kern_proc.c revision 1.107 1 1.107 ad /* $NetBSD: kern_proc.c,v 1.107 2007/03/09 14:11:25 ad Exp $ */
2 1.33 thorpej
3 1.33 thorpej /*-
4 1.100 ad * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
5 1.33 thorpej * All rights reserved.
6 1.33 thorpej *
7 1.33 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.33 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.100 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.33 thorpej *
11 1.33 thorpej * Redistribution and use in source and binary forms, with or without
12 1.33 thorpej * modification, are permitted provided that the following conditions
13 1.33 thorpej * are met:
14 1.33 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.33 thorpej * notice, this list of conditions and the following disclaimer.
16 1.33 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.33 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.33 thorpej * documentation and/or other materials provided with the distribution.
19 1.33 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.33 thorpej * must display the following acknowledgement:
21 1.33 thorpej * This product includes software developed by the NetBSD
22 1.33 thorpej * Foundation, Inc. and its contributors.
23 1.33 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.33 thorpej * contributors may be used to endorse or promote products derived
25 1.33 thorpej * from this software without specific prior written permission.
26 1.33 thorpej *
27 1.33 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.33 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.33 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.33 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.33 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.33 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.33 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.33 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.33 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.33 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.33 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.33 thorpej */
39 1.9 cgd
40 1.1 cgd /*
41 1.7 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 1.7 cgd * The Regents of the University of California. All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Redistribution and use in source and binary forms, with or without
45 1.1 cgd * modification, are permitted provided that the following conditions
46 1.1 cgd * are met:
47 1.1 cgd * 1. Redistributions of source code must retain the above copyright
48 1.1 cgd * notice, this list of conditions and the following disclaimer.
49 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 cgd * notice, this list of conditions and the following disclaimer in the
51 1.1 cgd * documentation and/or other materials provided with the distribution.
52 1.65 agc * 3. Neither the name of the University nor the names of its contributors
53 1.1 cgd * may be used to endorse or promote products derived from this software
54 1.1 cgd * without specific prior written permission.
55 1.1 cgd *
56 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.1 cgd * SUCH DAMAGE.
67 1.1 cgd *
68 1.23 fvdl * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 1.1 cgd */
70 1.45 lukem
71 1.45 lukem #include <sys/cdefs.h>
72 1.107 ad __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.107 2007/03/09 14:11:25 ad Exp $");
73 1.48 yamt
74 1.48 yamt #include "opt_kstack.h"
75 1.88 onoe #include "opt_maxuprc.h"
76 1.90 rjs #include "opt_multiprocessor.h"
77 1.90 rjs #include "opt_lockdebug.h"
78 1.1 cgd
79 1.5 mycroft #include <sys/param.h>
80 1.5 mycroft #include <sys/systm.h>
81 1.5 mycroft #include <sys/kernel.h>
82 1.5 mycroft #include <sys/proc.h>
83 1.28 thorpej #include <sys/resourcevar.h>
84 1.5 mycroft #include <sys/buf.h>
85 1.5 mycroft #include <sys/acct.h>
86 1.5 mycroft #include <sys/wait.h>
87 1.5 mycroft #include <sys/file.h>
88 1.8 mycroft #include <ufs/ufs/quota.h>
89 1.5 mycroft #include <sys/uio.h>
90 1.5 mycroft #include <sys/malloc.h>
91 1.24 thorpej #include <sys/pool.h>
92 1.5 mycroft #include <sys/mbuf.h>
93 1.5 mycroft #include <sys/ioctl.h>
94 1.5 mycroft #include <sys/tty.h>
95 1.11 cgd #include <sys/signalvar.h>
96 1.51 gmcgarry #include <sys/ras.h>
97 1.81 junyoung #include <sys/filedesc.h>
98 1.103 dsl #include "sys/syscall_stats.h"
99 1.89 elad #include <sys/kauth.h>
100 1.100 ad #include <sys/sleepq.h>
101 1.81 junyoung
102 1.81 junyoung #include <uvm/uvm.h>
103 1.79 yamt #include <uvm/uvm_extern.h>
104 1.5 mycroft
105 1.7 cgd /*
106 1.10 mycroft * Other process lists
107 1.7 cgd */
108 1.31 thorpej
109 1.10 mycroft struct proclist allproc;
110 1.32 thorpej struct proclist zombproc; /* resources have been freed */
111 1.32 thorpej
112 1.32 thorpej /*
113 1.100 ad * There are two locks on global process state.
114 1.100 ad *
115 1.107 ad * 1. proclist_lock is an adaptive mutex and is used when modifying
116 1.107 ad * or examining process state from a process context. It protects
117 1.107 ad * the internal tables, all of the process lists, and a number of
118 1.107 ad * members of struct proc.
119 1.107 ad *
120 1.100 ad * 2. proclist_mutex is used when allproc must be traversed from an
121 1.107 ad * interrupt context, or when changing the state of processes. The
122 1.107 ad * proclist_lock should always be used in preference. In some cases,
123 1.107 ad * both locks need to be held.
124 1.33 thorpej *
125 1.100 ad * proclist_lock proclist_mutex structure
126 1.100 ad * --------------- --------------- -----------------
127 1.100 ad * x zombproc
128 1.100 ad * x x pid_table
129 1.100 ad * x proc::p_pptr
130 1.100 ad * x proc::p_sibling
131 1.100 ad * x proc::p_children
132 1.100 ad * x x allproc
133 1.100 ad * x x proc::p_pgrp
134 1.100 ad * x x proc::p_pglist
135 1.100 ad * x x proc::p_session
136 1.100 ad * x x proc::p_list
137 1.100 ad * x alllwp
138 1.100 ad * x lwp::l_list
139 1.33 thorpej *
140 1.100 ad * The lock order for processes and LWPs is approximately as following:
141 1.33 thorpej *
142 1.107 ad * kernel_lock
143 1.100 ad * -> proclist_lock
144 1.107 ad * -> proc::p_mutex
145 1.107 ad * -> proclist_mutex
146 1.100 ad * -> proc::p_smutex
147 1.107 ad * -> proc::p_stmutex
148 1.107 ad *
149 1.107 ad * XXX p_smutex can be run at IPL_VM once audio drivers on the x86
150 1.107 ad * platform are made MP safe. Currently it blocks interrupts at
151 1.107 ad * IPL_SCHED and below.
152 1.107 ad *
153 1.107 ad * XXX The two process locks (p_smutex + p_mutex), and the two global
154 1.107 ad * state locks (proclist_lock + proclist_mutex) should be merged
155 1.107 ad * together. However, to do so requires interrupts that interrupts
156 1.107 ad * be run with LWP context.
157 1.33 thorpej */
158 1.107 ad kmutex_t proclist_lock;
159 1.100 ad kmutex_t proclist_mutex;
160 1.33 thorpej
161 1.33 thorpej /*
162 1.72 junyoung * pid to proc lookup is done by indexing the pid_table array.
163 1.61 dsl * Since pid numbers are only allocated when an empty slot
164 1.61 dsl * has been found, there is no need to search any lists ever.
165 1.61 dsl * (an orphaned pgrp will lock the slot, a session will lock
166 1.61 dsl * the pgrp with the same number.)
167 1.61 dsl * If the table is too small it is reallocated with twice the
168 1.61 dsl * previous size and the entries 'unzipped' into the two halves.
169 1.61 dsl * A linked list of free entries is passed through the pt_proc
170 1.61 dsl * field of 'free' items - set odd to be an invalid ptr.
171 1.61 dsl */
172 1.61 dsl
173 1.61 dsl struct pid_table {
174 1.61 dsl struct proc *pt_proc;
175 1.61 dsl struct pgrp *pt_pgrp;
176 1.72 junyoung };
177 1.61 dsl #if 1 /* strongly typed cast - should be a noop */
178 1.84 perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
179 1.61 dsl #else
180 1.61 dsl #define p2u(p) ((uint)p)
181 1.72 junyoung #endif
182 1.61 dsl #define P_VALID(p) (!(p2u(p) & 1))
183 1.61 dsl #define P_NEXT(p) (p2u(p) >> 1)
184 1.61 dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
185 1.61 dsl
186 1.61 dsl #define INITIAL_PID_TABLE_SIZE (1 << 5)
187 1.61 dsl static struct pid_table *pid_table;
188 1.61 dsl static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
189 1.61 dsl static uint pid_alloc_lim; /* max we allocate before growing table */
190 1.61 dsl static uint pid_alloc_cnt; /* number of allocated pids */
191 1.61 dsl
192 1.61 dsl /* links through free slots - never empty! */
193 1.61 dsl static uint next_free_pt, last_free_pt;
194 1.61 dsl static pid_t pid_max = PID_MAX; /* largest value we allocate */
195 1.31 thorpej
196 1.81 junyoung /* Components of the first process -- never freed. */
197 1.81 junyoung struct session session0;
198 1.81 junyoung struct pgrp pgrp0;
199 1.81 junyoung struct proc proc0;
200 1.100 ad struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT);
201 1.89 elad kauth_cred_t cred0;
202 1.81 junyoung struct filedesc0 filedesc0;
203 1.81 junyoung struct cwdinfo cwdi0;
204 1.81 junyoung struct plimit limit0;
205 1.81 junyoung struct pstats pstat0;
206 1.81 junyoung struct vmspace vmspace0;
207 1.81 junyoung struct sigacts sigacts0;
208 1.100 ad struct turnstile turnstile0;
209 1.81 junyoung
210 1.81 junyoung extern struct user *proc0paddr;
211 1.81 junyoung
212 1.81 junyoung extern const struct emul emul_netbsd; /* defined in kern_exec.c */
213 1.81 junyoung
214 1.81 junyoung int nofile = NOFILE;
215 1.81 junyoung int maxuprc = MAXUPRC;
216 1.81 junyoung int cmask = CMASK;
217 1.81 junyoung
218 1.77 simonb POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
219 1.77 simonb &pool_allocator_nointr);
220 1.77 simonb POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
221 1.77 simonb &pool_allocator_nointr);
222 1.77 simonb POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
223 1.77 simonb &pool_allocator_nointr);
224 1.77 simonb POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
225 1.77 simonb &pool_allocator_nointr);
226 1.77 simonb POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
227 1.77 simonb &pool_allocator_nointr);
228 1.77 simonb POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
229 1.77 simonb &pool_allocator_nointr);
230 1.57 thorpej
231 1.57 thorpej MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
232 1.57 thorpej MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
233 1.57 thorpej MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
234 1.10 mycroft
235 1.31 thorpej /*
236 1.31 thorpej * The process list descriptors, used during pid allocation and
237 1.31 thorpej * by sysctl. No locking on this data structure is needed since
238 1.31 thorpej * it is completely static.
239 1.31 thorpej */
240 1.31 thorpej const struct proclist_desc proclists[] = {
241 1.31 thorpej { &allproc },
242 1.31 thorpej { &zombproc },
243 1.31 thorpej { NULL },
244 1.31 thorpej };
245 1.31 thorpej
246 1.72 junyoung static void orphanpg(struct pgrp *);
247 1.72 junyoung static void pg_delete(pid_t);
248 1.13 christos
249 1.95 thorpej static specificdata_domain_t proc_specificdata_domain;
250 1.95 thorpej
251 1.10 mycroft /*
252 1.10 mycroft * Initialize global process hashing structures.
253 1.10 mycroft */
254 1.11 cgd void
255 1.59 dsl procinit(void)
256 1.7 cgd {
257 1.31 thorpej const struct proclist_desc *pd;
258 1.61 dsl int i;
259 1.61 dsl #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
260 1.31 thorpej
261 1.31 thorpej for (pd = proclists; pd->pd_list != NULL; pd++)
262 1.31 thorpej LIST_INIT(pd->pd_list);
263 1.7 cgd
264 1.107 ad mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
265 1.100 ad mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
266 1.33 thorpej
267 1.61 dsl pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
268 1.61 dsl M_PROC, M_WAITOK);
269 1.61 dsl /* Set free list running through table...
270 1.61 dsl Preset 'use count' above PID_MAX so we allocate pid 1 next. */
271 1.61 dsl for (i = 0; i <= pid_tbl_mask; i++) {
272 1.61 dsl pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
273 1.61 dsl pid_table[i].pt_pgrp = 0;
274 1.61 dsl }
275 1.61 dsl /* slot 0 is just grabbed */
276 1.61 dsl next_free_pt = 1;
277 1.61 dsl /* Need to fix last entry. */
278 1.61 dsl last_free_pt = pid_tbl_mask;
279 1.61 dsl pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
280 1.61 dsl /* point at which we grow table - to avoid reusing pids too often */
281 1.61 dsl pid_alloc_lim = pid_tbl_mask - 1;
282 1.61 dsl #undef LINK_EMPTY
283 1.61 dsl
284 1.55 thorpej LIST_INIT(&alllwp);
285 1.55 thorpej
286 1.43 ad uihashtbl =
287 1.43 ad hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
288 1.95 thorpej
289 1.95 thorpej proc_specificdata_domain = specificdata_domain_create();
290 1.95 thorpej KASSERT(proc_specificdata_domain != NULL);
291 1.7 cgd }
292 1.1 cgd
293 1.7 cgd /*
294 1.81 junyoung * Initialize process 0.
295 1.81 junyoung */
296 1.81 junyoung void
297 1.81 junyoung proc0_init(void)
298 1.81 junyoung {
299 1.81 junyoung struct proc *p;
300 1.81 junyoung struct pgrp *pg;
301 1.81 junyoung struct session *sess;
302 1.81 junyoung struct lwp *l;
303 1.81 junyoung u_int i;
304 1.81 junyoung rlim_t lim;
305 1.81 junyoung
306 1.81 junyoung p = &proc0;
307 1.81 junyoung pg = &pgrp0;
308 1.81 junyoung sess = &session0;
309 1.81 junyoung l = &lwp0;
310 1.81 junyoung
311 1.107 ad /*
312 1.107 ad * XXX p_rasmutex is run at IPL_SCHED, because of lock order
313 1.107 ad * issues (kernel_lock -> p_rasmutex). Ideally ras_lookup
314 1.107 ad * should operate "lock free".
315 1.107 ad */
316 1.100 ad mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
317 1.100 ad mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_STATCLOCK);
318 1.107 ad mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_SCHED);
319 1.100 ad mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
320 1.107 ad
321 1.100 ad cv_init(&p->p_refcv, "drainref");
322 1.100 ad cv_init(&p->p_waitcv, "wait");
323 1.100 ad cv_init(&p->p_lwpcv, "lwpwait");
324 1.100 ad
325 1.81 junyoung LIST_INIT(&p->p_lwps);
326 1.100 ad LIST_INIT(&p->p_sigwaiters);
327 1.81 junyoung LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
328 1.100 ad
329 1.81 junyoung p->p_nlwps = 1;
330 1.100 ad p->p_nrlwps = 1;
331 1.100 ad p->p_refcnt = 1;
332 1.81 junyoung
333 1.81 junyoung pid_table[0].pt_proc = p;
334 1.81 junyoung LIST_INSERT_HEAD(&allproc, p, p_list);
335 1.81 junyoung LIST_INSERT_HEAD(&alllwp, l, l_list);
336 1.81 junyoung
337 1.81 junyoung p->p_pgrp = pg;
338 1.81 junyoung pid_table[0].pt_pgrp = pg;
339 1.81 junyoung LIST_INIT(&pg->pg_members);
340 1.81 junyoung LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
341 1.81 junyoung
342 1.81 junyoung pg->pg_session = sess;
343 1.81 junyoung sess->s_count = 1;
344 1.81 junyoung sess->s_sid = 0;
345 1.81 junyoung sess->s_leader = p;
346 1.81 junyoung
347 1.81 junyoung /*
348 1.81 junyoung * Set P_NOCLDWAIT so that kernel threads are reparented to
349 1.81 junyoung * init(8) when they exit. init(8) can easily wait them out
350 1.81 junyoung * for us.
351 1.81 junyoung */
352 1.102 pavel p->p_flag = PK_SYSTEM | PK_NOCLDWAIT;
353 1.81 junyoung p->p_stat = SACTIVE;
354 1.81 junyoung p->p_nice = NZERO;
355 1.81 junyoung p->p_emul = &emul_netbsd;
356 1.81 junyoung #ifdef __HAVE_SYSCALL_INTERN
357 1.81 junyoung (*p->p_emul->e_syscall_intern)(p);
358 1.81 junyoung #endif
359 1.81 junyoung strncpy(p->p_comm, "swapper", MAXCOMLEN);
360 1.81 junyoung
361 1.100 ad l->l_mutex = &sched_mutex;
362 1.102 pavel l->l_flag = LW_INMEM | LW_SYSTEM;
363 1.81 junyoung l->l_stat = LSONPROC;
364 1.100 ad l->l_ts = &turnstile0;
365 1.100 ad l->l_syncobj = &sched_syncobj;
366 1.100 ad l->l_refcnt = 1;
367 1.100 ad l->l_cpu = curcpu();
368 1.100 ad l->l_priority = PRIBIO;
369 1.100 ad l->l_usrpri = PRIBIO;
370 1.105 yamt l->l_inheritedprio = MAXPRI;
371 1.105 yamt SLIST_INIT(&l->l_pi_lenders);
372 1.81 junyoung
373 1.81 junyoung callout_init(&l->l_tsleep_ch);
374 1.100 ad cv_init(&l->l_sigcv, "sigwait");
375 1.81 junyoung
376 1.81 junyoung /* Create credentials. */
377 1.89 elad cred0 = kauth_cred_alloc();
378 1.89 elad p->p_cred = cred0;
379 1.100 ad kauth_cred_hold(cred0);
380 1.100 ad l->l_cred = cred0;
381 1.81 junyoung
382 1.81 junyoung /* Create the CWD info. */
383 1.81 junyoung p->p_cwdi = &cwdi0;
384 1.81 junyoung cwdi0.cwdi_cmask = cmask;
385 1.81 junyoung cwdi0.cwdi_refcnt = 1;
386 1.81 junyoung simple_lock_init(&cwdi0.cwdi_slock);
387 1.81 junyoung
388 1.81 junyoung /* Create the limits structures. */
389 1.81 junyoung p->p_limit = &limit0;
390 1.81 junyoung simple_lock_init(&limit0.p_slock);
391 1.81 junyoung for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
392 1.81 junyoung limit0.pl_rlimit[i].rlim_cur =
393 1.81 junyoung limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
394 1.81 junyoung
395 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
396 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
397 1.81 junyoung maxfiles < nofile ? maxfiles : nofile;
398 1.81 junyoung
399 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
400 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
401 1.81 junyoung maxproc < maxuprc ? maxproc : maxuprc;
402 1.81 junyoung
403 1.81 junyoung lim = ptoa(uvmexp.free);
404 1.81 junyoung limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
405 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
406 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
407 1.81 junyoung limit0.pl_corename = defcorename;
408 1.81 junyoung limit0.p_refcnt = 1;
409 1.81 junyoung
410 1.81 junyoung /* Configure virtual memory system, set vm rlimits. */
411 1.81 junyoung uvm_init_limits(p);
412 1.81 junyoung
413 1.81 junyoung /* Initialize file descriptor table for proc0. */
414 1.81 junyoung p->p_fd = &filedesc0.fd_fd;
415 1.81 junyoung fdinit1(&filedesc0);
416 1.81 junyoung
417 1.81 junyoung /*
418 1.81 junyoung * Initialize proc0's vmspace, which uses the kernel pmap.
419 1.81 junyoung * All kernel processes (which never have user space mappings)
420 1.81 junyoung * share proc0's vmspace, and thus, the kernel pmap.
421 1.81 junyoung */
422 1.81 junyoung uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
423 1.81 junyoung trunc_page(VM_MAX_ADDRESS));
424 1.81 junyoung p->p_vmspace = &vmspace0;
425 1.81 junyoung
426 1.81 junyoung l->l_addr = proc0paddr; /* XXX */
427 1.81 junyoung
428 1.81 junyoung p->p_stats = &pstat0;
429 1.81 junyoung
430 1.81 junyoung /* Initialize signal state for proc0. */
431 1.81 junyoung p->p_sigacts = &sigacts0;
432 1.100 ad mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
433 1.81 junyoung siginit(p);
434 1.96 christos
435 1.96 christos proc_initspecific(p);
436 1.96 christos lwp_initspecific(l);
437 1.103 dsl
438 1.103 dsl SYSCALL_TIME_LWP_INIT(l);
439 1.81 junyoung }
440 1.81 junyoung
441 1.81 junyoung /*
442 1.74 junyoung * Check that the specified process group is in the session of the
443 1.60 dsl * specified process.
444 1.60 dsl * Treats -ve ids as process ids.
445 1.60 dsl * Used to validate TIOCSPGRP requests.
446 1.60 dsl */
447 1.60 dsl int
448 1.60 dsl pgid_in_session(struct proc *p, pid_t pg_id)
449 1.60 dsl {
450 1.60 dsl struct pgrp *pgrp;
451 1.101 dsl struct session *session;
452 1.107 ad int error;
453 1.101 dsl
454 1.107 ad mutex_enter(&proclist_lock);
455 1.60 dsl if (pg_id < 0) {
456 1.101 dsl struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
457 1.64 dsl if (p1 == NULL)
458 1.64 dsl return EINVAL;
459 1.60 dsl pgrp = p1->p_pgrp;
460 1.60 dsl } else {
461 1.101 dsl pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
462 1.60 dsl if (pgrp == NULL)
463 1.64 dsl return EINVAL;
464 1.60 dsl }
465 1.101 dsl session = pgrp->pg_session;
466 1.101 dsl if (session != p->p_pgrp->pg_session)
467 1.107 ad error = EPERM;
468 1.107 ad else
469 1.107 ad error = 0;
470 1.107 ad mutex_exit(&proclist_lock);
471 1.107 ad
472 1.107 ad return error;
473 1.7 cgd }
474 1.4 andrew
475 1.1 cgd /*
476 1.41 sommerfe * Is p an inferior of q?
477 1.94 ad *
478 1.94 ad * Call with the proclist_lock held.
479 1.1 cgd */
480 1.11 cgd int
481 1.59 dsl inferior(struct proc *p, struct proc *q)
482 1.1 cgd {
483 1.1 cgd
484 1.41 sommerfe for (; p != q; p = p->p_pptr)
485 1.1 cgd if (p->p_pid == 0)
486 1.82 junyoung return 0;
487 1.82 junyoung return 1;
488 1.1 cgd }
489 1.1 cgd
490 1.1 cgd /*
491 1.1 cgd * Locate a process by number
492 1.1 cgd */
493 1.1 cgd struct proc *
494 1.68 dsl p_find(pid_t pid, uint flags)
495 1.1 cgd {
496 1.33 thorpej struct proc *p;
497 1.68 dsl char stat;
498 1.1 cgd
499 1.68 dsl if (!(flags & PFIND_LOCKED))
500 1.107 ad mutex_enter(&proclist_lock);
501 1.100 ad
502 1.61 dsl p = pid_table[pid & pid_tbl_mask].pt_proc;
503 1.100 ad
504 1.61 dsl /* Only allow live processes to be found by pid. */
505 1.100 ad /* XXXSMP p_stat */
506 1.100 ad if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
507 1.100 ad stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
508 1.100 ad (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
509 1.68 dsl if (flags & PFIND_UNLOCK_OK)
510 1.107 ad mutex_exit(&proclist_lock);
511 1.68 dsl return p;
512 1.68 dsl }
513 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
514 1.107 ad mutex_exit(&proclist_lock);
515 1.68 dsl return NULL;
516 1.1 cgd }
517 1.1 cgd
518 1.61 dsl
519 1.1 cgd /*
520 1.1 cgd * Locate a process group by number
521 1.1 cgd */
522 1.1 cgd struct pgrp *
523 1.68 dsl pg_find(pid_t pgid, uint flags)
524 1.1 cgd {
525 1.68 dsl struct pgrp *pg;
526 1.1 cgd
527 1.68 dsl if (!(flags & PFIND_LOCKED))
528 1.107 ad mutex_enter(&proclist_lock);
529 1.68 dsl pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
530 1.61 dsl /*
531 1.61 dsl * Can't look up a pgrp that only exists because the session
532 1.61 dsl * hasn't died yet (traditional)
533 1.61 dsl */
534 1.68 dsl if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
535 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
536 1.107 ad mutex_exit(&proclist_lock);
537 1.68 dsl return NULL;
538 1.68 dsl }
539 1.68 dsl
540 1.68 dsl if (flags & PFIND_UNLOCK_OK)
541 1.107 ad mutex_exit(&proclist_lock);
542 1.68 dsl return pg;
543 1.1 cgd }
544 1.1 cgd
545 1.61 dsl static void
546 1.61 dsl expand_pid_table(void)
547 1.1 cgd {
548 1.61 dsl uint pt_size = pid_tbl_mask + 1;
549 1.61 dsl struct pid_table *n_pt, *new_pt;
550 1.61 dsl struct proc *proc;
551 1.61 dsl struct pgrp *pgrp;
552 1.61 dsl int i;
553 1.61 dsl pid_t pid;
554 1.1 cgd
555 1.61 dsl new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
556 1.61 dsl
557 1.107 ad mutex_enter(&proclist_lock);
558 1.61 dsl if (pt_size != pid_tbl_mask + 1) {
559 1.61 dsl /* Another process beat us to it... */
560 1.107 ad mutex_exit(&proclist_lock);
561 1.61 dsl FREE(new_pt, M_PROC);
562 1.61 dsl return;
563 1.61 dsl }
564 1.72 junyoung
565 1.61 dsl /*
566 1.61 dsl * Copy entries from old table into new one.
567 1.61 dsl * If 'pid' is 'odd' we need to place in the upper half,
568 1.61 dsl * even pid's to the lower half.
569 1.61 dsl * Free items stay in the low half so we don't have to
570 1.61 dsl * fixup the reference to them.
571 1.61 dsl * We stuff free items on the front of the freelist
572 1.61 dsl * because we can't write to unmodified entries.
573 1.74 junyoung * Processing the table backwards maintains a semblance
574 1.61 dsl * of issueing pid numbers that increase with time.
575 1.61 dsl */
576 1.61 dsl i = pt_size - 1;
577 1.61 dsl n_pt = new_pt + i;
578 1.61 dsl for (; ; i--, n_pt--) {
579 1.61 dsl proc = pid_table[i].pt_proc;
580 1.61 dsl pgrp = pid_table[i].pt_pgrp;
581 1.61 dsl if (!P_VALID(proc)) {
582 1.61 dsl /* Up 'use count' so that link is valid */
583 1.61 dsl pid = (P_NEXT(proc) + pt_size) & ~pt_size;
584 1.61 dsl proc = P_FREE(pid);
585 1.61 dsl if (pgrp)
586 1.61 dsl pid = pgrp->pg_id;
587 1.61 dsl } else
588 1.61 dsl pid = proc->p_pid;
589 1.72 junyoung
590 1.61 dsl /* Save entry in appropriate half of table */
591 1.61 dsl n_pt[pid & pt_size].pt_proc = proc;
592 1.61 dsl n_pt[pid & pt_size].pt_pgrp = pgrp;
593 1.61 dsl
594 1.61 dsl /* Put other piece on start of free list */
595 1.61 dsl pid = (pid ^ pt_size) & ~pid_tbl_mask;
596 1.61 dsl n_pt[pid & pt_size].pt_proc =
597 1.61 dsl P_FREE((pid & ~pt_size) | next_free_pt);
598 1.61 dsl n_pt[pid & pt_size].pt_pgrp = 0;
599 1.61 dsl next_free_pt = i | (pid & pt_size);
600 1.61 dsl if (i == 0)
601 1.61 dsl break;
602 1.61 dsl }
603 1.61 dsl
604 1.61 dsl /* Switch tables */
605 1.100 ad mutex_enter(&proclist_mutex);
606 1.61 dsl n_pt = pid_table;
607 1.61 dsl pid_table = new_pt;
608 1.100 ad mutex_exit(&proclist_mutex);
609 1.61 dsl pid_tbl_mask = pt_size * 2 - 1;
610 1.61 dsl
611 1.61 dsl /*
612 1.61 dsl * pid_max starts as PID_MAX (= 30000), once we have 16384
613 1.61 dsl * allocated pids we need it to be larger!
614 1.61 dsl */
615 1.61 dsl if (pid_tbl_mask > PID_MAX) {
616 1.61 dsl pid_max = pid_tbl_mask * 2 + 1;
617 1.61 dsl pid_alloc_lim |= pid_alloc_lim << 1;
618 1.61 dsl } else
619 1.61 dsl pid_alloc_lim <<= 1; /* doubles number of free slots... */
620 1.61 dsl
621 1.107 ad mutex_exit(&proclist_lock);
622 1.61 dsl FREE(n_pt, M_PROC);
623 1.61 dsl }
624 1.61 dsl
625 1.61 dsl struct proc *
626 1.61 dsl proc_alloc(void)
627 1.61 dsl {
628 1.61 dsl struct proc *p;
629 1.100 ad int nxt;
630 1.61 dsl pid_t pid;
631 1.61 dsl struct pid_table *pt;
632 1.61 dsl
633 1.61 dsl p = pool_get(&proc_pool, PR_WAITOK);
634 1.61 dsl p->p_stat = SIDL; /* protect against others */
635 1.61 dsl
636 1.96 christos proc_initspecific(p);
637 1.61 dsl /* allocate next free pid */
638 1.61 dsl
639 1.61 dsl for (;;expand_pid_table()) {
640 1.61 dsl if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
641 1.61 dsl /* ensure pids cycle through 2000+ values */
642 1.61 dsl continue;
643 1.107 ad mutex_enter(&proclist_lock);
644 1.61 dsl pt = &pid_table[next_free_pt];
645 1.1 cgd #ifdef DIAGNOSTIC
646 1.63 christos if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
647 1.61 dsl panic("proc_alloc: slot busy");
648 1.1 cgd #endif
649 1.61 dsl nxt = P_NEXT(pt->pt_proc);
650 1.61 dsl if (nxt & pid_tbl_mask)
651 1.61 dsl break;
652 1.61 dsl /* Table full - expand (NB last entry not used....) */
653 1.107 ad mutex_exit(&proclist_lock);
654 1.61 dsl }
655 1.61 dsl
656 1.61 dsl /* pid is 'saved use count' + 'size' + entry */
657 1.61 dsl pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
658 1.61 dsl if ((uint)pid > (uint)pid_max)
659 1.61 dsl pid &= pid_tbl_mask;
660 1.61 dsl p->p_pid = pid;
661 1.61 dsl next_free_pt = nxt & pid_tbl_mask;
662 1.61 dsl
663 1.61 dsl /* Grab table slot */
664 1.100 ad mutex_enter(&proclist_mutex);
665 1.61 dsl pt->pt_proc = p;
666 1.100 ad mutex_exit(&proclist_mutex);
667 1.61 dsl pid_alloc_cnt++;
668 1.61 dsl
669 1.107 ad mutex_exit(&proclist_lock);
670 1.61 dsl
671 1.61 dsl return p;
672 1.61 dsl }
673 1.61 dsl
674 1.61 dsl /*
675 1.61 dsl * Free last resources of a process - called from proc_free (in kern_exit.c)
676 1.100 ad *
677 1.107 ad * Called with the proclist_lock held, and releases upon exit.
678 1.61 dsl */
679 1.61 dsl void
680 1.61 dsl proc_free_mem(struct proc *p)
681 1.61 dsl {
682 1.61 dsl pid_t pid = p->p_pid;
683 1.61 dsl struct pid_table *pt;
684 1.61 dsl
685 1.107 ad KASSERT(mutex_owned(&proclist_lock));
686 1.61 dsl
687 1.61 dsl pt = &pid_table[pid & pid_tbl_mask];
688 1.1 cgd #ifdef DIAGNOSTIC
689 1.63 christos if (__predict_false(pt->pt_proc != p))
690 1.61 dsl panic("proc_free: pid_table mismatch, pid %x, proc %p",
691 1.61 dsl pid, p);
692 1.1 cgd #endif
693 1.100 ad mutex_enter(&proclist_mutex);
694 1.61 dsl /* save pid use count in slot */
695 1.61 dsl pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
696 1.61 dsl
697 1.61 dsl if (pt->pt_pgrp == NULL) {
698 1.61 dsl /* link last freed entry onto ours */
699 1.61 dsl pid &= pid_tbl_mask;
700 1.61 dsl pt = &pid_table[last_free_pt];
701 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
702 1.61 dsl last_free_pt = pid;
703 1.61 dsl pid_alloc_cnt--;
704 1.61 dsl }
705 1.100 ad mutex_exit(&proclist_mutex);
706 1.61 dsl
707 1.61 dsl nprocs--;
708 1.107 ad mutex_exit(&proclist_lock);
709 1.61 dsl
710 1.61 dsl pool_put(&proc_pool, p);
711 1.61 dsl }
712 1.61 dsl
713 1.61 dsl /*
714 1.61 dsl * Move p to a new or existing process group (and session)
715 1.61 dsl *
716 1.61 dsl * If we are creating a new pgrp, the pgid should equal
717 1.72 junyoung * the calling process' pid.
718 1.61 dsl * If is only valid to enter a process group that is in the session
719 1.61 dsl * of the process.
720 1.61 dsl * Also mksess should only be set if we are creating a process group
721 1.61 dsl *
722 1.72 junyoung * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
723 1.100 ad * SYSV setpgrp support for hpux.
724 1.61 dsl */
725 1.61 dsl int
726 1.100 ad enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
727 1.61 dsl {
728 1.61 dsl struct pgrp *new_pgrp, *pgrp;
729 1.61 dsl struct session *sess;
730 1.100 ad struct proc *p;
731 1.61 dsl int rval;
732 1.61 dsl pid_t pg_id = NO_PGID;
733 1.61 dsl
734 1.61 dsl if (mksess)
735 1.99 pooka sess = pool_get(&session_pool, PR_WAITOK);
736 1.61 dsl else
737 1.61 dsl sess = NULL;
738 1.61 dsl
739 1.107 ad /* Allocate data areas we might need before doing any validity checks */
740 1.107 ad mutex_enter(&proclist_lock); /* Because pid_table might change */
741 1.107 ad if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
742 1.107 ad mutex_exit(&proclist_lock);
743 1.107 ad new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
744 1.107 ad mutex_enter(&proclist_lock);
745 1.107 ad } else
746 1.107 ad new_pgrp = NULL;
747 1.61 dsl rval = EPERM; /* most common error (to save typing) */
748 1.61 dsl
749 1.61 dsl /* Check pgrp exists or can be created */
750 1.61 dsl pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
751 1.61 dsl if (pgrp != NULL && pgrp->pg_id != pgid)
752 1.61 dsl goto done;
753 1.61 dsl
754 1.61 dsl /* Can only set another process under restricted circumstances. */
755 1.100 ad if (pid != curp->p_pid) {
756 1.61 dsl /* must exist and be one of our children... */
757 1.100 ad if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
758 1.100 ad !inferior(p, curp)) {
759 1.61 dsl rval = ESRCH;
760 1.61 dsl goto done;
761 1.61 dsl }
762 1.61 dsl /* ... in the same session... */
763 1.61 dsl if (sess != NULL || p->p_session != curp->p_session)
764 1.61 dsl goto done;
765 1.61 dsl /* ... existing pgid must be in same session ... */
766 1.61 dsl if (pgrp != NULL && pgrp->pg_session != p->p_session)
767 1.61 dsl goto done;
768 1.61 dsl /* ... and not done an exec. */
769 1.102 pavel if (p->p_flag & PK_EXEC) {
770 1.61 dsl rval = EACCES;
771 1.61 dsl goto done;
772 1.49 enami }
773 1.100 ad } else {
774 1.100 ad /* ... setsid() cannot re-enter a pgrp */
775 1.100 ad if (mksess && (curp->p_pgid == curp->p_pid ||
776 1.100 ad pg_find(curp->p_pid, PFIND_LOCKED)))
777 1.100 ad goto done;
778 1.100 ad p = curp;
779 1.61 dsl }
780 1.1 cgd
781 1.61 dsl /* Changing the process group/session of a session
782 1.61 dsl leader is definitely off limits. */
783 1.61 dsl if (SESS_LEADER(p)) {
784 1.61 dsl if (sess == NULL && p->p_pgrp == pgrp)
785 1.61 dsl /* unless it's a definite noop */
786 1.61 dsl rval = 0;
787 1.61 dsl goto done;
788 1.61 dsl }
789 1.61 dsl
790 1.61 dsl /* Can only create a process group with id of process */
791 1.61 dsl if (pgrp == NULL && pgid != pid)
792 1.61 dsl goto done;
793 1.61 dsl
794 1.61 dsl /* Can only create a session if creating pgrp */
795 1.61 dsl if (sess != NULL && pgrp != NULL)
796 1.61 dsl goto done;
797 1.61 dsl
798 1.61 dsl /* Check we allocated memory for a pgrp... */
799 1.61 dsl if (pgrp == NULL && new_pgrp == NULL)
800 1.61 dsl goto done;
801 1.61 dsl
802 1.61 dsl /* Don't attach to 'zombie' pgrp */
803 1.61 dsl if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
804 1.61 dsl goto done;
805 1.61 dsl
806 1.61 dsl /* Expect to succeed now */
807 1.61 dsl rval = 0;
808 1.61 dsl
809 1.61 dsl if (pgrp == p->p_pgrp)
810 1.61 dsl /* nothing to do */
811 1.61 dsl goto done;
812 1.61 dsl
813 1.61 dsl /* Ok all setup, link up required structures */
814 1.100 ad
815 1.61 dsl if (pgrp == NULL) {
816 1.61 dsl pgrp = new_pgrp;
817 1.61 dsl new_pgrp = 0;
818 1.61 dsl if (sess != NULL) {
819 1.21 thorpej sess->s_sid = p->p_pid;
820 1.1 cgd sess->s_leader = p;
821 1.1 cgd sess->s_count = 1;
822 1.1 cgd sess->s_ttyvp = NULL;
823 1.1 cgd sess->s_ttyp = NULL;
824 1.58 dsl sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
825 1.25 perry memcpy(sess->s_login, p->p_session->s_login,
826 1.1 cgd sizeof(sess->s_login));
827 1.100 ad p->p_lflag &= ~PL_CONTROLT;
828 1.1 cgd } else {
829 1.61 dsl sess = p->p_pgrp->pg_session;
830 1.61 dsl SESSHOLD(sess);
831 1.1 cgd }
832 1.61 dsl pgrp->pg_session = sess;
833 1.61 dsl sess = 0;
834 1.61 dsl
835 1.1 cgd pgrp->pg_id = pgid;
836 1.10 mycroft LIST_INIT(&pgrp->pg_members);
837 1.61 dsl #ifdef DIAGNOSTIC
838 1.63 christos if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
839 1.61 dsl panic("enterpgrp: pgrp table slot in use");
840 1.63 christos if (__predict_false(mksess && p != curp))
841 1.63 christos panic("enterpgrp: mksession and p != curproc");
842 1.61 dsl #endif
843 1.100 ad mutex_enter(&proclist_mutex);
844 1.61 dsl pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
845 1.1 cgd pgrp->pg_jobc = 0;
846 1.100 ad } else
847 1.100 ad mutex_enter(&proclist_mutex);
848 1.100 ad
849 1.100 ad #ifdef notyet
850 1.100 ad /*
851 1.100 ad * If there's a controlling terminal for the current session, we
852 1.100 ad * have to interlock with it. See ttread().
853 1.100 ad */
854 1.100 ad if (p->p_session->s_ttyvp != NULL) {
855 1.100 ad tp = p->p_session->s_ttyp;
856 1.100 ad mutex_enter(&tp->t_mutex);
857 1.100 ad } else
858 1.100 ad tp = NULL;
859 1.100 ad #endif
860 1.1 cgd
861 1.1 cgd /*
862 1.1 cgd * Adjust eligibility of affected pgrps to participate in job control.
863 1.1 cgd * Increment eligibility counts before decrementing, otherwise we
864 1.1 cgd * could reach 0 spuriously during the first call.
865 1.1 cgd */
866 1.1 cgd fixjobc(p, pgrp, 1);
867 1.1 cgd fixjobc(p, p->p_pgrp, 0);
868 1.1 cgd
869 1.100 ad /* Move process to requested group. */
870 1.10 mycroft LIST_REMOVE(p, p_pglist);
871 1.52 matt if (LIST_EMPTY(&p->p_pgrp->pg_members))
872 1.61 dsl /* defer delete until we've dumped the lock */
873 1.61 dsl pg_id = p->p_pgrp->pg_id;
874 1.1 cgd p->p_pgrp = pgrp;
875 1.10 mycroft LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
876 1.100 ad mutex_exit(&proclist_mutex);
877 1.100 ad
878 1.100 ad #ifdef notyet
879 1.100 ad /* Done with the swap; we can release the tty mutex. */
880 1.100 ad if (tp != NULL)
881 1.100 ad mutex_exit(&tp->t_mutex);
882 1.100 ad #endif
883 1.61 dsl
884 1.61 dsl done:
885 1.100 ad if (pg_id != NO_PGID)
886 1.100 ad pg_delete(pg_id);
887 1.107 ad mutex_exit(&proclist_lock);
888 1.61 dsl if (sess != NULL)
889 1.77 simonb pool_put(&session_pool, sess);
890 1.61 dsl if (new_pgrp != NULL)
891 1.61 dsl pool_put(&pgrp_pool, new_pgrp);
892 1.63 christos #ifdef DEBUG_PGRP
893 1.63 christos if (__predict_false(rval))
894 1.61 dsl printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
895 1.61 dsl pid, pgid, mksess, curp->p_pid, rval);
896 1.61 dsl #endif
897 1.61 dsl return rval;
898 1.1 cgd }
899 1.1 cgd
900 1.1 cgd /*
901 1.100 ad * Remove a process from its process group. Must be called with the
902 1.107 ad * proclist_lock held.
903 1.1 cgd */
904 1.100 ad void
905 1.59 dsl leavepgrp(struct proc *p)
906 1.1 cgd {
907 1.61 dsl struct pgrp *pgrp;
908 1.1 cgd
909 1.107 ad KASSERT(mutex_owned(&proclist_lock));
910 1.100 ad
911 1.100 ad /*
912 1.100 ad * If there's a controlling terminal for the session, we have to
913 1.100 ad * interlock with it. See ttread().
914 1.100 ad */
915 1.100 ad mutex_enter(&proclist_mutex);
916 1.100 ad #ifdef notyet
917 1.100 ad if (p_>p_session->s_ttyvp != NULL) {
918 1.100 ad tp = p->p_session->s_ttyp;
919 1.100 ad mutex_enter(&tp->t_mutex);
920 1.100 ad } else
921 1.100 ad tp = NULL;
922 1.100 ad #endif
923 1.100 ad
924 1.61 dsl pgrp = p->p_pgrp;
925 1.10 mycroft LIST_REMOVE(p, p_pglist);
926 1.94 ad p->p_pgrp = NULL;
927 1.61 dsl
928 1.100 ad #ifdef notyet
929 1.100 ad if (tp != NULL)
930 1.100 ad mutex_exit(&tp->t_mutex);
931 1.100 ad #endif
932 1.100 ad mutex_exit(&proclist_mutex);
933 1.100 ad
934 1.100 ad if (LIST_EMPTY(&pgrp->pg_members))
935 1.100 ad pg_delete(pgrp->pg_id);
936 1.61 dsl }
937 1.61 dsl
938 1.100 ad /*
939 1.107 ad * Free a process group. Must be called with the proclist_lock held.
940 1.100 ad */
941 1.61 dsl static void
942 1.61 dsl pg_free(pid_t pg_id)
943 1.61 dsl {
944 1.61 dsl struct pgrp *pgrp;
945 1.61 dsl struct pid_table *pt;
946 1.61 dsl
947 1.107 ad KASSERT(mutex_owned(&proclist_lock));
948 1.100 ad
949 1.61 dsl pt = &pid_table[pg_id & pid_tbl_mask];
950 1.61 dsl pgrp = pt->pt_pgrp;
951 1.61 dsl #ifdef DIAGNOSTIC
952 1.63 christos if (__predict_false(!pgrp || pgrp->pg_id != pg_id
953 1.63 christos || !LIST_EMPTY(&pgrp->pg_members)))
954 1.61 dsl panic("pg_free: process group absent or has members");
955 1.61 dsl #endif
956 1.61 dsl pt->pt_pgrp = 0;
957 1.61 dsl
958 1.61 dsl if (!P_VALID(pt->pt_proc)) {
959 1.61 dsl /* orphaned pgrp, put slot onto free list */
960 1.61 dsl #ifdef DIAGNOSTIC
961 1.63 christos if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
962 1.61 dsl panic("pg_free: process slot on free list");
963 1.61 dsl #endif
964 1.100 ad mutex_enter(&proclist_mutex);
965 1.61 dsl pg_id &= pid_tbl_mask;
966 1.61 dsl pt = &pid_table[last_free_pt];
967 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
968 1.100 ad mutex_exit(&proclist_mutex);
969 1.61 dsl last_free_pt = pg_id;
970 1.61 dsl pid_alloc_cnt--;
971 1.61 dsl }
972 1.61 dsl pool_put(&pgrp_pool, pgrp);
973 1.1 cgd }
974 1.1 cgd
975 1.1 cgd /*
976 1.107 ad * Delete a process group. Must be called with the proclist_lock held.
977 1.1 cgd */
978 1.61 dsl static void
979 1.61 dsl pg_delete(pid_t pg_id)
980 1.61 dsl {
981 1.61 dsl struct pgrp *pgrp;
982 1.61 dsl struct tty *ttyp;
983 1.61 dsl struct session *ss;
984 1.100 ad int is_pgrp_leader;
985 1.100 ad
986 1.107 ad KASSERT(mutex_owned(&proclist_lock));
987 1.61 dsl
988 1.61 dsl pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
989 1.61 dsl if (pgrp == NULL || pgrp->pg_id != pg_id ||
990 1.100 ad !LIST_EMPTY(&pgrp->pg_members))
991 1.61 dsl return;
992 1.61 dsl
993 1.71 pk ss = pgrp->pg_session;
994 1.71 pk
995 1.61 dsl /* Remove reference (if any) from tty to this process group */
996 1.71 pk ttyp = ss->s_ttyp;
997 1.71 pk if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
998 1.61 dsl ttyp->t_pgrp = NULL;
999 1.71 pk #ifdef DIAGNOSTIC
1000 1.71 pk if (ttyp->t_session != ss)
1001 1.71 pk panic("pg_delete: wrong session on terminal");
1002 1.71 pk #endif
1003 1.71 pk }
1004 1.61 dsl
1005 1.71 pk /*
1006 1.71 pk * The leading process group in a session is freed
1007 1.71 pk * by sessdelete() if last reference.
1008 1.71 pk */
1009 1.71 pk is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
1010 1.71 pk SESSRELE(ss);
1011 1.61 dsl
1012 1.71 pk if (is_pgrp_leader)
1013 1.61 dsl return;
1014 1.61 dsl
1015 1.61 dsl pg_free(pg_id);
1016 1.61 dsl }
1017 1.61 dsl
1018 1.61 dsl /*
1019 1.61 dsl * Delete session - called from SESSRELE when s_count becomes zero.
1020 1.107 ad * Must be called with the proclist_lock held.
1021 1.61 dsl */
1022 1.11 cgd void
1023 1.61 dsl sessdelete(struct session *ss)
1024 1.1 cgd {
1025 1.100 ad
1026 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1027 1.100 ad
1028 1.61 dsl /*
1029 1.61 dsl * We keep the pgrp with the same id as the session in
1030 1.61 dsl * order to stop a process being given the same pid.
1031 1.61 dsl * Since the pgrp holds a reference to the session, it
1032 1.61 dsl * must be a 'zombie' pgrp by now.
1033 1.61 dsl */
1034 1.61 dsl pg_free(ss->s_sid);
1035 1.77 simonb pool_put(&session_pool, ss);
1036 1.1 cgd }
1037 1.1 cgd
1038 1.1 cgd /*
1039 1.1 cgd * Adjust pgrp jobc counters when specified process changes process group.
1040 1.1 cgd * We count the number of processes in each process group that "qualify"
1041 1.1 cgd * the group for terminal job control (those with a parent in a different
1042 1.1 cgd * process group of the same session). If that count reaches zero, the
1043 1.1 cgd * process group becomes orphaned. Check both the specified process'
1044 1.1 cgd * process group and that of its children.
1045 1.1 cgd * entering == 0 => p is leaving specified group.
1046 1.1 cgd * entering == 1 => p is entering specified group.
1047 1.68 dsl *
1048 1.107 ad * Call with proclist_lock held.
1049 1.1 cgd */
1050 1.4 andrew void
1051 1.59 dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1052 1.1 cgd {
1053 1.39 augustss struct pgrp *hispgrp;
1054 1.39 augustss struct session *mysession = pgrp->pg_session;
1055 1.68 dsl struct proc *child;
1056 1.1 cgd
1057 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1058 1.107 ad KASSERT(mutex_owned(&proclist_mutex));
1059 1.100 ad
1060 1.1 cgd /*
1061 1.1 cgd * Check p's parent to see whether p qualifies its own process
1062 1.1 cgd * group; if so, adjust count for p's process group.
1063 1.1 cgd */
1064 1.68 dsl hispgrp = p->p_pptr->p_pgrp;
1065 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1066 1.100 ad if (entering) {
1067 1.100 ad mutex_enter(&p->p_smutex);
1068 1.100 ad p->p_sflag &= ~PS_ORPHANPG;
1069 1.100 ad mutex_exit(&p->p_smutex);
1070 1.1 cgd pgrp->pg_jobc++;
1071 1.100 ad } else if (--pgrp->pg_jobc == 0)
1072 1.1 cgd orphanpg(pgrp);
1073 1.26 thorpej }
1074 1.1 cgd
1075 1.1 cgd /*
1076 1.1 cgd * Check this process' children to see whether they qualify
1077 1.1 cgd * their process groups; if so, adjust counts for children's
1078 1.1 cgd * process groups.
1079 1.1 cgd */
1080 1.68 dsl LIST_FOREACH(child, &p->p_children, p_sibling) {
1081 1.68 dsl hispgrp = child->p_pgrp;
1082 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1083 1.68 dsl !P_ZOMBIE(child)) {
1084 1.100 ad if (entering) {
1085 1.100 ad mutex_enter(&child->p_smutex);
1086 1.100 ad child->p_sflag &= ~PS_ORPHANPG;
1087 1.100 ad mutex_exit(&child->p_smutex);
1088 1.1 cgd hispgrp->pg_jobc++;
1089 1.100 ad } else if (--hispgrp->pg_jobc == 0)
1090 1.1 cgd orphanpg(hispgrp);
1091 1.26 thorpej }
1092 1.26 thorpej }
1093 1.1 cgd }
1094 1.1 cgd
1095 1.72 junyoung /*
1096 1.1 cgd * A process group has become orphaned;
1097 1.1 cgd * if there are any stopped processes in the group,
1098 1.1 cgd * hang-up all process in that group.
1099 1.68 dsl *
1100 1.107 ad * Call with proclist_lock held.
1101 1.1 cgd */
1102 1.4 andrew static void
1103 1.59 dsl orphanpg(struct pgrp *pg)
1104 1.1 cgd {
1105 1.39 augustss struct proc *p;
1106 1.100 ad int doit;
1107 1.100 ad
1108 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1109 1.107 ad KASSERT(mutex_owned(&proclist_mutex));
1110 1.100 ad
1111 1.100 ad doit = 0;
1112 1.1 cgd
1113 1.52 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1114 1.100 ad mutex_enter(&p->p_smutex);
1115 1.1 cgd if (p->p_stat == SSTOP) {
1116 1.100 ad doit = 1;
1117 1.100 ad p->p_sflag |= PS_ORPHANPG;
1118 1.1 cgd }
1119 1.100 ad mutex_exit(&p->p_smutex);
1120 1.1 cgd }
1121 1.35 bouyer
1122 1.100 ad if (doit) {
1123 1.100 ad LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1124 1.100 ad psignal(p, SIGHUP);
1125 1.100 ad psignal(p, SIGCONT);
1126 1.35 bouyer }
1127 1.35 bouyer }
1128 1.35 bouyer }
1129 1.1 cgd
1130 1.61 dsl #ifdef DDB
1131 1.61 dsl #include <ddb/db_output.h>
1132 1.61 dsl void pidtbl_dump(void);
1133 1.14 christos void
1134 1.61 dsl pidtbl_dump(void)
1135 1.1 cgd {
1136 1.61 dsl struct pid_table *pt;
1137 1.61 dsl struct proc *p;
1138 1.39 augustss struct pgrp *pgrp;
1139 1.61 dsl int id;
1140 1.1 cgd
1141 1.61 dsl db_printf("pid table %p size %x, next %x, last %x\n",
1142 1.61 dsl pid_table, pid_tbl_mask+1,
1143 1.61 dsl next_free_pt, last_free_pt);
1144 1.61 dsl for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1145 1.61 dsl p = pt->pt_proc;
1146 1.61 dsl if (!P_VALID(p) && !pt->pt_pgrp)
1147 1.61 dsl continue;
1148 1.61 dsl db_printf(" id %x: ", id);
1149 1.61 dsl if (P_VALID(p))
1150 1.61 dsl db_printf("proc %p id %d (0x%x) %s\n",
1151 1.61 dsl p, p->p_pid, p->p_pid, p->p_comm);
1152 1.61 dsl else
1153 1.61 dsl db_printf("next %x use %x\n",
1154 1.61 dsl P_NEXT(p) & pid_tbl_mask,
1155 1.61 dsl P_NEXT(p) & ~pid_tbl_mask);
1156 1.61 dsl if ((pgrp = pt->pt_pgrp)) {
1157 1.61 dsl db_printf("\tsession %p, sid %d, count %d, login %s\n",
1158 1.61 dsl pgrp->pg_session, pgrp->pg_session->s_sid,
1159 1.61 dsl pgrp->pg_session->s_count,
1160 1.61 dsl pgrp->pg_session->s_login);
1161 1.61 dsl db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1162 1.61 dsl pgrp, pgrp->pg_id, pgrp->pg_jobc,
1163 1.61 dsl pgrp->pg_members.lh_first);
1164 1.61 dsl for (p = pgrp->pg_members.lh_first; p != 0;
1165 1.61 dsl p = p->p_pglist.le_next) {
1166 1.72 junyoung db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1167 1.61 dsl p->p_pid, p, p->p_pgrp, p->p_comm);
1168 1.10 mycroft }
1169 1.1 cgd }
1170 1.1 cgd }
1171 1.1 cgd }
1172 1.61 dsl #endif /* DDB */
1173 1.48 yamt
1174 1.48 yamt #ifdef KSTACK_CHECK_MAGIC
1175 1.48 yamt #include <sys/user.h>
1176 1.48 yamt
1177 1.48 yamt #define KSTACK_MAGIC 0xdeadbeaf
1178 1.48 yamt
1179 1.48 yamt /* XXX should be per process basis? */
1180 1.48 yamt int kstackleftmin = KSTACK_SIZE;
1181 1.50 enami int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1182 1.50 enami less than this */
1183 1.48 yamt
1184 1.48 yamt void
1185 1.56 yamt kstack_setup_magic(const struct lwp *l)
1186 1.48 yamt {
1187 1.85 perry uint32_t *ip;
1188 1.85 perry uint32_t const *end;
1189 1.48 yamt
1190 1.56 yamt KASSERT(l != NULL);
1191 1.56 yamt KASSERT(l != &lwp0);
1192 1.48 yamt
1193 1.48 yamt /*
1194 1.48 yamt * fill all the stack with magic number
1195 1.48 yamt * so that later modification on it can be detected.
1196 1.48 yamt */
1197 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1198 1.106 christos end = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1199 1.48 yamt for (; ip < end; ip++) {
1200 1.48 yamt *ip = KSTACK_MAGIC;
1201 1.48 yamt }
1202 1.48 yamt }
1203 1.48 yamt
1204 1.48 yamt void
1205 1.56 yamt kstack_check_magic(const struct lwp *l)
1206 1.48 yamt {
1207 1.85 perry uint32_t const *ip, *end;
1208 1.48 yamt int stackleft;
1209 1.48 yamt
1210 1.56 yamt KASSERT(l != NULL);
1211 1.48 yamt
1212 1.48 yamt /* don't check proc0 */ /*XXX*/
1213 1.56 yamt if (l == &lwp0)
1214 1.48 yamt return;
1215 1.48 yamt
1216 1.48 yamt #ifdef __MACHINE_STACK_GROWS_UP
1217 1.48 yamt /* stack grows upwards (eg. hppa) */
1218 1.106 christos ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1219 1.85 perry end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1220 1.48 yamt for (ip--; ip >= end; ip--)
1221 1.48 yamt if (*ip != KSTACK_MAGIC)
1222 1.48 yamt break;
1223 1.72 junyoung
1224 1.106 christos stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1225 1.48 yamt #else /* __MACHINE_STACK_GROWS_UP */
1226 1.48 yamt /* stack grows downwards (eg. i386) */
1227 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1228 1.106 christos end = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1229 1.48 yamt for (; ip < end; ip++)
1230 1.48 yamt if (*ip != KSTACK_MAGIC)
1231 1.48 yamt break;
1232 1.48 yamt
1233 1.93 christos stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1234 1.48 yamt #endif /* __MACHINE_STACK_GROWS_UP */
1235 1.48 yamt
1236 1.48 yamt if (kstackleftmin > stackleft) {
1237 1.48 yamt kstackleftmin = stackleft;
1238 1.48 yamt if (stackleft < kstackleftthres)
1239 1.56 yamt printf("warning: kernel stack left %d bytes"
1240 1.56 yamt "(pid %u:lid %u)\n", stackleft,
1241 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1242 1.48 yamt }
1243 1.48 yamt
1244 1.48 yamt if (stackleft <= 0) {
1245 1.56 yamt panic("magic on the top of kernel stack changed for "
1246 1.56 yamt "pid %u, lid %u: maybe kernel stack overflow",
1247 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1248 1.48 yamt }
1249 1.48 yamt }
1250 1.50 enami #endif /* KSTACK_CHECK_MAGIC */
1251 1.79 yamt
1252 1.100 ad /*
1253 1.100 ad * XXXSMP this is bust, it grabs a read lock and then messes about
1254 1.100 ad * with allproc.
1255 1.100 ad */
1256 1.79 yamt int
1257 1.79 yamt proclist_foreach_call(struct proclist *list,
1258 1.79 yamt int (*callback)(struct proc *, void *arg), void *arg)
1259 1.79 yamt {
1260 1.79 yamt struct proc marker;
1261 1.79 yamt struct proc *p;
1262 1.79 yamt struct lwp * const l = curlwp;
1263 1.79 yamt int ret = 0;
1264 1.79 yamt
1265 1.102 pavel marker.p_flag = PK_MARKER;
1266 1.79 yamt PHOLD(l);
1267 1.107 ad mutex_enter(&proclist_lock);
1268 1.79 yamt for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1269 1.102 pavel if (p->p_flag & PK_MARKER) {
1270 1.79 yamt p = LIST_NEXT(p, p_list);
1271 1.79 yamt continue;
1272 1.79 yamt }
1273 1.79 yamt LIST_INSERT_AFTER(p, &marker, p_list);
1274 1.79 yamt ret = (*callback)(p, arg);
1275 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1276 1.79 yamt p = LIST_NEXT(&marker, p_list);
1277 1.79 yamt LIST_REMOVE(&marker, p_list);
1278 1.79 yamt }
1279 1.107 ad mutex_exit(&proclist_lock);
1280 1.79 yamt PRELE(l);
1281 1.79 yamt
1282 1.79 yamt return ret;
1283 1.79 yamt }
1284 1.86 yamt
1285 1.86 yamt int
1286 1.86 yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1287 1.86 yamt {
1288 1.86 yamt
1289 1.86 yamt /* XXXCDC: how should locking work here? */
1290 1.86 yamt
1291 1.87 yamt /* curproc exception is for coredump. */
1292 1.87 yamt
1293 1.100 ad if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1294 1.86 yamt (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1295 1.86 yamt return EFAULT;
1296 1.86 yamt }
1297 1.86 yamt
1298 1.86 yamt uvmspace_addref(p->p_vmspace);
1299 1.86 yamt *vm = p->p_vmspace;
1300 1.86 yamt
1301 1.86 yamt return 0;
1302 1.86 yamt }
1303 1.94 ad
1304 1.94 ad /*
1305 1.94 ad * Acquire a write lock on the process credential.
1306 1.94 ad */
1307 1.94 ad void
1308 1.100 ad proc_crmod_enter(void)
1309 1.94 ad {
1310 1.100 ad struct lwp *l = curlwp;
1311 1.100 ad struct proc *p = l->l_proc;
1312 1.100 ad struct plimit *lim;
1313 1.100 ad kauth_cred_t oc;
1314 1.100 ad char *cn;
1315 1.94 ad
1316 1.100 ad mutex_enter(&p->p_mutex);
1317 1.100 ad
1318 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1319 1.100 ad if ((oc = l->l_cred) != p->p_cred) {
1320 1.100 ad kauth_cred_hold(p->p_cred);
1321 1.100 ad l->l_cred = p->p_cred;
1322 1.100 ad kauth_cred_free(oc);
1323 1.100 ad }
1324 1.100 ad
1325 1.100 ad /* Reset what needs to be reset in plimit. */
1326 1.100 ad lim = p->p_limit;
1327 1.100 ad if (lim->pl_corename != defcorename) {
1328 1.100 ad if (lim->p_refcnt > 1 &&
1329 1.100 ad (lim->p_lflags & PL_SHAREMOD) == 0) {
1330 1.100 ad p->p_limit = limcopy(p);
1331 1.100 ad limfree(lim);
1332 1.100 ad lim = p->p_limit;
1333 1.100 ad }
1334 1.100 ad simple_lock(&lim->p_slock);
1335 1.100 ad cn = lim->pl_corename;
1336 1.100 ad lim->pl_corename = defcorename;
1337 1.100 ad simple_unlock(&lim->p_slock);
1338 1.100 ad if (cn != defcorename)
1339 1.100 ad free(cn, M_TEMP);
1340 1.100 ad }
1341 1.94 ad }
1342 1.94 ad
1343 1.94 ad /*
1344 1.100 ad * Set in a new process credential, and drop the write lock. The credential
1345 1.100 ad * must have a reference already. Optionally, free a no-longer required
1346 1.100 ad * credential. The scheduler also needs to inspect p_cred, so we also
1347 1.100 ad * briefly acquire the sched state mutex.
1348 1.94 ad */
1349 1.94 ad void
1350 1.104 thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1351 1.94 ad {
1352 1.100 ad struct lwp *l = curlwp;
1353 1.100 ad struct proc *p = l->l_proc;
1354 1.100 ad kauth_cred_t oc;
1355 1.100 ad
1356 1.100 ad /* Is there a new credential to set in? */
1357 1.100 ad if (scred != NULL) {
1358 1.100 ad mutex_enter(&p->p_smutex);
1359 1.100 ad p->p_cred = scred;
1360 1.100 ad mutex_exit(&p->p_smutex);
1361 1.100 ad
1362 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1363 1.100 ad if ((oc = l->l_cred) != scred) {
1364 1.100 ad kauth_cred_hold(scred);
1365 1.100 ad l->l_cred = scred;
1366 1.100 ad }
1367 1.100 ad } else
1368 1.100 ad oc = NULL; /* XXXgcc */
1369 1.100 ad
1370 1.100 ad if (sugid) {
1371 1.100 ad /*
1372 1.100 ad * Mark process as having changed credentials, stops
1373 1.100 ad * tracing etc.
1374 1.100 ad */
1375 1.102 pavel p->p_flag |= PK_SUGID;
1376 1.100 ad }
1377 1.94 ad
1378 1.100 ad mutex_exit(&p->p_mutex);
1379 1.100 ad
1380 1.100 ad /* If there is a credential to be released, free it now. */
1381 1.100 ad if (fcred != NULL) {
1382 1.100 ad KASSERT(scred != NULL);
1383 1.94 ad kauth_cred_free(fcred);
1384 1.100 ad if (oc != scred)
1385 1.100 ad kauth_cred_free(oc);
1386 1.100 ad }
1387 1.100 ad }
1388 1.100 ad
1389 1.100 ad /*
1390 1.100 ad * Acquire a reference on a process, to prevent it from exiting or execing.
1391 1.100 ad */
1392 1.100 ad int
1393 1.100 ad proc_addref(struct proc *p)
1394 1.100 ad {
1395 1.100 ad
1396 1.107 ad KASSERT(mutex_owned(&p->p_mutex));
1397 1.100 ad
1398 1.100 ad if (p->p_refcnt <= 0)
1399 1.100 ad return EAGAIN;
1400 1.100 ad p->p_refcnt++;
1401 1.100 ad
1402 1.100 ad return 0;
1403 1.100 ad }
1404 1.100 ad
1405 1.100 ad /*
1406 1.100 ad * Release a reference on a process.
1407 1.100 ad */
1408 1.100 ad void
1409 1.100 ad proc_delref(struct proc *p)
1410 1.100 ad {
1411 1.100 ad
1412 1.107 ad KASSERT(mutex_owned(&p->p_mutex));
1413 1.100 ad
1414 1.100 ad if (p->p_refcnt < 0) {
1415 1.100 ad if (++p->p_refcnt == 0)
1416 1.100 ad cv_broadcast(&p->p_refcv);
1417 1.100 ad } else {
1418 1.100 ad p->p_refcnt--;
1419 1.100 ad KASSERT(p->p_refcnt != 0);
1420 1.100 ad }
1421 1.100 ad }
1422 1.100 ad
1423 1.100 ad /*
1424 1.100 ad * Wait for all references on the process to drain, and prevent new
1425 1.100 ad * references from being acquired.
1426 1.100 ad */
1427 1.100 ad void
1428 1.100 ad proc_drainrefs(struct proc *p)
1429 1.100 ad {
1430 1.100 ad
1431 1.107 ad KASSERT(mutex_owned(&p->p_mutex));
1432 1.100 ad KASSERT(p->p_refcnt > 0);
1433 1.100 ad
1434 1.100 ad /*
1435 1.100 ad * The process itself holds the last reference. Once it's released,
1436 1.100 ad * no new references will be granted. If we have already locked out
1437 1.100 ad * new references (refcnt <= 0), potentially due to a failed exec,
1438 1.100 ad * there is nothing more to do.
1439 1.100 ad */
1440 1.100 ad p->p_refcnt = 1 - p->p_refcnt;
1441 1.100 ad while (p->p_refcnt != 0)
1442 1.100 ad cv_wait(&p->p_refcv, &p->p_mutex);
1443 1.94 ad }
1444 1.95 thorpej
1445 1.95 thorpej /*
1446 1.95 thorpej * proc_specific_key_create --
1447 1.95 thorpej * Create a key for subsystem proc-specific data.
1448 1.95 thorpej */
1449 1.95 thorpej int
1450 1.95 thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1451 1.95 thorpej {
1452 1.95 thorpej
1453 1.98 thorpej return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1454 1.95 thorpej }
1455 1.95 thorpej
1456 1.95 thorpej /*
1457 1.95 thorpej * proc_specific_key_delete --
1458 1.95 thorpej * Delete a key for subsystem proc-specific data.
1459 1.95 thorpej */
1460 1.95 thorpej void
1461 1.95 thorpej proc_specific_key_delete(specificdata_key_t key)
1462 1.95 thorpej {
1463 1.95 thorpej
1464 1.95 thorpej specificdata_key_delete(proc_specificdata_domain, key);
1465 1.95 thorpej }
1466 1.95 thorpej
1467 1.98 thorpej /*
1468 1.98 thorpej * proc_initspecific --
1469 1.98 thorpej * Initialize a proc's specificdata container.
1470 1.98 thorpej */
1471 1.96 christos void
1472 1.96 christos proc_initspecific(struct proc *p)
1473 1.96 christos {
1474 1.96 christos int error;
1475 1.98 thorpej
1476 1.96 christos error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1477 1.96 christos KASSERT(error == 0);
1478 1.96 christos }
1479 1.96 christos
1480 1.95 thorpej /*
1481 1.98 thorpej * proc_finispecific --
1482 1.98 thorpej * Finalize a proc's specificdata container.
1483 1.98 thorpej */
1484 1.98 thorpej void
1485 1.98 thorpej proc_finispecific(struct proc *p)
1486 1.98 thorpej {
1487 1.98 thorpej
1488 1.98 thorpej specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1489 1.98 thorpej }
1490 1.98 thorpej
1491 1.98 thorpej /*
1492 1.95 thorpej * proc_getspecific --
1493 1.95 thorpej * Return proc-specific data corresponding to the specified key.
1494 1.95 thorpej */
1495 1.95 thorpej void *
1496 1.95 thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
1497 1.95 thorpej {
1498 1.95 thorpej
1499 1.95 thorpej return (specificdata_getspecific(proc_specificdata_domain,
1500 1.95 thorpej &p->p_specdataref, key));
1501 1.95 thorpej }
1502 1.95 thorpej
1503 1.95 thorpej /*
1504 1.95 thorpej * proc_setspecific --
1505 1.95 thorpej * Set proc-specific data corresponding to the specified key.
1506 1.95 thorpej */
1507 1.95 thorpej void
1508 1.95 thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1509 1.95 thorpej {
1510 1.95 thorpej
1511 1.95 thorpej specificdata_setspecific(proc_specificdata_domain,
1512 1.95 thorpej &p->p_specdataref, key, data);
1513 1.95 thorpej }
1514