kern_proc.c revision 1.123 1 1.123 matt /* $NetBSD: kern_proc.c,v 1.123 2007/11/07 16:51:28 matt Exp $ */
2 1.33 thorpej
3 1.33 thorpej /*-
4 1.100 ad * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
5 1.33 thorpej * All rights reserved.
6 1.33 thorpej *
7 1.33 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.33 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.100 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.33 thorpej *
11 1.33 thorpej * Redistribution and use in source and binary forms, with or without
12 1.33 thorpej * modification, are permitted provided that the following conditions
13 1.33 thorpej * are met:
14 1.33 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.33 thorpej * notice, this list of conditions and the following disclaimer.
16 1.33 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.33 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.33 thorpej * documentation and/or other materials provided with the distribution.
19 1.33 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.33 thorpej * must display the following acknowledgement:
21 1.33 thorpej * This product includes software developed by the NetBSD
22 1.33 thorpej * Foundation, Inc. and its contributors.
23 1.33 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.33 thorpej * contributors may be used to endorse or promote products derived
25 1.33 thorpej * from this software without specific prior written permission.
26 1.33 thorpej *
27 1.33 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.33 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.33 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.33 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.33 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.33 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.33 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.33 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.33 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.33 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.33 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.33 thorpej */
39 1.9 cgd
40 1.1 cgd /*
41 1.7 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 1.7 cgd * The Regents of the University of California. All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Redistribution and use in source and binary forms, with or without
45 1.1 cgd * modification, are permitted provided that the following conditions
46 1.1 cgd * are met:
47 1.1 cgd * 1. Redistributions of source code must retain the above copyright
48 1.1 cgd * notice, this list of conditions and the following disclaimer.
49 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 cgd * notice, this list of conditions and the following disclaimer in the
51 1.1 cgd * documentation and/or other materials provided with the distribution.
52 1.65 agc * 3. Neither the name of the University nor the names of its contributors
53 1.1 cgd * may be used to endorse or promote products derived from this software
54 1.1 cgd * without specific prior written permission.
55 1.1 cgd *
56 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.1 cgd * SUCH DAMAGE.
67 1.1 cgd *
68 1.23 fvdl * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 1.1 cgd */
70 1.45 lukem
71 1.45 lukem #include <sys/cdefs.h>
72 1.123 matt __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.123 2007/11/07 16:51:28 matt Exp $");
73 1.48 yamt
74 1.48 yamt #include "opt_kstack.h"
75 1.88 onoe #include "opt_maxuprc.h"
76 1.90 rjs #include "opt_multiprocessor.h"
77 1.90 rjs #include "opt_lockdebug.h"
78 1.1 cgd
79 1.5 mycroft #include <sys/param.h>
80 1.5 mycroft #include <sys/systm.h>
81 1.5 mycroft #include <sys/kernel.h>
82 1.5 mycroft #include <sys/proc.h>
83 1.28 thorpej #include <sys/resourcevar.h>
84 1.5 mycroft #include <sys/buf.h>
85 1.5 mycroft #include <sys/acct.h>
86 1.5 mycroft #include <sys/wait.h>
87 1.5 mycroft #include <sys/file.h>
88 1.8 mycroft #include <ufs/ufs/quota.h>
89 1.5 mycroft #include <sys/uio.h>
90 1.5 mycroft #include <sys/malloc.h>
91 1.24 thorpej #include <sys/pool.h>
92 1.5 mycroft #include <sys/mbuf.h>
93 1.5 mycroft #include <sys/ioctl.h>
94 1.5 mycroft #include <sys/tty.h>
95 1.11 cgd #include <sys/signalvar.h>
96 1.51 gmcgarry #include <sys/ras.h>
97 1.81 junyoung #include <sys/filedesc.h>
98 1.103 dsl #include "sys/syscall_stats.h"
99 1.89 elad #include <sys/kauth.h>
100 1.100 ad #include <sys/sleepq.h>
101 1.81 junyoung
102 1.81 junyoung #include <uvm/uvm.h>
103 1.79 yamt #include <uvm/uvm_extern.h>
104 1.5 mycroft
105 1.7 cgd /*
106 1.10 mycroft * Other process lists
107 1.7 cgd */
108 1.31 thorpej
109 1.10 mycroft struct proclist allproc;
110 1.32 thorpej struct proclist zombproc; /* resources have been freed */
111 1.32 thorpej
112 1.32 thorpej /*
113 1.100 ad * There are two locks on global process state.
114 1.100 ad *
115 1.107 ad * 1. proclist_lock is an adaptive mutex and is used when modifying
116 1.107 ad * or examining process state from a process context. It protects
117 1.107 ad * the internal tables, all of the process lists, and a number of
118 1.107 ad * members of struct proc.
119 1.107 ad *
120 1.100 ad * 2. proclist_mutex is used when allproc must be traversed from an
121 1.107 ad * interrupt context, or when changing the state of processes. The
122 1.107 ad * proclist_lock should always be used in preference. In some cases,
123 1.107 ad * both locks need to be held.
124 1.33 thorpej *
125 1.100 ad * proclist_lock proclist_mutex structure
126 1.100 ad * --------------- --------------- -----------------
127 1.100 ad * x zombproc
128 1.100 ad * x x pid_table
129 1.100 ad * x proc::p_pptr
130 1.100 ad * x proc::p_sibling
131 1.100 ad * x proc::p_children
132 1.100 ad * x x allproc
133 1.100 ad * x x proc::p_pgrp
134 1.100 ad * x x proc::p_pglist
135 1.100 ad * x x proc::p_session
136 1.100 ad * x x proc::p_list
137 1.100 ad * x alllwp
138 1.100 ad * x lwp::l_list
139 1.33 thorpej *
140 1.100 ad * The lock order for processes and LWPs is approximately as following:
141 1.33 thorpej *
142 1.107 ad * kernel_lock
143 1.100 ad * -> proclist_lock
144 1.107 ad * -> proc::p_mutex
145 1.107 ad * -> proclist_mutex
146 1.100 ad * -> proc::p_smutex
147 1.107 ad * -> proc::p_stmutex
148 1.107 ad *
149 1.107 ad * XXX p_smutex can be run at IPL_VM once audio drivers on the x86
150 1.107 ad * platform are made MP safe. Currently it blocks interrupts at
151 1.107 ad * IPL_SCHED and below.
152 1.107 ad *
153 1.107 ad * XXX The two process locks (p_smutex + p_mutex), and the two global
154 1.107 ad * state locks (proclist_lock + proclist_mutex) should be merged
155 1.107 ad * together. However, to do so requires interrupts that interrupts
156 1.107 ad * be run with LWP context.
157 1.33 thorpej */
158 1.107 ad kmutex_t proclist_lock;
159 1.100 ad kmutex_t proclist_mutex;
160 1.33 thorpej
161 1.33 thorpej /*
162 1.72 junyoung * pid to proc lookup is done by indexing the pid_table array.
163 1.61 dsl * Since pid numbers are only allocated when an empty slot
164 1.61 dsl * has been found, there is no need to search any lists ever.
165 1.61 dsl * (an orphaned pgrp will lock the slot, a session will lock
166 1.61 dsl * the pgrp with the same number.)
167 1.61 dsl * If the table is too small it is reallocated with twice the
168 1.61 dsl * previous size and the entries 'unzipped' into the two halves.
169 1.61 dsl * A linked list of free entries is passed through the pt_proc
170 1.61 dsl * field of 'free' items - set odd to be an invalid ptr.
171 1.61 dsl */
172 1.61 dsl
173 1.61 dsl struct pid_table {
174 1.61 dsl struct proc *pt_proc;
175 1.61 dsl struct pgrp *pt_pgrp;
176 1.72 junyoung };
177 1.61 dsl #if 1 /* strongly typed cast - should be a noop */
178 1.84 perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
179 1.61 dsl #else
180 1.61 dsl #define p2u(p) ((uint)p)
181 1.72 junyoung #endif
182 1.61 dsl #define P_VALID(p) (!(p2u(p) & 1))
183 1.61 dsl #define P_NEXT(p) (p2u(p) >> 1)
184 1.61 dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
185 1.61 dsl
186 1.61 dsl #define INITIAL_PID_TABLE_SIZE (1 << 5)
187 1.61 dsl static struct pid_table *pid_table;
188 1.61 dsl static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
189 1.61 dsl static uint pid_alloc_lim; /* max we allocate before growing table */
190 1.61 dsl static uint pid_alloc_cnt; /* number of allocated pids */
191 1.61 dsl
192 1.61 dsl /* links through free slots - never empty! */
193 1.61 dsl static uint next_free_pt, last_free_pt;
194 1.61 dsl static pid_t pid_max = PID_MAX; /* largest value we allocate */
195 1.31 thorpej
196 1.81 junyoung /* Components of the first process -- never freed. */
197 1.123 matt
198 1.123 matt extern const struct emul emul_netbsd; /* defined in kern_exec.c */
199 1.123 matt
200 1.123 matt struct session session0 = {
201 1.123 matt .s_count = 1,
202 1.123 matt .s_sid = 0,
203 1.123 matt };
204 1.123 matt struct pgrp pgrp0 = {
205 1.123 matt .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
206 1.123 matt .pg_session = &session0,
207 1.123 matt };
208 1.81 junyoung struct filedesc0 filedesc0;
209 1.123 matt struct cwdinfo cwdi0 = {
210 1.123 matt .cwdi_cmask = CMASK, /* see cmask below */
211 1.123 matt .cwdi_refcnt = 1,
212 1.123 matt };
213 1.123 matt struct plimit limit0 = {
214 1.123 matt .pl_corename = defcorename,
215 1.123 matt .pl_refcnt = 1,
216 1.123 matt .pl_rlimit = {
217 1.123 matt [0 ... __arraycount(limit0.pl_rlimit) - 1] = {
218 1.123 matt .rlim_cur = RLIM_INFINITY,
219 1.123 matt .rlim_max = RLIM_INFINITY,
220 1.123 matt },
221 1.123 matt },
222 1.123 matt };
223 1.81 junyoung struct pstats pstat0;
224 1.81 junyoung struct vmspace vmspace0;
225 1.81 junyoung struct sigacts sigacts0;
226 1.100 ad struct turnstile turnstile0;
227 1.123 matt struct proc proc0 = {
228 1.123 matt .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
229 1.123 matt .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
230 1.123 matt .p_nlwps = 1,
231 1.123 matt .p_nrlwps = 1,
232 1.123 matt .p_nlwpid = 1, /* must match lwp0.l_lid */
233 1.123 matt .p_pgrp = &pgrp0,
234 1.123 matt .p_comm = "system",
235 1.123 matt /*
236 1.123 matt * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
237 1.123 matt * when they exit. init(8) can easily wait them out for us.
238 1.123 matt */
239 1.123 matt .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
240 1.123 matt .p_stat = SACTIVE,
241 1.123 matt .p_nice = NZERO,
242 1.123 matt .p_emul = &emul_netbsd,
243 1.123 matt .p_cwdi = &cwdi0,
244 1.123 matt .p_limit = &limit0,
245 1.123 matt .p_fd = &filedesc0.fd_fd,
246 1.123 matt .p_vmspace = &vmspace0,
247 1.123 matt .p_stats = &pstat0,
248 1.123 matt .p_sigacts = &sigacts0,
249 1.123 matt };
250 1.123 matt struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
251 1.123 matt #ifdef LWP0_CPU_INFO
252 1.123 matt .l_cpu = LWP0_CPU_INFO,
253 1.123 matt #endif
254 1.123 matt .l_proc = &proc0,
255 1.123 matt .l_lid = 1,
256 1.123 matt .l_flag = LW_INMEM | LW_SYSTEM,
257 1.123 matt .l_stat = LSONPROC,
258 1.123 matt .l_ts = &turnstile0,
259 1.123 matt .l_syncobj = &sched_syncobj,
260 1.123 matt .l_refcnt = 1,
261 1.123 matt .l_priority = PRI_USER + NPRI_USER - 1,
262 1.123 matt .l_inheritedprio = -1,
263 1.123 matt .l_class = SCHED_OTHER,
264 1.123 matt .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
265 1.123 matt .l_name = __UNCONST("swapper"),
266 1.123 matt };
267 1.123 matt kauth_cred_t cred0;
268 1.81 junyoung
269 1.81 junyoung extern struct user *proc0paddr;
270 1.81 junyoung
271 1.81 junyoung int nofile = NOFILE;
272 1.81 junyoung int maxuprc = MAXUPRC;
273 1.81 junyoung int cmask = CMASK;
274 1.81 junyoung
275 1.77 simonb POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
276 1.108 ad &pool_allocator_nointr, IPL_NONE);
277 1.77 simonb POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
278 1.108 ad &pool_allocator_nointr, IPL_NONE);
279 1.77 simonb POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
280 1.108 ad &pool_allocator_nointr, IPL_NONE);
281 1.77 simonb POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
282 1.108 ad &pool_allocator_nointr, IPL_NONE);
283 1.77 simonb POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
284 1.108 ad &pool_allocator_nointr, IPL_NONE);
285 1.57 thorpej
286 1.57 thorpej MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
287 1.57 thorpej MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
288 1.57 thorpej MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
289 1.10 mycroft
290 1.31 thorpej /*
291 1.31 thorpej * The process list descriptors, used during pid allocation and
292 1.31 thorpej * by sysctl. No locking on this data structure is needed since
293 1.31 thorpej * it is completely static.
294 1.31 thorpej */
295 1.31 thorpej const struct proclist_desc proclists[] = {
296 1.31 thorpej { &allproc },
297 1.31 thorpej { &zombproc },
298 1.31 thorpej { NULL },
299 1.31 thorpej };
300 1.31 thorpej
301 1.72 junyoung static void orphanpg(struct pgrp *);
302 1.72 junyoung static void pg_delete(pid_t);
303 1.13 christos
304 1.95 thorpej static specificdata_domain_t proc_specificdata_domain;
305 1.95 thorpej
306 1.10 mycroft /*
307 1.10 mycroft * Initialize global process hashing structures.
308 1.10 mycroft */
309 1.11 cgd void
310 1.59 dsl procinit(void)
311 1.7 cgd {
312 1.31 thorpej const struct proclist_desc *pd;
313 1.61 dsl int i;
314 1.61 dsl #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
315 1.31 thorpej
316 1.31 thorpej for (pd = proclists; pd->pd_list != NULL; pd++)
317 1.31 thorpej LIST_INIT(pd->pd_list);
318 1.7 cgd
319 1.107 ad mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
320 1.100 ad mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
321 1.33 thorpej
322 1.61 dsl pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
323 1.61 dsl M_PROC, M_WAITOK);
324 1.61 dsl /* Set free list running through table...
325 1.61 dsl Preset 'use count' above PID_MAX so we allocate pid 1 next. */
326 1.61 dsl for (i = 0; i <= pid_tbl_mask; i++) {
327 1.61 dsl pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
328 1.61 dsl pid_table[i].pt_pgrp = 0;
329 1.61 dsl }
330 1.61 dsl /* slot 0 is just grabbed */
331 1.61 dsl next_free_pt = 1;
332 1.61 dsl /* Need to fix last entry. */
333 1.61 dsl last_free_pt = pid_tbl_mask;
334 1.61 dsl pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
335 1.61 dsl /* point at which we grow table - to avoid reusing pids too often */
336 1.61 dsl pid_alloc_lim = pid_tbl_mask - 1;
337 1.61 dsl #undef LINK_EMPTY
338 1.61 dsl
339 1.55 thorpej LIST_INIT(&alllwp);
340 1.55 thorpej
341 1.43 ad uihashtbl =
342 1.43 ad hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
343 1.95 thorpej
344 1.95 thorpej proc_specificdata_domain = specificdata_domain_create();
345 1.95 thorpej KASSERT(proc_specificdata_domain != NULL);
346 1.7 cgd }
347 1.1 cgd
348 1.7 cgd /*
349 1.81 junyoung * Initialize process 0.
350 1.81 junyoung */
351 1.81 junyoung void
352 1.81 junyoung proc0_init(void)
353 1.81 junyoung {
354 1.81 junyoung struct proc *p;
355 1.81 junyoung struct pgrp *pg;
356 1.81 junyoung struct session *sess;
357 1.81 junyoung struct lwp *l;
358 1.81 junyoung rlim_t lim;
359 1.81 junyoung
360 1.81 junyoung p = &proc0;
361 1.81 junyoung pg = &pgrp0;
362 1.81 junyoung sess = &session0;
363 1.81 junyoung l = &lwp0;
364 1.81 junyoung
365 1.123 matt KASSERT(l->l_lid == p->p_nlwpid);
366 1.123 matt
367 1.100 ad mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
368 1.112 ad mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_HIGH);
369 1.120 ad mutex_init(&p->p_raslock, MUTEX_DEFAULT, IPL_NONE);
370 1.100 ad mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
371 1.113 ad mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
372 1.107 ad
373 1.122 ad rw_init(&p->p_reflock);
374 1.100 ad cv_init(&p->p_waitcv, "wait");
375 1.100 ad cv_init(&p->p_lwpcv, "lwpwait");
376 1.100 ad
377 1.81 junyoung LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
378 1.100 ad
379 1.81 junyoung pid_table[0].pt_proc = p;
380 1.81 junyoung LIST_INSERT_HEAD(&allproc, p, p_list);
381 1.81 junyoung LIST_INSERT_HEAD(&alllwp, l, l_list);
382 1.81 junyoung
383 1.81 junyoung pid_table[0].pt_pgrp = pg;
384 1.81 junyoung LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
385 1.81 junyoung
386 1.81 junyoung #ifdef __HAVE_SYSCALL_INTERN
387 1.81 junyoung (*p->p_emul->e_syscall_intern)(p);
388 1.81 junyoung #endif
389 1.81 junyoung
390 1.121 ad callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
391 1.115 ad callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
392 1.100 ad cv_init(&l->l_sigcv, "sigwait");
393 1.81 junyoung
394 1.81 junyoung /* Create credentials. */
395 1.89 elad cred0 = kauth_cred_alloc();
396 1.89 elad p->p_cred = cred0;
397 1.100 ad kauth_cred_hold(cred0);
398 1.100 ad l->l_cred = cred0;
399 1.81 junyoung
400 1.81 junyoung /* Create the CWD info. */
401 1.113 ad rw_init(&cwdi0.cwdi_lock);
402 1.81 junyoung
403 1.81 junyoung /* Create the limits structures. */
404 1.116 dsl mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
405 1.81 junyoung
406 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
407 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
408 1.81 junyoung maxfiles < nofile ? maxfiles : nofile;
409 1.81 junyoung
410 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
411 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
412 1.81 junyoung maxproc < maxuprc ? maxproc : maxuprc;
413 1.81 junyoung
414 1.81 junyoung lim = ptoa(uvmexp.free);
415 1.81 junyoung limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
416 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
417 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
418 1.81 junyoung
419 1.81 junyoung /* Configure virtual memory system, set vm rlimits. */
420 1.81 junyoung uvm_init_limits(p);
421 1.81 junyoung
422 1.81 junyoung /* Initialize file descriptor table for proc0. */
423 1.81 junyoung fdinit1(&filedesc0);
424 1.81 junyoung
425 1.81 junyoung /*
426 1.81 junyoung * Initialize proc0's vmspace, which uses the kernel pmap.
427 1.81 junyoung * All kernel processes (which never have user space mappings)
428 1.81 junyoung * share proc0's vmspace, and thus, the kernel pmap.
429 1.81 junyoung */
430 1.81 junyoung uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
431 1.81 junyoung trunc_page(VM_MAX_ADDRESS));
432 1.81 junyoung
433 1.81 junyoung l->l_addr = proc0paddr; /* XXX */
434 1.81 junyoung
435 1.81 junyoung /* Initialize signal state for proc0. */
436 1.100 ad mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
437 1.81 junyoung siginit(p);
438 1.96 christos
439 1.96 christos proc_initspecific(p);
440 1.96 christos lwp_initspecific(l);
441 1.103 dsl
442 1.103 dsl SYSCALL_TIME_LWP_INIT(l);
443 1.81 junyoung }
444 1.81 junyoung
445 1.81 junyoung /*
446 1.74 junyoung * Check that the specified process group is in the session of the
447 1.60 dsl * specified process.
448 1.60 dsl * Treats -ve ids as process ids.
449 1.60 dsl * Used to validate TIOCSPGRP requests.
450 1.60 dsl */
451 1.60 dsl int
452 1.60 dsl pgid_in_session(struct proc *p, pid_t pg_id)
453 1.60 dsl {
454 1.60 dsl struct pgrp *pgrp;
455 1.101 dsl struct session *session;
456 1.107 ad int error;
457 1.101 dsl
458 1.107 ad mutex_enter(&proclist_lock);
459 1.60 dsl if (pg_id < 0) {
460 1.101 dsl struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
461 1.64 dsl if (p1 == NULL)
462 1.64 dsl return EINVAL;
463 1.60 dsl pgrp = p1->p_pgrp;
464 1.60 dsl } else {
465 1.101 dsl pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
466 1.60 dsl if (pgrp == NULL)
467 1.64 dsl return EINVAL;
468 1.60 dsl }
469 1.101 dsl session = pgrp->pg_session;
470 1.101 dsl if (session != p->p_pgrp->pg_session)
471 1.107 ad error = EPERM;
472 1.107 ad else
473 1.107 ad error = 0;
474 1.107 ad mutex_exit(&proclist_lock);
475 1.107 ad
476 1.107 ad return error;
477 1.7 cgd }
478 1.4 andrew
479 1.1 cgd /*
480 1.41 sommerfe * Is p an inferior of q?
481 1.94 ad *
482 1.94 ad * Call with the proclist_lock held.
483 1.1 cgd */
484 1.11 cgd int
485 1.59 dsl inferior(struct proc *p, struct proc *q)
486 1.1 cgd {
487 1.1 cgd
488 1.41 sommerfe for (; p != q; p = p->p_pptr)
489 1.1 cgd if (p->p_pid == 0)
490 1.82 junyoung return 0;
491 1.82 junyoung return 1;
492 1.1 cgd }
493 1.1 cgd
494 1.1 cgd /*
495 1.1 cgd * Locate a process by number
496 1.1 cgd */
497 1.1 cgd struct proc *
498 1.68 dsl p_find(pid_t pid, uint flags)
499 1.1 cgd {
500 1.33 thorpej struct proc *p;
501 1.68 dsl char stat;
502 1.1 cgd
503 1.68 dsl if (!(flags & PFIND_LOCKED))
504 1.107 ad mutex_enter(&proclist_lock);
505 1.100 ad
506 1.61 dsl p = pid_table[pid & pid_tbl_mask].pt_proc;
507 1.100 ad
508 1.61 dsl /* Only allow live processes to be found by pid. */
509 1.100 ad /* XXXSMP p_stat */
510 1.100 ad if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
511 1.100 ad stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
512 1.100 ad (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
513 1.68 dsl if (flags & PFIND_UNLOCK_OK)
514 1.107 ad mutex_exit(&proclist_lock);
515 1.68 dsl return p;
516 1.68 dsl }
517 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
518 1.107 ad mutex_exit(&proclist_lock);
519 1.68 dsl return NULL;
520 1.1 cgd }
521 1.1 cgd
522 1.61 dsl
523 1.1 cgd /*
524 1.1 cgd * Locate a process group by number
525 1.1 cgd */
526 1.1 cgd struct pgrp *
527 1.68 dsl pg_find(pid_t pgid, uint flags)
528 1.1 cgd {
529 1.68 dsl struct pgrp *pg;
530 1.1 cgd
531 1.68 dsl if (!(flags & PFIND_LOCKED))
532 1.107 ad mutex_enter(&proclist_lock);
533 1.68 dsl pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
534 1.61 dsl /*
535 1.61 dsl * Can't look up a pgrp that only exists because the session
536 1.61 dsl * hasn't died yet (traditional)
537 1.61 dsl */
538 1.68 dsl if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
539 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
540 1.107 ad mutex_exit(&proclist_lock);
541 1.68 dsl return NULL;
542 1.68 dsl }
543 1.68 dsl
544 1.68 dsl if (flags & PFIND_UNLOCK_OK)
545 1.107 ad mutex_exit(&proclist_lock);
546 1.68 dsl return pg;
547 1.1 cgd }
548 1.1 cgd
549 1.61 dsl static void
550 1.61 dsl expand_pid_table(void)
551 1.1 cgd {
552 1.61 dsl uint pt_size = pid_tbl_mask + 1;
553 1.61 dsl struct pid_table *n_pt, *new_pt;
554 1.61 dsl struct proc *proc;
555 1.61 dsl struct pgrp *pgrp;
556 1.61 dsl int i;
557 1.61 dsl pid_t pid;
558 1.1 cgd
559 1.61 dsl new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
560 1.61 dsl
561 1.107 ad mutex_enter(&proclist_lock);
562 1.61 dsl if (pt_size != pid_tbl_mask + 1) {
563 1.61 dsl /* Another process beat us to it... */
564 1.107 ad mutex_exit(&proclist_lock);
565 1.61 dsl FREE(new_pt, M_PROC);
566 1.61 dsl return;
567 1.61 dsl }
568 1.72 junyoung
569 1.61 dsl /*
570 1.61 dsl * Copy entries from old table into new one.
571 1.61 dsl * If 'pid' is 'odd' we need to place in the upper half,
572 1.61 dsl * even pid's to the lower half.
573 1.61 dsl * Free items stay in the low half so we don't have to
574 1.61 dsl * fixup the reference to them.
575 1.61 dsl * We stuff free items on the front of the freelist
576 1.61 dsl * because we can't write to unmodified entries.
577 1.74 junyoung * Processing the table backwards maintains a semblance
578 1.61 dsl * of issueing pid numbers that increase with time.
579 1.61 dsl */
580 1.61 dsl i = pt_size - 1;
581 1.61 dsl n_pt = new_pt + i;
582 1.61 dsl for (; ; i--, n_pt--) {
583 1.61 dsl proc = pid_table[i].pt_proc;
584 1.61 dsl pgrp = pid_table[i].pt_pgrp;
585 1.61 dsl if (!P_VALID(proc)) {
586 1.61 dsl /* Up 'use count' so that link is valid */
587 1.61 dsl pid = (P_NEXT(proc) + pt_size) & ~pt_size;
588 1.61 dsl proc = P_FREE(pid);
589 1.61 dsl if (pgrp)
590 1.61 dsl pid = pgrp->pg_id;
591 1.61 dsl } else
592 1.61 dsl pid = proc->p_pid;
593 1.72 junyoung
594 1.61 dsl /* Save entry in appropriate half of table */
595 1.61 dsl n_pt[pid & pt_size].pt_proc = proc;
596 1.61 dsl n_pt[pid & pt_size].pt_pgrp = pgrp;
597 1.61 dsl
598 1.61 dsl /* Put other piece on start of free list */
599 1.61 dsl pid = (pid ^ pt_size) & ~pid_tbl_mask;
600 1.61 dsl n_pt[pid & pt_size].pt_proc =
601 1.61 dsl P_FREE((pid & ~pt_size) | next_free_pt);
602 1.61 dsl n_pt[pid & pt_size].pt_pgrp = 0;
603 1.61 dsl next_free_pt = i | (pid & pt_size);
604 1.61 dsl if (i == 0)
605 1.61 dsl break;
606 1.61 dsl }
607 1.61 dsl
608 1.61 dsl /* Switch tables */
609 1.100 ad mutex_enter(&proclist_mutex);
610 1.61 dsl n_pt = pid_table;
611 1.61 dsl pid_table = new_pt;
612 1.100 ad mutex_exit(&proclist_mutex);
613 1.61 dsl pid_tbl_mask = pt_size * 2 - 1;
614 1.61 dsl
615 1.61 dsl /*
616 1.61 dsl * pid_max starts as PID_MAX (= 30000), once we have 16384
617 1.61 dsl * allocated pids we need it to be larger!
618 1.61 dsl */
619 1.61 dsl if (pid_tbl_mask > PID_MAX) {
620 1.61 dsl pid_max = pid_tbl_mask * 2 + 1;
621 1.61 dsl pid_alloc_lim |= pid_alloc_lim << 1;
622 1.61 dsl } else
623 1.61 dsl pid_alloc_lim <<= 1; /* doubles number of free slots... */
624 1.61 dsl
625 1.107 ad mutex_exit(&proclist_lock);
626 1.61 dsl FREE(n_pt, M_PROC);
627 1.61 dsl }
628 1.61 dsl
629 1.61 dsl struct proc *
630 1.61 dsl proc_alloc(void)
631 1.61 dsl {
632 1.61 dsl struct proc *p;
633 1.100 ad int nxt;
634 1.61 dsl pid_t pid;
635 1.61 dsl struct pid_table *pt;
636 1.61 dsl
637 1.61 dsl p = pool_get(&proc_pool, PR_WAITOK);
638 1.61 dsl p->p_stat = SIDL; /* protect against others */
639 1.61 dsl
640 1.96 christos proc_initspecific(p);
641 1.61 dsl /* allocate next free pid */
642 1.61 dsl
643 1.61 dsl for (;;expand_pid_table()) {
644 1.61 dsl if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
645 1.61 dsl /* ensure pids cycle through 2000+ values */
646 1.61 dsl continue;
647 1.107 ad mutex_enter(&proclist_lock);
648 1.61 dsl pt = &pid_table[next_free_pt];
649 1.1 cgd #ifdef DIAGNOSTIC
650 1.63 christos if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
651 1.61 dsl panic("proc_alloc: slot busy");
652 1.1 cgd #endif
653 1.61 dsl nxt = P_NEXT(pt->pt_proc);
654 1.61 dsl if (nxt & pid_tbl_mask)
655 1.61 dsl break;
656 1.61 dsl /* Table full - expand (NB last entry not used....) */
657 1.107 ad mutex_exit(&proclist_lock);
658 1.61 dsl }
659 1.61 dsl
660 1.61 dsl /* pid is 'saved use count' + 'size' + entry */
661 1.61 dsl pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
662 1.61 dsl if ((uint)pid > (uint)pid_max)
663 1.61 dsl pid &= pid_tbl_mask;
664 1.61 dsl p->p_pid = pid;
665 1.61 dsl next_free_pt = nxt & pid_tbl_mask;
666 1.61 dsl
667 1.61 dsl /* Grab table slot */
668 1.100 ad mutex_enter(&proclist_mutex);
669 1.61 dsl pt->pt_proc = p;
670 1.100 ad mutex_exit(&proclist_mutex);
671 1.61 dsl pid_alloc_cnt++;
672 1.61 dsl
673 1.107 ad mutex_exit(&proclist_lock);
674 1.61 dsl
675 1.61 dsl return p;
676 1.61 dsl }
677 1.61 dsl
678 1.61 dsl /*
679 1.118 ad * Free a process id - called from proc_free (in kern_exit.c)
680 1.100 ad *
681 1.118 ad * Called with the proclist_lock held.
682 1.61 dsl */
683 1.61 dsl void
684 1.118 ad proc_free_pid(struct proc *p)
685 1.61 dsl {
686 1.61 dsl pid_t pid = p->p_pid;
687 1.61 dsl struct pid_table *pt;
688 1.61 dsl
689 1.107 ad KASSERT(mutex_owned(&proclist_lock));
690 1.61 dsl
691 1.61 dsl pt = &pid_table[pid & pid_tbl_mask];
692 1.1 cgd #ifdef DIAGNOSTIC
693 1.63 christos if (__predict_false(pt->pt_proc != p))
694 1.61 dsl panic("proc_free: pid_table mismatch, pid %x, proc %p",
695 1.61 dsl pid, p);
696 1.1 cgd #endif
697 1.100 ad mutex_enter(&proclist_mutex);
698 1.61 dsl /* save pid use count in slot */
699 1.61 dsl pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
700 1.61 dsl
701 1.61 dsl if (pt->pt_pgrp == NULL) {
702 1.61 dsl /* link last freed entry onto ours */
703 1.61 dsl pid &= pid_tbl_mask;
704 1.61 dsl pt = &pid_table[last_free_pt];
705 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
706 1.61 dsl last_free_pt = pid;
707 1.61 dsl pid_alloc_cnt--;
708 1.61 dsl }
709 1.100 ad mutex_exit(&proclist_mutex);
710 1.61 dsl
711 1.61 dsl nprocs--;
712 1.61 dsl }
713 1.61 dsl
714 1.61 dsl /*
715 1.61 dsl * Move p to a new or existing process group (and session)
716 1.61 dsl *
717 1.61 dsl * If we are creating a new pgrp, the pgid should equal
718 1.72 junyoung * the calling process' pid.
719 1.61 dsl * If is only valid to enter a process group that is in the session
720 1.61 dsl * of the process.
721 1.61 dsl * Also mksess should only be set if we are creating a process group
722 1.61 dsl *
723 1.72 junyoung * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
724 1.100 ad * SYSV setpgrp support for hpux.
725 1.61 dsl */
726 1.61 dsl int
727 1.100 ad enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
728 1.61 dsl {
729 1.61 dsl struct pgrp *new_pgrp, *pgrp;
730 1.61 dsl struct session *sess;
731 1.100 ad struct proc *p;
732 1.61 dsl int rval;
733 1.61 dsl pid_t pg_id = NO_PGID;
734 1.61 dsl
735 1.61 dsl if (mksess)
736 1.99 pooka sess = pool_get(&session_pool, PR_WAITOK);
737 1.61 dsl else
738 1.61 dsl sess = NULL;
739 1.61 dsl
740 1.107 ad /* Allocate data areas we might need before doing any validity checks */
741 1.107 ad mutex_enter(&proclist_lock); /* Because pid_table might change */
742 1.107 ad if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
743 1.107 ad mutex_exit(&proclist_lock);
744 1.107 ad new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
745 1.107 ad mutex_enter(&proclist_lock);
746 1.107 ad } else
747 1.107 ad new_pgrp = NULL;
748 1.61 dsl rval = EPERM; /* most common error (to save typing) */
749 1.61 dsl
750 1.61 dsl /* Check pgrp exists or can be created */
751 1.61 dsl pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
752 1.61 dsl if (pgrp != NULL && pgrp->pg_id != pgid)
753 1.61 dsl goto done;
754 1.61 dsl
755 1.61 dsl /* Can only set another process under restricted circumstances. */
756 1.100 ad if (pid != curp->p_pid) {
757 1.61 dsl /* must exist and be one of our children... */
758 1.100 ad if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
759 1.100 ad !inferior(p, curp)) {
760 1.61 dsl rval = ESRCH;
761 1.61 dsl goto done;
762 1.61 dsl }
763 1.61 dsl /* ... in the same session... */
764 1.61 dsl if (sess != NULL || p->p_session != curp->p_session)
765 1.61 dsl goto done;
766 1.61 dsl /* ... existing pgid must be in same session ... */
767 1.61 dsl if (pgrp != NULL && pgrp->pg_session != p->p_session)
768 1.61 dsl goto done;
769 1.61 dsl /* ... and not done an exec. */
770 1.102 pavel if (p->p_flag & PK_EXEC) {
771 1.61 dsl rval = EACCES;
772 1.61 dsl goto done;
773 1.49 enami }
774 1.100 ad } else {
775 1.100 ad /* ... setsid() cannot re-enter a pgrp */
776 1.100 ad if (mksess && (curp->p_pgid == curp->p_pid ||
777 1.100 ad pg_find(curp->p_pid, PFIND_LOCKED)))
778 1.100 ad goto done;
779 1.100 ad p = curp;
780 1.61 dsl }
781 1.1 cgd
782 1.61 dsl /* Changing the process group/session of a session
783 1.61 dsl leader is definitely off limits. */
784 1.61 dsl if (SESS_LEADER(p)) {
785 1.61 dsl if (sess == NULL && p->p_pgrp == pgrp)
786 1.61 dsl /* unless it's a definite noop */
787 1.61 dsl rval = 0;
788 1.61 dsl goto done;
789 1.61 dsl }
790 1.61 dsl
791 1.61 dsl /* Can only create a process group with id of process */
792 1.61 dsl if (pgrp == NULL && pgid != pid)
793 1.61 dsl goto done;
794 1.61 dsl
795 1.61 dsl /* Can only create a session if creating pgrp */
796 1.61 dsl if (sess != NULL && pgrp != NULL)
797 1.61 dsl goto done;
798 1.61 dsl
799 1.61 dsl /* Check we allocated memory for a pgrp... */
800 1.61 dsl if (pgrp == NULL && new_pgrp == NULL)
801 1.61 dsl goto done;
802 1.61 dsl
803 1.61 dsl /* Don't attach to 'zombie' pgrp */
804 1.61 dsl if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
805 1.61 dsl goto done;
806 1.61 dsl
807 1.61 dsl /* Expect to succeed now */
808 1.61 dsl rval = 0;
809 1.61 dsl
810 1.61 dsl if (pgrp == p->p_pgrp)
811 1.61 dsl /* nothing to do */
812 1.61 dsl goto done;
813 1.61 dsl
814 1.61 dsl /* Ok all setup, link up required structures */
815 1.100 ad
816 1.61 dsl if (pgrp == NULL) {
817 1.61 dsl pgrp = new_pgrp;
818 1.61 dsl new_pgrp = 0;
819 1.61 dsl if (sess != NULL) {
820 1.21 thorpej sess->s_sid = p->p_pid;
821 1.1 cgd sess->s_leader = p;
822 1.1 cgd sess->s_count = 1;
823 1.1 cgd sess->s_ttyvp = NULL;
824 1.1 cgd sess->s_ttyp = NULL;
825 1.58 dsl sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
826 1.25 perry memcpy(sess->s_login, p->p_session->s_login,
827 1.1 cgd sizeof(sess->s_login));
828 1.100 ad p->p_lflag &= ~PL_CONTROLT;
829 1.1 cgd } else {
830 1.61 dsl sess = p->p_pgrp->pg_session;
831 1.61 dsl SESSHOLD(sess);
832 1.1 cgd }
833 1.61 dsl pgrp->pg_session = sess;
834 1.61 dsl sess = 0;
835 1.61 dsl
836 1.1 cgd pgrp->pg_id = pgid;
837 1.10 mycroft LIST_INIT(&pgrp->pg_members);
838 1.61 dsl #ifdef DIAGNOSTIC
839 1.63 christos if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
840 1.61 dsl panic("enterpgrp: pgrp table slot in use");
841 1.63 christos if (__predict_false(mksess && p != curp))
842 1.63 christos panic("enterpgrp: mksession and p != curproc");
843 1.61 dsl #endif
844 1.100 ad mutex_enter(&proclist_mutex);
845 1.61 dsl pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
846 1.1 cgd pgrp->pg_jobc = 0;
847 1.100 ad } else
848 1.100 ad mutex_enter(&proclist_mutex);
849 1.100 ad
850 1.100 ad #ifdef notyet
851 1.100 ad /*
852 1.100 ad * If there's a controlling terminal for the current session, we
853 1.100 ad * have to interlock with it. See ttread().
854 1.100 ad */
855 1.100 ad if (p->p_session->s_ttyvp != NULL) {
856 1.100 ad tp = p->p_session->s_ttyp;
857 1.100 ad mutex_enter(&tp->t_mutex);
858 1.100 ad } else
859 1.100 ad tp = NULL;
860 1.100 ad #endif
861 1.1 cgd
862 1.1 cgd /*
863 1.1 cgd * Adjust eligibility of affected pgrps to participate in job control.
864 1.1 cgd * Increment eligibility counts before decrementing, otherwise we
865 1.1 cgd * could reach 0 spuriously during the first call.
866 1.1 cgd */
867 1.1 cgd fixjobc(p, pgrp, 1);
868 1.1 cgd fixjobc(p, p->p_pgrp, 0);
869 1.1 cgd
870 1.100 ad /* Move process to requested group. */
871 1.10 mycroft LIST_REMOVE(p, p_pglist);
872 1.52 matt if (LIST_EMPTY(&p->p_pgrp->pg_members))
873 1.61 dsl /* defer delete until we've dumped the lock */
874 1.61 dsl pg_id = p->p_pgrp->pg_id;
875 1.1 cgd p->p_pgrp = pgrp;
876 1.10 mycroft LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
877 1.100 ad mutex_exit(&proclist_mutex);
878 1.100 ad
879 1.100 ad #ifdef notyet
880 1.100 ad /* Done with the swap; we can release the tty mutex. */
881 1.100 ad if (tp != NULL)
882 1.100 ad mutex_exit(&tp->t_mutex);
883 1.100 ad #endif
884 1.61 dsl
885 1.61 dsl done:
886 1.100 ad if (pg_id != NO_PGID)
887 1.100 ad pg_delete(pg_id);
888 1.107 ad mutex_exit(&proclist_lock);
889 1.61 dsl if (sess != NULL)
890 1.77 simonb pool_put(&session_pool, sess);
891 1.61 dsl if (new_pgrp != NULL)
892 1.61 dsl pool_put(&pgrp_pool, new_pgrp);
893 1.63 christos #ifdef DEBUG_PGRP
894 1.63 christos if (__predict_false(rval))
895 1.61 dsl printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
896 1.61 dsl pid, pgid, mksess, curp->p_pid, rval);
897 1.61 dsl #endif
898 1.61 dsl return rval;
899 1.1 cgd }
900 1.1 cgd
901 1.1 cgd /*
902 1.100 ad * Remove a process from its process group. Must be called with the
903 1.107 ad * proclist_lock held.
904 1.1 cgd */
905 1.100 ad void
906 1.59 dsl leavepgrp(struct proc *p)
907 1.1 cgd {
908 1.61 dsl struct pgrp *pgrp;
909 1.1 cgd
910 1.107 ad KASSERT(mutex_owned(&proclist_lock));
911 1.100 ad
912 1.100 ad /*
913 1.100 ad * If there's a controlling terminal for the session, we have to
914 1.100 ad * interlock with it. See ttread().
915 1.100 ad */
916 1.100 ad mutex_enter(&proclist_mutex);
917 1.100 ad #ifdef notyet
918 1.100 ad if (p_>p_session->s_ttyvp != NULL) {
919 1.100 ad tp = p->p_session->s_ttyp;
920 1.100 ad mutex_enter(&tp->t_mutex);
921 1.100 ad } else
922 1.100 ad tp = NULL;
923 1.100 ad #endif
924 1.100 ad
925 1.61 dsl pgrp = p->p_pgrp;
926 1.10 mycroft LIST_REMOVE(p, p_pglist);
927 1.94 ad p->p_pgrp = NULL;
928 1.61 dsl
929 1.100 ad #ifdef notyet
930 1.100 ad if (tp != NULL)
931 1.100 ad mutex_exit(&tp->t_mutex);
932 1.100 ad #endif
933 1.100 ad mutex_exit(&proclist_mutex);
934 1.100 ad
935 1.100 ad if (LIST_EMPTY(&pgrp->pg_members))
936 1.100 ad pg_delete(pgrp->pg_id);
937 1.61 dsl }
938 1.61 dsl
939 1.100 ad /*
940 1.107 ad * Free a process group. Must be called with the proclist_lock held.
941 1.100 ad */
942 1.61 dsl static void
943 1.61 dsl pg_free(pid_t pg_id)
944 1.61 dsl {
945 1.61 dsl struct pgrp *pgrp;
946 1.61 dsl struct pid_table *pt;
947 1.61 dsl
948 1.107 ad KASSERT(mutex_owned(&proclist_lock));
949 1.100 ad
950 1.61 dsl pt = &pid_table[pg_id & pid_tbl_mask];
951 1.61 dsl pgrp = pt->pt_pgrp;
952 1.61 dsl #ifdef DIAGNOSTIC
953 1.63 christos if (__predict_false(!pgrp || pgrp->pg_id != pg_id
954 1.63 christos || !LIST_EMPTY(&pgrp->pg_members)))
955 1.61 dsl panic("pg_free: process group absent or has members");
956 1.61 dsl #endif
957 1.61 dsl pt->pt_pgrp = 0;
958 1.61 dsl
959 1.61 dsl if (!P_VALID(pt->pt_proc)) {
960 1.61 dsl /* orphaned pgrp, put slot onto free list */
961 1.61 dsl #ifdef DIAGNOSTIC
962 1.63 christos if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
963 1.61 dsl panic("pg_free: process slot on free list");
964 1.61 dsl #endif
965 1.100 ad mutex_enter(&proclist_mutex);
966 1.61 dsl pg_id &= pid_tbl_mask;
967 1.61 dsl pt = &pid_table[last_free_pt];
968 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
969 1.100 ad mutex_exit(&proclist_mutex);
970 1.61 dsl last_free_pt = pg_id;
971 1.61 dsl pid_alloc_cnt--;
972 1.61 dsl }
973 1.61 dsl pool_put(&pgrp_pool, pgrp);
974 1.1 cgd }
975 1.1 cgd
976 1.1 cgd /*
977 1.107 ad * Delete a process group. Must be called with the proclist_lock held.
978 1.1 cgd */
979 1.61 dsl static void
980 1.61 dsl pg_delete(pid_t pg_id)
981 1.61 dsl {
982 1.61 dsl struct pgrp *pgrp;
983 1.61 dsl struct tty *ttyp;
984 1.61 dsl struct session *ss;
985 1.100 ad int is_pgrp_leader;
986 1.100 ad
987 1.107 ad KASSERT(mutex_owned(&proclist_lock));
988 1.61 dsl
989 1.61 dsl pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
990 1.61 dsl if (pgrp == NULL || pgrp->pg_id != pg_id ||
991 1.100 ad !LIST_EMPTY(&pgrp->pg_members))
992 1.61 dsl return;
993 1.61 dsl
994 1.71 pk ss = pgrp->pg_session;
995 1.71 pk
996 1.61 dsl /* Remove reference (if any) from tty to this process group */
997 1.71 pk ttyp = ss->s_ttyp;
998 1.71 pk if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
999 1.61 dsl ttyp->t_pgrp = NULL;
1000 1.71 pk #ifdef DIAGNOSTIC
1001 1.71 pk if (ttyp->t_session != ss)
1002 1.71 pk panic("pg_delete: wrong session on terminal");
1003 1.71 pk #endif
1004 1.71 pk }
1005 1.61 dsl
1006 1.71 pk /*
1007 1.71 pk * The leading process group in a session is freed
1008 1.71 pk * by sessdelete() if last reference.
1009 1.71 pk */
1010 1.71 pk is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
1011 1.71 pk SESSRELE(ss);
1012 1.61 dsl
1013 1.71 pk if (is_pgrp_leader)
1014 1.61 dsl return;
1015 1.61 dsl
1016 1.61 dsl pg_free(pg_id);
1017 1.61 dsl }
1018 1.61 dsl
1019 1.61 dsl /*
1020 1.61 dsl * Delete session - called from SESSRELE when s_count becomes zero.
1021 1.107 ad * Must be called with the proclist_lock held.
1022 1.61 dsl */
1023 1.11 cgd void
1024 1.61 dsl sessdelete(struct session *ss)
1025 1.1 cgd {
1026 1.100 ad
1027 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1028 1.100 ad
1029 1.61 dsl /*
1030 1.61 dsl * We keep the pgrp with the same id as the session in
1031 1.61 dsl * order to stop a process being given the same pid.
1032 1.61 dsl * Since the pgrp holds a reference to the session, it
1033 1.61 dsl * must be a 'zombie' pgrp by now.
1034 1.61 dsl */
1035 1.61 dsl pg_free(ss->s_sid);
1036 1.77 simonb pool_put(&session_pool, ss);
1037 1.1 cgd }
1038 1.1 cgd
1039 1.1 cgd /*
1040 1.1 cgd * Adjust pgrp jobc counters when specified process changes process group.
1041 1.1 cgd * We count the number of processes in each process group that "qualify"
1042 1.1 cgd * the group for terminal job control (those with a parent in a different
1043 1.1 cgd * process group of the same session). If that count reaches zero, the
1044 1.1 cgd * process group becomes orphaned. Check both the specified process'
1045 1.1 cgd * process group and that of its children.
1046 1.1 cgd * entering == 0 => p is leaving specified group.
1047 1.1 cgd * entering == 1 => p is entering specified group.
1048 1.68 dsl *
1049 1.107 ad * Call with proclist_lock held.
1050 1.1 cgd */
1051 1.4 andrew void
1052 1.59 dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1053 1.1 cgd {
1054 1.39 augustss struct pgrp *hispgrp;
1055 1.39 augustss struct session *mysession = pgrp->pg_session;
1056 1.68 dsl struct proc *child;
1057 1.1 cgd
1058 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1059 1.107 ad KASSERT(mutex_owned(&proclist_mutex));
1060 1.100 ad
1061 1.1 cgd /*
1062 1.1 cgd * Check p's parent to see whether p qualifies its own process
1063 1.1 cgd * group; if so, adjust count for p's process group.
1064 1.1 cgd */
1065 1.68 dsl hispgrp = p->p_pptr->p_pgrp;
1066 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1067 1.100 ad if (entering) {
1068 1.100 ad mutex_enter(&p->p_smutex);
1069 1.100 ad p->p_sflag &= ~PS_ORPHANPG;
1070 1.100 ad mutex_exit(&p->p_smutex);
1071 1.1 cgd pgrp->pg_jobc++;
1072 1.100 ad } else if (--pgrp->pg_jobc == 0)
1073 1.1 cgd orphanpg(pgrp);
1074 1.26 thorpej }
1075 1.1 cgd
1076 1.1 cgd /*
1077 1.1 cgd * Check this process' children to see whether they qualify
1078 1.1 cgd * their process groups; if so, adjust counts for children's
1079 1.1 cgd * process groups.
1080 1.1 cgd */
1081 1.68 dsl LIST_FOREACH(child, &p->p_children, p_sibling) {
1082 1.68 dsl hispgrp = child->p_pgrp;
1083 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1084 1.68 dsl !P_ZOMBIE(child)) {
1085 1.100 ad if (entering) {
1086 1.100 ad mutex_enter(&child->p_smutex);
1087 1.100 ad child->p_sflag &= ~PS_ORPHANPG;
1088 1.100 ad mutex_exit(&child->p_smutex);
1089 1.1 cgd hispgrp->pg_jobc++;
1090 1.100 ad } else if (--hispgrp->pg_jobc == 0)
1091 1.1 cgd orphanpg(hispgrp);
1092 1.26 thorpej }
1093 1.26 thorpej }
1094 1.1 cgd }
1095 1.1 cgd
1096 1.72 junyoung /*
1097 1.1 cgd * A process group has become orphaned;
1098 1.1 cgd * if there are any stopped processes in the group,
1099 1.1 cgd * hang-up all process in that group.
1100 1.68 dsl *
1101 1.107 ad * Call with proclist_lock held.
1102 1.1 cgd */
1103 1.4 andrew static void
1104 1.59 dsl orphanpg(struct pgrp *pg)
1105 1.1 cgd {
1106 1.39 augustss struct proc *p;
1107 1.100 ad int doit;
1108 1.100 ad
1109 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1110 1.107 ad KASSERT(mutex_owned(&proclist_mutex));
1111 1.100 ad
1112 1.100 ad doit = 0;
1113 1.1 cgd
1114 1.52 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1115 1.100 ad mutex_enter(&p->p_smutex);
1116 1.1 cgd if (p->p_stat == SSTOP) {
1117 1.100 ad doit = 1;
1118 1.100 ad p->p_sflag |= PS_ORPHANPG;
1119 1.1 cgd }
1120 1.100 ad mutex_exit(&p->p_smutex);
1121 1.1 cgd }
1122 1.35 bouyer
1123 1.100 ad if (doit) {
1124 1.100 ad LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1125 1.100 ad psignal(p, SIGHUP);
1126 1.100 ad psignal(p, SIGCONT);
1127 1.35 bouyer }
1128 1.35 bouyer }
1129 1.35 bouyer }
1130 1.1 cgd
1131 1.61 dsl #ifdef DDB
1132 1.61 dsl #include <ddb/db_output.h>
1133 1.61 dsl void pidtbl_dump(void);
1134 1.14 christos void
1135 1.61 dsl pidtbl_dump(void)
1136 1.1 cgd {
1137 1.61 dsl struct pid_table *pt;
1138 1.61 dsl struct proc *p;
1139 1.39 augustss struct pgrp *pgrp;
1140 1.61 dsl int id;
1141 1.1 cgd
1142 1.61 dsl db_printf("pid table %p size %x, next %x, last %x\n",
1143 1.61 dsl pid_table, pid_tbl_mask+1,
1144 1.61 dsl next_free_pt, last_free_pt);
1145 1.61 dsl for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1146 1.61 dsl p = pt->pt_proc;
1147 1.61 dsl if (!P_VALID(p) && !pt->pt_pgrp)
1148 1.61 dsl continue;
1149 1.61 dsl db_printf(" id %x: ", id);
1150 1.61 dsl if (P_VALID(p))
1151 1.61 dsl db_printf("proc %p id %d (0x%x) %s\n",
1152 1.61 dsl p, p->p_pid, p->p_pid, p->p_comm);
1153 1.61 dsl else
1154 1.61 dsl db_printf("next %x use %x\n",
1155 1.61 dsl P_NEXT(p) & pid_tbl_mask,
1156 1.61 dsl P_NEXT(p) & ~pid_tbl_mask);
1157 1.61 dsl if ((pgrp = pt->pt_pgrp)) {
1158 1.61 dsl db_printf("\tsession %p, sid %d, count %d, login %s\n",
1159 1.61 dsl pgrp->pg_session, pgrp->pg_session->s_sid,
1160 1.61 dsl pgrp->pg_session->s_count,
1161 1.61 dsl pgrp->pg_session->s_login);
1162 1.61 dsl db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1163 1.61 dsl pgrp, pgrp->pg_id, pgrp->pg_jobc,
1164 1.61 dsl pgrp->pg_members.lh_first);
1165 1.61 dsl for (p = pgrp->pg_members.lh_first; p != 0;
1166 1.61 dsl p = p->p_pglist.le_next) {
1167 1.72 junyoung db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1168 1.61 dsl p->p_pid, p, p->p_pgrp, p->p_comm);
1169 1.10 mycroft }
1170 1.1 cgd }
1171 1.1 cgd }
1172 1.1 cgd }
1173 1.61 dsl #endif /* DDB */
1174 1.48 yamt
1175 1.48 yamt #ifdef KSTACK_CHECK_MAGIC
1176 1.48 yamt #include <sys/user.h>
1177 1.48 yamt
1178 1.48 yamt #define KSTACK_MAGIC 0xdeadbeaf
1179 1.48 yamt
1180 1.48 yamt /* XXX should be per process basis? */
1181 1.48 yamt int kstackleftmin = KSTACK_SIZE;
1182 1.50 enami int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1183 1.50 enami less than this */
1184 1.48 yamt
1185 1.48 yamt void
1186 1.56 yamt kstack_setup_magic(const struct lwp *l)
1187 1.48 yamt {
1188 1.85 perry uint32_t *ip;
1189 1.85 perry uint32_t const *end;
1190 1.48 yamt
1191 1.56 yamt KASSERT(l != NULL);
1192 1.56 yamt KASSERT(l != &lwp0);
1193 1.48 yamt
1194 1.48 yamt /*
1195 1.48 yamt * fill all the stack with magic number
1196 1.48 yamt * so that later modification on it can be detected.
1197 1.48 yamt */
1198 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1199 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1200 1.48 yamt for (; ip < end; ip++) {
1201 1.48 yamt *ip = KSTACK_MAGIC;
1202 1.48 yamt }
1203 1.48 yamt }
1204 1.48 yamt
1205 1.48 yamt void
1206 1.56 yamt kstack_check_magic(const struct lwp *l)
1207 1.48 yamt {
1208 1.85 perry uint32_t const *ip, *end;
1209 1.48 yamt int stackleft;
1210 1.48 yamt
1211 1.56 yamt KASSERT(l != NULL);
1212 1.48 yamt
1213 1.48 yamt /* don't check proc0 */ /*XXX*/
1214 1.56 yamt if (l == &lwp0)
1215 1.48 yamt return;
1216 1.48 yamt
1217 1.48 yamt #ifdef __MACHINE_STACK_GROWS_UP
1218 1.48 yamt /* stack grows upwards (eg. hppa) */
1219 1.106 christos ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1220 1.85 perry end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1221 1.48 yamt for (ip--; ip >= end; ip--)
1222 1.48 yamt if (*ip != KSTACK_MAGIC)
1223 1.48 yamt break;
1224 1.72 junyoung
1225 1.106 christos stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1226 1.48 yamt #else /* __MACHINE_STACK_GROWS_UP */
1227 1.48 yamt /* stack grows downwards (eg. i386) */
1228 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1229 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1230 1.48 yamt for (; ip < end; ip++)
1231 1.48 yamt if (*ip != KSTACK_MAGIC)
1232 1.48 yamt break;
1233 1.48 yamt
1234 1.93 christos stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1235 1.48 yamt #endif /* __MACHINE_STACK_GROWS_UP */
1236 1.48 yamt
1237 1.48 yamt if (kstackleftmin > stackleft) {
1238 1.48 yamt kstackleftmin = stackleft;
1239 1.48 yamt if (stackleft < kstackleftthres)
1240 1.56 yamt printf("warning: kernel stack left %d bytes"
1241 1.56 yamt "(pid %u:lid %u)\n", stackleft,
1242 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1243 1.48 yamt }
1244 1.48 yamt
1245 1.48 yamt if (stackleft <= 0) {
1246 1.56 yamt panic("magic on the top of kernel stack changed for "
1247 1.56 yamt "pid %u, lid %u: maybe kernel stack overflow",
1248 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1249 1.48 yamt }
1250 1.48 yamt }
1251 1.50 enami #endif /* KSTACK_CHECK_MAGIC */
1252 1.79 yamt
1253 1.100 ad /*
1254 1.100 ad * XXXSMP this is bust, it grabs a read lock and then messes about
1255 1.100 ad * with allproc.
1256 1.100 ad */
1257 1.79 yamt int
1258 1.79 yamt proclist_foreach_call(struct proclist *list,
1259 1.79 yamt int (*callback)(struct proc *, void *arg), void *arg)
1260 1.79 yamt {
1261 1.79 yamt struct proc marker;
1262 1.79 yamt struct proc *p;
1263 1.79 yamt struct lwp * const l = curlwp;
1264 1.79 yamt int ret = 0;
1265 1.79 yamt
1266 1.102 pavel marker.p_flag = PK_MARKER;
1267 1.113 ad uvm_lwp_hold(l);
1268 1.107 ad mutex_enter(&proclist_lock);
1269 1.79 yamt for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1270 1.102 pavel if (p->p_flag & PK_MARKER) {
1271 1.79 yamt p = LIST_NEXT(p, p_list);
1272 1.79 yamt continue;
1273 1.79 yamt }
1274 1.79 yamt LIST_INSERT_AFTER(p, &marker, p_list);
1275 1.79 yamt ret = (*callback)(p, arg);
1276 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1277 1.79 yamt p = LIST_NEXT(&marker, p_list);
1278 1.79 yamt LIST_REMOVE(&marker, p_list);
1279 1.79 yamt }
1280 1.107 ad mutex_exit(&proclist_lock);
1281 1.113 ad uvm_lwp_rele(l);
1282 1.79 yamt
1283 1.79 yamt return ret;
1284 1.79 yamt }
1285 1.86 yamt
1286 1.86 yamt int
1287 1.86 yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1288 1.86 yamt {
1289 1.86 yamt
1290 1.86 yamt /* XXXCDC: how should locking work here? */
1291 1.86 yamt
1292 1.87 yamt /* curproc exception is for coredump. */
1293 1.87 yamt
1294 1.100 ad if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1295 1.86 yamt (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1296 1.86 yamt return EFAULT;
1297 1.86 yamt }
1298 1.86 yamt
1299 1.86 yamt uvmspace_addref(p->p_vmspace);
1300 1.86 yamt *vm = p->p_vmspace;
1301 1.86 yamt
1302 1.86 yamt return 0;
1303 1.86 yamt }
1304 1.94 ad
1305 1.94 ad /*
1306 1.94 ad * Acquire a write lock on the process credential.
1307 1.94 ad */
1308 1.94 ad void
1309 1.100 ad proc_crmod_enter(void)
1310 1.94 ad {
1311 1.100 ad struct lwp *l = curlwp;
1312 1.100 ad struct proc *p = l->l_proc;
1313 1.100 ad struct plimit *lim;
1314 1.100 ad kauth_cred_t oc;
1315 1.100 ad char *cn;
1316 1.94 ad
1317 1.117 dsl /* Reset what needs to be reset in plimit. */
1318 1.117 dsl if (p->p_limit->pl_corename != defcorename) {
1319 1.117 dsl lim_privatise(p, false);
1320 1.117 dsl lim = p->p_limit;
1321 1.117 dsl mutex_enter(&lim->pl_lock);
1322 1.117 dsl cn = lim->pl_corename;
1323 1.117 dsl lim->pl_corename = defcorename;
1324 1.117 dsl mutex_exit(&lim->pl_lock);
1325 1.117 dsl if (cn != defcorename)
1326 1.117 dsl free(cn, M_TEMP);
1327 1.117 dsl }
1328 1.117 dsl
1329 1.100 ad mutex_enter(&p->p_mutex);
1330 1.100 ad
1331 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1332 1.100 ad if ((oc = l->l_cred) != p->p_cred) {
1333 1.100 ad kauth_cred_hold(p->p_cred);
1334 1.100 ad l->l_cred = p->p_cred;
1335 1.100 ad kauth_cred_free(oc);
1336 1.100 ad }
1337 1.100 ad
1338 1.94 ad }
1339 1.94 ad
1340 1.94 ad /*
1341 1.100 ad * Set in a new process credential, and drop the write lock. The credential
1342 1.100 ad * must have a reference already. Optionally, free a no-longer required
1343 1.100 ad * credential. The scheduler also needs to inspect p_cred, so we also
1344 1.100 ad * briefly acquire the sched state mutex.
1345 1.94 ad */
1346 1.94 ad void
1347 1.104 thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1348 1.94 ad {
1349 1.100 ad struct lwp *l = curlwp;
1350 1.100 ad struct proc *p = l->l_proc;
1351 1.100 ad kauth_cred_t oc;
1352 1.100 ad
1353 1.100 ad /* Is there a new credential to set in? */
1354 1.100 ad if (scred != NULL) {
1355 1.100 ad mutex_enter(&p->p_smutex);
1356 1.100 ad p->p_cred = scred;
1357 1.100 ad mutex_exit(&p->p_smutex);
1358 1.100 ad
1359 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1360 1.100 ad if ((oc = l->l_cred) != scred) {
1361 1.100 ad kauth_cred_hold(scred);
1362 1.100 ad l->l_cred = scred;
1363 1.100 ad }
1364 1.100 ad } else
1365 1.100 ad oc = NULL; /* XXXgcc */
1366 1.100 ad
1367 1.100 ad if (sugid) {
1368 1.100 ad /*
1369 1.100 ad * Mark process as having changed credentials, stops
1370 1.100 ad * tracing etc.
1371 1.100 ad */
1372 1.102 pavel p->p_flag |= PK_SUGID;
1373 1.100 ad }
1374 1.94 ad
1375 1.100 ad mutex_exit(&p->p_mutex);
1376 1.100 ad
1377 1.100 ad /* If there is a credential to be released, free it now. */
1378 1.100 ad if (fcred != NULL) {
1379 1.100 ad KASSERT(scred != NULL);
1380 1.94 ad kauth_cred_free(fcred);
1381 1.100 ad if (oc != scred)
1382 1.100 ad kauth_cred_free(oc);
1383 1.100 ad }
1384 1.100 ad }
1385 1.100 ad
1386 1.100 ad /*
1387 1.95 thorpej * proc_specific_key_create --
1388 1.95 thorpej * Create a key for subsystem proc-specific data.
1389 1.95 thorpej */
1390 1.95 thorpej int
1391 1.95 thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1392 1.95 thorpej {
1393 1.95 thorpej
1394 1.98 thorpej return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1395 1.95 thorpej }
1396 1.95 thorpej
1397 1.95 thorpej /*
1398 1.95 thorpej * proc_specific_key_delete --
1399 1.95 thorpej * Delete a key for subsystem proc-specific data.
1400 1.95 thorpej */
1401 1.95 thorpej void
1402 1.95 thorpej proc_specific_key_delete(specificdata_key_t key)
1403 1.95 thorpej {
1404 1.95 thorpej
1405 1.95 thorpej specificdata_key_delete(proc_specificdata_domain, key);
1406 1.95 thorpej }
1407 1.95 thorpej
1408 1.98 thorpej /*
1409 1.98 thorpej * proc_initspecific --
1410 1.98 thorpej * Initialize a proc's specificdata container.
1411 1.98 thorpej */
1412 1.96 christos void
1413 1.96 christos proc_initspecific(struct proc *p)
1414 1.96 christos {
1415 1.96 christos int error;
1416 1.98 thorpej
1417 1.96 christos error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1418 1.96 christos KASSERT(error == 0);
1419 1.96 christos }
1420 1.96 christos
1421 1.95 thorpej /*
1422 1.98 thorpej * proc_finispecific --
1423 1.98 thorpej * Finalize a proc's specificdata container.
1424 1.98 thorpej */
1425 1.98 thorpej void
1426 1.98 thorpej proc_finispecific(struct proc *p)
1427 1.98 thorpej {
1428 1.98 thorpej
1429 1.98 thorpej specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1430 1.98 thorpej }
1431 1.98 thorpej
1432 1.98 thorpej /*
1433 1.95 thorpej * proc_getspecific --
1434 1.95 thorpej * Return proc-specific data corresponding to the specified key.
1435 1.95 thorpej */
1436 1.95 thorpej void *
1437 1.95 thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
1438 1.95 thorpej {
1439 1.95 thorpej
1440 1.95 thorpej return (specificdata_getspecific(proc_specificdata_domain,
1441 1.95 thorpej &p->p_specdataref, key));
1442 1.95 thorpej }
1443 1.95 thorpej
1444 1.95 thorpej /*
1445 1.95 thorpej * proc_setspecific --
1446 1.95 thorpej * Set proc-specific data corresponding to the specified key.
1447 1.95 thorpej */
1448 1.95 thorpej void
1449 1.95 thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1450 1.95 thorpej {
1451 1.95 thorpej
1452 1.95 thorpej specificdata_setspecific(proc_specificdata_domain,
1453 1.95 thorpej &p->p_specdataref, key, data);
1454 1.95 thorpej }
1455