 1.172 joerg char *dst = cookie[1]; 2341 1.172 joerg 2342 1.172 joerg return sysctl_copyout(l, src, dst + off, len); 2343 1.172 joerg } 2344 1.172 joerg 2345 1.170 pooka /* 2346 1.170 pooka * sysctl helper routine for kern.proc_args pseudo-subtree. 2347 1.170 pooka */ 2348 1.170 pooka static int 2349 1.170 pooka sysctl_kern_proc_args(SYSCTLFN_ARGS) 2350 1.170 pooka { 2351 1.170 pooka struct ps_strings pss; 2352 1.170 pooka struct proc *p; 2353 1.170 pooka pid_t pid; 2354 1.172 joerg int type, error; 2355 1.172 joerg void *cookie[2]; 2356 1.170 pooka 2357 1.170 pooka if (namelen == 1 && name[0] == CTL_QUERY) 2358 1.170 pooka return (sysctl_query(SYSCTLFN_CALL(rnode))); 2359 1.170 pooka 2360 1.170 pooka if (newp != NULL || namelen != 2) 2361 1.278 riastrad return SET_ERROR(EINVAL); 2362 1.170 pooka pid = name[0]; 2363 1.170 pooka type = name[1]; 2364 1.170 pooka 2365 1.170 pooka switch (type) { 2366 1.194 christos case KERN_PROC_PATHNAME: 2367 1.194 christos sysctl_unlock(); 2368 1.194 christos error = fill_pathname(l, pid, oldp, oldlenp); 2369 1.194 christos sysctl_relock(); 2370 1.194 christos return error; 2371 1.194 christos 2372 1.229 kamil case KERN_PROC_CWD: 2373 1.229 kamil sysctl_unlock(); 2374 1.229 kamil error = fill_cwd(l, pid, oldp, oldlenp); 2375 1.229 kamil sysctl_relock(); 2376 1.229 kamil return error; 2377 1.229 kamil 2378 1.170 pooka case KERN_PROC_ARGV: 2379 1.170 pooka case KERN_PROC_NARGV: 2380 1.170 pooka case KERN_PROC_ENV: 2381 1.170 pooka case KERN_PROC_NENV: 2382 1.170 pooka /* ok */ 2383 1.170 pooka break; 2384 1.170 pooka default: 2385 1.278 riastrad return SET_ERROR(EINVAL); 2386 1.170 pooka } 2387 1.170 pooka 2388 1.170 pooka sysctl_unlock(); 2389 1.170 pooka 2390 1.170 pooka /* check pid */ 2391 1.253 ad mutex_enter(&proc_lock); 2392 1.170 pooka if ((p = proc_find(pid)) == NULL) { 2393 1.278 riastrad error = SET_ERROR(EINVAL); 2394 1.170 pooka goto out_locked; 2395 1.170 pooka } 2396 1.170 pooka mutex_enter(p->p_lock); 2397 1.170 pooka 2398 1.170 pooka /* Check permission. */ 2399 1.170 pooka if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) 2400 1.170 pooka error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, 2401 1.170 pooka p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL); 2402 1.170 pooka else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) 2403 1.170 pooka error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, 2404 1.170 pooka p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL); 2405 1.170 pooka else 2406 1.278 riastrad error = SET_ERROR(EINVAL); /* XXXGCC */ 2407 1.170 pooka if (error) { 2408 1.170 pooka mutex_exit(p->p_lock); 2409 1.170 pooka goto out_locked; 2410 1.170 pooka } 2411 1.170 pooka 2412 1.170 pooka if (oldp == NULL) { 2413 1.170 pooka if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) 2414 1.170 pooka *oldlenp = sizeof (int); 2415 1.170 pooka else 2416 1.170 pooka *oldlenp = ARG_MAX; /* XXX XXX XXX */ 2417 1.170 pooka error = 0; 2418 1.170 pooka mutex_exit(p->p_lock); 2419 1.170 pooka goto out_locked; 2420 1.170 pooka } 2421 1.170 pooka 2422 1.170 pooka /* 2423 1.170 pooka * Zombies don't have a stack, so we can't read their psstrings. 2424 1.170 pooka * System processes also don't have a user stack. 2425 1.170 pooka */ 2426 1.170 pooka if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) { 2427 1.278 riastrad error = SET_ERROR(EINVAL); 2428 1.170 pooka mutex_exit(p->p_lock); 2429 1.170 pooka goto out_locked; 2430 1.170 pooka } 2431 1.170 pooka 2432 1.278 riastrad error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : SET_ERROR(EBUSY); 2433 1.172 joerg mutex_exit(p->p_lock); 2434 1.174 rmind if (error) { 2435 1.174 rmind goto out_locked; 2436 1.174 rmind } 2437 1.253 ad mutex_exit(&proc_lock); 2438 1.172 joerg 2439 1.172 joerg if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) { 2440 1.172 joerg int value; 2441 1.172 joerg if ((error = copyin_psstrings(p, &pss)) == 0) { 2442 1.172 joerg if (type == KERN_PROC_NARGV) 2443 1.172 joerg value = pss.ps_nargvstr; 2444 1.172 joerg else 2445 1.172 joerg value = pss.ps_nenvstr; 2446 1.172 joerg error = sysctl_copyout(l, &value, oldp, sizeof(value)); 2447 1.172 joerg *oldlenp = sizeof(value); 2448 1.172 joerg } 2449 1.170 pooka } else { 2450 1.172 joerg cookie[0] = l; 2451 1.172 joerg cookie[1] = oldp; 2452 1.172 joerg error = copy_procargs(p, type, oldlenp, 2453 1.172 joerg copy_procargs_sysctl_cb, cookie); 2454 1.170 pooka } 2455 1.172 joerg rw_exit(&p->p_reflock); 2456 1.172 joerg sysctl_relock(); 2457 1.172 joerg return error; 2458 1.172 joerg 2459 1.172 joerg out_locked: 2460 1.253 ad mutex_exit(&proc_lock); 2461 1.172 joerg sysctl_relock(); 2462 1.172 joerg return error; 2463 1.172 joerg } 2464 1.172 joerg 2465 1.172 joerg int 2466 1.172 joerg copy_procargs(struct proc *p, int oid, size_t *limit, 2467 1.172 joerg int (*cb)(void *, const void *, size_t, size_t), void *cookie) 2468 1.172 joerg { 2469 1.172 joerg struct ps_strings pss; 2470 1.172 joerg size_t len, i, loaded, entry_len; 2471 1.172 joerg struct uio auio; 2472 1.172 joerg struct iovec aiov; 2473 1.172 joerg int error, argvlen; 2474 1.172 joerg char *arg; 2475 1.172 joerg char **argv; 2476 1.172 joerg vaddr_t user_argv; 2477 1.172 joerg struct vmspace *vmspace; 2478 1.170 pooka 2479 1.170 pooka /* 2480 1.172 joerg * Allocate a temporary buffer to hold the argument vector and 2481 1.172 joerg * the arguments themselve. 2482 1.170 pooka */ 2483 1.170 pooka arg = kmem_alloc(PAGE_SIZE, KM_SLEEP); 2484 1.172 joerg argv = kmem_alloc(PAGE_SIZE, KM_SLEEP); 2485 1.172 joerg 2486 1.172 joerg /* 2487 1.172 joerg * Lock the process down in memory. 2488 1.172 joerg */ 2489 1.172 joerg vmspace = p->p_vmspace; 2490 1.172 joerg uvmspace_addref(vmspace); 2491 1.170 pooka 2492 1.170 pooka /* 2493 1.170 pooka * Read in the ps_strings structure. 2494 1.170 pooka */ 2495 1.172 joerg if ((error = copyin_psstrings(p, &pss)) != 0) 2496 1.170 pooka goto done; 2497 1.170 pooka 2498 1.170 pooka /* 2499 1.170 pooka * Now read the address of the argument vector. 2500 1.170 pooka */ 2501 1.172 joerg switch (oid) { 2502 1.170 pooka case KERN_PROC_ARGV: 2503 1.172 joerg user_argv = (uintptr_t)pss.ps_argvstr; 2504 1.172 joerg argvlen = pss.ps_nargvstr; 2505 1.172 joerg break; 2506 1.170 pooka case KERN_PROC_ENV: 2507 1.172 joerg user_argv = (uintptr_t)pss.ps_envstr; 2508 1.172 joerg argvlen = pss.ps_nenvstr; 2509 1.170 pooka break; 2510 1.170 pooka default: 2511 1.278 riastrad error = SET_ERROR(EINVAL); 2512 1.170 pooka goto done; 2513 1.170 pooka } 2514 1.170 pooka 2515 1.172 joerg if (argvlen < 0) { 2516 1.278 riastrad error = SET_ERROR(EIO); 2517 1.172 joerg goto done; 2518 1.172 joerg } 2519 1.172 joerg 2520 1.170 pooka 2521 1.170 pooka /* 2522 1.170 pooka * Now copy each string. 2523 1.170 pooka */ 2524 1.170 pooka len = 0; /* bytes written to user buffer */ 2525 1.172 joerg loaded = 0; /* bytes from argv already processed */ 2526 1.172 joerg i = 0; /* To make compiler happy */ 2527 1.198 christos entry_len = PROC_PTRSZ(p); 2528 1.172 joerg 2529 1.172 joerg for (; argvlen; --argvlen) { 2530 1.170 pooka int finished = 0; 2531 1.170 pooka vaddr_t base; 2532 1.170 pooka size_t xlen; 2533 1.170 pooka int j; 2534 1.170 pooka 2535 1.172 joerg if (loaded == 0) { 2536 1.172 joerg size_t rem = entry_len * argvlen; 2537 1.172 joerg loaded = MIN(rem, PAGE_SIZE); 2538 1.172 joerg error = copyin_vmspace(vmspace, 2539 1.172 joerg (const void *)user_argv, argv, loaded); 2540 1.172 joerg if (error) 2541 1.172 joerg break; 2542 1.172 joerg user_argv += loaded; 2543 1.172 joerg i = 0; 2544 1.172 joerg } 2545 1.172 joerg 2546 1.225 pgoyette #if !defined(_RUMPKERNEL) 2547 1.225 pgoyette if (p->p_flag & PK_32) 2548 1.228 pgoyette MODULE_HOOK_CALL(kern_proc32_base_hook, 2549 1.225 pgoyette (argv, i++), 0, base); 2550 1.225 pgoyette else 2551 1.225 pgoyette #endif /* !defined(_RUMPKERNEL) */ 2552 1.172 joerg base = (vaddr_t)argv[i++]; 2553 1.172 joerg loaded -= entry_len; 2554 1.170 pooka 2555 1.170 pooka /* 2556 1.170 pooka * The program has messed around with its arguments, 2557 1.170 pooka * possibly deleting some, and replacing them with 2558 1.170 pooka * NULL's. Treat this as the last argument and not 2559 1.170 pooka * a failure. 2560 1.170 pooka */ 2561 1.170 pooka if (base == 0) 2562 1.170 pooka break; 2563 1.170 pooka 2564 1.170 pooka while (!finished) { 2565 1.170 pooka xlen = PAGE_SIZE - (base & PAGE_MASK); 2566 1.170 pooka 2567 1.170 pooka aiov.iov_base = arg; 2568 1.170 pooka aiov.iov_len = PAGE_SIZE; 2569 1.170 pooka auio.uio_iov = &aiov; 2570 1.170 pooka auio.uio_iovcnt = 1; 2571 1.170 pooka auio.uio_offset = base; 2572 1.170 pooka auio.uio_resid = xlen; 2573 1.170 pooka auio.uio_rw = UIO_READ; 2574 1.170 pooka UIO_SETUP_SYSSPACE(&auio); 2575 1.196 christos error = uvm_io(&vmspace->vm_map, &auio, 0); 2576 1.170 pooka if (error) 2577 1.170 pooka goto done; 2578 1.170 pooka 2579 1.170 pooka /* Look for the end of the string */ 2580 1.170 pooka for (j = 0; j < xlen; j++) { 2581 1.170 pooka if (arg[j] == '\0') { 2582 1.170 pooka xlen = j + 1; 2583 1.170 pooka finished = 1; 2584 1.170 pooka break; 2585 1.170 pooka } 2586 1.170 pooka } 2587 1.170 pooka 2588 1.170 pooka /* Check for user buffer overflow */ 2589 1.172 joerg if (len + xlen > *limit) { 2590 1.170 pooka finished = 1; 2591 1.172 joerg if (len > *limit) 2592 1.170 pooka xlen = 0; 2593 1.170 pooka else 2594 1.172 joerg xlen = *limit - len; 2595 1.170 pooka } 2596 1.170 pooka 2597 1.170 pooka /* Copyout the page */ 2598 1.172 joerg error = (*cb)(cookie, arg, len, xlen); 2599 1.170 pooka if (error) 2600 1.170 pooka goto done; 2601 1.170 pooka 2602 1.170 pooka len += xlen; 2603 1.170 pooka base += xlen; 2604 1.170 pooka } 2605 1.170 pooka } 2606 1.172 joerg *limit = len; 2607 1.170 pooka 2608 1.170 pooka done: 2609 1.172 joerg kmem_free(argv, PAGE_SIZE); 2610 1.172 joerg kmem_free(arg, PAGE_SIZE); 2611 1.170 pooka uvmspace_free(vmspace); 2612 1.170 pooka return error; 2613 1.170 pooka } 2614 1.170 pooka 2615 1.170 pooka /* 2616 1.220 maxv * Fill in a proc structure for the specified process. 2617 1.220 maxv */ 2618 1.220 maxv static void 2619 1.222 christos fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr) 2620 1.220 maxv { 2621 1.256 christos COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr); 2622 1.259 riastrad memset(&p->p_auxlock, 0, sizeof(p->p_auxlock)); 2623 1.256 christos COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr); 2624 1.259 riastrad memset(&p->p_stmutex, 0, sizeof(p->p_stmutex)); 2625 1.259 riastrad memset(&p->p_reflock, 0, sizeof(p->p_reflock)); 2626 1.256 christos COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr); 2627 1.256 christos COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr); 2628 1.256 christos COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr); 2629 1.256 christos COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr); 2630 1.256 christos COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr); 2631 1.256 christos COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr); 2632 1.256 christos COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr); 2633 1.256 christos COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr); 2634 1.256 christos COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr); 2635 1.256 christos COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr); 2636 1.220 maxv p->p_mqueue_cnt = psrc->p_mqueue_cnt; 2637 1.259 riastrad memset(&p->p_specdataref, 0, sizeof(p->p_specdataref)); 2638 1.220 maxv p->p_exitsig = psrc->p_exitsig; 2639 1.220 maxv p->p_flag = psrc->p_flag; 2640 1.220 maxv p->p_sflag = psrc->p_sflag; 2641 1.220 maxv p->p_slflag = psrc->p_slflag; 2642 1.220 maxv p->p_lflag = psrc->p_lflag; 2643 1.220 maxv p->p_stflag = psrc->p_stflag; 2644 1.220 maxv p->p_stat = psrc->p_stat; 2645 1.220 maxv p->p_trace_enabled = psrc->p_trace_enabled; 2646 1.220 maxv p->p_pid = psrc->p_pid; 2647 1.256 christos COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr); 2648 1.256 christos COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr); 2649 1.256 christos COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr); 2650 1.256 christos COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr); 2651 1.256 christos COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr); 2652 1.256 christos COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr); 2653 1.220 maxv p->p_nlwps = psrc->p_nlwps; 2654 1.220 maxv p->p_nzlwps = psrc->p_nzlwps; 2655 1.220 maxv p->p_nrlwps = psrc->p_nrlwps; 2656 1.220 maxv p->p_nlwpwait = psrc->p_nlwpwait; 2657 1.220 maxv p->p_ndlwps = psrc->p_ndlwps; 2658 1.220 maxv p->p_nstopchild = psrc->p_nstopchild; 2659 1.220 maxv p->p_waited = psrc->p_waited; 2660 1.256 christos COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr); 2661 1.256 christos COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr); 2662 1.256 christos COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr); 2663 1.220 maxv p->p_estcpu = psrc->p_estcpu; 2664 1.220 maxv p->p_estcpu_inherited = psrc->p_estcpu_inherited; 2665 1.220 maxv p->p_forktime = psrc->p_forktime; 2666 1.220 maxv p->p_pctcpu = psrc->p_pctcpu; 2667 1.256 christos COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr); 2668 1.256 christos COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr); 2669 1.220 maxv p->p_rtime = psrc->p_rtime; 2670 1.220 maxv p->p_uticks = psrc->p_uticks; 2671 1.220 maxv p->p_sticks = psrc->p_sticks; 2672 1.220 maxv p->p_iticks = psrc->p_iticks; 2673 1.220 maxv p->p_xutime = psrc->p_xutime; 2674 1.220 maxv p->p_xstime = psrc->p_xstime; 2675 1.220 maxv p->p_traceflag = psrc->p_traceflag; 2676 1.256 christos COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr); 2677 1.256 christos COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr); 2678 1.256 christos COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr); 2679 1.256 christos COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr); 2680 1.256 christos COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr); 2681 1.256 christos COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr); 2682 1.256 christos COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr); 2683 1.256 christos COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info, 2684 1.256 christos allowaddr); 2685 1.256 christos p->p_sigpend.sp_set = psrc->p_sigpend.sp_set; 2686 1.256 christos COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr); 2687 1.220 maxv p->p_ppid = psrc->p_ppid; 2688 1.243 kamil p->p_oppid = psrc->p_oppid; 2689 1.256 christos COND_SET_PTR(p->p_path, psrc->p_path, allowaddr); 2690 1.256 christos p->p_sigctx = psrc->p_sigctx; 2691 1.220 maxv p->p_nice = psrc->p_nice; 2692 1.220 maxv memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm)); 2693 1.256 christos COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr); 2694 1.220 maxv COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr); 2695 1.220 maxv p->p_pax = psrc->p_pax; 2696 1.220 maxv p->p_xexit = psrc->p_xexit; 2697 1.220 maxv p->p_xsig = psrc->p_xsig; 2698 1.220 maxv p->p_acflag = psrc->p_acflag; 2699 1.256 christos COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr); 2700 1.220 maxv p->p_stackbase = psrc->p_stackbase; 2701 1.256 christos COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr); 2702 1.220 maxv } 2703 1.220 maxv 2704 1.220 maxv /* 2705 1.170 pooka * Fill in an eproc structure for the specified process. 2706 1.170 pooka */ 2707 1.170 pooka void 2708 1.222 christos fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr) 2709 1.170 pooka { 2710 1.170 pooka struct tty *tp; 2711 1.170 pooka struct lwp *l; 2712 1.170 pooka 2713 1.253 ad KASSERT(mutex_owned(&proc_lock)); 2714 1.170 pooka KASSERT(mutex_owned(p->p_lock)); 2715 1.170 pooka 2716 1.256 christos COND_SET_PTR(ep->e_paddr, p, allowaddr); 2717 1.256 christos COND_SET_PTR(ep->e_sess, p->p_session, allowaddr); 2718 1.170 pooka if (p->p_cred) { 2719 1.170 pooka kauth_cred_topcred(p->p_cred, &ep->e_pcred); 2720 1.170 pooka kauth_cred_toucred(p->p_cred, &ep->e_ucred); 2721 1.170 pooka } 2722 1.170 pooka if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { 2723 1.170 pooka struct vmspace *vm = p->p_vmspace; 2724 1.170 pooka 2725 1.170 pooka ep->e_vm.vm_rssize = vm_resident_count(vm); 2726 1.170 pooka ep->e_vm.vm_tsize = vm->vm_tsize; 2727 1.170 pooka ep->e_vm.vm_dsize = vm->vm_dsize; 2728 1.170 pooka ep->e_vm.vm_ssize = vm->vm_ssize; 2729 1.170 pooka ep->e_vm.vm_map.size = vm->vm_map.size; 2730 1.170 pooka 2731 1.170 pooka /* Pick the primary (first) LWP */ 2732 1.170 pooka l = proc_active_lwp(p); 2733 1.170 pooka KASSERT(l != NULL); 2734 1.170 pooka lwp_lock(l); 2735 1.170 pooka if (l->l_wchan) 2736 1.170 pooka strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN); 2737 1.170 pooka lwp_unlock(l); 2738 1.170 pooka } 2739 1.199 kre ep->e_ppid = p->p_ppid; 2740 1.170 pooka if (p->p_pgrp && p->p_session) { 2741 1.170 pooka ep->e_pgid = p->p_pgrp->pg_id; 2742 1.170 pooka ep->e_jobc = p->p_pgrp->pg_jobc; 2743 1.170 pooka ep->e_sid = p->p_session->s_sid; 2744 1.170 pooka if ((p->p_lflag & PL_CONTROLT) && 2745 1.216 maxv (tp = p->p_session->s_ttyp)) { 2746 1.170 pooka ep->e_tdev = tp->t_dev; 2747 1.170 pooka ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; 2748 1.256 christos COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr); 2749 1.170 pooka } else 2750 1.170 pooka ep->e_tdev = (uint32_t)NODEV; 2751 1.216 maxv ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0; 2752 1.170 pooka if (SESS_LEADER(p)) 2753 1.170 pooka ep->e_flag |= EPROC_SLEADER; 2754 1.216 maxv strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME); 2755 1.170 pooka } 2756 1.170 pooka ep->e_xsize = ep->e_xrssize = 0; 2757 1.170 pooka ep->e_xccount = ep->e_xswrss = 0; 2758 1.170 pooka } 2759 1.170 pooka 2760 1.170 pooka /* 2761 1.170 pooka * Fill in a kinfo_proc2 structure for the specified process. 2762 1.170 pooka */ 2763 1.193 njoly void 2764 1.222 christos fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr) 2765 1.170 pooka { 2766 1.170 pooka struct tty *tp; 2767 1.272 ad struct lwp *l; 2768 1.170 pooka struct timeval ut, st, rt; 2769 1.170 pooka sigset_t ss1, ss2; 2770 1.170 pooka struct rusage ru; 2771 1.170 pooka struct vmspace *vm; 2772 1.170 pooka 2773 1.253 ad KASSERT(mutex_owned(&proc_lock)); 2774 1.170 pooka KASSERT(mutex_owned(p->p_lock)); 2775 1.170 pooka 2776 1.170 pooka sigemptyset(&ss1); 2777 1.170 pooka sigemptyset(&ss2); 2778 1.170 pooka 2779 1.218 christos COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr); 2780 1.218 christos COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr); 2781 1.218 christos COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr); 2782 1.218 christos COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr); 2783 1.218 christos COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr); 2784 1.218 christos COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr); 2785 1.218 christos COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr); 2786 1.218 christos COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr); 2787 1.170 pooka ki->p_tsess = 0; /* may be changed if controlling tty below */ 2788 1.218 christos COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr); 2789 1.170 pooka ki->p_eflag = 0; 2790 1.170 pooka ki->p_exitsig = p->p_exitsig; 2791 1.170 pooka ki->p_flag = L_INMEM; /* Process never swapped out */ 2792 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag); 2793 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag); 2794 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag); 2795 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag); 2796 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag); 2797 1.170 pooka ki->p_pid = p->p_pid; 2798 1.199 kre ki->p_ppid = p->p_ppid; 2799 1.170 pooka ki->p_uid = kauth_cred_geteuid(p->p_cred); 2800 1.170 pooka ki->p_ruid = kauth_cred_getuid(p->p_cred); 2801 1.170 pooka ki->p_gid = kauth_cred_getegid(p->p_cred); 2802 1.170 pooka ki->p_rgid = kauth_cred_getgid(p->p_cred); 2803 1.170 pooka ki->p_svuid = kauth_cred_getsvuid(p->p_cred); 2804 1.170 pooka ki->p_svgid = kauth_cred_getsvgid(p->p_cred); 2805 1.170 pooka ki->p_ngroups = kauth_cred_ngroups(p->p_cred); 2806 1.170 pooka kauth_cred_getgroups(p->p_cred, ki->p_groups, 2807 1.214 riastrad uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])), 2808 1.170 pooka UIO_SYSSPACE); 2809 1.170 pooka 2810 1.170 pooka ki->p_uticks = p->p_uticks; 2811 1.170 pooka ki->p_sticks = p->p_sticks; 2812 1.170 pooka ki->p_iticks = p->p_iticks; 2813 1.170 pooka ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */ 2814 1.218 christos COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr); 2815 1.170 pooka ki->p_traceflag = p->p_traceflag; 2816 1.170 pooka 2817 1.170 pooka memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t)); 2818 1.170 pooka memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t)); 2819 1.170 pooka 2820 1.170 pooka ki->p_cpticks = 0; 2821 1.170 pooka ki->p_pctcpu = p->p_pctcpu; 2822 1.170 pooka ki->p_estcpu = 0; 2823 1.170 pooka ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */ 2824 1.170 pooka ki->p_realstat = p->p_stat; 2825 1.170 pooka ki->p_nice = p->p_nice; 2826 1.195 christos ki->p_xstat = P_WAITSTATUS(p); 2827 1.170 pooka ki->p_acflag = p->p_acflag; 2828 1.170 pooka 2829 1.170 pooka strncpy(ki->p_comm, p->p_comm, 2830 1.214 riastrad uimin(sizeof(ki->p_comm), sizeof(p->p_comm))); 2831 1.170 pooka strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename)); 2832 1.170 pooka 2833 1.170 pooka ki->p_nlwps = p->p_nlwps; 2834 1.170 pooka ki->p_realflag = ki->p_flag; 2835 1.170 pooka 2836 1.170 pooka if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { 2837 1.170 pooka vm = p->p_vmspace; 2838 1.170 pooka ki->p_vm_rssize = vm_resident_count(vm); 2839 1.170 pooka ki->p_vm_tsize = vm->vm_tsize; 2840 1.170 pooka ki->p_vm_dsize = vm->vm_dsize; 2841 1.170 pooka ki->p_vm_ssize = vm->vm_ssize; 2842 1.184 martin ki->p_vm_vsize = atop(vm->vm_map.size); 2843 1.170 pooka /* 2844 1.170 pooka * Since the stack is initially mapped mostly with 2845 1.170 pooka * PROT_NONE and grown as needed, adjust the "mapped size" 2846 1.170 pooka * to skip the unused stack portion. 2847 1.170 pooka */ 2848 1.170 pooka ki->p_vm_msize = 2849 1.170 pooka atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize; 2850 1.170 pooka 2851 1.170 pooka /* Pick the primary (first) LWP */ 2852 1.170 pooka l = proc_active_lwp(p); 2853 1.170 pooka KASSERT(l != NULL); 2854 1.170 pooka lwp_lock(l); 2855 1.170 pooka ki->p_nrlwps = p->p_nrlwps; 2856 1.170 pooka ki->p_forw = 0; 2857 1.170 pooka ki->p_back = 0; 2858 1.218 christos COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr); 2859 1.170 pooka ki->p_stat = l->l_stat; 2860 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag); 2861 1.170 pooka ki->p_swtime = l->l_swtime; 2862 1.170 pooka ki->p_slptime = l->l_slptime; 2863 1.170 pooka if (l->l_stat == LSONPROC) 2864 1.170 pooka ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags; 2865 1.170 pooka else 2866 1.170 pooka ki->p_schedflags = 0; 2867 1.170 pooka ki->p_priority = lwp_eprio(l); 2868 1.170 pooka ki->p_usrpri = l->l_priority; 2869 1.170 pooka if (l->l_wchan) 2870 1.170 pooka strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg)); 2871 1.218 christos COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr); 2872 1.170 pooka ki->p_cpuid = cpu_index(l->l_cpu); 2873 1.170 pooka lwp_unlock(l); 2874 1.170 pooka LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2875 1.170 pooka /* This is hardly correct, but... */ 2876 1.170 pooka sigplusset(&l->l_sigpend.sp_set, &ss1); 2877 1.170 pooka sigplusset(&l->l_sigmask, &ss2); 2878 1.170 pooka ki->p_cpticks += l->l_cpticks; 2879 1.170 pooka ki->p_pctcpu += l->l_pctcpu; 2880 1.170 pooka ki->p_estcpu += l->l_estcpu; 2881 1.170 pooka } 2882 1.170 pooka } 2883 1.237 kamil sigplusset(&p->p_sigpend.sp_set, &ss1); 2884 1.170 pooka memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t)); 2885 1.170 pooka memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t)); 2886 1.170 pooka 2887 1.170 pooka if (p->p_session != NULL) { 2888 1.170 pooka ki->p_sid = p->p_session->s_sid; 2889 1.170 pooka ki->p__pgid = p->p_pgrp->pg_id; 2890 1.170 pooka if (p->p_session->s_ttyvp) 2891 1.170 pooka ki->p_eflag |= EPROC_CTTY; 2892 1.170 pooka if (SESS_LEADER(p)) 2893 1.170 pooka ki->p_eflag |= EPROC_SLEADER; 2894 1.170 pooka strncpy(ki->p_login, p->p_session->s_login, 2895 1.214 riastrad uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login)); 2896 1.170 pooka ki->p_jobc = p->p_pgrp->pg_jobc; 2897 1.170 pooka if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) { 2898 1.170 pooka ki->p_tdev = tp->t_dev; 2899 1.170 pooka ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; 2900 1.218 christos COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session), 2901 1.217 maxv allowaddr); 2902 1.170 pooka } else { 2903 1.170 pooka ki->p_tdev = (int32_t)NODEV; 2904 1.170 pooka } 2905 1.170 pooka } 2906 1.170 pooka 2907 1.170 pooka if (!P_ZOMBIE(p) && !zombie) { 2908 1.170 pooka ki->p_uvalid = 1; 2909 1.170 pooka ki->p_ustart_sec = p->p_stats->p_start.tv_sec; 2910 1.170 pooka ki->p_ustart_usec = p->p_stats->p_start.tv_usec; 2911 1.170 pooka 2912 1.170 pooka calcru(p, &ut, &st, NULL, &rt); 2913 1.170 pooka ki->p_rtime_sec = rt.tv_sec; 2914 1.170 pooka ki->p_rtime_usec = rt.tv_usec; 2915 1.170 pooka ki->p_uutime_sec = ut.tv_sec; 2916 1.170 pooka ki->p_uutime_usec = ut.tv_usec; 2917 1.170 pooka ki->p_ustime_sec = st.tv_sec; 2918 1.170 pooka ki->p_ustime_usec = st.tv_usec; 2919 1.170 pooka 2920 1.170 pooka memcpy(&ru, &p->p_stats->p_ru, sizeof(ru)); 2921 1.272 ad rulwps(p, &ru); 2922 1.272 ad ki->p_uru_nvcsw = ru.ru_nvcsw; 2923 1.272 ad ki->p_uru_nivcsw = ru.ru_nivcsw; 2924 1.170 pooka ki->p_uru_maxrss = ru.ru_maxrss; 2925 1.170 pooka ki->p_uru_ixrss = ru.ru_ixrss; 2926 1.170 pooka ki->p_uru_idrss = ru.ru_idrss; 2927 1.170 pooka ki->p_uru_isrss = ru.ru_isrss; 2928 1.170 pooka ki->p_uru_minflt = ru.ru_minflt; 2929 1.170 pooka ki->p_uru_majflt = ru.ru_majflt; 2930 1.170 pooka ki->p_uru_nswap = ru.ru_nswap; 2931 1.170 pooka ki->p_uru_inblock = ru.ru_inblock; 2932 1.170 pooka ki->p_uru_oublock = ru.ru_oublock; 2933 1.170 pooka ki->p_uru_msgsnd = ru.ru_msgsnd; 2934 1.170 pooka ki->p_uru_msgrcv = ru.ru_msgrcv; 2935 1.170 pooka ki->p_uru_nsignals = ru.ru_nsignals; 2936 1.170 pooka 2937 1.170 pooka timeradd(&p->p_stats->p_cru.ru_utime, 2938 1.170 pooka &p->p_stats->p_cru.ru_stime, &ut); 2939 1.170 pooka ki->p_uctime_sec = ut.tv_sec; 2940 1.170 pooka ki->p_uctime_usec = ut.tv_usec; 2941 1.170 pooka } 2942 1.170 pooka } 2943 1.194 christos 2944 1.194 christos 2945 1.194 christos int 2946 1.194 christos proc_find_locked(struct lwp *l, struct proc **p, pid_t pid) 2947 1.194 christos { 2948 1.194 christos int error; 2949 1.194 christos 2950 1.253 ad mutex_enter(&proc_lock); 2951 1.194 christos if (pid == -1) 2952 1.194 christos *p = l->l_proc; 2953 1.194 christos else 2954 1.194 christos *p = proc_find(pid); 2955 1.194 christos 2956 1.194 christos if (*p == NULL) { 2957 1.194 christos if (pid != -1) 2958 1.253 ad mutex_exit(&proc_lock); 2959 1.278 riastrad return SET_ERROR(ESRCH); 2960 1.194 christos } 2961 1.194 christos if (pid != -1) 2962 1.194 christos mutex_enter((*p)->p_lock); 2963 1.253 ad mutex_exit(&proc_lock); 2964 1.194 christos 2965 1.194 christos error = kauth_authorize_process(l->l_cred, 2966 1.194 christos KAUTH_PROCESS_CANSEE, *p, 2967 1.194 christos KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 2968 1.194 christos if (error) { 2969 1.194 christos if (pid != -1) 2970 1.194 christos mutex_exit((*p)->p_lock); 2971 1.194 christos } 2972 1.194 christos return error; 2973 1.194 christos } 2974 1.194 christos 2975 1.194 christos static int 2976 1.194 christos fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp) 2977 1.194 christos { 2978 1.194 christos int error; 2979 1.194 christos struct proc *p; 2980 1.194 christos 2981 1.194 christos if ((error = proc_find_locked(l, &p, pid)) != 0) 2982 1.194 christos return error; 2983 1.194 christos 2984 1.208 christos if (p->p_path == NULL) { 2985 1.194 christos if (pid != -1) 2986 1.194 christos mutex_exit(p->p_lock); 2987 1.278 riastrad return SET_ERROR(ENOENT); 2988 1.194 christos } 2989 1.194 christos 2990 1.208 christos size_t len = strlen(p->p_path) + 1; 2991 1.194 christos if (oldp != NULL) { 2992 1.219 maxv size_t copylen = uimin(len, *oldlenp); 2993 1.219 maxv error = sysctl_copyout(l, p->p_path, oldp, copylen); 2994 1.194 christos if (error == 0 && *oldlenp < len) 2995 1.278 riastrad error = SET_ERROR(ENOSPC); 2996 1.194 christos } 2997 1.194 christos *oldlenp = len; 2998 1.194 christos if (pid != -1) 2999 1.194 christos mutex_exit(p->p_lock); 3000 1.194 christos return error; 3001 1.194 christos } 3002 1.206 christos 3003 1.229 kamil static int 3004 1.229 kamil fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp) 3005 1.229 kamil { 3006 1.229 kamil int error; 3007 1.229 kamil struct proc *p; 3008 1.229 kamil char *path; 3009 1.229 kamil char *bp, *bend; 3010 1.246 ad struct cwdinfo *cwdi; 3011 1.229 kamil struct vnode *vp; 3012 1.229 kamil size_t len, lenused; 3013 1.229 kamil 3014 1.229 kamil if ((error = proc_find_locked(l, &p, pid)) != 0) 3015 1.229 kamil return error; 3016 1.229 kamil 3017 1.229 kamil len = MAXPATHLEN * 4; 3018 1.229 kamil 3019 1.229 kamil path = kmem_alloc(len, KM_SLEEP); 3020 1.229 kamil 3021 1.229 kamil bp = &path[len]; 3022 1.229 kamil bend = bp; 3023 1.229 kamil *(--bp) = '\0'; 3024 1.229 kamil 3025 1.246 ad cwdi = p->p_cwdi; 3026 1.246 ad rw_enter(&cwdi->cwdi_lock, RW_READER); 3027 1.229 kamil vp = cwdi->cwdi_cdir; 3028 1.231 kamil error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l); 3029 1.246 ad rw_exit(&cwdi->cwdi_lock); 3030 1.229 kamil 3031 1.229 kamil if (error) 3032 1.229 kamil goto out; 3033 1.229 kamil 3034 1.229 kamil lenused = bend - bp; 3035 1.229 kamil 3036 1.229 kamil if (oldp != NULL) { 3037 1.230 kamil size_t copylen = uimin(lenused, *oldlenp); 3038 1.230 kamil error = sysctl_copyout(l, bp, oldp, copylen); 3039 1.229 kamil if (error == 0 && *oldlenp < lenused) 3040 1.278 riastrad error = SET_ERROR(ENOSPC); 3041 1.229 kamil } 3042 1.229 kamil *oldlenp = lenused; 3043 1.229 kamil out: 3044 1.229 kamil if (pid != -1) 3045 1.229 kamil mutex_exit(p->p_lock); 3046 1.229 kamil kmem_free(path, len); 3047 1.229 kamil return error; 3048 1.229 kamil } 3049 1.229 kamil 3050 1.206 christos int 3051 1.206 christos proc_getauxv(struct proc *p, void **buf, size_t *len) 3052 1.206 christos { 3053 1.206 christos struct ps_strings pss; 3054 1.206 christos int error; 3055 1.206 christos void *uauxv, *kauxv; 3056 1.209 maxv size_t size; 3057 1.206 christos 3058 1.206 christos if ((error = copyin_psstrings(p, &pss)) != 0) 3059 1.206 christos return error; 3060 1.209 maxv if (pss.ps_envstr == NULL) 3061 1.278 riastrad return SET_ERROR(EIO); 3062 1.206 christos 3063 1.209 maxv size = p->p_execsw->es_arglen; 3064 1.209 maxv if (size == 0) 3065 1.278 riastrad return SET_ERROR(EIO); 3066 1.206 christos 3067 1.206 christos size_t ptrsz = PROC_PTRSZ(p); 3068 1.206 christos uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz); 3069 1.206 christos 3070 1.206 christos kauxv = kmem_alloc(size, KM_SLEEP); 3071 1.206 christos 3072 1.206 christos error = copyin_proc(p, uauxv, kauxv, size); 3073 1.206 christos if (error) { 3074 1.206 christos kmem_free(kauxv, size); 3075 1.206 christos return error; 3076 1.206 christos } 3077 1.206 christos 3078 1.206 christos *buf = kauxv; 3079 1.206 christos *len = size; 3080 1.206 christos 3081 1.206 christos return 0; 3082 1.206 christos } 3083 1.222 christos 3084 1.222 christos 3085 1.222 christos static int 3086 1.222 christos sysctl_security_expose_address(SYSCTLFN_ARGS) 3087 1.222 christos { 3088 1.222 christos int expose_address, error; 3089 1.222 christos struct sysctlnode node; 3090 1.222 christos 3091 1.222 christos node = *rnode; 3092 1.222 christos node.sysctl_data = &expose_address; 3093 1.222 christos expose_address = *(int *)rnode->sysctl_data; 3094 1.222 christos error = sysctl_lookup(SYSCTLFN_CALL(&node)); 3095 1.222 christos if (error || newp == NULL) 3096 1.222 christos return error; 3097 1.222 christos 3098 1.222 christos if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR, 3099 1.222 christos 0, NULL, NULL, NULL)) 3100 1.278 riastrad return SET_ERROR(EPERM); 3101 1.222 christos 3102 1.222 christos switch (expose_address) { 3103 1.222 christos case 0: 3104 1.222 christos case 1: 3105 1.222 christos case 2: 3106 1.222 christos break; 3107 1.222 christos default: 3108 1.278 riastrad return SET_ERROR(EINVAL); 3109 1.222 christos } 3110 1.222 christos 3111 1.222 christos *(int *)rnode->sysctl_data = expose_address; 3112 1.222 christos 3113 1.222 christos return 0; 3114 1.222 christos } 3115 1.222 christos 3116 1.222 christos bool 3117 1.222 christos get_expose_address(struct proc *p) 3118 1.222 christos { 3119 1.222 christos /* allow only if sysctl variable is set or privileged */ 3120 1.222 christos return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE, 3121 1.222 christos p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0; 3122 1.222 christos } 3123