kern_proc.c revision 1.128 1 1.128 ad /* $NetBSD: kern_proc.c,v 1.128 2007/12/26 16:01:36 ad Exp $ */
2 1.33 thorpej
3 1.33 thorpej /*-
4 1.100 ad * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
5 1.33 thorpej * All rights reserved.
6 1.33 thorpej *
7 1.33 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.33 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.100 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.33 thorpej *
11 1.33 thorpej * Redistribution and use in source and binary forms, with or without
12 1.33 thorpej * modification, are permitted provided that the following conditions
13 1.33 thorpej * are met:
14 1.33 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.33 thorpej * notice, this list of conditions and the following disclaimer.
16 1.33 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.33 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.33 thorpej * documentation and/or other materials provided with the distribution.
19 1.33 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.33 thorpej * must display the following acknowledgement:
21 1.33 thorpej * This product includes software developed by the NetBSD
22 1.33 thorpej * Foundation, Inc. and its contributors.
23 1.33 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.33 thorpej * contributors may be used to endorse or promote products derived
25 1.33 thorpej * from this software without specific prior written permission.
26 1.33 thorpej *
27 1.33 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.33 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.33 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.33 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.33 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.33 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.33 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.33 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.33 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.33 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.33 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.33 thorpej */
39 1.9 cgd
40 1.1 cgd /*
41 1.7 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 1.7 cgd * The Regents of the University of California. All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Redistribution and use in source and binary forms, with or without
45 1.1 cgd * modification, are permitted provided that the following conditions
46 1.1 cgd * are met:
47 1.1 cgd * 1. Redistributions of source code must retain the above copyright
48 1.1 cgd * notice, this list of conditions and the following disclaimer.
49 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 cgd * notice, this list of conditions and the following disclaimer in the
51 1.1 cgd * documentation and/or other materials provided with the distribution.
52 1.65 agc * 3. Neither the name of the University nor the names of its contributors
53 1.1 cgd * may be used to endorse or promote products derived from this software
54 1.1 cgd * without specific prior written permission.
55 1.1 cgd *
56 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.1 cgd * SUCH DAMAGE.
67 1.1 cgd *
68 1.23 fvdl * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 1.1 cgd */
70 1.45 lukem
71 1.45 lukem #include <sys/cdefs.h>
72 1.128 ad __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.128 2007/12/26 16:01:36 ad Exp $");
73 1.48 yamt
74 1.48 yamt #include "opt_kstack.h"
75 1.88 onoe #include "opt_maxuprc.h"
76 1.90 rjs #include "opt_multiprocessor.h"
77 1.90 rjs #include "opt_lockdebug.h"
78 1.1 cgd
79 1.5 mycroft #include <sys/param.h>
80 1.5 mycroft #include <sys/systm.h>
81 1.5 mycroft #include <sys/kernel.h>
82 1.5 mycroft #include <sys/proc.h>
83 1.28 thorpej #include <sys/resourcevar.h>
84 1.5 mycroft #include <sys/buf.h>
85 1.5 mycroft #include <sys/acct.h>
86 1.5 mycroft #include <sys/wait.h>
87 1.5 mycroft #include <sys/file.h>
88 1.8 mycroft #include <ufs/ufs/quota.h>
89 1.5 mycroft #include <sys/uio.h>
90 1.5 mycroft #include <sys/malloc.h>
91 1.24 thorpej #include <sys/pool.h>
92 1.5 mycroft #include <sys/mbuf.h>
93 1.5 mycroft #include <sys/ioctl.h>
94 1.5 mycroft #include <sys/tty.h>
95 1.11 cgd #include <sys/signalvar.h>
96 1.51 gmcgarry #include <sys/ras.h>
97 1.81 junyoung #include <sys/filedesc.h>
98 1.103 dsl #include "sys/syscall_stats.h"
99 1.89 elad #include <sys/kauth.h>
100 1.100 ad #include <sys/sleepq.h>
101 1.126 ad #include <sys/atomic.h>
102 1.81 junyoung
103 1.81 junyoung #include <uvm/uvm.h>
104 1.79 yamt #include <uvm/uvm_extern.h>
105 1.5 mycroft
106 1.7 cgd /*
107 1.10 mycroft * Other process lists
108 1.7 cgd */
109 1.31 thorpej
110 1.10 mycroft struct proclist allproc;
111 1.32 thorpej struct proclist zombproc; /* resources have been freed */
112 1.32 thorpej
113 1.32 thorpej /*
114 1.100 ad * There are two locks on global process state.
115 1.100 ad *
116 1.107 ad * 1. proclist_lock is an adaptive mutex and is used when modifying
117 1.107 ad * or examining process state from a process context. It protects
118 1.107 ad * the internal tables, all of the process lists, and a number of
119 1.107 ad * members of struct proc.
120 1.107 ad *
121 1.100 ad * 2. proclist_mutex is used when allproc must be traversed from an
122 1.107 ad * interrupt context, or when changing the state of processes. The
123 1.107 ad * proclist_lock should always be used in preference. In some cases,
124 1.107 ad * both locks need to be held.
125 1.33 thorpej *
126 1.100 ad * proclist_lock proclist_mutex structure
127 1.100 ad * --------------- --------------- -----------------
128 1.100 ad * x zombproc
129 1.100 ad * x x pid_table
130 1.100 ad * x proc::p_pptr
131 1.100 ad * x proc::p_sibling
132 1.100 ad * x proc::p_children
133 1.125 ad * x alllwp
134 1.100 ad * x x allproc
135 1.100 ad * x x proc::p_pgrp
136 1.100 ad * x x proc::p_pglist
137 1.100 ad * x x proc::p_session
138 1.100 ad * x x proc::p_list
139 1.100 ad * x lwp::l_list
140 1.33 thorpej *
141 1.100 ad * The lock order for processes and LWPs is approximately as following:
142 1.33 thorpej *
143 1.107 ad * kernel_lock
144 1.100 ad * -> proclist_lock
145 1.107 ad * -> proc::p_mutex
146 1.107 ad * -> proclist_mutex
147 1.100 ad * -> proc::p_smutex
148 1.107 ad * -> proc::p_stmutex
149 1.107 ad *
150 1.107 ad * XXX p_smutex can be run at IPL_VM once audio drivers on the x86
151 1.107 ad * platform are made MP safe. Currently it blocks interrupts at
152 1.107 ad * IPL_SCHED and below.
153 1.107 ad *
154 1.107 ad * XXX The two process locks (p_smutex + p_mutex), and the two global
155 1.107 ad * state locks (proclist_lock + proclist_mutex) should be merged
156 1.107 ad * together. However, to do so requires interrupts that interrupts
157 1.107 ad * be run with LWP context.
158 1.33 thorpej */
159 1.107 ad kmutex_t proclist_lock;
160 1.100 ad kmutex_t proclist_mutex;
161 1.33 thorpej
162 1.33 thorpej /*
163 1.72 junyoung * pid to proc lookup is done by indexing the pid_table array.
164 1.61 dsl * Since pid numbers are only allocated when an empty slot
165 1.61 dsl * has been found, there is no need to search any lists ever.
166 1.61 dsl * (an orphaned pgrp will lock the slot, a session will lock
167 1.61 dsl * the pgrp with the same number.)
168 1.61 dsl * If the table is too small it is reallocated with twice the
169 1.61 dsl * previous size and the entries 'unzipped' into the two halves.
170 1.61 dsl * A linked list of free entries is passed through the pt_proc
171 1.61 dsl * field of 'free' items - set odd to be an invalid ptr.
172 1.61 dsl */
173 1.61 dsl
174 1.61 dsl struct pid_table {
175 1.61 dsl struct proc *pt_proc;
176 1.61 dsl struct pgrp *pt_pgrp;
177 1.72 junyoung };
178 1.61 dsl #if 1 /* strongly typed cast - should be a noop */
179 1.84 perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
180 1.61 dsl #else
181 1.61 dsl #define p2u(p) ((uint)p)
182 1.72 junyoung #endif
183 1.61 dsl #define P_VALID(p) (!(p2u(p) & 1))
184 1.61 dsl #define P_NEXT(p) (p2u(p) >> 1)
185 1.61 dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
186 1.61 dsl
187 1.61 dsl #define INITIAL_PID_TABLE_SIZE (1 << 5)
188 1.61 dsl static struct pid_table *pid_table;
189 1.61 dsl static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
190 1.61 dsl static uint pid_alloc_lim; /* max we allocate before growing table */
191 1.61 dsl static uint pid_alloc_cnt; /* number of allocated pids */
192 1.61 dsl
193 1.61 dsl /* links through free slots - never empty! */
194 1.61 dsl static uint next_free_pt, last_free_pt;
195 1.61 dsl static pid_t pid_max = PID_MAX; /* largest value we allocate */
196 1.31 thorpej
197 1.81 junyoung /* Components of the first process -- never freed. */
198 1.123 matt
199 1.123 matt extern const struct emul emul_netbsd; /* defined in kern_exec.c */
200 1.123 matt
201 1.123 matt struct session session0 = {
202 1.123 matt .s_count = 1,
203 1.123 matt .s_sid = 0,
204 1.123 matt };
205 1.123 matt struct pgrp pgrp0 = {
206 1.123 matt .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
207 1.123 matt .pg_session = &session0,
208 1.123 matt };
209 1.81 junyoung struct filedesc0 filedesc0;
210 1.123 matt struct cwdinfo cwdi0 = {
211 1.123 matt .cwdi_cmask = CMASK, /* see cmask below */
212 1.123 matt .cwdi_refcnt = 1,
213 1.123 matt };
214 1.123 matt struct plimit limit0 = {
215 1.123 matt .pl_corename = defcorename,
216 1.123 matt .pl_refcnt = 1,
217 1.123 matt .pl_rlimit = {
218 1.123 matt [0 ... __arraycount(limit0.pl_rlimit) - 1] = {
219 1.123 matt .rlim_cur = RLIM_INFINITY,
220 1.123 matt .rlim_max = RLIM_INFINITY,
221 1.123 matt },
222 1.123 matt },
223 1.123 matt };
224 1.81 junyoung struct pstats pstat0;
225 1.81 junyoung struct vmspace vmspace0;
226 1.81 junyoung struct sigacts sigacts0;
227 1.100 ad struct turnstile turnstile0;
228 1.123 matt struct proc proc0 = {
229 1.123 matt .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
230 1.123 matt .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
231 1.123 matt .p_nlwps = 1,
232 1.123 matt .p_nrlwps = 1,
233 1.123 matt .p_nlwpid = 1, /* must match lwp0.l_lid */
234 1.123 matt .p_pgrp = &pgrp0,
235 1.123 matt .p_comm = "system",
236 1.123 matt /*
237 1.123 matt * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
238 1.123 matt * when they exit. init(8) can easily wait them out for us.
239 1.123 matt */
240 1.123 matt .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
241 1.123 matt .p_stat = SACTIVE,
242 1.123 matt .p_nice = NZERO,
243 1.123 matt .p_emul = &emul_netbsd,
244 1.123 matt .p_cwdi = &cwdi0,
245 1.123 matt .p_limit = &limit0,
246 1.123 matt .p_fd = &filedesc0.fd_fd,
247 1.123 matt .p_vmspace = &vmspace0,
248 1.123 matt .p_stats = &pstat0,
249 1.123 matt .p_sigacts = &sigacts0,
250 1.123 matt };
251 1.123 matt struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
252 1.123 matt #ifdef LWP0_CPU_INFO
253 1.123 matt .l_cpu = LWP0_CPU_INFO,
254 1.123 matt #endif
255 1.123 matt .l_proc = &proc0,
256 1.123 matt .l_lid = 1,
257 1.123 matt .l_flag = LW_INMEM | LW_SYSTEM,
258 1.123 matt .l_stat = LSONPROC,
259 1.123 matt .l_ts = &turnstile0,
260 1.123 matt .l_syncobj = &sched_syncobj,
261 1.123 matt .l_refcnt = 1,
262 1.123 matt .l_priority = PRI_USER + NPRI_USER - 1,
263 1.123 matt .l_inheritedprio = -1,
264 1.123 matt .l_class = SCHED_OTHER,
265 1.123 matt .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
266 1.123 matt .l_name = __UNCONST("swapper"),
267 1.123 matt };
268 1.123 matt kauth_cred_t cred0;
269 1.81 junyoung
270 1.81 junyoung extern struct user *proc0paddr;
271 1.81 junyoung
272 1.81 junyoung int nofile = NOFILE;
273 1.81 junyoung int maxuprc = MAXUPRC;
274 1.81 junyoung int cmask = CMASK;
275 1.81 junyoung
276 1.57 thorpej MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
277 1.57 thorpej MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
278 1.57 thorpej MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
279 1.10 mycroft
280 1.31 thorpej /*
281 1.31 thorpej * The process list descriptors, used during pid allocation and
282 1.31 thorpej * by sysctl. No locking on this data structure is needed since
283 1.31 thorpej * it is completely static.
284 1.31 thorpej */
285 1.31 thorpej const struct proclist_desc proclists[] = {
286 1.31 thorpej { &allproc },
287 1.31 thorpej { &zombproc },
288 1.31 thorpej { NULL },
289 1.31 thorpej };
290 1.31 thorpej
291 1.72 junyoung static void orphanpg(struct pgrp *);
292 1.72 junyoung static void pg_delete(pid_t);
293 1.13 christos
294 1.95 thorpej static specificdata_domain_t proc_specificdata_domain;
295 1.95 thorpej
296 1.128 ad static pool_cache_t proc_cache;
297 1.128 ad static pool_cache_t pgrp_cache;
298 1.128 ad static pool_cache_t session_cache;
299 1.128 ad
300 1.10 mycroft /*
301 1.10 mycroft * Initialize global process hashing structures.
302 1.10 mycroft */
303 1.11 cgd void
304 1.59 dsl procinit(void)
305 1.7 cgd {
306 1.31 thorpej const struct proclist_desc *pd;
307 1.61 dsl int i;
308 1.61 dsl #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
309 1.31 thorpej
310 1.31 thorpej for (pd = proclists; pd->pd_list != NULL; pd++)
311 1.31 thorpej LIST_INIT(pd->pd_list);
312 1.7 cgd
313 1.107 ad mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
314 1.127 ad mutex_init(&proclist_mutex, MUTEX_DEFAULT, IPL_SCHED);
315 1.33 thorpej
316 1.61 dsl pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
317 1.61 dsl M_PROC, M_WAITOK);
318 1.61 dsl /* Set free list running through table...
319 1.61 dsl Preset 'use count' above PID_MAX so we allocate pid 1 next. */
320 1.61 dsl for (i = 0; i <= pid_tbl_mask; i++) {
321 1.61 dsl pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
322 1.61 dsl pid_table[i].pt_pgrp = 0;
323 1.61 dsl }
324 1.61 dsl /* slot 0 is just grabbed */
325 1.61 dsl next_free_pt = 1;
326 1.61 dsl /* Need to fix last entry. */
327 1.61 dsl last_free_pt = pid_tbl_mask;
328 1.61 dsl pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
329 1.61 dsl /* point at which we grow table - to avoid reusing pids too often */
330 1.61 dsl pid_alloc_lim = pid_tbl_mask - 1;
331 1.61 dsl #undef LINK_EMPTY
332 1.61 dsl
333 1.43 ad uihashtbl =
334 1.43 ad hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
335 1.95 thorpej
336 1.95 thorpej proc_specificdata_domain = specificdata_domain_create();
337 1.95 thorpej KASSERT(proc_specificdata_domain != NULL);
338 1.128 ad
339 1.128 ad proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
340 1.128 ad "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
341 1.128 ad pgrp_cache = pool_cache_init(sizeof(struct pgrp), 0, 0, 0,
342 1.128 ad "pgrppl", NULL, IPL_NONE, NULL, NULL, NULL);
343 1.128 ad session_cache = pool_cache_init(sizeof(struct session), 0, 0, 0,
344 1.128 ad "sessionpl", NULL, IPL_NONE, NULL, NULL, NULL);
345 1.7 cgd }
346 1.1 cgd
347 1.7 cgd /*
348 1.81 junyoung * Initialize process 0.
349 1.81 junyoung */
350 1.81 junyoung void
351 1.81 junyoung proc0_init(void)
352 1.81 junyoung {
353 1.81 junyoung struct proc *p;
354 1.81 junyoung struct pgrp *pg;
355 1.81 junyoung struct session *sess;
356 1.81 junyoung struct lwp *l;
357 1.81 junyoung rlim_t lim;
358 1.81 junyoung
359 1.81 junyoung p = &proc0;
360 1.81 junyoung pg = &pgrp0;
361 1.81 junyoung sess = &session0;
362 1.81 junyoung l = &lwp0;
363 1.81 junyoung
364 1.123 matt KASSERT(l->l_lid == p->p_nlwpid);
365 1.123 matt
366 1.127 ad mutex_init(&p->p_smutex, MUTEX_DEFAULT, IPL_SCHED);
367 1.127 ad mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
368 1.120 ad mutex_init(&p->p_raslock, MUTEX_DEFAULT, IPL_NONE);
369 1.100 ad mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
370 1.113 ad mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
371 1.107 ad
372 1.122 ad rw_init(&p->p_reflock);
373 1.100 ad cv_init(&p->p_waitcv, "wait");
374 1.100 ad cv_init(&p->p_lwpcv, "lwpwait");
375 1.100 ad
376 1.81 junyoung LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
377 1.100 ad
378 1.81 junyoung pid_table[0].pt_proc = p;
379 1.81 junyoung LIST_INSERT_HEAD(&allproc, p, p_list);
380 1.81 junyoung LIST_INSERT_HEAD(&alllwp, l, l_list);
381 1.81 junyoung
382 1.81 junyoung pid_table[0].pt_pgrp = pg;
383 1.81 junyoung LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
384 1.81 junyoung
385 1.81 junyoung #ifdef __HAVE_SYSCALL_INTERN
386 1.81 junyoung (*p->p_emul->e_syscall_intern)(p);
387 1.81 junyoung #endif
388 1.81 junyoung
389 1.121 ad callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
390 1.115 ad callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
391 1.100 ad cv_init(&l->l_sigcv, "sigwait");
392 1.81 junyoung
393 1.81 junyoung /* Create credentials. */
394 1.89 elad cred0 = kauth_cred_alloc();
395 1.89 elad p->p_cred = cred0;
396 1.100 ad kauth_cred_hold(cred0);
397 1.100 ad l->l_cred = cred0;
398 1.81 junyoung
399 1.81 junyoung /* Create the CWD info. */
400 1.113 ad rw_init(&cwdi0.cwdi_lock);
401 1.81 junyoung
402 1.81 junyoung /* Create the limits structures. */
403 1.116 dsl mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
404 1.81 junyoung
405 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
406 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
407 1.81 junyoung maxfiles < nofile ? maxfiles : nofile;
408 1.81 junyoung
409 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
410 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
411 1.81 junyoung maxproc < maxuprc ? maxproc : maxuprc;
412 1.81 junyoung
413 1.81 junyoung lim = ptoa(uvmexp.free);
414 1.81 junyoung limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
415 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
416 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
417 1.81 junyoung
418 1.81 junyoung /* Configure virtual memory system, set vm rlimits. */
419 1.81 junyoung uvm_init_limits(p);
420 1.81 junyoung
421 1.81 junyoung /* Initialize file descriptor table for proc0. */
422 1.81 junyoung fdinit1(&filedesc0);
423 1.81 junyoung
424 1.81 junyoung /*
425 1.81 junyoung * Initialize proc0's vmspace, which uses the kernel pmap.
426 1.81 junyoung * All kernel processes (which never have user space mappings)
427 1.81 junyoung * share proc0's vmspace, and thus, the kernel pmap.
428 1.81 junyoung */
429 1.81 junyoung uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
430 1.81 junyoung trunc_page(VM_MAX_ADDRESS));
431 1.81 junyoung
432 1.81 junyoung l->l_addr = proc0paddr; /* XXX */
433 1.81 junyoung
434 1.127 ad /* Initialize signal state for proc0. XXX IPL_SCHED */
435 1.127 ad mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
436 1.81 junyoung siginit(p);
437 1.96 christos
438 1.96 christos proc_initspecific(p);
439 1.96 christos lwp_initspecific(l);
440 1.103 dsl
441 1.103 dsl SYSCALL_TIME_LWP_INIT(l);
442 1.81 junyoung }
443 1.81 junyoung
444 1.81 junyoung /*
445 1.74 junyoung * Check that the specified process group is in the session of the
446 1.60 dsl * specified process.
447 1.60 dsl * Treats -ve ids as process ids.
448 1.60 dsl * Used to validate TIOCSPGRP requests.
449 1.60 dsl */
450 1.60 dsl int
451 1.60 dsl pgid_in_session(struct proc *p, pid_t pg_id)
452 1.60 dsl {
453 1.60 dsl struct pgrp *pgrp;
454 1.101 dsl struct session *session;
455 1.107 ad int error;
456 1.101 dsl
457 1.107 ad mutex_enter(&proclist_lock);
458 1.60 dsl if (pg_id < 0) {
459 1.101 dsl struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
460 1.64 dsl if (p1 == NULL)
461 1.64 dsl return EINVAL;
462 1.60 dsl pgrp = p1->p_pgrp;
463 1.60 dsl } else {
464 1.101 dsl pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
465 1.60 dsl if (pgrp == NULL)
466 1.64 dsl return EINVAL;
467 1.60 dsl }
468 1.101 dsl session = pgrp->pg_session;
469 1.101 dsl if (session != p->p_pgrp->pg_session)
470 1.107 ad error = EPERM;
471 1.107 ad else
472 1.107 ad error = 0;
473 1.107 ad mutex_exit(&proclist_lock);
474 1.107 ad
475 1.107 ad return error;
476 1.7 cgd }
477 1.4 andrew
478 1.1 cgd /*
479 1.41 sommerfe * Is p an inferior of q?
480 1.94 ad *
481 1.94 ad * Call with the proclist_lock held.
482 1.1 cgd */
483 1.11 cgd int
484 1.59 dsl inferior(struct proc *p, struct proc *q)
485 1.1 cgd {
486 1.1 cgd
487 1.41 sommerfe for (; p != q; p = p->p_pptr)
488 1.1 cgd if (p->p_pid == 0)
489 1.82 junyoung return 0;
490 1.82 junyoung return 1;
491 1.1 cgd }
492 1.1 cgd
493 1.1 cgd /*
494 1.1 cgd * Locate a process by number
495 1.1 cgd */
496 1.1 cgd struct proc *
497 1.68 dsl p_find(pid_t pid, uint flags)
498 1.1 cgd {
499 1.33 thorpej struct proc *p;
500 1.68 dsl char stat;
501 1.1 cgd
502 1.68 dsl if (!(flags & PFIND_LOCKED))
503 1.107 ad mutex_enter(&proclist_lock);
504 1.100 ad
505 1.61 dsl p = pid_table[pid & pid_tbl_mask].pt_proc;
506 1.100 ad
507 1.61 dsl /* Only allow live processes to be found by pid. */
508 1.100 ad /* XXXSMP p_stat */
509 1.100 ad if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
510 1.100 ad stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
511 1.100 ad (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
512 1.68 dsl if (flags & PFIND_UNLOCK_OK)
513 1.107 ad mutex_exit(&proclist_lock);
514 1.68 dsl return p;
515 1.68 dsl }
516 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
517 1.107 ad mutex_exit(&proclist_lock);
518 1.68 dsl return NULL;
519 1.1 cgd }
520 1.1 cgd
521 1.61 dsl
522 1.1 cgd /*
523 1.1 cgd * Locate a process group by number
524 1.1 cgd */
525 1.1 cgd struct pgrp *
526 1.68 dsl pg_find(pid_t pgid, uint flags)
527 1.1 cgd {
528 1.68 dsl struct pgrp *pg;
529 1.1 cgd
530 1.68 dsl if (!(flags & PFIND_LOCKED))
531 1.107 ad mutex_enter(&proclist_lock);
532 1.68 dsl pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
533 1.61 dsl /*
534 1.61 dsl * Can't look up a pgrp that only exists because the session
535 1.61 dsl * hasn't died yet (traditional)
536 1.61 dsl */
537 1.68 dsl if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
538 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
539 1.107 ad mutex_exit(&proclist_lock);
540 1.68 dsl return NULL;
541 1.68 dsl }
542 1.68 dsl
543 1.68 dsl if (flags & PFIND_UNLOCK_OK)
544 1.107 ad mutex_exit(&proclist_lock);
545 1.68 dsl return pg;
546 1.1 cgd }
547 1.1 cgd
548 1.61 dsl static void
549 1.61 dsl expand_pid_table(void)
550 1.1 cgd {
551 1.61 dsl uint pt_size = pid_tbl_mask + 1;
552 1.61 dsl struct pid_table *n_pt, *new_pt;
553 1.61 dsl struct proc *proc;
554 1.61 dsl struct pgrp *pgrp;
555 1.61 dsl int i;
556 1.61 dsl pid_t pid;
557 1.1 cgd
558 1.61 dsl new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
559 1.61 dsl
560 1.107 ad mutex_enter(&proclist_lock);
561 1.61 dsl if (pt_size != pid_tbl_mask + 1) {
562 1.61 dsl /* Another process beat us to it... */
563 1.107 ad mutex_exit(&proclist_lock);
564 1.61 dsl FREE(new_pt, M_PROC);
565 1.61 dsl return;
566 1.61 dsl }
567 1.72 junyoung
568 1.61 dsl /*
569 1.61 dsl * Copy entries from old table into new one.
570 1.61 dsl * If 'pid' is 'odd' we need to place in the upper half,
571 1.61 dsl * even pid's to the lower half.
572 1.61 dsl * Free items stay in the low half so we don't have to
573 1.61 dsl * fixup the reference to them.
574 1.61 dsl * We stuff free items on the front of the freelist
575 1.61 dsl * because we can't write to unmodified entries.
576 1.74 junyoung * Processing the table backwards maintains a semblance
577 1.61 dsl * of issueing pid numbers that increase with time.
578 1.61 dsl */
579 1.61 dsl i = pt_size - 1;
580 1.61 dsl n_pt = new_pt + i;
581 1.61 dsl for (; ; i--, n_pt--) {
582 1.61 dsl proc = pid_table[i].pt_proc;
583 1.61 dsl pgrp = pid_table[i].pt_pgrp;
584 1.61 dsl if (!P_VALID(proc)) {
585 1.61 dsl /* Up 'use count' so that link is valid */
586 1.61 dsl pid = (P_NEXT(proc) + pt_size) & ~pt_size;
587 1.61 dsl proc = P_FREE(pid);
588 1.61 dsl if (pgrp)
589 1.61 dsl pid = pgrp->pg_id;
590 1.61 dsl } else
591 1.61 dsl pid = proc->p_pid;
592 1.72 junyoung
593 1.61 dsl /* Save entry in appropriate half of table */
594 1.61 dsl n_pt[pid & pt_size].pt_proc = proc;
595 1.61 dsl n_pt[pid & pt_size].pt_pgrp = pgrp;
596 1.61 dsl
597 1.61 dsl /* Put other piece on start of free list */
598 1.61 dsl pid = (pid ^ pt_size) & ~pid_tbl_mask;
599 1.61 dsl n_pt[pid & pt_size].pt_proc =
600 1.61 dsl P_FREE((pid & ~pt_size) | next_free_pt);
601 1.61 dsl n_pt[pid & pt_size].pt_pgrp = 0;
602 1.61 dsl next_free_pt = i | (pid & pt_size);
603 1.61 dsl if (i == 0)
604 1.61 dsl break;
605 1.61 dsl }
606 1.61 dsl
607 1.61 dsl /* Switch tables */
608 1.100 ad mutex_enter(&proclist_mutex);
609 1.61 dsl n_pt = pid_table;
610 1.61 dsl pid_table = new_pt;
611 1.100 ad mutex_exit(&proclist_mutex);
612 1.61 dsl pid_tbl_mask = pt_size * 2 - 1;
613 1.61 dsl
614 1.61 dsl /*
615 1.61 dsl * pid_max starts as PID_MAX (= 30000), once we have 16384
616 1.61 dsl * allocated pids we need it to be larger!
617 1.61 dsl */
618 1.61 dsl if (pid_tbl_mask > PID_MAX) {
619 1.61 dsl pid_max = pid_tbl_mask * 2 + 1;
620 1.61 dsl pid_alloc_lim |= pid_alloc_lim << 1;
621 1.61 dsl } else
622 1.61 dsl pid_alloc_lim <<= 1; /* doubles number of free slots... */
623 1.61 dsl
624 1.107 ad mutex_exit(&proclist_lock);
625 1.61 dsl FREE(n_pt, M_PROC);
626 1.61 dsl }
627 1.61 dsl
628 1.61 dsl struct proc *
629 1.61 dsl proc_alloc(void)
630 1.61 dsl {
631 1.61 dsl struct proc *p;
632 1.100 ad int nxt;
633 1.61 dsl pid_t pid;
634 1.61 dsl struct pid_table *pt;
635 1.61 dsl
636 1.128 ad p = pool_cache_get(proc_cache, PR_WAITOK);
637 1.61 dsl p->p_stat = SIDL; /* protect against others */
638 1.61 dsl
639 1.96 christos proc_initspecific(p);
640 1.61 dsl /* allocate next free pid */
641 1.61 dsl
642 1.61 dsl for (;;expand_pid_table()) {
643 1.61 dsl if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
644 1.61 dsl /* ensure pids cycle through 2000+ values */
645 1.61 dsl continue;
646 1.107 ad mutex_enter(&proclist_lock);
647 1.61 dsl pt = &pid_table[next_free_pt];
648 1.1 cgd #ifdef DIAGNOSTIC
649 1.63 christos if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
650 1.61 dsl panic("proc_alloc: slot busy");
651 1.1 cgd #endif
652 1.61 dsl nxt = P_NEXT(pt->pt_proc);
653 1.61 dsl if (nxt & pid_tbl_mask)
654 1.61 dsl break;
655 1.61 dsl /* Table full - expand (NB last entry not used....) */
656 1.107 ad mutex_exit(&proclist_lock);
657 1.61 dsl }
658 1.61 dsl
659 1.61 dsl /* pid is 'saved use count' + 'size' + entry */
660 1.61 dsl pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
661 1.61 dsl if ((uint)pid > (uint)pid_max)
662 1.61 dsl pid &= pid_tbl_mask;
663 1.61 dsl p->p_pid = pid;
664 1.61 dsl next_free_pt = nxt & pid_tbl_mask;
665 1.61 dsl
666 1.61 dsl /* Grab table slot */
667 1.100 ad mutex_enter(&proclist_mutex);
668 1.61 dsl pt->pt_proc = p;
669 1.100 ad mutex_exit(&proclist_mutex);
670 1.61 dsl pid_alloc_cnt++;
671 1.61 dsl
672 1.107 ad mutex_exit(&proclist_lock);
673 1.61 dsl
674 1.61 dsl return p;
675 1.61 dsl }
676 1.61 dsl
677 1.61 dsl /*
678 1.118 ad * Free a process id - called from proc_free (in kern_exit.c)
679 1.100 ad *
680 1.118 ad * Called with the proclist_lock held.
681 1.61 dsl */
682 1.61 dsl void
683 1.118 ad proc_free_pid(struct proc *p)
684 1.61 dsl {
685 1.61 dsl pid_t pid = p->p_pid;
686 1.61 dsl struct pid_table *pt;
687 1.61 dsl
688 1.107 ad KASSERT(mutex_owned(&proclist_lock));
689 1.61 dsl
690 1.61 dsl pt = &pid_table[pid & pid_tbl_mask];
691 1.1 cgd #ifdef DIAGNOSTIC
692 1.63 christos if (__predict_false(pt->pt_proc != p))
693 1.61 dsl panic("proc_free: pid_table mismatch, pid %x, proc %p",
694 1.61 dsl pid, p);
695 1.1 cgd #endif
696 1.100 ad mutex_enter(&proclist_mutex);
697 1.61 dsl /* save pid use count in slot */
698 1.61 dsl pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
699 1.61 dsl
700 1.61 dsl if (pt->pt_pgrp == NULL) {
701 1.61 dsl /* link last freed entry onto ours */
702 1.61 dsl pid &= pid_tbl_mask;
703 1.61 dsl pt = &pid_table[last_free_pt];
704 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
705 1.61 dsl last_free_pt = pid;
706 1.61 dsl pid_alloc_cnt--;
707 1.61 dsl }
708 1.100 ad mutex_exit(&proclist_mutex);
709 1.61 dsl
710 1.126 ad atomic_dec_uint(&nprocs);
711 1.61 dsl }
712 1.61 dsl
713 1.128 ad void
714 1.128 ad proc_free_mem(struct proc *p)
715 1.128 ad {
716 1.128 ad
717 1.128 ad pool_cache_put(proc_cache, p);
718 1.128 ad }
719 1.128 ad
720 1.61 dsl /*
721 1.61 dsl * Move p to a new or existing process group (and session)
722 1.61 dsl *
723 1.61 dsl * If we are creating a new pgrp, the pgid should equal
724 1.72 junyoung * the calling process' pid.
725 1.61 dsl * If is only valid to enter a process group that is in the session
726 1.61 dsl * of the process.
727 1.61 dsl * Also mksess should only be set if we are creating a process group
728 1.61 dsl *
729 1.72 junyoung * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
730 1.100 ad * SYSV setpgrp support for hpux.
731 1.61 dsl */
732 1.61 dsl int
733 1.100 ad enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
734 1.61 dsl {
735 1.61 dsl struct pgrp *new_pgrp, *pgrp;
736 1.61 dsl struct session *sess;
737 1.100 ad struct proc *p;
738 1.61 dsl int rval;
739 1.61 dsl pid_t pg_id = NO_PGID;
740 1.61 dsl
741 1.61 dsl if (mksess)
742 1.128 ad sess = pool_cache_get(session_cache, PR_WAITOK);
743 1.61 dsl else
744 1.61 dsl sess = NULL;
745 1.61 dsl
746 1.107 ad /* Allocate data areas we might need before doing any validity checks */
747 1.107 ad mutex_enter(&proclist_lock); /* Because pid_table might change */
748 1.107 ad if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
749 1.107 ad mutex_exit(&proclist_lock);
750 1.128 ad new_pgrp = pool_cache_get(pgrp_cache, PR_WAITOK);
751 1.107 ad mutex_enter(&proclist_lock);
752 1.107 ad } else
753 1.107 ad new_pgrp = NULL;
754 1.61 dsl rval = EPERM; /* most common error (to save typing) */
755 1.61 dsl
756 1.61 dsl /* Check pgrp exists or can be created */
757 1.61 dsl pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
758 1.61 dsl if (pgrp != NULL && pgrp->pg_id != pgid)
759 1.61 dsl goto done;
760 1.61 dsl
761 1.61 dsl /* Can only set another process under restricted circumstances. */
762 1.100 ad if (pid != curp->p_pid) {
763 1.61 dsl /* must exist and be one of our children... */
764 1.100 ad if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
765 1.100 ad !inferior(p, curp)) {
766 1.61 dsl rval = ESRCH;
767 1.61 dsl goto done;
768 1.61 dsl }
769 1.61 dsl /* ... in the same session... */
770 1.61 dsl if (sess != NULL || p->p_session != curp->p_session)
771 1.61 dsl goto done;
772 1.61 dsl /* ... existing pgid must be in same session ... */
773 1.61 dsl if (pgrp != NULL && pgrp->pg_session != p->p_session)
774 1.61 dsl goto done;
775 1.61 dsl /* ... and not done an exec. */
776 1.102 pavel if (p->p_flag & PK_EXEC) {
777 1.61 dsl rval = EACCES;
778 1.61 dsl goto done;
779 1.49 enami }
780 1.100 ad } else {
781 1.100 ad /* ... setsid() cannot re-enter a pgrp */
782 1.100 ad if (mksess && (curp->p_pgid == curp->p_pid ||
783 1.100 ad pg_find(curp->p_pid, PFIND_LOCKED)))
784 1.100 ad goto done;
785 1.100 ad p = curp;
786 1.61 dsl }
787 1.1 cgd
788 1.61 dsl /* Changing the process group/session of a session
789 1.61 dsl leader is definitely off limits. */
790 1.61 dsl if (SESS_LEADER(p)) {
791 1.61 dsl if (sess == NULL && p->p_pgrp == pgrp)
792 1.61 dsl /* unless it's a definite noop */
793 1.61 dsl rval = 0;
794 1.61 dsl goto done;
795 1.61 dsl }
796 1.61 dsl
797 1.61 dsl /* Can only create a process group with id of process */
798 1.61 dsl if (pgrp == NULL && pgid != pid)
799 1.61 dsl goto done;
800 1.61 dsl
801 1.61 dsl /* Can only create a session if creating pgrp */
802 1.61 dsl if (sess != NULL && pgrp != NULL)
803 1.61 dsl goto done;
804 1.61 dsl
805 1.61 dsl /* Check we allocated memory for a pgrp... */
806 1.61 dsl if (pgrp == NULL && new_pgrp == NULL)
807 1.61 dsl goto done;
808 1.61 dsl
809 1.61 dsl /* Don't attach to 'zombie' pgrp */
810 1.61 dsl if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
811 1.61 dsl goto done;
812 1.61 dsl
813 1.61 dsl /* Expect to succeed now */
814 1.61 dsl rval = 0;
815 1.61 dsl
816 1.61 dsl if (pgrp == p->p_pgrp)
817 1.61 dsl /* nothing to do */
818 1.61 dsl goto done;
819 1.61 dsl
820 1.61 dsl /* Ok all setup, link up required structures */
821 1.100 ad
822 1.61 dsl if (pgrp == NULL) {
823 1.61 dsl pgrp = new_pgrp;
824 1.61 dsl new_pgrp = 0;
825 1.61 dsl if (sess != NULL) {
826 1.21 thorpej sess->s_sid = p->p_pid;
827 1.1 cgd sess->s_leader = p;
828 1.1 cgd sess->s_count = 1;
829 1.1 cgd sess->s_ttyvp = NULL;
830 1.1 cgd sess->s_ttyp = NULL;
831 1.58 dsl sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
832 1.25 perry memcpy(sess->s_login, p->p_session->s_login,
833 1.1 cgd sizeof(sess->s_login));
834 1.100 ad p->p_lflag &= ~PL_CONTROLT;
835 1.1 cgd } else {
836 1.61 dsl sess = p->p_pgrp->pg_session;
837 1.61 dsl SESSHOLD(sess);
838 1.1 cgd }
839 1.61 dsl pgrp->pg_session = sess;
840 1.61 dsl sess = 0;
841 1.61 dsl
842 1.1 cgd pgrp->pg_id = pgid;
843 1.10 mycroft LIST_INIT(&pgrp->pg_members);
844 1.61 dsl #ifdef DIAGNOSTIC
845 1.63 christos if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
846 1.61 dsl panic("enterpgrp: pgrp table slot in use");
847 1.63 christos if (__predict_false(mksess && p != curp))
848 1.63 christos panic("enterpgrp: mksession and p != curproc");
849 1.61 dsl #endif
850 1.100 ad mutex_enter(&proclist_mutex);
851 1.61 dsl pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
852 1.1 cgd pgrp->pg_jobc = 0;
853 1.100 ad } else
854 1.100 ad mutex_enter(&proclist_mutex);
855 1.100 ad
856 1.128 ad /* Interlock with tty subsystem. */
857 1.128 ad mutex_spin_enter(&tty_lock);
858 1.1 cgd
859 1.1 cgd /*
860 1.1 cgd * Adjust eligibility of affected pgrps to participate in job control.
861 1.1 cgd * Increment eligibility counts before decrementing, otherwise we
862 1.1 cgd * could reach 0 spuriously during the first call.
863 1.1 cgd */
864 1.1 cgd fixjobc(p, pgrp, 1);
865 1.1 cgd fixjobc(p, p->p_pgrp, 0);
866 1.1 cgd
867 1.100 ad /* Move process to requested group. */
868 1.10 mycroft LIST_REMOVE(p, p_pglist);
869 1.52 matt if (LIST_EMPTY(&p->p_pgrp->pg_members))
870 1.61 dsl /* defer delete until we've dumped the lock */
871 1.61 dsl pg_id = p->p_pgrp->pg_id;
872 1.1 cgd p->p_pgrp = pgrp;
873 1.10 mycroft LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
874 1.100 ad
875 1.100 ad /* Done with the swap; we can release the tty mutex. */
876 1.128 ad mutex_spin_exit(&tty_lock);
877 1.128 ad
878 1.128 ad mutex_exit(&proclist_mutex);
879 1.61 dsl
880 1.61 dsl done:
881 1.100 ad if (pg_id != NO_PGID)
882 1.100 ad pg_delete(pg_id);
883 1.107 ad mutex_exit(&proclist_lock);
884 1.61 dsl if (sess != NULL)
885 1.128 ad pool_cache_put(session_cache, sess);
886 1.61 dsl if (new_pgrp != NULL)
887 1.128 ad pool_cache_put(pgrp_cache, new_pgrp);
888 1.63 christos #ifdef DEBUG_PGRP
889 1.63 christos if (__predict_false(rval))
890 1.61 dsl printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
891 1.61 dsl pid, pgid, mksess, curp->p_pid, rval);
892 1.61 dsl #endif
893 1.61 dsl return rval;
894 1.1 cgd }
895 1.1 cgd
896 1.1 cgd /*
897 1.100 ad * Remove a process from its process group. Must be called with the
898 1.107 ad * proclist_lock held.
899 1.1 cgd */
900 1.100 ad void
901 1.59 dsl leavepgrp(struct proc *p)
902 1.1 cgd {
903 1.61 dsl struct pgrp *pgrp;
904 1.1 cgd
905 1.107 ad KASSERT(mutex_owned(&proclist_lock));
906 1.100 ad
907 1.100 ad mutex_enter(&proclist_mutex);
908 1.128 ad mutex_spin_enter(&tty_lock);
909 1.61 dsl pgrp = p->p_pgrp;
910 1.10 mycroft LIST_REMOVE(p, p_pglist);
911 1.94 ad p->p_pgrp = NULL;
912 1.128 ad mutex_spin_exit(&tty_lock);
913 1.100 ad mutex_exit(&proclist_mutex);
914 1.100 ad
915 1.100 ad if (LIST_EMPTY(&pgrp->pg_members))
916 1.100 ad pg_delete(pgrp->pg_id);
917 1.61 dsl }
918 1.61 dsl
919 1.100 ad /*
920 1.107 ad * Free a process group. Must be called with the proclist_lock held.
921 1.100 ad */
922 1.61 dsl static void
923 1.61 dsl pg_free(pid_t pg_id)
924 1.61 dsl {
925 1.61 dsl struct pgrp *pgrp;
926 1.61 dsl struct pid_table *pt;
927 1.61 dsl
928 1.107 ad KASSERT(mutex_owned(&proclist_lock));
929 1.100 ad
930 1.61 dsl pt = &pid_table[pg_id & pid_tbl_mask];
931 1.61 dsl pgrp = pt->pt_pgrp;
932 1.61 dsl #ifdef DIAGNOSTIC
933 1.63 christos if (__predict_false(!pgrp || pgrp->pg_id != pg_id
934 1.63 christos || !LIST_EMPTY(&pgrp->pg_members)))
935 1.61 dsl panic("pg_free: process group absent or has members");
936 1.61 dsl #endif
937 1.61 dsl pt->pt_pgrp = 0;
938 1.61 dsl
939 1.61 dsl if (!P_VALID(pt->pt_proc)) {
940 1.61 dsl /* orphaned pgrp, put slot onto free list */
941 1.61 dsl #ifdef DIAGNOSTIC
942 1.63 christos if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
943 1.61 dsl panic("pg_free: process slot on free list");
944 1.61 dsl #endif
945 1.100 ad mutex_enter(&proclist_mutex);
946 1.61 dsl pg_id &= pid_tbl_mask;
947 1.61 dsl pt = &pid_table[last_free_pt];
948 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
949 1.100 ad mutex_exit(&proclist_mutex);
950 1.61 dsl last_free_pt = pg_id;
951 1.61 dsl pid_alloc_cnt--;
952 1.61 dsl }
953 1.128 ad pool_cache_put(pgrp_cache, pgrp);
954 1.1 cgd }
955 1.1 cgd
956 1.1 cgd /*
957 1.107 ad * Delete a process group. Must be called with the proclist_lock held.
958 1.1 cgd */
959 1.61 dsl static void
960 1.61 dsl pg_delete(pid_t pg_id)
961 1.61 dsl {
962 1.61 dsl struct pgrp *pgrp;
963 1.61 dsl struct tty *ttyp;
964 1.61 dsl struct session *ss;
965 1.100 ad int is_pgrp_leader;
966 1.100 ad
967 1.107 ad KASSERT(mutex_owned(&proclist_lock));
968 1.61 dsl
969 1.61 dsl pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
970 1.61 dsl if (pgrp == NULL || pgrp->pg_id != pg_id ||
971 1.100 ad !LIST_EMPTY(&pgrp->pg_members))
972 1.61 dsl return;
973 1.61 dsl
974 1.71 pk ss = pgrp->pg_session;
975 1.71 pk
976 1.61 dsl /* Remove reference (if any) from tty to this process group */
977 1.128 ad mutex_spin_enter(&tty_lock);
978 1.71 pk ttyp = ss->s_ttyp;
979 1.71 pk if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
980 1.61 dsl ttyp->t_pgrp = NULL;
981 1.71 pk #ifdef DIAGNOSTIC
982 1.71 pk if (ttyp->t_session != ss)
983 1.71 pk panic("pg_delete: wrong session on terminal");
984 1.71 pk #endif
985 1.71 pk }
986 1.128 ad mutex_spin_exit(&tty_lock);
987 1.61 dsl
988 1.71 pk /*
989 1.71 pk * The leading process group in a session is freed
990 1.71 pk * by sessdelete() if last reference.
991 1.71 pk */
992 1.71 pk is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
993 1.71 pk SESSRELE(ss);
994 1.61 dsl
995 1.71 pk if (is_pgrp_leader)
996 1.61 dsl return;
997 1.61 dsl
998 1.61 dsl pg_free(pg_id);
999 1.61 dsl }
1000 1.61 dsl
1001 1.61 dsl /*
1002 1.61 dsl * Delete session - called from SESSRELE when s_count becomes zero.
1003 1.107 ad * Must be called with the proclist_lock held.
1004 1.61 dsl */
1005 1.11 cgd void
1006 1.61 dsl sessdelete(struct session *ss)
1007 1.1 cgd {
1008 1.100 ad
1009 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1010 1.100 ad
1011 1.61 dsl /*
1012 1.61 dsl * We keep the pgrp with the same id as the session in
1013 1.61 dsl * order to stop a process being given the same pid.
1014 1.61 dsl * Since the pgrp holds a reference to the session, it
1015 1.61 dsl * must be a 'zombie' pgrp by now.
1016 1.61 dsl */
1017 1.61 dsl pg_free(ss->s_sid);
1018 1.128 ad pool_cache_put(session_cache, ss);
1019 1.1 cgd }
1020 1.1 cgd
1021 1.1 cgd /*
1022 1.1 cgd * Adjust pgrp jobc counters when specified process changes process group.
1023 1.1 cgd * We count the number of processes in each process group that "qualify"
1024 1.1 cgd * the group for terminal job control (those with a parent in a different
1025 1.1 cgd * process group of the same session). If that count reaches zero, the
1026 1.1 cgd * process group becomes orphaned. Check both the specified process'
1027 1.1 cgd * process group and that of its children.
1028 1.1 cgd * entering == 0 => p is leaving specified group.
1029 1.1 cgd * entering == 1 => p is entering specified group.
1030 1.68 dsl *
1031 1.107 ad * Call with proclist_lock held.
1032 1.1 cgd */
1033 1.4 andrew void
1034 1.59 dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1035 1.1 cgd {
1036 1.39 augustss struct pgrp *hispgrp;
1037 1.39 augustss struct session *mysession = pgrp->pg_session;
1038 1.68 dsl struct proc *child;
1039 1.1 cgd
1040 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1041 1.107 ad KASSERT(mutex_owned(&proclist_mutex));
1042 1.100 ad
1043 1.1 cgd /*
1044 1.1 cgd * Check p's parent to see whether p qualifies its own process
1045 1.1 cgd * group; if so, adjust count for p's process group.
1046 1.1 cgd */
1047 1.68 dsl hispgrp = p->p_pptr->p_pgrp;
1048 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1049 1.100 ad if (entering) {
1050 1.100 ad mutex_enter(&p->p_smutex);
1051 1.100 ad p->p_sflag &= ~PS_ORPHANPG;
1052 1.100 ad mutex_exit(&p->p_smutex);
1053 1.1 cgd pgrp->pg_jobc++;
1054 1.100 ad } else if (--pgrp->pg_jobc == 0)
1055 1.1 cgd orphanpg(pgrp);
1056 1.26 thorpej }
1057 1.1 cgd
1058 1.1 cgd /*
1059 1.1 cgd * Check this process' children to see whether they qualify
1060 1.1 cgd * their process groups; if so, adjust counts for children's
1061 1.1 cgd * process groups.
1062 1.1 cgd */
1063 1.68 dsl LIST_FOREACH(child, &p->p_children, p_sibling) {
1064 1.68 dsl hispgrp = child->p_pgrp;
1065 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1066 1.68 dsl !P_ZOMBIE(child)) {
1067 1.100 ad if (entering) {
1068 1.100 ad mutex_enter(&child->p_smutex);
1069 1.100 ad child->p_sflag &= ~PS_ORPHANPG;
1070 1.100 ad mutex_exit(&child->p_smutex);
1071 1.1 cgd hispgrp->pg_jobc++;
1072 1.100 ad } else if (--hispgrp->pg_jobc == 0)
1073 1.1 cgd orphanpg(hispgrp);
1074 1.26 thorpej }
1075 1.26 thorpej }
1076 1.1 cgd }
1077 1.1 cgd
1078 1.72 junyoung /*
1079 1.1 cgd * A process group has become orphaned;
1080 1.1 cgd * if there are any stopped processes in the group,
1081 1.1 cgd * hang-up all process in that group.
1082 1.68 dsl *
1083 1.107 ad * Call with proclist_lock held.
1084 1.1 cgd */
1085 1.4 andrew static void
1086 1.59 dsl orphanpg(struct pgrp *pg)
1087 1.1 cgd {
1088 1.39 augustss struct proc *p;
1089 1.100 ad int doit;
1090 1.100 ad
1091 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1092 1.107 ad KASSERT(mutex_owned(&proclist_mutex));
1093 1.100 ad
1094 1.100 ad doit = 0;
1095 1.1 cgd
1096 1.52 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1097 1.100 ad mutex_enter(&p->p_smutex);
1098 1.1 cgd if (p->p_stat == SSTOP) {
1099 1.100 ad doit = 1;
1100 1.100 ad p->p_sflag |= PS_ORPHANPG;
1101 1.1 cgd }
1102 1.100 ad mutex_exit(&p->p_smutex);
1103 1.1 cgd }
1104 1.35 bouyer
1105 1.100 ad if (doit) {
1106 1.100 ad LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1107 1.100 ad psignal(p, SIGHUP);
1108 1.100 ad psignal(p, SIGCONT);
1109 1.35 bouyer }
1110 1.35 bouyer }
1111 1.35 bouyer }
1112 1.1 cgd
1113 1.61 dsl #ifdef DDB
1114 1.61 dsl #include <ddb/db_output.h>
1115 1.61 dsl void pidtbl_dump(void);
1116 1.14 christos void
1117 1.61 dsl pidtbl_dump(void)
1118 1.1 cgd {
1119 1.61 dsl struct pid_table *pt;
1120 1.61 dsl struct proc *p;
1121 1.39 augustss struct pgrp *pgrp;
1122 1.61 dsl int id;
1123 1.1 cgd
1124 1.61 dsl db_printf("pid table %p size %x, next %x, last %x\n",
1125 1.61 dsl pid_table, pid_tbl_mask+1,
1126 1.61 dsl next_free_pt, last_free_pt);
1127 1.61 dsl for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1128 1.61 dsl p = pt->pt_proc;
1129 1.61 dsl if (!P_VALID(p) && !pt->pt_pgrp)
1130 1.61 dsl continue;
1131 1.61 dsl db_printf(" id %x: ", id);
1132 1.61 dsl if (P_VALID(p))
1133 1.61 dsl db_printf("proc %p id %d (0x%x) %s\n",
1134 1.61 dsl p, p->p_pid, p->p_pid, p->p_comm);
1135 1.61 dsl else
1136 1.61 dsl db_printf("next %x use %x\n",
1137 1.61 dsl P_NEXT(p) & pid_tbl_mask,
1138 1.61 dsl P_NEXT(p) & ~pid_tbl_mask);
1139 1.61 dsl if ((pgrp = pt->pt_pgrp)) {
1140 1.61 dsl db_printf("\tsession %p, sid %d, count %d, login %s\n",
1141 1.61 dsl pgrp->pg_session, pgrp->pg_session->s_sid,
1142 1.61 dsl pgrp->pg_session->s_count,
1143 1.61 dsl pgrp->pg_session->s_login);
1144 1.61 dsl db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1145 1.61 dsl pgrp, pgrp->pg_id, pgrp->pg_jobc,
1146 1.61 dsl pgrp->pg_members.lh_first);
1147 1.61 dsl for (p = pgrp->pg_members.lh_first; p != 0;
1148 1.61 dsl p = p->p_pglist.le_next) {
1149 1.72 junyoung db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1150 1.61 dsl p->p_pid, p, p->p_pgrp, p->p_comm);
1151 1.10 mycroft }
1152 1.1 cgd }
1153 1.1 cgd }
1154 1.1 cgd }
1155 1.61 dsl #endif /* DDB */
1156 1.48 yamt
1157 1.48 yamt #ifdef KSTACK_CHECK_MAGIC
1158 1.48 yamt #include <sys/user.h>
1159 1.48 yamt
1160 1.48 yamt #define KSTACK_MAGIC 0xdeadbeaf
1161 1.48 yamt
1162 1.48 yamt /* XXX should be per process basis? */
1163 1.48 yamt int kstackleftmin = KSTACK_SIZE;
1164 1.50 enami int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1165 1.50 enami less than this */
1166 1.48 yamt
1167 1.48 yamt void
1168 1.56 yamt kstack_setup_magic(const struct lwp *l)
1169 1.48 yamt {
1170 1.85 perry uint32_t *ip;
1171 1.85 perry uint32_t const *end;
1172 1.48 yamt
1173 1.56 yamt KASSERT(l != NULL);
1174 1.56 yamt KASSERT(l != &lwp0);
1175 1.48 yamt
1176 1.48 yamt /*
1177 1.48 yamt * fill all the stack with magic number
1178 1.48 yamt * so that later modification on it can be detected.
1179 1.48 yamt */
1180 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1181 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1182 1.48 yamt for (; ip < end; ip++) {
1183 1.48 yamt *ip = KSTACK_MAGIC;
1184 1.48 yamt }
1185 1.48 yamt }
1186 1.48 yamt
1187 1.48 yamt void
1188 1.56 yamt kstack_check_magic(const struct lwp *l)
1189 1.48 yamt {
1190 1.85 perry uint32_t const *ip, *end;
1191 1.48 yamt int stackleft;
1192 1.48 yamt
1193 1.56 yamt KASSERT(l != NULL);
1194 1.48 yamt
1195 1.48 yamt /* don't check proc0 */ /*XXX*/
1196 1.56 yamt if (l == &lwp0)
1197 1.48 yamt return;
1198 1.48 yamt
1199 1.48 yamt #ifdef __MACHINE_STACK_GROWS_UP
1200 1.48 yamt /* stack grows upwards (eg. hppa) */
1201 1.106 christos ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1202 1.85 perry end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1203 1.48 yamt for (ip--; ip >= end; ip--)
1204 1.48 yamt if (*ip != KSTACK_MAGIC)
1205 1.48 yamt break;
1206 1.72 junyoung
1207 1.106 christos stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1208 1.48 yamt #else /* __MACHINE_STACK_GROWS_UP */
1209 1.48 yamt /* stack grows downwards (eg. i386) */
1210 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1211 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1212 1.48 yamt for (; ip < end; ip++)
1213 1.48 yamt if (*ip != KSTACK_MAGIC)
1214 1.48 yamt break;
1215 1.48 yamt
1216 1.93 christos stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1217 1.48 yamt #endif /* __MACHINE_STACK_GROWS_UP */
1218 1.48 yamt
1219 1.48 yamt if (kstackleftmin > stackleft) {
1220 1.48 yamt kstackleftmin = stackleft;
1221 1.48 yamt if (stackleft < kstackleftthres)
1222 1.56 yamt printf("warning: kernel stack left %d bytes"
1223 1.56 yamt "(pid %u:lid %u)\n", stackleft,
1224 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1225 1.48 yamt }
1226 1.48 yamt
1227 1.48 yamt if (stackleft <= 0) {
1228 1.56 yamt panic("magic on the top of kernel stack changed for "
1229 1.56 yamt "pid %u, lid %u: maybe kernel stack overflow",
1230 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1231 1.48 yamt }
1232 1.48 yamt }
1233 1.50 enami #endif /* KSTACK_CHECK_MAGIC */
1234 1.79 yamt
1235 1.100 ad /*
1236 1.100 ad * XXXSMP this is bust, it grabs a read lock and then messes about
1237 1.100 ad * with allproc.
1238 1.100 ad */
1239 1.79 yamt int
1240 1.79 yamt proclist_foreach_call(struct proclist *list,
1241 1.79 yamt int (*callback)(struct proc *, void *arg), void *arg)
1242 1.79 yamt {
1243 1.79 yamt struct proc marker;
1244 1.79 yamt struct proc *p;
1245 1.79 yamt struct lwp * const l = curlwp;
1246 1.79 yamt int ret = 0;
1247 1.79 yamt
1248 1.102 pavel marker.p_flag = PK_MARKER;
1249 1.113 ad uvm_lwp_hold(l);
1250 1.107 ad mutex_enter(&proclist_lock);
1251 1.79 yamt for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1252 1.102 pavel if (p->p_flag & PK_MARKER) {
1253 1.79 yamt p = LIST_NEXT(p, p_list);
1254 1.79 yamt continue;
1255 1.79 yamt }
1256 1.79 yamt LIST_INSERT_AFTER(p, &marker, p_list);
1257 1.79 yamt ret = (*callback)(p, arg);
1258 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1259 1.79 yamt p = LIST_NEXT(&marker, p_list);
1260 1.79 yamt LIST_REMOVE(&marker, p_list);
1261 1.79 yamt }
1262 1.107 ad mutex_exit(&proclist_lock);
1263 1.113 ad uvm_lwp_rele(l);
1264 1.79 yamt
1265 1.79 yamt return ret;
1266 1.79 yamt }
1267 1.86 yamt
1268 1.86 yamt int
1269 1.86 yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1270 1.86 yamt {
1271 1.86 yamt
1272 1.86 yamt /* XXXCDC: how should locking work here? */
1273 1.86 yamt
1274 1.87 yamt /* curproc exception is for coredump. */
1275 1.87 yamt
1276 1.100 ad if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1277 1.86 yamt (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1278 1.86 yamt return EFAULT;
1279 1.86 yamt }
1280 1.86 yamt
1281 1.86 yamt uvmspace_addref(p->p_vmspace);
1282 1.86 yamt *vm = p->p_vmspace;
1283 1.86 yamt
1284 1.86 yamt return 0;
1285 1.86 yamt }
1286 1.94 ad
1287 1.94 ad /*
1288 1.94 ad * Acquire a write lock on the process credential.
1289 1.94 ad */
1290 1.94 ad void
1291 1.100 ad proc_crmod_enter(void)
1292 1.94 ad {
1293 1.100 ad struct lwp *l = curlwp;
1294 1.100 ad struct proc *p = l->l_proc;
1295 1.100 ad struct plimit *lim;
1296 1.100 ad kauth_cred_t oc;
1297 1.100 ad char *cn;
1298 1.94 ad
1299 1.117 dsl /* Reset what needs to be reset in plimit. */
1300 1.117 dsl if (p->p_limit->pl_corename != defcorename) {
1301 1.117 dsl lim_privatise(p, false);
1302 1.117 dsl lim = p->p_limit;
1303 1.117 dsl mutex_enter(&lim->pl_lock);
1304 1.117 dsl cn = lim->pl_corename;
1305 1.117 dsl lim->pl_corename = defcorename;
1306 1.117 dsl mutex_exit(&lim->pl_lock);
1307 1.117 dsl if (cn != defcorename)
1308 1.117 dsl free(cn, M_TEMP);
1309 1.117 dsl }
1310 1.117 dsl
1311 1.100 ad mutex_enter(&p->p_mutex);
1312 1.100 ad
1313 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1314 1.100 ad if ((oc = l->l_cred) != p->p_cred) {
1315 1.100 ad kauth_cred_hold(p->p_cred);
1316 1.100 ad l->l_cred = p->p_cred;
1317 1.100 ad kauth_cred_free(oc);
1318 1.100 ad }
1319 1.100 ad
1320 1.94 ad }
1321 1.94 ad
1322 1.94 ad /*
1323 1.100 ad * Set in a new process credential, and drop the write lock. The credential
1324 1.100 ad * must have a reference already. Optionally, free a no-longer required
1325 1.100 ad * credential. The scheduler also needs to inspect p_cred, so we also
1326 1.100 ad * briefly acquire the sched state mutex.
1327 1.94 ad */
1328 1.94 ad void
1329 1.104 thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1330 1.94 ad {
1331 1.100 ad struct lwp *l = curlwp;
1332 1.100 ad struct proc *p = l->l_proc;
1333 1.100 ad kauth_cred_t oc;
1334 1.100 ad
1335 1.100 ad /* Is there a new credential to set in? */
1336 1.100 ad if (scred != NULL) {
1337 1.100 ad mutex_enter(&p->p_smutex);
1338 1.100 ad p->p_cred = scred;
1339 1.100 ad mutex_exit(&p->p_smutex);
1340 1.100 ad
1341 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1342 1.100 ad if ((oc = l->l_cred) != scred) {
1343 1.100 ad kauth_cred_hold(scred);
1344 1.100 ad l->l_cred = scred;
1345 1.100 ad }
1346 1.100 ad } else
1347 1.100 ad oc = NULL; /* XXXgcc */
1348 1.100 ad
1349 1.100 ad if (sugid) {
1350 1.100 ad /*
1351 1.100 ad * Mark process as having changed credentials, stops
1352 1.100 ad * tracing etc.
1353 1.100 ad */
1354 1.102 pavel p->p_flag |= PK_SUGID;
1355 1.100 ad }
1356 1.94 ad
1357 1.100 ad mutex_exit(&p->p_mutex);
1358 1.100 ad
1359 1.100 ad /* If there is a credential to be released, free it now. */
1360 1.100 ad if (fcred != NULL) {
1361 1.100 ad KASSERT(scred != NULL);
1362 1.94 ad kauth_cred_free(fcred);
1363 1.100 ad if (oc != scred)
1364 1.100 ad kauth_cred_free(oc);
1365 1.100 ad }
1366 1.100 ad }
1367 1.100 ad
1368 1.100 ad /*
1369 1.95 thorpej * proc_specific_key_create --
1370 1.95 thorpej * Create a key for subsystem proc-specific data.
1371 1.95 thorpej */
1372 1.95 thorpej int
1373 1.95 thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1374 1.95 thorpej {
1375 1.95 thorpej
1376 1.98 thorpej return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1377 1.95 thorpej }
1378 1.95 thorpej
1379 1.95 thorpej /*
1380 1.95 thorpej * proc_specific_key_delete --
1381 1.95 thorpej * Delete a key for subsystem proc-specific data.
1382 1.95 thorpej */
1383 1.95 thorpej void
1384 1.95 thorpej proc_specific_key_delete(specificdata_key_t key)
1385 1.95 thorpej {
1386 1.95 thorpej
1387 1.95 thorpej specificdata_key_delete(proc_specificdata_domain, key);
1388 1.95 thorpej }
1389 1.95 thorpej
1390 1.98 thorpej /*
1391 1.98 thorpej * proc_initspecific --
1392 1.98 thorpej * Initialize a proc's specificdata container.
1393 1.98 thorpej */
1394 1.96 christos void
1395 1.96 christos proc_initspecific(struct proc *p)
1396 1.96 christos {
1397 1.96 christos int error;
1398 1.98 thorpej
1399 1.96 christos error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1400 1.96 christos KASSERT(error == 0);
1401 1.96 christos }
1402 1.96 christos
1403 1.95 thorpej /*
1404 1.98 thorpej * proc_finispecific --
1405 1.98 thorpej * Finalize a proc's specificdata container.
1406 1.98 thorpej */
1407 1.98 thorpej void
1408 1.98 thorpej proc_finispecific(struct proc *p)
1409 1.98 thorpej {
1410 1.98 thorpej
1411 1.98 thorpej specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1412 1.98 thorpej }
1413 1.98 thorpej
1414 1.98 thorpej /*
1415 1.95 thorpej * proc_getspecific --
1416 1.95 thorpej * Return proc-specific data corresponding to the specified key.
1417 1.95 thorpej */
1418 1.95 thorpej void *
1419 1.95 thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
1420 1.95 thorpej {
1421 1.95 thorpej
1422 1.95 thorpej return (specificdata_getspecific(proc_specificdata_domain,
1423 1.95 thorpej &p->p_specdataref, key));
1424 1.95 thorpej }
1425 1.95 thorpej
1426 1.95 thorpej /*
1427 1.95 thorpej * proc_setspecific --
1428 1.95 thorpej * Set proc-specific data corresponding to the specified key.
1429 1.95 thorpej */
1430 1.95 thorpej void
1431 1.95 thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1432 1.95 thorpej {
1433 1.95 thorpej
1434 1.95 thorpej specificdata_setspecific(proc_specificdata_domain,
1435 1.95 thorpej &p->p_specdataref, key, data);
1436 1.95 thorpej }
1437