kern_proc.c revision 1.131 1 1.131 ad /* $NetBSD: kern_proc.c,v 1.131 2008/03/17 00:52:56 ad Exp $ */
2 1.33 thorpej
3 1.33 thorpej /*-
4 1.131 ad * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.33 thorpej * All rights reserved.
6 1.33 thorpej *
7 1.33 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.33 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.100 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.33 thorpej *
11 1.33 thorpej * Redistribution and use in source and binary forms, with or without
12 1.33 thorpej * modification, are permitted provided that the following conditions
13 1.33 thorpej * are met:
14 1.33 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.33 thorpej * notice, this list of conditions and the following disclaimer.
16 1.33 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.33 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.33 thorpej * documentation and/or other materials provided with the distribution.
19 1.33 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.33 thorpej * must display the following acknowledgement:
21 1.33 thorpej * This product includes software developed by the NetBSD
22 1.33 thorpej * Foundation, Inc. and its contributors.
23 1.33 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.33 thorpej * contributors may be used to endorse or promote products derived
25 1.33 thorpej * from this software without specific prior written permission.
26 1.33 thorpej *
27 1.33 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.33 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.33 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.33 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.33 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.33 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.33 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.33 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.33 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.33 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.33 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.33 thorpej */
39 1.9 cgd
40 1.1 cgd /*
41 1.7 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 1.7 cgd * The Regents of the University of California. All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Redistribution and use in source and binary forms, with or without
45 1.1 cgd * modification, are permitted provided that the following conditions
46 1.1 cgd * are met:
47 1.1 cgd * 1. Redistributions of source code must retain the above copyright
48 1.1 cgd * notice, this list of conditions and the following disclaimer.
49 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 cgd * notice, this list of conditions and the following disclaimer in the
51 1.1 cgd * documentation and/or other materials provided with the distribution.
52 1.65 agc * 3. Neither the name of the University nor the names of its contributors
53 1.1 cgd * may be used to endorse or promote products derived from this software
54 1.1 cgd * without specific prior written permission.
55 1.1 cgd *
56 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.1 cgd * SUCH DAMAGE.
67 1.1 cgd *
68 1.23 fvdl * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 1.1 cgd */
70 1.45 lukem
71 1.45 lukem #include <sys/cdefs.h>
72 1.131 ad __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.131 2008/03/17 00:52:56 ad Exp $");
73 1.48 yamt
74 1.48 yamt #include "opt_kstack.h"
75 1.88 onoe #include "opt_maxuprc.h"
76 1.90 rjs #include "opt_multiprocessor.h"
77 1.90 rjs #include "opt_lockdebug.h"
78 1.1 cgd
79 1.5 mycroft #include <sys/param.h>
80 1.5 mycroft #include <sys/systm.h>
81 1.5 mycroft #include <sys/kernel.h>
82 1.5 mycroft #include <sys/proc.h>
83 1.28 thorpej #include <sys/resourcevar.h>
84 1.5 mycroft #include <sys/buf.h>
85 1.5 mycroft #include <sys/acct.h>
86 1.5 mycroft #include <sys/wait.h>
87 1.5 mycroft #include <sys/file.h>
88 1.8 mycroft #include <ufs/ufs/quota.h>
89 1.5 mycroft #include <sys/uio.h>
90 1.5 mycroft #include <sys/malloc.h>
91 1.24 thorpej #include <sys/pool.h>
92 1.5 mycroft #include <sys/mbuf.h>
93 1.5 mycroft #include <sys/ioctl.h>
94 1.5 mycroft #include <sys/tty.h>
95 1.11 cgd #include <sys/signalvar.h>
96 1.51 gmcgarry #include <sys/ras.h>
97 1.81 junyoung #include <sys/filedesc.h>
98 1.103 dsl #include "sys/syscall_stats.h"
99 1.89 elad #include <sys/kauth.h>
100 1.100 ad #include <sys/sleepq.h>
101 1.126 ad #include <sys/atomic.h>
102 1.131 ad #include <sys/kmem.h>
103 1.81 junyoung
104 1.81 junyoung #include <uvm/uvm.h>
105 1.79 yamt #include <uvm/uvm_extern.h>
106 1.5 mycroft
107 1.7 cgd /*
108 1.10 mycroft * Other process lists
109 1.7 cgd */
110 1.31 thorpej
111 1.10 mycroft struct proclist allproc;
112 1.32 thorpej struct proclist zombproc; /* resources have been freed */
113 1.32 thorpej
114 1.32 thorpej /*
115 1.100 ad * There are two locks on global process state.
116 1.100 ad *
117 1.107 ad * 1. proclist_lock is an adaptive mutex and is used when modifying
118 1.107 ad * or examining process state from a process context. It protects
119 1.107 ad * the internal tables, all of the process lists, and a number of
120 1.107 ad * members of struct proc.
121 1.107 ad *
122 1.100 ad * 2. proclist_mutex is used when allproc must be traversed from an
123 1.107 ad * interrupt context, or when changing the state of processes. The
124 1.107 ad * proclist_lock should always be used in preference. In some cases,
125 1.107 ad * both locks need to be held.
126 1.33 thorpej *
127 1.100 ad * proclist_lock proclist_mutex structure
128 1.100 ad * --------------- --------------- -----------------
129 1.100 ad * x zombproc
130 1.100 ad * x x pid_table
131 1.100 ad * x proc::p_pptr
132 1.100 ad * x proc::p_sibling
133 1.100 ad * x proc::p_children
134 1.125 ad * x alllwp
135 1.100 ad * x x allproc
136 1.100 ad * x x proc::p_pgrp
137 1.100 ad * x x proc::p_pglist
138 1.100 ad * x x proc::p_session
139 1.100 ad * x x proc::p_list
140 1.100 ad * x lwp::l_list
141 1.33 thorpej *
142 1.100 ad * The lock order for processes and LWPs is approximately as following:
143 1.33 thorpej *
144 1.107 ad * kernel_lock
145 1.100 ad * -> proclist_lock
146 1.107 ad * -> proc::p_mutex
147 1.107 ad * -> proclist_mutex
148 1.100 ad * -> proc::p_smutex
149 1.107 ad * -> proc::p_stmutex
150 1.107 ad *
151 1.107 ad * XXX p_smutex can be run at IPL_VM once audio drivers on the x86
152 1.107 ad * platform are made MP safe. Currently it blocks interrupts at
153 1.107 ad * IPL_SCHED and below.
154 1.107 ad *
155 1.107 ad * XXX The two process locks (p_smutex + p_mutex), and the two global
156 1.107 ad * state locks (proclist_lock + proclist_mutex) should be merged
157 1.107 ad * together. However, to do so requires interrupts that interrupts
158 1.107 ad * be run with LWP context.
159 1.33 thorpej */
160 1.107 ad kmutex_t proclist_lock;
161 1.100 ad kmutex_t proclist_mutex;
162 1.33 thorpej
163 1.33 thorpej /*
164 1.72 junyoung * pid to proc lookup is done by indexing the pid_table array.
165 1.61 dsl * Since pid numbers are only allocated when an empty slot
166 1.61 dsl * has been found, there is no need to search any lists ever.
167 1.61 dsl * (an orphaned pgrp will lock the slot, a session will lock
168 1.61 dsl * the pgrp with the same number.)
169 1.61 dsl * If the table is too small it is reallocated with twice the
170 1.61 dsl * previous size and the entries 'unzipped' into the two halves.
171 1.61 dsl * A linked list of free entries is passed through the pt_proc
172 1.61 dsl * field of 'free' items - set odd to be an invalid ptr.
173 1.61 dsl */
174 1.61 dsl
175 1.61 dsl struct pid_table {
176 1.61 dsl struct proc *pt_proc;
177 1.61 dsl struct pgrp *pt_pgrp;
178 1.72 junyoung };
179 1.61 dsl #if 1 /* strongly typed cast - should be a noop */
180 1.84 perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
181 1.61 dsl #else
182 1.61 dsl #define p2u(p) ((uint)p)
183 1.72 junyoung #endif
184 1.61 dsl #define P_VALID(p) (!(p2u(p) & 1))
185 1.61 dsl #define P_NEXT(p) (p2u(p) >> 1)
186 1.61 dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
187 1.61 dsl
188 1.61 dsl #define INITIAL_PID_TABLE_SIZE (1 << 5)
189 1.61 dsl static struct pid_table *pid_table;
190 1.61 dsl static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
191 1.61 dsl static uint pid_alloc_lim; /* max we allocate before growing table */
192 1.61 dsl static uint pid_alloc_cnt; /* number of allocated pids */
193 1.61 dsl
194 1.61 dsl /* links through free slots - never empty! */
195 1.61 dsl static uint next_free_pt, last_free_pt;
196 1.61 dsl static pid_t pid_max = PID_MAX; /* largest value we allocate */
197 1.31 thorpej
198 1.81 junyoung /* Components of the first process -- never freed. */
199 1.123 matt
200 1.123 matt extern const struct emul emul_netbsd; /* defined in kern_exec.c */
201 1.123 matt
202 1.123 matt struct session session0 = {
203 1.123 matt .s_count = 1,
204 1.123 matt .s_sid = 0,
205 1.123 matt };
206 1.123 matt struct pgrp pgrp0 = {
207 1.123 matt .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
208 1.123 matt .pg_session = &session0,
209 1.123 matt };
210 1.81 junyoung struct filedesc0 filedesc0;
211 1.123 matt struct cwdinfo cwdi0 = {
212 1.123 matt .cwdi_cmask = CMASK, /* see cmask below */
213 1.123 matt .cwdi_refcnt = 1,
214 1.123 matt };
215 1.123 matt struct plimit limit0 = {
216 1.123 matt .pl_corename = defcorename,
217 1.123 matt .pl_refcnt = 1,
218 1.123 matt .pl_rlimit = {
219 1.123 matt [0 ... __arraycount(limit0.pl_rlimit) - 1] = {
220 1.123 matt .rlim_cur = RLIM_INFINITY,
221 1.123 matt .rlim_max = RLIM_INFINITY,
222 1.123 matt },
223 1.123 matt },
224 1.123 matt };
225 1.81 junyoung struct pstats pstat0;
226 1.81 junyoung struct vmspace vmspace0;
227 1.81 junyoung struct sigacts sigacts0;
228 1.100 ad struct turnstile turnstile0;
229 1.123 matt struct proc proc0 = {
230 1.123 matt .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
231 1.123 matt .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
232 1.123 matt .p_nlwps = 1,
233 1.123 matt .p_nrlwps = 1,
234 1.123 matt .p_nlwpid = 1, /* must match lwp0.l_lid */
235 1.123 matt .p_pgrp = &pgrp0,
236 1.123 matt .p_comm = "system",
237 1.123 matt /*
238 1.123 matt * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
239 1.123 matt * when they exit. init(8) can easily wait them out for us.
240 1.123 matt */
241 1.123 matt .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
242 1.123 matt .p_stat = SACTIVE,
243 1.123 matt .p_nice = NZERO,
244 1.123 matt .p_emul = &emul_netbsd,
245 1.123 matt .p_cwdi = &cwdi0,
246 1.123 matt .p_limit = &limit0,
247 1.123 matt .p_fd = &filedesc0.fd_fd,
248 1.123 matt .p_vmspace = &vmspace0,
249 1.123 matt .p_stats = &pstat0,
250 1.123 matt .p_sigacts = &sigacts0,
251 1.123 matt };
252 1.123 matt struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
253 1.123 matt #ifdef LWP0_CPU_INFO
254 1.123 matt .l_cpu = LWP0_CPU_INFO,
255 1.123 matt #endif
256 1.123 matt .l_proc = &proc0,
257 1.123 matt .l_lid = 1,
258 1.123 matt .l_flag = LW_INMEM | LW_SYSTEM,
259 1.123 matt .l_stat = LSONPROC,
260 1.123 matt .l_ts = &turnstile0,
261 1.123 matt .l_syncobj = &sched_syncobj,
262 1.123 matt .l_refcnt = 1,
263 1.123 matt .l_priority = PRI_USER + NPRI_USER - 1,
264 1.123 matt .l_inheritedprio = -1,
265 1.123 matt .l_class = SCHED_OTHER,
266 1.123 matt .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
267 1.123 matt .l_name = __UNCONST("swapper"),
268 1.123 matt };
269 1.123 matt kauth_cred_t cred0;
270 1.81 junyoung
271 1.81 junyoung extern struct user *proc0paddr;
272 1.81 junyoung
273 1.81 junyoung int nofile = NOFILE;
274 1.81 junyoung int maxuprc = MAXUPRC;
275 1.81 junyoung int cmask = CMASK;
276 1.81 junyoung
277 1.57 thorpej MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
278 1.57 thorpej MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
279 1.57 thorpej MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
280 1.10 mycroft
281 1.31 thorpej /*
282 1.31 thorpej * The process list descriptors, used during pid allocation and
283 1.31 thorpej * by sysctl. No locking on this data structure is needed since
284 1.31 thorpej * it is completely static.
285 1.31 thorpej */
286 1.31 thorpej const struct proclist_desc proclists[] = {
287 1.31 thorpej { &allproc },
288 1.31 thorpej { &zombproc },
289 1.31 thorpej { NULL },
290 1.31 thorpej };
291 1.31 thorpej
292 1.72 junyoung static void orphanpg(struct pgrp *);
293 1.72 junyoung static void pg_delete(pid_t);
294 1.13 christos
295 1.95 thorpej static specificdata_domain_t proc_specificdata_domain;
296 1.95 thorpej
297 1.128 ad static pool_cache_t proc_cache;
298 1.128 ad
299 1.10 mycroft /*
300 1.10 mycroft * Initialize global process hashing structures.
301 1.10 mycroft */
302 1.11 cgd void
303 1.59 dsl procinit(void)
304 1.7 cgd {
305 1.31 thorpej const struct proclist_desc *pd;
306 1.61 dsl int i;
307 1.61 dsl #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
308 1.31 thorpej
309 1.31 thorpej for (pd = proclists; pd->pd_list != NULL; pd++)
310 1.31 thorpej LIST_INIT(pd->pd_list);
311 1.7 cgd
312 1.107 ad mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
313 1.127 ad mutex_init(&proclist_mutex, MUTEX_DEFAULT, IPL_SCHED);
314 1.33 thorpej
315 1.61 dsl pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
316 1.61 dsl M_PROC, M_WAITOK);
317 1.61 dsl /* Set free list running through table...
318 1.61 dsl Preset 'use count' above PID_MAX so we allocate pid 1 next. */
319 1.61 dsl for (i = 0; i <= pid_tbl_mask; i++) {
320 1.61 dsl pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
321 1.61 dsl pid_table[i].pt_pgrp = 0;
322 1.61 dsl }
323 1.61 dsl /* slot 0 is just grabbed */
324 1.61 dsl next_free_pt = 1;
325 1.61 dsl /* Need to fix last entry. */
326 1.61 dsl last_free_pt = pid_tbl_mask;
327 1.61 dsl pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
328 1.61 dsl /* point at which we grow table - to avoid reusing pids too often */
329 1.61 dsl pid_alloc_lim = pid_tbl_mask - 1;
330 1.61 dsl #undef LINK_EMPTY
331 1.61 dsl
332 1.95 thorpej proc_specificdata_domain = specificdata_domain_create();
333 1.95 thorpej KASSERT(proc_specificdata_domain != NULL);
334 1.128 ad
335 1.128 ad proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
336 1.128 ad "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
337 1.7 cgd }
338 1.1 cgd
339 1.7 cgd /*
340 1.81 junyoung * Initialize process 0.
341 1.81 junyoung */
342 1.81 junyoung void
343 1.81 junyoung proc0_init(void)
344 1.81 junyoung {
345 1.81 junyoung struct proc *p;
346 1.81 junyoung struct pgrp *pg;
347 1.81 junyoung struct session *sess;
348 1.81 junyoung struct lwp *l;
349 1.81 junyoung rlim_t lim;
350 1.81 junyoung
351 1.81 junyoung p = &proc0;
352 1.81 junyoung pg = &pgrp0;
353 1.81 junyoung sess = &session0;
354 1.81 junyoung l = &lwp0;
355 1.81 junyoung
356 1.123 matt KASSERT(l->l_lid == p->p_nlwpid);
357 1.123 matt
358 1.127 ad mutex_init(&p->p_smutex, MUTEX_DEFAULT, IPL_SCHED);
359 1.127 ad mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
360 1.129 ad mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
361 1.100 ad mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
362 1.113 ad mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
363 1.107 ad
364 1.122 ad rw_init(&p->p_reflock);
365 1.100 ad cv_init(&p->p_waitcv, "wait");
366 1.100 ad cv_init(&p->p_lwpcv, "lwpwait");
367 1.100 ad
368 1.81 junyoung LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
369 1.100 ad
370 1.81 junyoung pid_table[0].pt_proc = p;
371 1.81 junyoung LIST_INSERT_HEAD(&allproc, p, p_list);
372 1.81 junyoung LIST_INSERT_HEAD(&alllwp, l, l_list);
373 1.81 junyoung
374 1.81 junyoung pid_table[0].pt_pgrp = pg;
375 1.81 junyoung LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
376 1.81 junyoung
377 1.81 junyoung #ifdef __HAVE_SYSCALL_INTERN
378 1.81 junyoung (*p->p_emul->e_syscall_intern)(p);
379 1.81 junyoung #endif
380 1.81 junyoung
381 1.121 ad callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
382 1.115 ad callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
383 1.100 ad cv_init(&l->l_sigcv, "sigwait");
384 1.81 junyoung
385 1.81 junyoung /* Create credentials. */
386 1.89 elad cred0 = kauth_cred_alloc();
387 1.89 elad p->p_cred = cred0;
388 1.100 ad kauth_cred_hold(cred0);
389 1.100 ad l->l_cred = cred0;
390 1.81 junyoung
391 1.81 junyoung /* Create the CWD info. */
392 1.113 ad rw_init(&cwdi0.cwdi_lock);
393 1.81 junyoung
394 1.81 junyoung /* Create the limits structures. */
395 1.116 dsl mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
396 1.81 junyoung
397 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
398 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
399 1.81 junyoung maxfiles < nofile ? maxfiles : nofile;
400 1.81 junyoung
401 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
402 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
403 1.81 junyoung maxproc < maxuprc ? maxproc : maxuprc;
404 1.81 junyoung
405 1.81 junyoung lim = ptoa(uvmexp.free);
406 1.81 junyoung limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
407 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
408 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
409 1.81 junyoung
410 1.81 junyoung /* Configure virtual memory system, set vm rlimits. */
411 1.81 junyoung uvm_init_limits(p);
412 1.81 junyoung
413 1.81 junyoung /* Initialize file descriptor table for proc0. */
414 1.81 junyoung fdinit1(&filedesc0);
415 1.81 junyoung
416 1.81 junyoung /*
417 1.81 junyoung * Initialize proc0's vmspace, which uses the kernel pmap.
418 1.81 junyoung * All kernel processes (which never have user space mappings)
419 1.81 junyoung * share proc0's vmspace, and thus, the kernel pmap.
420 1.81 junyoung */
421 1.81 junyoung uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
422 1.81 junyoung trunc_page(VM_MAX_ADDRESS));
423 1.81 junyoung
424 1.81 junyoung l->l_addr = proc0paddr; /* XXX */
425 1.81 junyoung
426 1.127 ad /* Initialize signal state for proc0. XXX IPL_SCHED */
427 1.127 ad mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
428 1.81 junyoung siginit(p);
429 1.96 christos
430 1.96 christos proc_initspecific(p);
431 1.96 christos lwp_initspecific(l);
432 1.103 dsl
433 1.103 dsl SYSCALL_TIME_LWP_INIT(l);
434 1.81 junyoung }
435 1.81 junyoung
436 1.81 junyoung /*
437 1.74 junyoung * Check that the specified process group is in the session of the
438 1.60 dsl * specified process.
439 1.60 dsl * Treats -ve ids as process ids.
440 1.60 dsl * Used to validate TIOCSPGRP requests.
441 1.60 dsl */
442 1.60 dsl int
443 1.60 dsl pgid_in_session(struct proc *p, pid_t pg_id)
444 1.60 dsl {
445 1.60 dsl struct pgrp *pgrp;
446 1.101 dsl struct session *session;
447 1.107 ad int error;
448 1.101 dsl
449 1.107 ad mutex_enter(&proclist_lock);
450 1.60 dsl if (pg_id < 0) {
451 1.101 dsl struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
452 1.64 dsl if (p1 == NULL)
453 1.64 dsl return EINVAL;
454 1.60 dsl pgrp = p1->p_pgrp;
455 1.60 dsl } else {
456 1.101 dsl pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
457 1.60 dsl if (pgrp == NULL)
458 1.64 dsl return EINVAL;
459 1.60 dsl }
460 1.101 dsl session = pgrp->pg_session;
461 1.101 dsl if (session != p->p_pgrp->pg_session)
462 1.107 ad error = EPERM;
463 1.107 ad else
464 1.107 ad error = 0;
465 1.107 ad mutex_exit(&proclist_lock);
466 1.107 ad
467 1.107 ad return error;
468 1.7 cgd }
469 1.4 andrew
470 1.1 cgd /*
471 1.41 sommerfe * Is p an inferior of q?
472 1.94 ad *
473 1.94 ad * Call with the proclist_lock held.
474 1.1 cgd */
475 1.11 cgd int
476 1.59 dsl inferior(struct proc *p, struct proc *q)
477 1.1 cgd {
478 1.1 cgd
479 1.41 sommerfe for (; p != q; p = p->p_pptr)
480 1.1 cgd if (p->p_pid == 0)
481 1.82 junyoung return 0;
482 1.82 junyoung return 1;
483 1.1 cgd }
484 1.1 cgd
485 1.1 cgd /*
486 1.1 cgd * Locate a process by number
487 1.1 cgd */
488 1.1 cgd struct proc *
489 1.68 dsl p_find(pid_t pid, uint flags)
490 1.1 cgd {
491 1.33 thorpej struct proc *p;
492 1.68 dsl char stat;
493 1.1 cgd
494 1.68 dsl if (!(flags & PFIND_LOCKED))
495 1.107 ad mutex_enter(&proclist_lock);
496 1.100 ad
497 1.61 dsl p = pid_table[pid & pid_tbl_mask].pt_proc;
498 1.100 ad
499 1.61 dsl /* Only allow live processes to be found by pid. */
500 1.100 ad /* XXXSMP p_stat */
501 1.100 ad if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
502 1.100 ad stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
503 1.100 ad (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
504 1.68 dsl if (flags & PFIND_UNLOCK_OK)
505 1.107 ad mutex_exit(&proclist_lock);
506 1.68 dsl return p;
507 1.68 dsl }
508 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
509 1.107 ad mutex_exit(&proclist_lock);
510 1.68 dsl return NULL;
511 1.1 cgd }
512 1.1 cgd
513 1.61 dsl
514 1.1 cgd /*
515 1.1 cgd * Locate a process group by number
516 1.1 cgd */
517 1.1 cgd struct pgrp *
518 1.68 dsl pg_find(pid_t pgid, uint flags)
519 1.1 cgd {
520 1.68 dsl struct pgrp *pg;
521 1.1 cgd
522 1.68 dsl if (!(flags & PFIND_LOCKED))
523 1.107 ad mutex_enter(&proclist_lock);
524 1.68 dsl pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
525 1.61 dsl /*
526 1.61 dsl * Can't look up a pgrp that only exists because the session
527 1.61 dsl * hasn't died yet (traditional)
528 1.61 dsl */
529 1.68 dsl if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
530 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
531 1.107 ad mutex_exit(&proclist_lock);
532 1.68 dsl return NULL;
533 1.68 dsl }
534 1.68 dsl
535 1.68 dsl if (flags & PFIND_UNLOCK_OK)
536 1.107 ad mutex_exit(&proclist_lock);
537 1.68 dsl return pg;
538 1.1 cgd }
539 1.1 cgd
540 1.61 dsl static void
541 1.61 dsl expand_pid_table(void)
542 1.1 cgd {
543 1.61 dsl uint pt_size = pid_tbl_mask + 1;
544 1.61 dsl struct pid_table *n_pt, *new_pt;
545 1.61 dsl struct proc *proc;
546 1.61 dsl struct pgrp *pgrp;
547 1.61 dsl int i;
548 1.61 dsl pid_t pid;
549 1.1 cgd
550 1.61 dsl new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
551 1.61 dsl
552 1.107 ad mutex_enter(&proclist_lock);
553 1.61 dsl if (pt_size != pid_tbl_mask + 1) {
554 1.61 dsl /* Another process beat us to it... */
555 1.107 ad mutex_exit(&proclist_lock);
556 1.61 dsl FREE(new_pt, M_PROC);
557 1.61 dsl return;
558 1.61 dsl }
559 1.72 junyoung
560 1.61 dsl /*
561 1.61 dsl * Copy entries from old table into new one.
562 1.61 dsl * If 'pid' is 'odd' we need to place in the upper half,
563 1.61 dsl * even pid's to the lower half.
564 1.61 dsl * Free items stay in the low half so we don't have to
565 1.61 dsl * fixup the reference to them.
566 1.61 dsl * We stuff free items on the front of the freelist
567 1.61 dsl * because we can't write to unmodified entries.
568 1.74 junyoung * Processing the table backwards maintains a semblance
569 1.61 dsl * of issueing pid numbers that increase with time.
570 1.61 dsl */
571 1.61 dsl i = pt_size - 1;
572 1.61 dsl n_pt = new_pt + i;
573 1.61 dsl for (; ; i--, n_pt--) {
574 1.61 dsl proc = pid_table[i].pt_proc;
575 1.61 dsl pgrp = pid_table[i].pt_pgrp;
576 1.61 dsl if (!P_VALID(proc)) {
577 1.61 dsl /* Up 'use count' so that link is valid */
578 1.61 dsl pid = (P_NEXT(proc) + pt_size) & ~pt_size;
579 1.61 dsl proc = P_FREE(pid);
580 1.61 dsl if (pgrp)
581 1.61 dsl pid = pgrp->pg_id;
582 1.61 dsl } else
583 1.61 dsl pid = proc->p_pid;
584 1.72 junyoung
585 1.61 dsl /* Save entry in appropriate half of table */
586 1.61 dsl n_pt[pid & pt_size].pt_proc = proc;
587 1.61 dsl n_pt[pid & pt_size].pt_pgrp = pgrp;
588 1.61 dsl
589 1.61 dsl /* Put other piece on start of free list */
590 1.61 dsl pid = (pid ^ pt_size) & ~pid_tbl_mask;
591 1.61 dsl n_pt[pid & pt_size].pt_proc =
592 1.61 dsl P_FREE((pid & ~pt_size) | next_free_pt);
593 1.61 dsl n_pt[pid & pt_size].pt_pgrp = 0;
594 1.61 dsl next_free_pt = i | (pid & pt_size);
595 1.61 dsl if (i == 0)
596 1.61 dsl break;
597 1.61 dsl }
598 1.61 dsl
599 1.61 dsl /* Switch tables */
600 1.100 ad mutex_enter(&proclist_mutex);
601 1.61 dsl n_pt = pid_table;
602 1.61 dsl pid_table = new_pt;
603 1.100 ad mutex_exit(&proclist_mutex);
604 1.61 dsl pid_tbl_mask = pt_size * 2 - 1;
605 1.61 dsl
606 1.61 dsl /*
607 1.61 dsl * pid_max starts as PID_MAX (= 30000), once we have 16384
608 1.61 dsl * allocated pids we need it to be larger!
609 1.61 dsl */
610 1.61 dsl if (pid_tbl_mask > PID_MAX) {
611 1.61 dsl pid_max = pid_tbl_mask * 2 + 1;
612 1.61 dsl pid_alloc_lim |= pid_alloc_lim << 1;
613 1.61 dsl } else
614 1.61 dsl pid_alloc_lim <<= 1; /* doubles number of free slots... */
615 1.61 dsl
616 1.107 ad mutex_exit(&proclist_lock);
617 1.61 dsl FREE(n_pt, M_PROC);
618 1.61 dsl }
619 1.61 dsl
620 1.61 dsl struct proc *
621 1.61 dsl proc_alloc(void)
622 1.61 dsl {
623 1.61 dsl struct proc *p;
624 1.100 ad int nxt;
625 1.61 dsl pid_t pid;
626 1.61 dsl struct pid_table *pt;
627 1.61 dsl
628 1.128 ad p = pool_cache_get(proc_cache, PR_WAITOK);
629 1.61 dsl p->p_stat = SIDL; /* protect against others */
630 1.61 dsl
631 1.96 christos proc_initspecific(p);
632 1.61 dsl /* allocate next free pid */
633 1.61 dsl
634 1.61 dsl for (;;expand_pid_table()) {
635 1.61 dsl if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
636 1.61 dsl /* ensure pids cycle through 2000+ values */
637 1.61 dsl continue;
638 1.107 ad mutex_enter(&proclist_lock);
639 1.61 dsl pt = &pid_table[next_free_pt];
640 1.1 cgd #ifdef DIAGNOSTIC
641 1.63 christos if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
642 1.61 dsl panic("proc_alloc: slot busy");
643 1.1 cgd #endif
644 1.61 dsl nxt = P_NEXT(pt->pt_proc);
645 1.61 dsl if (nxt & pid_tbl_mask)
646 1.61 dsl break;
647 1.61 dsl /* Table full - expand (NB last entry not used....) */
648 1.107 ad mutex_exit(&proclist_lock);
649 1.61 dsl }
650 1.61 dsl
651 1.61 dsl /* pid is 'saved use count' + 'size' + entry */
652 1.61 dsl pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
653 1.61 dsl if ((uint)pid > (uint)pid_max)
654 1.61 dsl pid &= pid_tbl_mask;
655 1.61 dsl p->p_pid = pid;
656 1.61 dsl next_free_pt = nxt & pid_tbl_mask;
657 1.61 dsl
658 1.61 dsl /* Grab table slot */
659 1.100 ad mutex_enter(&proclist_mutex);
660 1.61 dsl pt->pt_proc = p;
661 1.100 ad mutex_exit(&proclist_mutex);
662 1.61 dsl pid_alloc_cnt++;
663 1.61 dsl
664 1.107 ad mutex_exit(&proclist_lock);
665 1.61 dsl
666 1.61 dsl return p;
667 1.61 dsl }
668 1.61 dsl
669 1.61 dsl /*
670 1.118 ad * Free a process id - called from proc_free (in kern_exit.c)
671 1.100 ad *
672 1.118 ad * Called with the proclist_lock held.
673 1.61 dsl */
674 1.61 dsl void
675 1.118 ad proc_free_pid(struct proc *p)
676 1.61 dsl {
677 1.61 dsl pid_t pid = p->p_pid;
678 1.61 dsl struct pid_table *pt;
679 1.61 dsl
680 1.107 ad KASSERT(mutex_owned(&proclist_lock));
681 1.61 dsl
682 1.61 dsl pt = &pid_table[pid & pid_tbl_mask];
683 1.1 cgd #ifdef DIAGNOSTIC
684 1.63 christos if (__predict_false(pt->pt_proc != p))
685 1.61 dsl panic("proc_free: pid_table mismatch, pid %x, proc %p",
686 1.61 dsl pid, p);
687 1.1 cgd #endif
688 1.100 ad mutex_enter(&proclist_mutex);
689 1.61 dsl /* save pid use count in slot */
690 1.61 dsl pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
691 1.61 dsl
692 1.61 dsl if (pt->pt_pgrp == NULL) {
693 1.61 dsl /* link last freed entry onto ours */
694 1.61 dsl pid &= pid_tbl_mask;
695 1.61 dsl pt = &pid_table[last_free_pt];
696 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
697 1.61 dsl last_free_pt = pid;
698 1.61 dsl pid_alloc_cnt--;
699 1.61 dsl }
700 1.100 ad mutex_exit(&proclist_mutex);
701 1.61 dsl
702 1.126 ad atomic_dec_uint(&nprocs);
703 1.61 dsl }
704 1.61 dsl
705 1.128 ad void
706 1.128 ad proc_free_mem(struct proc *p)
707 1.128 ad {
708 1.128 ad
709 1.128 ad pool_cache_put(proc_cache, p);
710 1.128 ad }
711 1.128 ad
712 1.61 dsl /*
713 1.61 dsl * Move p to a new or existing process group (and session)
714 1.61 dsl *
715 1.61 dsl * If we are creating a new pgrp, the pgid should equal
716 1.72 junyoung * the calling process' pid.
717 1.61 dsl * If is only valid to enter a process group that is in the session
718 1.61 dsl * of the process.
719 1.61 dsl * Also mksess should only be set if we are creating a process group
720 1.61 dsl *
721 1.72 junyoung * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
722 1.100 ad * SYSV setpgrp support for hpux.
723 1.61 dsl */
724 1.61 dsl int
725 1.100 ad enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
726 1.61 dsl {
727 1.61 dsl struct pgrp *new_pgrp, *pgrp;
728 1.61 dsl struct session *sess;
729 1.100 ad struct proc *p;
730 1.61 dsl int rval;
731 1.61 dsl pid_t pg_id = NO_PGID;
732 1.61 dsl
733 1.61 dsl if (mksess)
734 1.131 ad sess = kmem_alloc(sizeof(*sess), KM_SLEEP);
735 1.61 dsl else
736 1.61 dsl sess = NULL;
737 1.61 dsl
738 1.107 ad /* Allocate data areas we might need before doing any validity checks */
739 1.107 ad mutex_enter(&proclist_lock); /* Because pid_table might change */
740 1.107 ad if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
741 1.107 ad mutex_exit(&proclist_lock);
742 1.131 ad new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
743 1.107 ad mutex_enter(&proclist_lock);
744 1.107 ad } else
745 1.107 ad new_pgrp = NULL;
746 1.61 dsl rval = EPERM; /* most common error (to save typing) */
747 1.61 dsl
748 1.61 dsl /* Check pgrp exists or can be created */
749 1.61 dsl pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
750 1.61 dsl if (pgrp != NULL && pgrp->pg_id != pgid)
751 1.61 dsl goto done;
752 1.61 dsl
753 1.61 dsl /* Can only set another process under restricted circumstances. */
754 1.100 ad if (pid != curp->p_pid) {
755 1.61 dsl /* must exist and be one of our children... */
756 1.100 ad if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
757 1.100 ad !inferior(p, curp)) {
758 1.61 dsl rval = ESRCH;
759 1.61 dsl goto done;
760 1.61 dsl }
761 1.61 dsl /* ... in the same session... */
762 1.61 dsl if (sess != NULL || p->p_session != curp->p_session)
763 1.61 dsl goto done;
764 1.61 dsl /* ... existing pgid must be in same session ... */
765 1.61 dsl if (pgrp != NULL && pgrp->pg_session != p->p_session)
766 1.61 dsl goto done;
767 1.61 dsl /* ... and not done an exec. */
768 1.102 pavel if (p->p_flag & PK_EXEC) {
769 1.61 dsl rval = EACCES;
770 1.61 dsl goto done;
771 1.49 enami }
772 1.100 ad } else {
773 1.100 ad /* ... setsid() cannot re-enter a pgrp */
774 1.100 ad if (mksess && (curp->p_pgid == curp->p_pid ||
775 1.100 ad pg_find(curp->p_pid, PFIND_LOCKED)))
776 1.100 ad goto done;
777 1.100 ad p = curp;
778 1.61 dsl }
779 1.1 cgd
780 1.61 dsl /* Changing the process group/session of a session
781 1.61 dsl leader is definitely off limits. */
782 1.61 dsl if (SESS_LEADER(p)) {
783 1.61 dsl if (sess == NULL && p->p_pgrp == pgrp)
784 1.61 dsl /* unless it's a definite noop */
785 1.61 dsl rval = 0;
786 1.61 dsl goto done;
787 1.61 dsl }
788 1.61 dsl
789 1.61 dsl /* Can only create a process group with id of process */
790 1.61 dsl if (pgrp == NULL && pgid != pid)
791 1.61 dsl goto done;
792 1.61 dsl
793 1.61 dsl /* Can only create a session if creating pgrp */
794 1.61 dsl if (sess != NULL && pgrp != NULL)
795 1.61 dsl goto done;
796 1.61 dsl
797 1.61 dsl /* Check we allocated memory for a pgrp... */
798 1.61 dsl if (pgrp == NULL && new_pgrp == NULL)
799 1.61 dsl goto done;
800 1.61 dsl
801 1.61 dsl /* Don't attach to 'zombie' pgrp */
802 1.61 dsl if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
803 1.61 dsl goto done;
804 1.61 dsl
805 1.61 dsl /* Expect to succeed now */
806 1.61 dsl rval = 0;
807 1.61 dsl
808 1.61 dsl if (pgrp == p->p_pgrp)
809 1.61 dsl /* nothing to do */
810 1.61 dsl goto done;
811 1.61 dsl
812 1.61 dsl /* Ok all setup, link up required structures */
813 1.100 ad
814 1.61 dsl if (pgrp == NULL) {
815 1.61 dsl pgrp = new_pgrp;
816 1.61 dsl new_pgrp = 0;
817 1.61 dsl if (sess != NULL) {
818 1.21 thorpej sess->s_sid = p->p_pid;
819 1.1 cgd sess->s_leader = p;
820 1.1 cgd sess->s_count = 1;
821 1.1 cgd sess->s_ttyvp = NULL;
822 1.1 cgd sess->s_ttyp = NULL;
823 1.58 dsl sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
824 1.25 perry memcpy(sess->s_login, p->p_session->s_login,
825 1.1 cgd sizeof(sess->s_login));
826 1.100 ad p->p_lflag &= ~PL_CONTROLT;
827 1.1 cgd } else {
828 1.61 dsl sess = p->p_pgrp->pg_session;
829 1.61 dsl SESSHOLD(sess);
830 1.1 cgd }
831 1.61 dsl pgrp->pg_session = sess;
832 1.61 dsl sess = 0;
833 1.61 dsl
834 1.1 cgd pgrp->pg_id = pgid;
835 1.10 mycroft LIST_INIT(&pgrp->pg_members);
836 1.61 dsl #ifdef DIAGNOSTIC
837 1.63 christos if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
838 1.61 dsl panic("enterpgrp: pgrp table slot in use");
839 1.63 christos if (__predict_false(mksess && p != curp))
840 1.63 christos panic("enterpgrp: mksession and p != curproc");
841 1.61 dsl #endif
842 1.100 ad mutex_enter(&proclist_mutex);
843 1.61 dsl pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
844 1.1 cgd pgrp->pg_jobc = 0;
845 1.100 ad } else
846 1.100 ad mutex_enter(&proclist_mutex);
847 1.100 ad
848 1.128 ad /* Interlock with tty subsystem. */
849 1.128 ad mutex_spin_enter(&tty_lock);
850 1.1 cgd
851 1.1 cgd /*
852 1.1 cgd * Adjust eligibility of affected pgrps to participate in job control.
853 1.1 cgd * Increment eligibility counts before decrementing, otherwise we
854 1.1 cgd * could reach 0 spuriously during the first call.
855 1.1 cgd */
856 1.1 cgd fixjobc(p, pgrp, 1);
857 1.1 cgd fixjobc(p, p->p_pgrp, 0);
858 1.1 cgd
859 1.100 ad /* Move process to requested group. */
860 1.10 mycroft LIST_REMOVE(p, p_pglist);
861 1.52 matt if (LIST_EMPTY(&p->p_pgrp->pg_members))
862 1.61 dsl /* defer delete until we've dumped the lock */
863 1.61 dsl pg_id = p->p_pgrp->pg_id;
864 1.1 cgd p->p_pgrp = pgrp;
865 1.10 mycroft LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
866 1.100 ad
867 1.100 ad /* Done with the swap; we can release the tty mutex. */
868 1.128 ad mutex_spin_exit(&tty_lock);
869 1.128 ad
870 1.128 ad mutex_exit(&proclist_mutex);
871 1.61 dsl
872 1.61 dsl done:
873 1.100 ad if (pg_id != NO_PGID)
874 1.100 ad pg_delete(pg_id);
875 1.107 ad mutex_exit(&proclist_lock);
876 1.61 dsl if (sess != NULL)
877 1.131 ad kmem_free(sess, sizeof(*sess));
878 1.61 dsl if (new_pgrp != NULL)
879 1.131 ad kmem_free(new_pgrp, sizeof(*new_pgrp));
880 1.63 christos #ifdef DEBUG_PGRP
881 1.63 christos if (__predict_false(rval))
882 1.61 dsl printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
883 1.61 dsl pid, pgid, mksess, curp->p_pid, rval);
884 1.61 dsl #endif
885 1.61 dsl return rval;
886 1.1 cgd }
887 1.1 cgd
888 1.1 cgd /*
889 1.100 ad * Remove a process from its process group. Must be called with the
890 1.107 ad * proclist_lock held.
891 1.1 cgd */
892 1.100 ad void
893 1.59 dsl leavepgrp(struct proc *p)
894 1.1 cgd {
895 1.61 dsl struct pgrp *pgrp;
896 1.1 cgd
897 1.107 ad KASSERT(mutex_owned(&proclist_lock));
898 1.100 ad
899 1.100 ad mutex_enter(&proclist_mutex);
900 1.128 ad mutex_spin_enter(&tty_lock);
901 1.61 dsl pgrp = p->p_pgrp;
902 1.10 mycroft LIST_REMOVE(p, p_pglist);
903 1.94 ad p->p_pgrp = NULL;
904 1.128 ad mutex_spin_exit(&tty_lock);
905 1.100 ad mutex_exit(&proclist_mutex);
906 1.100 ad
907 1.100 ad if (LIST_EMPTY(&pgrp->pg_members))
908 1.100 ad pg_delete(pgrp->pg_id);
909 1.61 dsl }
910 1.61 dsl
911 1.100 ad /*
912 1.107 ad * Free a process group. Must be called with the proclist_lock held.
913 1.100 ad */
914 1.61 dsl static void
915 1.61 dsl pg_free(pid_t pg_id)
916 1.61 dsl {
917 1.61 dsl struct pgrp *pgrp;
918 1.61 dsl struct pid_table *pt;
919 1.61 dsl
920 1.107 ad KASSERT(mutex_owned(&proclist_lock));
921 1.100 ad
922 1.61 dsl pt = &pid_table[pg_id & pid_tbl_mask];
923 1.61 dsl pgrp = pt->pt_pgrp;
924 1.61 dsl #ifdef DIAGNOSTIC
925 1.63 christos if (__predict_false(!pgrp || pgrp->pg_id != pg_id
926 1.63 christos || !LIST_EMPTY(&pgrp->pg_members)))
927 1.61 dsl panic("pg_free: process group absent or has members");
928 1.61 dsl #endif
929 1.61 dsl pt->pt_pgrp = 0;
930 1.61 dsl
931 1.61 dsl if (!P_VALID(pt->pt_proc)) {
932 1.61 dsl /* orphaned pgrp, put slot onto free list */
933 1.61 dsl #ifdef DIAGNOSTIC
934 1.63 christos if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
935 1.61 dsl panic("pg_free: process slot on free list");
936 1.61 dsl #endif
937 1.100 ad mutex_enter(&proclist_mutex);
938 1.61 dsl pg_id &= pid_tbl_mask;
939 1.61 dsl pt = &pid_table[last_free_pt];
940 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
941 1.100 ad mutex_exit(&proclist_mutex);
942 1.61 dsl last_free_pt = pg_id;
943 1.61 dsl pid_alloc_cnt--;
944 1.61 dsl }
945 1.131 ad kmem_free(pgrp, sizeof(*pgrp));
946 1.1 cgd }
947 1.1 cgd
948 1.1 cgd /*
949 1.107 ad * Delete a process group. Must be called with the proclist_lock held.
950 1.1 cgd */
951 1.61 dsl static void
952 1.61 dsl pg_delete(pid_t pg_id)
953 1.61 dsl {
954 1.61 dsl struct pgrp *pgrp;
955 1.61 dsl struct tty *ttyp;
956 1.61 dsl struct session *ss;
957 1.100 ad int is_pgrp_leader;
958 1.100 ad
959 1.107 ad KASSERT(mutex_owned(&proclist_lock));
960 1.61 dsl
961 1.61 dsl pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
962 1.61 dsl if (pgrp == NULL || pgrp->pg_id != pg_id ||
963 1.100 ad !LIST_EMPTY(&pgrp->pg_members))
964 1.61 dsl return;
965 1.61 dsl
966 1.71 pk ss = pgrp->pg_session;
967 1.71 pk
968 1.61 dsl /* Remove reference (if any) from tty to this process group */
969 1.128 ad mutex_spin_enter(&tty_lock);
970 1.71 pk ttyp = ss->s_ttyp;
971 1.71 pk if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
972 1.61 dsl ttyp->t_pgrp = NULL;
973 1.71 pk #ifdef DIAGNOSTIC
974 1.71 pk if (ttyp->t_session != ss)
975 1.71 pk panic("pg_delete: wrong session on terminal");
976 1.71 pk #endif
977 1.71 pk }
978 1.128 ad mutex_spin_exit(&tty_lock);
979 1.61 dsl
980 1.71 pk /*
981 1.71 pk * The leading process group in a session is freed
982 1.71 pk * by sessdelete() if last reference.
983 1.71 pk */
984 1.71 pk is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
985 1.71 pk SESSRELE(ss);
986 1.61 dsl
987 1.71 pk if (is_pgrp_leader)
988 1.61 dsl return;
989 1.61 dsl
990 1.61 dsl pg_free(pg_id);
991 1.61 dsl }
992 1.61 dsl
993 1.61 dsl /*
994 1.61 dsl * Delete session - called from SESSRELE when s_count becomes zero.
995 1.107 ad * Must be called with the proclist_lock held.
996 1.61 dsl */
997 1.11 cgd void
998 1.61 dsl sessdelete(struct session *ss)
999 1.1 cgd {
1000 1.100 ad
1001 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1002 1.100 ad
1003 1.61 dsl /*
1004 1.61 dsl * We keep the pgrp with the same id as the session in
1005 1.61 dsl * order to stop a process being given the same pid.
1006 1.61 dsl * Since the pgrp holds a reference to the session, it
1007 1.61 dsl * must be a 'zombie' pgrp by now.
1008 1.61 dsl */
1009 1.61 dsl pg_free(ss->s_sid);
1010 1.131 ad kmem_free(ss, sizeof(*ss));
1011 1.1 cgd }
1012 1.1 cgd
1013 1.1 cgd /*
1014 1.1 cgd * Adjust pgrp jobc counters when specified process changes process group.
1015 1.1 cgd * We count the number of processes in each process group that "qualify"
1016 1.1 cgd * the group for terminal job control (those with a parent in a different
1017 1.1 cgd * process group of the same session). If that count reaches zero, the
1018 1.1 cgd * process group becomes orphaned. Check both the specified process'
1019 1.1 cgd * process group and that of its children.
1020 1.1 cgd * entering == 0 => p is leaving specified group.
1021 1.1 cgd * entering == 1 => p is entering specified group.
1022 1.68 dsl *
1023 1.107 ad * Call with proclist_lock held.
1024 1.1 cgd */
1025 1.4 andrew void
1026 1.59 dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1027 1.1 cgd {
1028 1.39 augustss struct pgrp *hispgrp;
1029 1.39 augustss struct session *mysession = pgrp->pg_session;
1030 1.68 dsl struct proc *child;
1031 1.1 cgd
1032 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1033 1.107 ad KASSERT(mutex_owned(&proclist_mutex));
1034 1.100 ad
1035 1.1 cgd /*
1036 1.1 cgd * Check p's parent to see whether p qualifies its own process
1037 1.1 cgd * group; if so, adjust count for p's process group.
1038 1.1 cgd */
1039 1.68 dsl hispgrp = p->p_pptr->p_pgrp;
1040 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1041 1.100 ad if (entering) {
1042 1.100 ad mutex_enter(&p->p_smutex);
1043 1.100 ad p->p_sflag &= ~PS_ORPHANPG;
1044 1.100 ad mutex_exit(&p->p_smutex);
1045 1.1 cgd pgrp->pg_jobc++;
1046 1.100 ad } else if (--pgrp->pg_jobc == 0)
1047 1.1 cgd orphanpg(pgrp);
1048 1.26 thorpej }
1049 1.1 cgd
1050 1.1 cgd /*
1051 1.1 cgd * Check this process' children to see whether they qualify
1052 1.1 cgd * their process groups; if so, adjust counts for children's
1053 1.1 cgd * process groups.
1054 1.1 cgd */
1055 1.68 dsl LIST_FOREACH(child, &p->p_children, p_sibling) {
1056 1.68 dsl hispgrp = child->p_pgrp;
1057 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1058 1.68 dsl !P_ZOMBIE(child)) {
1059 1.100 ad if (entering) {
1060 1.100 ad mutex_enter(&child->p_smutex);
1061 1.100 ad child->p_sflag &= ~PS_ORPHANPG;
1062 1.100 ad mutex_exit(&child->p_smutex);
1063 1.1 cgd hispgrp->pg_jobc++;
1064 1.100 ad } else if (--hispgrp->pg_jobc == 0)
1065 1.1 cgd orphanpg(hispgrp);
1066 1.26 thorpej }
1067 1.26 thorpej }
1068 1.1 cgd }
1069 1.1 cgd
1070 1.72 junyoung /*
1071 1.1 cgd * A process group has become orphaned;
1072 1.1 cgd * if there are any stopped processes in the group,
1073 1.1 cgd * hang-up all process in that group.
1074 1.68 dsl *
1075 1.107 ad * Call with proclist_lock held.
1076 1.1 cgd */
1077 1.4 andrew static void
1078 1.59 dsl orphanpg(struct pgrp *pg)
1079 1.1 cgd {
1080 1.39 augustss struct proc *p;
1081 1.100 ad int doit;
1082 1.100 ad
1083 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1084 1.107 ad KASSERT(mutex_owned(&proclist_mutex));
1085 1.100 ad
1086 1.100 ad doit = 0;
1087 1.1 cgd
1088 1.52 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1089 1.100 ad mutex_enter(&p->p_smutex);
1090 1.1 cgd if (p->p_stat == SSTOP) {
1091 1.100 ad doit = 1;
1092 1.100 ad p->p_sflag |= PS_ORPHANPG;
1093 1.1 cgd }
1094 1.100 ad mutex_exit(&p->p_smutex);
1095 1.1 cgd }
1096 1.35 bouyer
1097 1.100 ad if (doit) {
1098 1.100 ad LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1099 1.100 ad psignal(p, SIGHUP);
1100 1.100 ad psignal(p, SIGCONT);
1101 1.35 bouyer }
1102 1.35 bouyer }
1103 1.35 bouyer }
1104 1.1 cgd
1105 1.61 dsl #ifdef DDB
1106 1.61 dsl #include <ddb/db_output.h>
1107 1.61 dsl void pidtbl_dump(void);
1108 1.14 christos void
1109 1.61 dsl pidtbl_dump(void)
1110 1.1 cgd {
1111 1.61 dsl struct pid_table *pt;
1112 1.61 dsl struct proc *p;
1113 1.39 augustss struct pgrp *pgrp;
1114 1.61 dsl int id;
1115 1.1 cgd
1116 1.61 dsl db_printf("pid table %p size %x, next %x, last %x\n",
1117 1.61 dsl pid_table, pid_tbl_mask+1,
1118 1.61 dsl next_free_pt, last_free_pt);
1119 1.61 dsl for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1120 1.61 dsl p = pt->pt_proc;
1121 1.61 dsl if (!P_VALID(p) && !pt->pt_pgrp)
1122 1.61 dsl continue;
1123 1.61 dsl db_printf(" id %x: ", id);
1124 1.61 dsl if (P_VALID(p))
1125 1.61 dsl db_printf("proc %p id %d (0x%x) %s\n",
1126 1.61 dsl p, p->p_pid, p->p_pid, p->p_comm);
1127 1.61 dsl else
1128 1.61 dsl db_printf("next %x use %x\n",
1129 1.61 dsl P_NEXT(p) & pid_tbl_mask,
1130 1.61 dsl P_NEXT(p) & ~pid_tbl_mask);
1131 1.61 dsl if ((pgrp = pt->pt_pgrp)) {
1132 1.61 dsl db_printf("\tsession %p, sid %d, count %d, login %s\n",
1133 1.61 dsl pgrp->pg_session, pgrp->pg_session->s_sid,
1134 1.61 dsl pgrp->pg_session->s_count,
1135 1.61 dsl pgrp->pg_session->s_login);
1136 1.61 dsl db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1137 1.61 dsl pgrp, pgrp->pg_id, pgrp->pg_jobc,
1138 1.61 dsl pgrp->pg_members.lh_first);
1139 1.61 dsl for (p = pgrp->pg_members.lh_first; p != 0;
1140 1.61 dsl p = p->p_pglist.le_next) {
1141 1.72 junyoung db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1142 1.61 dsl p->p_pid, p, p->p_pgrp, p->p_comm);
1143 1.10 mycroft }
1144 1.1 cgd }
1145 1.1 cgd }
1146 1.1 cgd }
1147 1.61 dsl #endif /* DDB */
1148 1.48 yamt
1149 1.48 yamt #ifdef KSTACK_CHECK_MAGIC
1150 1.48 yamt #include <sys/user.h>
1151 1.48 yamt
1152 1.48 yamt #define KSTACK_MAGIC 0xdeadbeaf
1153 1.48 yamt
1154 1.48 yamt /* XXX should be per process basis? */
1155 1.48 yamt int kstackleftmin = KSTACK_SIZE;
1156 1.50 enami int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1157 1.50 enami less than this */
1158 1.48 yamt
1159 1.48 yamt void
1160 1.56 yamt kstack_setup_magic(const struct lwp *l)
1161 1.48 yamt {
1162 1.85 perry uint32_t *ip;
1163 1.85 perry uint32_t const *end;
1164 1.48 yamt
1165 1.56 yamt KASSERT(l != NULL);
1166 1.56 yamt KASSERT(l != &lwp0);
1167 1.48 yamt
1168 1.48 yamt /*
1169 1.48 yamt * fill all the stack with magic number
1170 1.48 yamt * so that later modification on it can be detected.
1171 1.48 yamt */
1172 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1173 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1174 1.48 yamt for (; ip < end; ip++) {
1175 1.48 yamt *ip = KSTACK_MAGIC;
1176 1.48 yamt }
1177 1.48 yamt }
1178 1.48 yamt
1179 1.48 yamt void
1180 1.56 yamt kstack_check_magic(const struct lwp *l)
1181 1.48 yamt {
1182 1.85 perry uint32_t const *ip, *end;
1183 1.48 yamt int stackleft;
1184 1.48 yamt
1185 1.56 yamt KASSERT(l != NULL);
1186 1.48 yamt
1187 1.48 yamt /* don't check proc0 */ /*XXX*/
1188 1.56 yamt if (l == &lwp0)
1189 1.48 yamt return;
1190 1.48 yamt
1191 1.48 yamt #ifdef __MACHINE_STACK_GROWS_UP
1192 1.48 yamt /* stack grows upwards (eg. hppa) */
1193 1.106 christos ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1194 1.85 perry end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1195 1.48 yamt for (ip--; ip >= end; ip--)
1196 1.48 yamt if (*ip != KSTACK_MAGIC)
1197 1.48 yamt break;
1198 1.72 junyoung
1199 1.106 christos stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1200 1.48 yamt #else /* __MACHINE_STACK_GROWS_UP */
1201 1.48 yamt /* stack grows downwards (eg. i386) */
1202 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1203 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1204 1.48 yamt for (; ip < end; ip++)
1205 1.48 yamt if (*ip != KSTACK_MAGIC)
1206 1.48 yamt break;
1207 1.48 yamt
1208 1.93 christos stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1209 1.48 yamt #endif /* __MACHINE_STACK_GROWS_UP */
1210 1.48 yamt
1211 1.48 yamt if (kstackleftmin > stackleft) {
1212 1.48 yamt kstackleftmin = stackleft;
1213 1.48 yamt if (stackleft < kstackleftthres)
1214 1.56 yamt printf("warning: kernel stack left %d bytes"
1215 1.56 yamt "(pid %u:lid %u)\n", stackleft,
1216 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1217 1.48 yamt }
1218 1.48 yamt
1219 1.48 yamt if (stackleft <= 0) {
1220 1.56 yamt panic("magic on the top of kernel stack changed for "
1221 1.56 yamt "pid %u, lid %u: maybe kernel stack overflow",
1222 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1223 1.48 yamt }
1224 1.48 yamt }
1225 1.50 enami #endif /* KSTACK_CHECK_MAGIC */
1226 1.79 yamt
1227 1.100 ad /*
1228 1.100 ad * XXXSMP this is bust, it grabs a read lock and then messes about
1229 1.100 ad * with allproc.
1230 1.100 ad */
1231 1.79 yamt int
1232 1.79 yamt proclist_foreach_call(struct proclist *list,
1233 1.79 yamt int (*callback)(struct proc *, void *arg), void *arg)
1234 1.79 yamt {
1235 1.79 yamt struct proc marker;
1236 1.79 yamt struct proc *p;
1237 1.79 yamt struct lwp * const l = curlwp;
1238 1.79 yamt int ret = 0;
1239 1.79 yamt
1240 1.102 pavel marker.p_flag = PK_MARKER;
1241 1.113 ad uvm_lwp_hold(l);
1242 1.107 ad mutex_enter(&proclist_lock);
1243 1.79 yamt for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1244 1.102 pavel if (p->p_flag & PK_MARKER) {
1245 1.79 yamt p = LIST_NEXT(p, p_list);
1246 1.79 yamt continue;
1247 1.79 yamt }
1248 1.79 yamt LIST_INSERT_AFTER(p, &marker, p_list);
1249 1.79 yamt ret = (*callback)(p, arg);
1250 1.107 ad KASSERT(mutex_owned(&proclist_lock));
1251 1.79 yamt p = LIST_NEXT(&marker, p_list);
1252 1.79 yamt LIST_REMOVE(&marker, p_list);
1253 1.79 yamt }
1254 1.107 ad mutex_exit(&proclist_lock);
1255 1.113 ad uvm_lwp_rele(l);
1256 1.79 yamt
1257 1.79 yamt return ret;
1258 1.79 yamt }
1259 1.86 yamt
1260 1.86 yamt int
1261 1.86 yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1262 1.86 yamt {
1263 1.86 yamt
1264 1.86 yamt /* XXXCDC: how should locking work here? */
1265 1.86 yamt
1266 1.87 yamt /* curproc exception is for coredump. */
1267 1.87 yamt
1268 1.100 ad if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1269 1.86 yamt (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1270 1.86 yamt return EFAULT;
1271 1.86 yamt }
1272 1.86 yamt
1273 1.86 yamt uvmspace_addref(p->p_vmspace);
1274 1.86 yamt *vm = p->p_vmspace;
1275 1.86 yamt
1276 1.86 yamt return 0;
1277 1.86 yamt }
1278 1.94 ad
1279 1.94 ad /*
1280 1.94 ad * Acquire a write lock on the process credential.
1281 1.94 ad */
1282 1.94 ad void
1283 1.100 ad proc_crmod_enter(void)
1284 1.94 ad {
1285 1.100 ad struct lwp *l = curlwp;
1286 1.100 ad struct proc *p = l->l_proc;
1287 1.100 ad struct plimit *lim;
1288 1.100 ad kauth_cred_t oc;
1289 1.100 ad char *cn;
1290 1.94 ad
1291 1.117 dsl /* Reset what needs to be reset in plimit. */
1292 1.117 dsl if (p->p_limit->pl_corename != defcorename) {
1293 1.117 dsl lim_privatise(p, false);
1294 1.117 dsl lim = p->p_limit;
1295 1.117 dsl mutex_enter(&lim->pl_lock);
1296 1.117 dsl cn = lim->pl_corename;
1297 1.117 dsl lim->pl_corename = defcorename;
1298 1.117 dsl mutex_exit(&lim->pl_lock);
1299 1.117 dsl if (cn != defcorename)
1300 1.117 dsl free(cn, M_TEMP);
1301 1.117 dsl }
1302 1.117 dsl
1303 1.100 ad mutex_enter(&p->p_mutex);
1304 1.100 ad
1305 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1306 1.100 ad if ((oc = l->l_cred) != p->p_cred) {
1307 1.100 ad kauth_cred_hold(p->p_cred);
1308 1.100 ad l->l_cred = p->p_cred;
1309 1.100 ad kauth_cred_free(oc);
1310 1.100 ad }
1311 1.100 ad
1312 1.94 ad }
1313 1.94 ad
1314 1.94 ad /*
1315 1.100 ad * Set in a new process credential, and drop the write lock. The credential
1316 1.100 ad * must have a reference already. Optionally, free a no-longer required
1317 1.100 ad * credential. The scheduler also needs to inspect p_cred, so we also
1318 1.100 ad * briefly acquire the sched state mutex.
1319 1.94 ad */
1320 1.94 ad void
1321 1.104 thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1322 1.94 ad {
1323 1.100 ad struct lwp *l = curlwp;
1324 1.100 ad struct proc *p = l->l_proc;
1325 1.100 ad kauth_cred_t oc;
1326 1.100 ad
1327 1.100 ad /* Is there a new credential to set in? */
1328 1.100 ad if (scred != NULL) {
1329 1.100 ad mutex_enter(&p->p_smutex);
1330 1.100 ad p->p_cred = scred;
1331 1.100 ad mutex_exit(&p->p_smutex);
1332 1.100 ad
1333 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1334 1.100 ad if ((oc = l->l_cred) != scred) {
1335 1.100 ad kauth_cred_hold(scred);
1336 1.100 ad l->l_cred = scred;
1337 1.100 ad }
1338 1.100 ad } else
1339 1.100 ad oc = NULL; /* XXXgcc */
1340 1.100 ad
1341 1.100 ad if (sugid) {
1342 1.100 ad /*
1343 1.100 ad * Mark process as having changed credentials, stops
1344 1.100 ad * tracing etc.
1345 1.100 ad */
1346 1.102 pavel p->p_flag |= PK_SUGID;
1347 1.100 ad }
1348 1.94 ad
1349 1.100 ad mutex_exit(&p->p_mutex);
1350 1.100 ad
1351 1.100 ad /* If there is a credential to be released, free it now. */
1352 1.100 ad if (fcred != NULL) {
1353 1.100 ad KASSERT(scred != NULL);
1354 1.94 ad kauth_cred_free(fcred);
1355 1.100 ad if (oc != scred)
1356 1.100 ad kauth_cred_free(oc);
1357 1.100 ad }
1358 1.100 ad }
1359 1.100 ad
1360 1.100 ad /*
1361 1.95 thorpej * proc_specific_key_create --
1362 1.95 thorpej * Create a key for subsystem proc-specific data.
1363 1.95 thorpej */
1364 1.95 thorpej int
1365 1.95 thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1366 1.95 thorpej {
1367 1.95 thorpej
1368 1.98 thorpej return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1369 1.95 thorpej }
1370 1.95 thorpej
1371 1.95 thorpej /*
1372 1.95 thorpej * proc_specific_key_delete --
1373 1.95 thorpej * Delete a key for subsystem proc-specific data.
1374 1.95 thorpej */
1375 1.95 thorpej void
1376 1.95 thorpej proc_specific_key_delete(specificdata_key_t key)
1377 1.95 thorpej {
1378 1.95 thorpej
1379 1.95 thorpej specificdata_key_delete(proc_specificdata_domain, key);
1380 1.95 thorpej }
1381 1.95 thorpej
1382 1.98 thorpej /*
1383 1.98 thorpej * proc_initspecific --
1384 1.98 thorpej * Initialize a proc's specificdata container.
1385 1.98 thorpej */
1386 1.96 christos void
1387 1.96 christos proc_initspecific(struct proc *p)
1388 1.96 christos {
1389 1.96 christos int error;
1390 1.98 thorpej
1391 1.96 christos error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1392 1.96 christos KASSERT(error == 0);
1393 1.96 christos }
1394 1.96 christos
1395 1.95 thorpej /*
1396 1.98 thorpej * proc_finispecific --
1397 1.98 thorpej * Finalize a proc's specificdata container.
1398 1.98 thorpej */
1399 1.98 thorpej void
1400 1.98 thorpej proc_finispecific(struct proc *p)
1401 1.98 thorpej {
1402 1.98 thorpej
1403 1.98 thorpej specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1404 1.98 thorpej }
1405 1.98 thorpej
1406 1.98 thorpej /*
1407 1.95 thorpej * proc_getspecific --
1408 1.95 thorpej * Return proc-specific data corresponding to the specified key.
1409 1.95 thorpej */
1410 1.95 thorpej void *
1411 1.95 thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
1412 1.95 thorpej {
1413 1.95 thorpej
1414 1.95 thorpej return (specificdata_getspecific(proc_specificdata_domain,
1415 1.95 thorpej &p->p_specdataref, key));
1416 1.95 thorpej }
1417 1.95 thorpej
1418 1.95 thorpej /*
1419 1.95 thorpej * proc_setspecific --
1420 1.95 thorpej * Set proc-specific data corresponding to the specified key.
1421 1.95 thorpej */
1422 1.95 thorpej void
1423 1.95 thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1424 1.95 thorpej {
1425 1.95 thorpej
1426 1.95 thorpej specificdata_setspecific(proc_specificdata_domain,
1427 1.95 thorpej &p->p_specdataref, key, data);
1428 1.95 thorpej }
1429