kern_proc.c revision 1.137 1 1.137 ad /* $NetBSD: kern_proc.c,v 1.137 2008/04/24 18:39:24 ad Exp $ */
2 1.33 thorpej
3 1.33 thorpej /*-
4 1.131 ad * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.33 thorpej * All rights reserved.
6 1.33 thorpej *
7 1.33 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.33 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.100 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.33 thorpej *
11 1.33 thorpej * Redistribution and use in source and binary forms, with or without
12 1.33 thorpej * modification, are permitted provided that the following conditions
13 1.33 thorpej * are met:
14 1.33 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.33 thorpej * notice, this list of conditions and the following disclaimer.
16 1.33 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.33 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.33 thorpej * documentation and/or other materials provided with the distribution.
19 1.33 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.33 thorpej * must display the following acknowledgement:
21 1.33 thorpej * This product includes software developed by the NetBSD
22 1.33 thorpej * Foundation, Inc. and its contributors.
23 1.33 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.33 thorpej * contributors may be used to endorse or promote products derived
25 1.33 thorpej * from this software without specific prior written permission.
26 1.33 thorpej *
27 1.33 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.33 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.33 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.33 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.33 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.33 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.33 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.33 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.33 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.33 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.33 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.33 thorpej */
39 1.9 cgd
40 1.1 cgd /*
41 1.7 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 1.7 cgd * The Regents of the University of California. All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Redistribution and use in source and binary forms, with or without
45 1.1 cgd * modification, are permitted provided that the following conditions
46 1.1 cgd * are met:
47 1.1 cgd * 1. Redistributions of source code must retain the above copyright
48 1.1 cgd * notice, this list of conditions and the following disclaimer.
49 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 cgd * notice, this list of conditions and the following disclaimer in the
51 1.1 cgd * documentation and/or other materials provided with the distribution.
52 1.65 agc * 3. Neither the name of the University nor the names of its contributors
53 1.1 cgd * may be used to endorse or promote products derived from this software
54 1.1 cgd * without specific prior written permission.
55 1.1 cgd *
56 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.1 cgd * SUCH DAMAGE.
67 1.1 cgd *
68 1.23 fvdl * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 1.1 cgd */
70 1.45 lukem
71 1.45 lukem #include <sys/cdefs.h>
72 1.137 ad __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.137 2008/04/24 18:39:24 ad Exp $");
73 1.48 yamt
74 1.48 yamt #include "opt_kstack.h"
75 1.88 onoe #include "opt_maxuprc.h"
76 1.90 rjs #include "opt_multiprocessor.h"
77 1.90 rjs #include "opt_lockdebug.h"
78 1.1 cgd
79 1.5 mycroft #include <sys/param.h>
80 1.5 mycroft #include <sys/systm.h>
81 1.5 mycroft #include <sys/kernel.h>
82 1.5 mycroft #include <sys/proc.h>
83 1.28 thorpej #include <sys/resourcevar.h>
84 1.5 mycroft #include <sys/buf.h>
85 1.5 mycroft #include <sys/acct.h>
86 1.5 mycroft #include <sys/wait.h>
87 1.5 mycroft #include <sys/file.h>
88 1.8 mycroft #include <ufs/ufs/quota.h>
89 1.5 mycroft #include <sys/uio.h>
90 1.5 mycroft #include <sys/malloc.h>
91 1.24 thorpej #include <sys/pool.h>
92 1.5 mycroft #include <sys/mbuf.h>
93 1.5 mycroft #include <sys/ioctl.h>
94 1.5 mycroft #include <sys/tty.h>
95 1.11 cgd #include <sys/signalvar.h>
96 1.51 gmcgarry #include <sys/ras.h>
97 1.81 junyoung #include <sys/filedesc.h>
98 1.103 dsl #include "sys/syscall_stats.h"
99 1.89 elad #include <sys/kauth.h>
100 1.100 ad #include <sys/sleepq.h>
101 1.126 ad #include <sys/atomic.h>
102 1.131 ad #include <sys/kmem.h>
103 1.81 junyoung
104 1.81 junyoung #include <uvm/uvm.h>
105 1.79 yamt #include <uvm/uvm_extern.h>
106 1.5 mycroft
107 1.7 cgd /*
108 1.10 mycroft * Other process lists
109 1.7 cgd */
110 1.31 thorpej
111 1.10 mycroft struct proclist allproc;
112 1.32 thorpej struct proclist zombproc; /* resources have been freed */
113 1.32 thorpej
114 1.136 ad kmutex_t *proc_lock;
115 1.33 thorpej
116 1.33 thorpej /*
117 1.72 junyoung * pid to proc lookup is done by indexing the pid_table array.
118 1.61 dsl * Since pid numbers are only allocated when an empty slot
119 1.61 dsl * has been found, there is no need to search any lists ever.
120 1.61 dsl * (an orphaned pgrp will lock the slot, a session will lock
121 1.61 dsl * the pgrp with the same number.)
122 1.61 dsl * If the table is too small it is reallocated with twice the
123 1.61 dsl * previous size and the entries 'unzipped' into the two halves.
124 1.61 dsl * A linked list of free entries is passed through the pt_proc
125 1.61 dsl * field of 'free' items - set odd to be an invalid ptr.
126 1.61 dsl */
127 1.61 dsl
128 1.61 dsl struct pid_table {
129 1.61 dsl struct proc *pt_proc;
130 1.61 dsl struct pgrp *pt_pgrp;
131 1.72 junyoung };
132 1.61 dsl #if 1 /* strongly typed cast - should be a noop */
133 1.84 perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
134 1.61 dsl #else
135 1.61 dsl #define p2u(p) ((uint)p)
136 1.72 junyoung #endif
137 1.61 dsl #define P_VALID(p) (!(p2u(p) & 1))
138 1.61 dsl #define P_NEXT(p) (p2u(p) >> 1)
139 1.61 dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
140 1.61 dsl
141 1.61 dsl #define INITIAL_PID_TABLE_SIZE (1 << 5)
142 1.61 dsl static struct pid_table *pid_table;
143 1.61 dsl static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
144 1.61 dsl static uint pid_alloc_lim; /* max we allocate before growing table */
145 1.61 dsl static uint pid_alloc_cnt; /* number of allocated pids */
146 1.61 dsl
147 1.61 dsl /* links through free slots - never empty! */
148 1.61 dsl static uint next_free_pt, last_free_pt;
149 1.61 dsl static pid_t pid_max = PID_MAX; /* largest value we allocate */
150 1.31 thorpej
151 1.81 junyoung /* Components of the first process -- never freed. */
152 1.123 matt
153 1.123 matt extern const struct emul emul_netbsd; /* defined in kern_exec.c */
154 1.123 matt
155 1.123 matt struct session session0 = {
156 1.123 matt .s_count = 1,
157 1.123 matt .s_sid = 0,
158 1.123 matt };
159 1.123 matt struct pgrp pgrp0 = {
160 1.123 matt .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
161 1.123 matt .pg_session = &session0,
162 1.123 matt };
163 1.132 ad filedesc_t filedesc0;
164 1.123 matt struct cwdinfo cwdi0 = {
165 1.123 matt .cwdi_cmask = CMASK, /* see cmask below */
166 1.123 matt .cwdi_refcnt = 1,
167 1.123 matt };
168 1.123 matt struct plimit limit0 = {
169 1.123 matt .pl_corename = defcorename,
170 1.123 matt .pl_refcnt = 1,
171 1.123 matt .pl_rlimit = {
172 1.123 matt [0 ... __arraycount(limit0.pl_rlimit) - 1] = {
173 1.123 matt .rlim_cur = RLIM_INFINITY,
174 1.123 matt .rlim_max = RLIM_INFINITY,
175 1.123 matt },
176 1.123 matt },
177 1.123 matt };
178 1.81 junyoung struct pstats pstat0;
179 1.81 junyoung struct vmspace vmspace0;
180 1.81 junyoung struct sigacts sigacts0;
181 1.100 ad struct turnstile turnstile0;
182 1.123 matt struct proc proc0 = {
183 1.123 matt .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
184 1.123 matt .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
185 1.123 matt .p_nlwps = 1,
186 1.123 matt .p_nrlwps = 1,
187 1.123 matt .p_nlwpid = 1, /* must match lwp0.l_lid */
188 1.123 matt .p_pgrp = &pgrp0,
189 1.123 matt .p_comm = "system",
190 1.123 matt /*
191 1.123 matt * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
192 1.123 matt * when they exit. init(8) can easily wait them out for us.
193 1.123 matt */
194 1.123 matt .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
195 1.123 matt .p_stat = SACTIVE,
196 1.123 matt .p_nice = NZERO,
197 1.123 matt .p_emul = &emul_netbsd,
198 1.123 matt .p_cwdi = &cwdi0,
199 1.123 matt .p_limit = &limit0,
200 1.132 ad .p_fd = &filedesc0,
201 1.123 matt .p_vmspace = &vmspace0,
202 1.123 matt .p_stats = &pstat0,
203 1.123 matt .p_sigacts = &sigacts0,
204 1.123 matt };
205 1.123 matt struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
206 1.123 matt #ifdef LWP0_CPU_INFO
207 1.123 matt .l_cpu = LWP0_CPU_INFO,
208 1.123 matt #endif
209 1.123 matt .l_proc = &proc0,
210 1.123 matt .l_lid = 1,
211 1.123 matt .l_flag = LW_INMEM | LW_SYSTEM,
212 1.123 matt .l_stat = LSONPROC,
213 1.123 matt .l_ts = &turnstile0,
214 1.123 matt .l_syncobj = &sched_syncobj,
215 1.123 matt .l_refcnt = 1,
216 1.123 matt .l_priority = PRI_USER + NPRI_USER - 1,
217 1.123 matt .l_inheritedprio = -1,
218 1.123 matt .l_class = SCHED_OTHER,
219 1.123 matt .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
220 1.123 matt .l_name = __UNCONST("swapper"),
221 1.123 matt };
222 1.123 matt kauth_cred_t cred0;
223 1.81 junyoung
224 1.81 junyoung extern struct user *proc0paddr;
225 1.81 junyoung
226 1.81 junyoung int nofile = NOFILE;
227 1.81 junyoung int maxuprc = MAXUPRC;
228 1.81 junyoung int cmask = CMASK;
229 1.81 junyoung
230 1.57 thorpej MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
231 1.57 thorpej MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
232 1.57 thorpej MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
233 1.10 mycroft
234 1.31 thorpej /*
235 1.31 thorpej * The process list descriptors, used during pid allocation and
236 1.31 thorpej * by sysctl. No locking on this data structure is needed since
237 1.31 thorpej * it is completely static.
238 1.31 thorpej */
239 1.31 thorpej const struct proclist_desc proclists[] = {
240 1.31 thorpej { &allproc },
241 1.31 thorpej { &zombproc },
242 1.31 thorpej { NULL },
243 1.31 thorpej };
244 1.31 thorpej
245 1.72 junyoung static void orphanpg(struct pgrp *);
246 1.72 junyoung static void pg_delete(pid_t);
247 1.13 christos
248 1.95 thorpej static specificdata_domain_t proc_specificdata_domain;
249 1.95 thorpej
250 1.128 ad static pool_cache_t proc_cache;
251 1.128 ad
252 1.10 mycroft /*
253 1.10 mycroft * Initialize global process hashing structures.
254 1.10 mycroft */
255 1.11 cgd void
256 1.59 dsl procinit(void)
257 1.7 cgd {
258 1.31 thorpej const struct proclist_desc *pd;
259 1.61 dsl int i;
260 1.61 dsl #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
261 1.31 thorpej
262 1.31 thorpej for (pd = proclists; pd->pd_list != NULL; pd++)
263 1.31 thorpej LIST_INIT(pd->pd_list);
264 1.7 cgd
265 1.136 ad proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
266 1.33 thorpej
267 1.61 dsl pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
268 1.61 dsl M_PROC, M_WAITOK);
269 1.61 dsl /* Set free list running through table...
270 1.61 dsl Preset 'use count' above PID_MAX so we allocate pid 1 next. */
271 1.61 dsl for (i = 0; i <= pid_tbl_mask; i++) {
272 1.61 dsl pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
273 1.61 dsl pid_table[i].pt_pgrp = 0;
274 1.61 dsl }
275 1.61 dsl /* slot 0 is just grabbed */
276 1.61 dsl next_free_pt = 1;
277 1.61 dsl /* Need to fix last entry. */
278 1.61 dsl last_free_pt = pid_tbl_mask;
279 1.61 dsl pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
280 1.61 dsl /* point at which we grow table - to avoid reusing pids too often */
281 1.61 dsl pid_alloc_lim = pid_tbl_mask - 1;
282 1.61 dsl #undef LINK_EMPTY
283 1.61 dsl
284 1.95 thorpej proc_specificdata_domain = specificdata_domain_create();
285 1.95 thorpej KASSERT(proc_specificdata_domain != NULL);
286 1.128 ad
287 1.128 ad proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
288 1.128 ad "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
289 1.7 cgd }
290 1.1 cgd
291 1.7 cgd /*
292 1.81 junyoung * Initialize process 0.
293 1.81 junyoung */
294 1.81 junyoung void
295 1.81 junyoung proc0_init(void)
296 1.81 junyoung {
297 1.81 junyoung struct proc *p;
298 1.81 junyoung struct pgrp *pg;
299 1.81 junyoung struct session *sess;
300 1.81 junyoung struct lwp *l;
301 1.81 junyoung rlim_t lim;
302 1.81 junyoung
303 1.81 junyoung p = &proc0;
304 1.81 junyoung pg = &pgrp0;
305 1.81 junyoung sess = &session0;
306 1.81 junyoung l = &lwp0;
307 1.81 junyoung
308 1.123 matt KASSERT(l->l_lid == p->p_nlwpid);
309 1.123 matt
310 1.127 ad mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
311 1.129 ad mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
312 1.113 ad mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
313 1.137 ad p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
314 1.107 ad
315 1.122 ad rw_init(&p->p_reflock);
316 1.100 ad cv_init(&p->p_waitcv, "wait");
317 1.100 ad cv_init(&p->p_lwpcv, "lwpwait");
318 1.100 ad
319 1.81 junyoung LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
320 1.100 ad
321 1.81 junyoung pid_table[0].pt_proc = p;
322 1.81 junyoung LIST_INSERT_HEAD(&allproc, p, p_list);
323 1.81 junyoung LIST_INSERT_HEAD(&alllwp, l, l_list);
324 1.81 junyoung
325 1.81 junyoung pid_table[0].pt_pgrp = pg;
326 1.81 junyoung LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
327 1.81 junyoung
328 1.81 junyoung #ifdef __HAVE_SYSCALL_INTERN
329 1.81 junyoung (*p->p_emul->e_syscall_intern)(p);
330 1.81 junyoung #endif
331 1.81 junyoung
332 1.121 ad callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
333 1.115 ad callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
334 1.100 ad cv_init(&l->l_sigcv, "sigwait");
335 1.81 junyoung
336 1.81 junyoung /* Create credentials. */
337 1.89 elad cred0 = kauth_cred_alloc();
338 1.89 elad p->p_cred = cred0;
339 1.100 ad kauth_cred_hold(cred0);
340 1.100 ad l->l_cred = cred0;
341 1.81 junyoung
342 1.81 junyoung /* Create the CWD info. */
343 1.113 ad rw_init(&cwdi0.cwdi_lock);
344 1.81 junyoung
345 1.81 junyoung /* Create the limits structures. */
346 1.116 dsl mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
347 1.81 junyoung
348 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
349 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
350 1.81 junyoung maxfiles < nofile ? maxfiles : nofile;
351 1.81 junyoung
352 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
353 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
354 1.81 junyoung maxproc < maxuprc ? maxproc : maxuprc;
355 1.81 junyoung
356 1.81 junyoung lim = ptoa(uvmexp.free);
357 1.81 junyoung limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
358 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
359 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
360 1.81 junyoung
361 1.81 junyoung /* Configure virtual memory system, set vm rlimits. */
362 1.81 junyoung uvm_init_limits(p);
363 1.81 junyoung
364 1.81 junyoung /* Initialize file descriptor table for proc0. */
365 1.132 ad fd_init(&filedesc0);
366 1.81 junyoung
367 1.81 junyoung /*
368 1.81 junyoung * Initialize proc0's vmspace, which uses the kernel pmap.
369 1.81 junyoung * All kernel processes (which never have user space mappings)
370 1.81 junyoung * share proc0's vmspace, and thus, the kernel pmap.
371 1.81 junyoung */
372 1.81 junyoung uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
373 1.81 junyoung trunc_page(VM_MAX_ADDRESS));
374 1.81 junyoung
375 1.81 junyoung l->l_addr = proc0paddr; /* XXX */
376 1.81 junyoung
377 1.127 ad /* Initialize signal state for proc0. XXX IPL_SCHED */
378 1.127 ad mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
379 1.81 junyoung siginit(p);
380 1.96 christos
381 1.96 christos proc_initspecific(p);
382 1.96 christos lwp_initspecific(l);
383 1.103 dsl
384 1.103 dsl SYSCALL_TIME_LWP_INIT(l);
385 1.81 junyoung }
386 1.81 junyoung
387 1.81 junyoung /*
388 1.74 junyoung * Check that the specified process group is in the session of the
389 1.60 dsl * specified process.
390 1.60 dsl * Treats -ve ids as process ids.
391 1.60 dsl * Used to validate TIOCSPGRP requests.
392 1.60 dsl */
393 1.60 dsl int
394 1.60 dsl pgid_in_session(struct proc *p, pid_t pg_id)
395 1.60 dsl {
396 1.60 dsl struct pgrp *pgrp;
397 1.101 dsl struct session *session;
398 1.107 ad int error;
399 1.101 dsl
400 1.136 ad mutex_enter(proc_lock);
401 1.60 dsl if (pg_id < 0) {
402 1.101 dsl struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
403 1.64 dsl if (p1 == NULL)
404 1.64 dsl return EINVAL;
405 1.60 dsl pgrp = p1->p_pgrp;
406 1.60 dsl } else {
407 1.101 dsl pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
408 1.60 dsl if (pgrp == NULL)
409 1.64 dsl return EINVAL;
410 1.60 dsl }
411 1.101 dsl session = pgrp->pg_session;
412 1.101 dsl if (session != p->p_pgrp->pg_session)
413 1.107 ad error = EPERM;
414 1.107 ad else
415 1.107 ad error = 0;
416 1.136 ad mutex_exit(proc_lock);
417 1.107 ad
418 1.107 ad return error;
419 1.7 cgd }
420 1.4 andrew
421 1.1 cgd /*
422 1.41 sommerfe * Is p an inferior of q?
423 1.94 ad *
424 1.136 ad * Call with the proc_lock held.
425 1.1 cgd */
426 1.11 cgd int
427 1.59 dsl inferior(struct proc *p, struct proc *q)
428 1.1 cgd {
429 1.1 cgd
430 1.41 sommerfe for (; p != q; p = p->p_pptr)
431 1.1 cgd if (p->p_pid == 0)
432 1.82 junyoung return 0;
433 1.82 junyoung return 1;
434 1.1 cgd }
435 1.1 cgd
436 1.1 cgd /*
437 1.1 cgd * Locate a process by number
438 1.1 cgd */
439 1.1 cgd struct proc *
440 1.68 dsl p_find(pid_t pid, uint flags)
441 1.1 cgd {
442 1.33 thorpej struct proc *p;
443 1.68 dsl char stat;
444 1.1 cgd
445 1.68 dsl if (!(flags & PFIND_LOCKED))
446 1.136 ad mutex_enter(proc_lock);
447 1.100 ad
448 1.61 dsl p = pid_table[pid & pid_tbl_mask].pt_proc;
449 1.100 ad
450 1.61 dsl /* Only allow live processes to be found by pid. */
451 1.100 ad /* XXXSMP p_stat */
452 1.100 ad if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
453 1.100 ad stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
454 1.100 ad (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
455 1.68 dsl if (flags & PFIND_UNLOCK_OK)
456 1.136 ad mutex_exit(proc_lock);
457 1.68 dsl return p;
458 1.68 dsl }
459 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
460 1.136 ad mutex_exit(proc_lock);
461 1.68 dsl return NULL;
462 1.1 cgd }
463 1.1 cgd
464 1.61 dsl
465 1.1 cgd /*
466 1.1 cgd * Locate a process group by number
467 1.1 cgd */
468 1.1 cgd struct pgrp *
469 1.68 dsl pg_find(pid_t pgid, uint flags)
470 1.1 cgd {
471 1.68 dsl struct pgrp *pg;
472 1.1 cgd
473 1.68 dsl if (!(flags & PFIND_LOCKED))
474 1.136 ad mutex_enter(proc_lock);
475 1.68 dsl pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
476 1.61 dsl /*
477 1.61 dsl * Can't look up a pgrp that only exists because the session
478 1.61 dsl * hasn't died yet (traditional)
479 1.61 dsl */
480 1.68 dsl if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
481 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
482 1.136 ad mutex_exit(proc_lock);
483 1.68 dsl return NULL;
484 1.68 dsl }
485 1.68 dsl
486 1.68 dsl if (flags & PFIND_UNLOCK_OK)
487 1.136 ad mutex_exit(proc_lock);
488 1.68 dsl return pg;
489 1.1 cgd }
490 1.1 cgd
491 1.61 dsl static void
492 1.61 dsl expand_pid_table(void)
493 1.1 cgd {
494 1.61 dsl uint pt_size = pid_tbl_mask + 1;
495 1.61 dsl struct pid_table *n_pt, *new_pt;
496 1.61 dsl struct proc *proc;
497 1.61 dsl struct pgrp *pgrp;
498 1.61 dsl int i;
499 1.61 dsl pid_t pid;
500 1.1 cgd
501 1.61 dsl new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
502 1.61 dsl
503 1.136 ad mutex_enter(proc_lock);
504 1.61 dsl if (pt_size != pid_tbl_mask + 1) {
505 1.61 dsl /* Another process beat us to it... */
506 1.136 ad mutex_exit(proc_lock);
507 1.61 dsl FREE(new_pt, M_PROC);
508 1.61 dsl return;
509 1.61 dsl }
510 1.72 junyoung
511 1.61 dsl /*
512 1.61 dsl * Copy entries from old table into new one.
513 1.61 dsl * If 'pid' is 'odd' we need to place in the upper half,
514 1.61 dsl * even pid's to the lower half.
515 1.61 dsl * Free items stay in the low half so we don't have to
516 1.61 dsl * fixup the reference to them.
517 1.61 dsl * We stuff free items on the front of the freelist
518 1.61 dsl * because we can't write to unmodified entries.
519 1.74 junyoung * Processing the table backwards maintains a semblance
520 1.61 dsl * of issueing pid numbers that increase with time.
521 1.61 dsl */
522 1.61 dsl i = pt_size - 1;
523 1.61 dsl n_pt = new_pt + i;
524 1.61 dsl for (; ; i--, n_pt--) {
525 1.61 dsl proc = pid_table[i].pt_proc;
526 1.61 dsl pgrp = pid_table[i].pt_pgrp;
527 1.61 dsl if (!P_VALID(proc)) {
528 1.61 dsl /* Up 'use count' so that link is valid */
529 1.61 dsl pid = (P_NEXT(proc) + pt_size) & ~pt_size;
530 1.61 dsl proc = P_FREE(pid);
531 1.61 dsl if (pgrp)
532 1.61 dsl pid = pgrp->pg_id;
533 1.61 dsl } else
534 1.61 dsl pid = proc->p_pid;
535 1.72 junyoung
536 1.61 dsl /* Save entry in appropriate half of table */
537 1.61 dsl n_pt[pid & pt_size].pt_proc = proc;
538 1.61 dsl n_pt[pid & pt_size].pt_pgrp = pgrp;
539 1.61 dsl
540 1.61 dsl /* Put other piece on start of free list */
541 1.61 dsl pid = (pid ^ pt_size) & ~pid_tbl_mask;
542 1.61 dsl n_pt[pid & pt_size].pt_proc =
543 1.61 dsl P_FREE((pid & ~pt_size) | next_free_pt);
544 1.61 dsl n_pt[pid & pt_size].pt_pgrp = 0;
545 1.61 dsl next_free_pt = i | (pid & pt_size);
546 1.61 dsl if (i == 0)
547 1.61 dsl break;
548 1.61 dsl }
549 1.61 dsl
550 1.61 dsl /* Switch tables */
551 1.61 dsl n_pt = pid_table;
552 1.61 dsl pid_table = new_pt;
553 1.61 dsl pid_tbl_mask = pt_size * 2 - 1;
554 1.61 dsl
555 1.61 dsl /*
556 1.61 dsl * pid_max starts as PID_MAX (= 30000), once we have 16384
557 1.61 dsl * allocated pids we need it to be larger!
558 1.61 dsl */
559 1.61 dsl if (pid_tbl_mask > PID_MAX) {
560 1.61 dsl pid_max = pid_tbl_mask * 2 + 1;
561 1.61 dsl pid_alloc_lim |= pid_alloc_lim << 1;
562 1.61 dsl } else
563 1.61 dsl pid_alloc_lim <<= 1; /* doubles number of free slots... */
564 1.61 dsl
565 1.136 ad mutex_exit(proc_lock);
566 1.61 dsl FREE(n_pt, M_PROC);
567 1.61 dsl }
568 1.61 dsl
569 1.61 dsl struct proc *
570 1.61 dsl proc_alloc(void)
571 1.61 dsl {
572 1.61 dsl struct proc *p;
573 1.100 ad int nxt;
574 1.61 dsl pid_t pid;
575 1.61 dsl struct pid_table *pt;
576 1.61 dsl
577 1.128 ad p = pool_cache_get(proc_cache, PR_WAITOK);
578 1.61 dsl p->p_stat = SIDL; /* protect against others */
579 1.61 dsl
580 1.96 christos proc_initspecific(p);
581 1.61 dsl /* allocate next free pid */
582 1.61 dsl
583 1.61 dsl for (;;expand_pid_table()) {
584 1.61 dsl if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
585 1.61 dsl /* ensure pids cycle through 2000+ values */
586 1.61 dsl continue;
587 1.136 ad mutex_enter(proc_lock);
588 1.61 dsl pt = &pid_table[next_free_pt];
589 1.1 cgd #ifdef DIAGNOSTIC
590 1.63 christos if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
591 1.61 dsl panic("proc_alloc: slot busy");
592 1.1 cgd #endif
593 1.61 dsl nxt = P_NEXT(pt->pt_proc);
594 1.61 dsl if (nxt & pid_tbl_mask)
595 1.61 dsl break;
596 1.61 dsl /* Table full - expand (NB last entry not used....) */
597 1.136 ad mutex_exit(proc_lock);
598 1.61 dsl }
599 1.61 dsl
600 1.61 dsl /* pid is 'saved use count' + 'size' + entry */
601 1.61 dsl pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
602 1.61 dsl if ((uint)pid > (uint)pid_max)
603 1.61 dsl pid &= pid_tbl_mask;
604 1.61 dsl p->p_pid = pid;
605 1.61 dsl next_free_pt = nxt & pid_tbl_mask;
606 1.61 dsl
607 1.61 dsl /* Grab table slot */
608 1.61 dsl pt->pt_proc = p;
609 1.61 dsl pid_alloc_cnt++;
610 1.61 dsl
611 1.136 ad mutex_exit(proc_lock);
612 1.61 dsl
613 1.61 dsl return p;
614 1.61 dsl }
615 1.61 dsl
616 1.61 dsl /*
617 1.118 ad * Free a process id - called from proc_free (in kern_exit.c)
618 1.100 ad *
619 1.136 ad * Called with the proc_lock held.
620 1.61 dsl */
621 1.61 dsl void
622 1.118 ad proc_free_pid(struct proc *p)
623 1.61 dsl {
624 1.61 dsl pid_t pid = p->p_pid;
625 1.61 dsl struct pid_table *pt;
626 1.61 dsl
627 1.136 ad KASSERT(mutex_owned(proc_lock));
628 1.61 dsl
629 1.61 dsl pt = &pid_table[pid & pid_tbl_mask];
630 1.1 cgd #ifdef DIAGNOSTIC
631 1.63 christos if (__predict_false(pt->pt_proc != p))
632 1.61 dsl panic("proc_free: pid_table mismatch, pid %x, proc %p",
633 1.61 dsl pid, p);
634 1.1 cgd #endif
635 1.61 dsl /* save pid use count in slot */
636 1.61 dsl pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
637 1.61 dsl
638 1.61 dsl if (pt->pt_pgrp == NULL) {
639 1.61 dsl /* link last freed entry onto ours */
640 1.61 dsl pid &= pid_tbl_mask;
641 1.61 dsl pt = &pid_table[last_free_pt];
642 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
643 1.61 dsl last_free_pt = pid;
644 1.61 dsl pid_alloc_cnt--;
645 1.61 dsl }
646 1.61 dsl
647 1.126 ad atomic_dec_uint(&nprocs);
648 1.61 dsl }
649 1.61 dsl
650 1.128 ad void
651 1.128 ad proc_free_mem(struct proc *p)
652 1.128 ad {
653 1.128 ad
654 1.128 ad pool_cache_put(proc_cache, p);
655 1.128 ad }
656 1.128 ad
657 1.61 dsl /*
658 1.61 dsl * Move p to a new or existing process group (and session)
659 1.61 dsl *
660 1.61 dsl * If we are creating a new pgrp, the pgid should equal
661 1.72 junyoung * the calling process' pid.
662 1.61 dsl * If is only valid to enter a process group that is in the session
663 1.61 dsl * of the process.
664 1.61 dsl * Also mksess should only be set if we are creating a process group
665 1.61 dsl *
666 1.134 yamt * Only called from sys_setsid and sys_setpgid.
667 1.61 dsl */
668 1.61 dsl int
669 1.100 ad enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
670 1.61 dsl {
671 1.61 dsl struct pgrp *new_pgrp, *pgrp;
672 1.61 dsl struct session *sess;
673 1.100 ad struct proc *p;
674 1.61 dsl int rval;
675 1.61 dsl pid_t pg_id = NO_PGID;
676 1.61 dsl
677 1.61 dsl if (mksess)
678 1.131 ad sess = kmem_alloc(sizeof(*sess), KM_SLEEP);
679 1.61 dsl else
680 1.61 dsl sess = NULL;
681 1.61 dsl
682 1.107 ad /* Allocate data areas we might need before doing any validity checks */
683 1.136 ad mutex_enter(proc_lock); /* Because pid_table might change */
684 1.107 ad if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
685 1.136 ad mutex_exit(proc_lock);
686 1.131 ad new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
687 1.136 ad mutex_enter(proc_lock);
688 1.107 ad } else
689 1.107 ad new_pgrp = NULL;
690 1.61 dsl rval = EPERM; /* most common error (to save typing) */
691 1.61 dsl
692 1.61 dsl /* Check pgrp exists or can be created */
693 1.61 dsl pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
694 1.61 dsl if (pgrp != NULL && pgrp->pg_id != pgid)
695 1.61 dsl goto done;
696 1.61 dsl
697 1.61 dsl /* Can only set another process under restricted circumstances. */
698 1.100 ad if (pid != curp->p_pid) {
699 1.61 dsl /* must exist and be one of our children... */
700 1.100 ad if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
701 1.100 ad !inferior(p, curp)) {
702 1.61 dsl rval = ESRCH;
703 1.61 dsl goto done;
704 1.61 dsl }
705 1.61 dsl /* ... in the same session... */
706 1.61 dsl if (sess != NULL || p->p_session != curp->p_session)
707 1.61 dsl goto done;
708 1.61 dsl /* ... existing pgid must be in same session ... */
709 1.61 dsl if (pgrp != NULL && pgrp->pg_session != p->p_session)
710 1.61 dsl goto done;
711 1.61 dsl /* ... and not done an exec. */
712 1.102 pavel if (p->p_flag & PK_EXEC) {
713 1.61 dsl rval = EACCES;
714 1.61 dsl goto done;
715 1.49 enami }
716 1.100 ad } else {
717 1.100 ad /* ... setsid() cannot re-enter a pgrp */
718 1.100 ad if (mksess && (curp->p_pgid == curp->p_pid ||
719 1.100 ad pg_find(curp->p_pid, PFIND_LOCKED)))
720 1.100 ad goto done;
721 1.100 ad p = curp;
722 1.61 dsl }
723 1.1 cgd
724 1.61 dsl /* Changing the process group/session of a session
725 1.61 dsl leader is definitely off limits. */
726 1.61 dsl if (SESS_LEADER(p)) {
727 1.61 dsl if (sess == NULL && p->p_pgrp == pgrp)
728 1.61 dsl /* unless it's a definite noop */
729 1.61 dsl rval = 0;
730 1.61 dsl goto done;
731 1.61 dsl }
732 1.61 dsl
733 1.61 dsl /* Can only create a process group with id of process */
734 1.61 dsl if (pgrp == NULL && pgid != pid)
735 1.61 dsl goto done;
736 1.61 dsl
737 1.61 dsl /* Can only create a session if creating pgrp */
738 1.61 dsl if (sess != NULL && pgrp != NULL)
739 1.61 dsl goto done;
740 1.61 dsl
741 1.61 dsl /* Check we allocated memory for a pgrp... */
742 1.61 dsl if (pgrp == NULL && new_pgrp == NULL)
743 1.61 dsl goto done;
744 1.61 dsl
745 1.61 dsl /* Don't attach to 'zombie' pgrp */
746 1.61 dsl if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
747 1.61 dsl goto done;
748 1.61 dsl
749 1.61 dsl /* Expect to succeed now */
750 1.61 dsl rval = 0;
751 1.61 dsl
752 1.61 dsl if (pgrp == p->p_pgrp)
753 1.61 dsl /* nothing to do */
754 1.61 dsl goto done;
755 1.61 dsl
756 1.61 dsl /* Ok all setup, link up required structures */
757 1.100 ad
758 1.61 dsl if (pgrp == NULL) {
759 1.61 dsl pgrp = new_pgrp;
760 1.61 dsl new_pgrp = 0;
761 1.61 dsl if (sess != NULL) {
762 1.21 thorpej sess->s_sid = p->p_pid;
763 1.1 cgd sess->s_leader = p;
764 1.1 cgd sess->s_count = 1;
765 1.1 cgd sess->s_ttyvp = NULL;
766 1.1 cgd sess->s_ttyp = NULL;
767 1.58 dsl sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
768 1.25 perry memcpy(sess->s_login, p->p_session->s_login,
769 1.1 cgd sizeof(sess->s_login));
770 1.100 ad p->p_lflag &= ~PL_CONTROLT;
771 1.1 cgd } else {
772 1.61 dsl sess = p->p_pgrp->pg_session;
773 1.61 dsl SESSHOLD(sess);
774 1.1 cgd }
775 1.61 dsl pgrp->pg_session = sess;
776 1.61 dsl sess = 0;
777 1.61 dsl
778 1.1 cgd pgrp->pg_id = pgid;
779 1.10 mycroft LIST_INIT(&pgrp->pg_members);
780 1.61 dsl #ifdef DIAGNOSTIC
781 1.63 christos if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
782 1.61 dsl panic("enterpgrp: pgrp table slot in use");
783 1.63 christos if (__predict_false(mksess && p != curp))
784 1.63 christos panic("enterpgrp: mksession and p != curproc");
785 1.61 dsl #endif
786 1.61 dsl pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
787 1.1 cgd pgrp->pg_jobc = 0;
788 1.136 ad }
789 1.1 cgd
790 1.1 cgd /*
791 1.1 cgd * Adjust eligibility of affected pgrps to participate in job control.
792 1.1 cgd * Increment eligibility counts before decrementing, otherwise we
793 1.1 cgd * could reach 0 spuriously during the first call.
794 1.1 cgd */
795 1.1 cgd fixjobc(p, pgrp, 1);
796 1.1 cgd fixjobc(p, p->p_pgrp, 0);
797 1.1 cgd
798 1.136 ad /* Interlock with ttread(). */
799 1.136 ad mutex_spin_enter(&tty_lock);
800 1.136 ad
801 1.100 ad /* Move process to requested group. */
802 1.10 mycroft LIST_REMOVE(p, p_pglist);
803 1.52 matt if (LIST_EMPTY(&p->p_pgrp->pg_members))
804 1.61 dsl /* defer delete until we've dumped the lock */
805 1.61 dsl pg_id = p->p_pgrp->pg_id;
806 1.1 cgd p->p_pgrp = pgrp;
807 1.10 mycroft LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
808 1.100 ad
809 1.100 ad /* Done with the swap; we can release the tty mutex. */
810 1.128 ad mutex_spin_exit(&tty_lock);
811 1.128 ad
812 1.61 dsl done:
813 1.100 ad if (pg_id != NO_PGID)
814 1.100 ad pg_delete(pg_id);
815 1.136 ad mutex_exit(proc_lock);
816 1.61 dsl if (sess != NULL)
817 1.131 ad kmem_free(sess, sizeof(*sess));
818 1.61 dsl if (new_pgrp != NULL)
819 1.131 ad kmem_free(new_pgrp, sizeof(*new_pgrp));
820 1.63 christos #ifdef DEBUG_PGRP
821 1.63 christos if (__predict_false(rval))
822 1.61 dsl printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
823 1.61 dsl pid, pgid, mksess, curp->p_pid, rval);
824 1.61 dsl #endif
825 1.61 dsl return rval;
826 1.1 cgd }
827 1.1 cgd
828 1.1 cgd /*
829 1.100 ad * Remove a process from its process group. Must be called with the
830 1.136 ad * proc_lock held.
831 1.1 cgd */
832 1.100 ad void
833 1.59 dsl leavepgrp(struct proc *p)
834 1.1 cgd {
835 1.61 dsl struct pgrp *pgrp;
836 1.1 cgd
837 1.136 ad KASSERT(mutex_owned(proc_lock));
838 1.100 ad
839 1.128 ad mutex_spin_enter(&tty_lock);
840 1.61 dsl pgrp = p->p_pgrp;
841 1.10 mycroft LIST_REMOVE(p, p_pglist);
842 1.94 ad p->p_pgrp = NULL;
843 1.128 ad mutex_spin_exit(&tty_lock);
844 1.100 ad
845 1.100 ad if (LIST_EMPTY(&pgrp->pg_members))
846 1.100 ad pg_delete(pgrp->pg_id);
847 1.61 dsl }
848 1.61 dsl
849 1.100 ad /*
850 1.136 ad * Free a process group. Must be called with the proc_lock held.
851 1.100 ad */
852 1.61 dsl static void
853 1.61 dsl pg_free(pid_t pg_id)
854 1.61 dsl {
855 1.61 dsl struct pgrp *pgrp;
856 1.61 dsl struct pid_table *pt;
857 1.61 dsl
858 1.136 ad KASSERT(mutex_owned(proc_lock));
859 1.100 ad
860 1.61 dsl pt = &pid_table[pg_id & pid_tbl_mask];
861 1.61 dsl pgrp = pt->pt_pgrp;
862 1.61 dsl #ifdef DIAGNOSTIC
863 1.63 christos if (__predict_false(!pgrp || pgrp->pg_id != pg_id
864 1.63 christos || !LIST_EMPTY(&pgrp->pg_members)))
865 1.61 dsl panic("pg_free: process group absent or has members");
866 1.61 dsl #endif
867 1.61 dsl pt->pt_pgrp = 0;
868 1.61 dsl
869 1.61 dsl if (!P_VALID(pt->pt_proc)) {
870 1.61 dsl /* orphaned pgrp, put slot onto free list */
871 1.61 dsl #ifdef DIAGNOSTIC
872 1.63 christos if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
873 1.61 dsl panic("pg_free: process slot on free list");
874 1.61 dsl #endif
875 1.61 dsl pg_id &= pid_tbl_mask;
876 1.61 dsl pt = &pid_table[last_free_pt];
877 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
878 1.61 dsl last_free_pt = pg_id;
879 1.61 dsl pid_alloc_cnt--;
880 1.61 dsl }
881 1.131 ad kmem_free(pgrp, sizeof(*pgrp));
882 1.1 cgd }
883 1.1 cgd
884 1.1 cgd /*
885 1.136 ad * Delete a process group. Must be called with the proc_lock held.
886 1.1 cgd */
887 1.61 dsl static void
888 1.61 dsl pg_delete(pid_t pg_id)
889 1.61 dsl {
890 1.61 dsl struct pgrp *pgrp;
891 1.61 dsl struct tty *ttyp;
892 1.61 dsl struct session *ss;
893 1.100 ad int is_pgrp_leader;
894 1.100 ad
895 1.136 ad KASSERT(mutex_owned(proc_lock));
896 1.61 dsl
897 1.61 dsl pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
898 1.61 dsl if (pgrp == NULL || pgrp->pg_id != pg_id ||
899 1.100 ad !LIST_EMPTY(&pgrp->pg_members))
900 1.61 dsl return;
901 1.61 dsl
902 1.71 pk ss = pgrp->pg_session;
903 1.71 pk
904 1.61 dsl /* Remove reference (if any) from tty to this process group */
905 1.128 ad mutex_spin_enter(&tty_lock);
906 1.71 pk ttyp = ss->s_ttyp;
907 1.71 pk if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
908 1.61 dsl ttyp->t_pgrp = NULL;
909 1.71 pk #ifdef DIAGNOSTIC
910 1.71 pk if (ttyp->t_session != ss)
911 1.71 pk panic("pg_delete: wrong session on terminal");
912 1.71 pk #endif
913 1.71 pk }
914 1.128 ad mutex_spin_exit(&tty_lock);
915 1.61 dsl
916 1.71 pk /*
917 1.71 pk * The leading process group in a session is freed
918 1.71 pk * by sessdelete() if last reference.
919 1.71 pk */
920 1.71 pk is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
921 1.71 pk SESSRELE(ss);
922 1.61 dsl
923 1.71 pk if (is_pgrp_leader)
924 1.61 dsl return;
925 1.61 dsl
926 1.61 dsl pg_free(pg_id);
927 1.61 dsl }
928 1.61 dsl
929 1.61 dsl /*
930 1.61 dsl * Delete session - called from SESSRELE when s_count becomes zero.
931 1.136 ad * Must be called with the proc_lock held.
932 1.61 dsl */
933 1.11 cgd void
934 1.61 dsl sessdelete(struct session *ss)
935 1.1 cgd {
936 1.100 ad
937 1.136 ad KASSERT(mutex_owned(proc_lock));
938 1.100 ad
939 1.61 dsl /*
940 1.61 dsl * We keep the pgrp with the same id as the session in
941 1.61 dsl * order to stop a process being given the same pid.
942 1.61 dsl * Since the pgrp holds a reference to the session, it
943 1.61 dsl * must be a 'zombie' pgrp by now.
944 1.61 dsl */
945 1.61 dsl pg_free(ss->s_sid);
946 1.131 ad kmem_free(ss, sizeof(*ss));
947 1.1 cgd }
948 1.1 cgd
949 1.1 cgd /*
950 1.1 cgd * Adjust pgrp jobc counters when specified process changes process group.
951 1.1 cgd * We count the number of processes in each process group that "qualify"
952 1.1 cgd * the group for terminal job control (those with a parent in a different
953 1.1 cgd * process group of the same session). If that count reaches zero, the
954 1.1 cgd * process group becomes orphaned. Check both the specified process'
955 1.1 cgd * process group and that of its children.
956 1.1 cgd * entering == 0 => p is leaving specified group.
957 1.1 cgd * entering == 1 => p is entering specified group.
958 1.68 dsl *
959 1.136 ad * Call with proc_lock held.
960 1.1 cgd */
961 1.4 andrew void
962 1.59 dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
963 1.1 cgd {
964 1.39 augustss struct pgrp *hispgrp;
965 1.39 augustss struct session *mysession = pgrp->pg_session;
966 1.68 dsl struct proc *child;
967 1.1 cgd
968 1.136 ad KASSERT(mutex_owned(proc_lock));
969 1.100 ad
970 1.1 cgd /*
971 1.1 cgd * Check p's parent to see whether p qualifies its own process
972 1.1 cgd * group; if so, adjust count for p's process group.
973 1.1 cgd */
974 1.68 dsl hispgrp = p->p_pptr->p_pgrp;
975 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
976 1.100 ad if (entering) {
977 1.1 cgd pgrp->pg_jobc++;
978 1.136 ad p->p_lflag &= ~PL_ORPHANPG;
979 1.100 ad } else if (--pgrp->pg_jobc == 0)
980 1.1 cgd orphanpg(pgrp);
981 1.26 thorpej }
982 1.1 cgd
983 1.1 cgd /*
984 1.1 cgd * Check this process' children to see whether they qualify
985 1.1 cgd * their process groups; if so, adjust counts for children's
986 1.1 cgd * process groups.
987 1.1 cgd */
988 1.68 dsl LIST_FOREACH(child, &p->p_children, p_sibling) {
989 1.68 dsl hispgrp = child->p_pgrp;
990 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
991 1.68 dsl !P_ZOMBIE(child)) {
992 1.100 ad if (entering) {
993 1.136 ad child->p_lflag &= ~PL_ORPHANPG;
994 1.1 cgd hispgrp->pg_jobc++;
995 1.100 ad } else if (--hispgrp->pg_jobc == 0)
996 1.1 cgd orphanpg(hispgrp);
997 1.26 thorpej }
998 1.26 thorpej }
999 1.1 cgd }
1000 1.1 cgd
1001 1.72 junyoung /*
1002 1.1 cgd * A process group has become orphaned;
1003 1.1 cgd * if there are any stopped processes in the group,
1004 1.1 cgd * hang-up all process in that group.
1005 1.68 dsl *
1006 1.136 ad * Call with proc_lock held.
1007 1.1 cgd */
1008 1.4 andrew static void
1009 1.59 dsl orphanpg(struct pgrp *pg)
1010 1.1 cgd {
1011 1.39 augustss struct proc *p;
1012 1.100 ad int doit;
1013 1.100 ad
1014 1.136 ad KASSERT(mutex_owned(proc_lock));
1015 1.100 ad
1016 1.100 ad doit = 0;
1017 1.1 cgd
1018 1.52 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1019 1.1 cgd if (p->p_stat == SSTOP) {
1020 1.136 ad p->p_lflag |= PL_ORPHANPG;
1021 1.136 ad mutex_spin_exit(&tty_lock);
1022 1.100 ad psignal(p, SIGHUP);
1023 1.100 ad psignal(p, SIGCONT);
1024 1.136 ad mutex_spin_enter(&tty_lock);
1025 1.35 bouyer }
1026 1.35 bouyer }
1027 1.35 bouyer }
1028 1.1 cgd
1029 1.61 dsl #ifdef DDB
1030 1.61 dsl #include <ddb/db_output.h>
1031 1.61 dsl void pidtbl_dump(void);
1032 1.14 christos void
1033 1.61 dsl pidtbl_dump(void)
1034 1.1 cgd {
1035 1.61 dsl struct pid_table *pt;
1036 1.61 dsl struct proc *p;
1037 1.39 augustss struct pgrp *pgrp;
1038 1.61 dsl int id;
1039 1.1 cgd
1040 1.61 dsl db_printf("pid table %p size %x, next %x, last %x\n",
1041 1.61 dsl pid_table, pid_tbl_mask+1,
1042 1.61 dsl next_free_pt, last_free_pt);
1043 1.61 dsl for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1044 1.61 dsl p = pt->pt_proc;
1045 1.61 dsl if (!P_VALID(p) && !pt->pt_pgrp)
1046 1.61 dsl continue;
1047 1.61 dsl db_printf(" id %x: ", id);
1048 1.61 dsl if (P_VALID(p))
1049 1.61 dsl db_printf("proc %p id %d (0x%x) %s\n",
1050 1.61 dsl p, p->p_pid, p->p_pid, p->p_comm);
1051 1.61 dsl else
1052 1.61 dsl db_printf("next %x use %x\n",
1053 1.61 dsl P_NEXT(p) & pid_tbl_mask,
1054 1.61 dsl P_NEXT(p) & ~pid_tbl_mask);
1055 1.61 dsl if ((pgrp = pt->pt_pgrp)) {
1056 1.61 dsl db_printf("\tsession %p, sid %d, count %d, login %s\n",
1057 1.61 dsl pgrp->pg_session, pgrp->pg_session->s_sid,
1058 1.61 dsl pgrp->pg_session->s_count,
1059 1.61 dsl pgrp->pg_session->s_login);
1060 1.61 dsl db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1061 1.61 dsl pgrp, pgrp->pg_id, pgrp->pg_jobc,
1062 1.135 yamt LIST_FIRST(&pgrp->pg_members));
1063 1.135 yamt LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1064 1.72 junyoung db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1065 1.61 dsl p->p_pid, p, p->p_pgrp, p->p_comm);
1066 1.10 mycroft }
1067 1.1 cgd }
1068 1.1 cgd }
1069 1.1 cgd }
1070 1.61 dsl #endif /* DDB */
1071 1.48 yamt
1072 1.48 yamt #ifdef KSTACK_CHECK_MAGIC
1073 1.48 yamt #include <sys/user.h>
1074 1.48 yamt
1075 1.48 yamt #define KSTACK_MAGIC 0xdeadbeaf
1076 1.48 yamt
1077 1.48 yamt /* XXX should be per process basis? */
1078 1.48 yamt int kstackleftmin = KSTACK_SIZE;
1079 1.50 enami int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1080 1.50 enami less than this */
1081 1.48 yamt
1082 1.48 yamt void
1083 1.56 yamt kstack_setup_magic(const struct lwp *l)
1084 1.48 yamt {
1085 1.85 perry uint32_t *ip;
1086 1.85 perry uint32_t const *end;
1087 1.48 yamt
1088 1.56 yamt KASSERT(l != NULL);
1089 1.56 yamt KASSERT(l != &lwp0);
1090 1.48 yamt
1091 1.48 yamt /*
1092 1.48 yamt * fill all the stack with magic number
1093 1.48 yamt * so that later modification on it can be detected.
1094 1.48 yamt */
1095 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1096 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1097 1.48 yamt for (; ip < end; ip++) {
1098 1.48 yamt *ip = KSTACK_MAGIC;
1099 1.48 yamt }
1100 1.48 yamt }
1101 1.48 yamt
1102 1.48 yamt void
1103 1.56 yamt kstack_check_magic(const struct lwp *l)
1104 1.48 yamt {
1105 1.85 perry uint32_t const *ip, *end;
1106 1.48 yamt int stackleft;
1107 1.48 yamt
1108 1.56 yamt KASSERT(l != NULL);
1109 1.48 yamt
1110 1.48 yamt /* don't check proc0 */ /*XXX*/
1111 1.56 yamt if (l == &lwp0)
1112 1.48 yamt return;
1113 1.48 yamt
1114 1.48 yamt #ifdef __MACHINE_STACK_GROWS_UP
1115 1.48 yamt /* stack grows upwards (eg. hppa) */
1116 1.106 christos ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1117 1.85 perry end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1118 1.48 yamt for (ip--; ip >= end; ip--)
1119 1.48 yamt if (*ip != KSTACK_MAGIC)
1120 1.48 yamt break;
1121 1.72 junyoung
1122 1.106 christos stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1123 1.48 yamt #else /* __MACHINE_STACK_GROWS_UP */
1124 1.48 yamt /* stack grows downwards (eg. i386) */
1125 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1126 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1127 1.48 yamt for (; ip < end; ip++)
1128 1.48 yamt if (*ip != KSTACK_MAGIC)
1129 1.48 yamt break;
1130 1.48 yamt
1131 1.93 christos stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1132 1.48 yamt #endif /* __MACHINE_STACK_GROWS_UP */
1133 1.48 yamt
1134 1.48 yamt if (kstackleftmin > stackleft) {
1135 1.48 yamt kstackleftmin = stackleft;
1136 1.48 yamt if (stackleft < kstackleftthres)
1137 1.56 yamt printf("warning: kernel stack left %d bytes"
1138 1.56 yamt "(pid %u:lid %u)\n", stackleft,
1139 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1140 1.48 yamt }
1141 1.48 yamt
1142 1.48 yamt if (stackleft <= 0) {
1143 1.56 yamt panic("magic on the top of kernel stack changed for "
1144 1.56 yamt "pid %u, lid %u: maybe kernel stack overflow",
1145 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1146 1.48 yamt }
1147 1.48 yamt }
1148 1.50 enami #endif /* KSTACK_CHECK_MAGIC */
1149 1.79 yamt
1150 1.79 yamt int
1151 1.79 yamt proclist_foreach_call(struct proclist *list,
1152 1.79 yamt int (*callback)(struct proc *, void *arg), void *arg)
1153 1.79 yamt {
1154 1.79 yamt struct proc marker;
1155 1.79 yamt struct proc *p;
1156 1.79 yamt struct lwp * const l = curlwp;
1157 1.79 yamt int ret = 0;
1158 1.79 yamt
1159 1.102 pavel marker.p_flag = PK_MARKER;
1160 1.113 ad uvm_lwp_hold(l);
1161 1.136 ad mutex_enter(proc_lock);
1162 1.79 yamt for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1163 1.102 pavel if (p->p_flag & PK_MARKER) {
1164 1.79 yamt p = LIST_NEXT(p, p_list);
1165 1.79 yamt continue;
1166 1.79 yamt }
1167 1.79 yamt LIST_INSERT_AFTER(p, &marker, p_list);
1168 1.79 yamt ret = (*callback)(p, arg);
1169 1.136 ad KASSERT(mutex_owned(proc_lock));
1170 1.79 yamt p = LIST_NEXT(&marker, p_list);
1171 1.79 yamt LIST_REMOVE(&marker, p_list);
1172 1.79 yamt }
1173 1.136 ad mutex_exit(proc_lock);
1174 1.113 ad uvm_lwp_rele(l);
1175 1.79 yamt
1176 1.79 yamt return ret;
1177 1.79 yamt }
1178 1.86 yamt
1179 1.86 yamt int
1180 1.86 yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1181 1.86 yamt {
1182 1.86 yamt
1183 1.86 yamt /* XXXCDC: how should locking work here? */
1184 1.86 yamt
1185 1.87 yamt /* curproc exception is for coredump. */
1186 1.87 yamt
1187 1.100 ad if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1188 1.86 yamt (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1189 1.86 yamt return EFAULT;
1190 1.86 yamt }
1191 1.86 yamt
1192 1.86 yamt uvmspace_addref(p->p_vmspace);
1193 1.86 yamt *vm = p->p_vmspace;
1194 1.86 yamt
1195 1.86 yamt return 0;
1196 1.86 yamt }
1197 1.94 ad
1198 1.94 ad /*
1199 1.94 ad * Acquire a write lock on the process credential.
1200 1.94 ad */
1201 1.94 ad void
1202 1.100 ad proc_crmod_enter(void)
1203 1.94 ad {
1204 1.100 ad struct lwp *l = curlwp;
1205 1.100 ad struct proc *p = l->l_proc;
1206 1.100 ad struct plimit *lim;
1207 1.100 ad kauth_cred_t oc;
1208 1.100 ad char *cn;
1209 1.94 ad
1210 1.117 dsl /* Reset what needs to be reset in plimit. */
1211 1.117 dsl if (p->p_limit->pl_corename != defcorename) {
1212 1.117 dsl lim_privatise(p, false);
1213 1.117 dsl lim = p->p_limit;
1214 1.117 dsl mutex_enter(&lim->pl_lock);
1215 1.117 dsl cn = lim->pl_corename;
1216 1.117 dsl lim->pl_corename = defcorename;
1217 1.117 dsl mutex_exit(&lim->pl_lock);
1218 1.117 dsl if (cn != defcorename)
1219 1.117 dsl free(cn, M_TEMP);
1220 1.117 dsl }
1221 1.117 dsl
1222 1.137 ad mutex_enter(p->p_lock);
1223 1.100 ad
1224 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1225 1.100 ad if ((oc = l->l_cred) != p->p_cred) {
1226 1.100 ad kauth_cred_hold(p->p_cred);
1227 1.100 ad l->l_cred = p->p_cred;
1228 1.100 ad kauth_cred_free(oc);
1229 1.100 ad }
1230 1.100 ad
1231 1.94 ad }
1232 1.94 ad
1233 1.94 ad /*
1234 1.100 ad * Set in a new process credential, and drop the write lock. The credential
1235 1.100 ad * must have a reference already. Optionally, free a no-longer required
1236 1.100 ad * credential. The scheduler also needs to inspect p_cred, so we also
1237 1.100 ad * briefly acquire the sched state mutex.
1238 1.94 ad */
1239 1.94 ad void
1240 1.104 thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1241 1.94 ad {
1242 1.133 ad struct lwp *l = curlwp, *l2;
1243 1.100 ad struct proc *p = l->l_proc;
1244 1.100 ad kauth_cred_t oc;
1245 1.100 ad
1246 1.137 ad KASSERT(mutex_owned(p->p_lock));
1247 1.137 ad
1248 1.100 ad /* Is there a new credential to set in? */
1249 1.100 ad if (scred != NULL) {
1250 1.100 ad p->p_cred = scred;
1251 1.133 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1252 1.133 ad if (l2 != l)
1253 1.133 ad l2->l_prflag |= LPR_CRMOD;
1254 1.133 ad }
1255 1.100 ad
1256 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1257 1.100 ad if ((oc = l->l_cred) != scred) {
1258 1.100 ad kauth_cred_hold(scred);
1259 1.100 ad l->l_cred = scred;
1260 1.100 ad }
1261 1.100 ad } else
1262 1.100 ad oc = NULL; /* XXXgcc */
1263 1.100 ad
1264 1.100 ad if (sugid) {
1265 1.100 ad /*
1266 1.100 ad * Mark process as having changed credentials, stops
1267 1.100 ad * tracing etc.
1268 1.100 ad */
1269 1.102 pavel p->p_flag |= PK_SUGID;
1270 1.100 ad }
1271 1.94 ad
1272 1.137 ad mutex_exit(p->p_lock);
1273 1.100 ad
1274 1.100 ad /* If there is a credential to be released, free it now. */
1275 1.100 ad if (fcred != NULL) {
1276 1.100 ad KASSERT(scred != NULL);
1277 1.94 ad kauth_cred_free(fcred);
1278 1.100 ad if (oc != scred)
1279 1.100 ad kauth_cred_free(oc);
1280 1.100 ad }
1281 1.100 ad }
1282 1.100 ad
1283 1.100 ad /*
1284 1.95 thorpej * proc_specific_key_create --
1285 1.95 thorpej * Create a key for subsystem proc-specific data.
1286 1.95 thorpej */
1287 1.95 thorpej int
1288 1.95 thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1289 1.95 thorpej {
1290 1.95 thorpej
1291 1.98 thorpej return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1292 1.95 thorpej }
1293 1.95 thorpej
1294 1.95 thorpej /*
1295 1.95 thorpej * proc_specific_key_delete --
1296 1.95 thorpej * Delete a key for subsystem proc-specific data.
1297 1.95 thorpej */
1298 1.95 thorpej void
1299 1.95 thorpej proc_specific_key_delete(specificdata_key_t key)
1300 1.95 thorpej {
1301 1.95 thorpej
1302 1.95 thorpej specificdata_key_delete(proc_specificdata_domain, key);
1303 1.95 thorpej }
1304 1.95 thorpej
1305 1.98 thorpej /*
1306 1.98 thorpej * proc_initspecific --
1307 1.98 thorpej * Initialize a proc's specificdata container.
1308 1.98 thorpej */
1309 1.96 christos void
1310 1.96 christos proc_initspecific(struct proc *p)
1311 1.96 christos {
1312 1.96 christos int error;
1313 1.98 thorpej
1314 1.96 christos error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1315 1.96 christos KASSERT(error == 0);
1316 1.96 christos }
1317 1.96 christos
1318 1.95 thorpej /*
1319 1.98 thorpej * proc_finispecific --
1320 1.98 thorpej * Finalize a proc's specificdata container.
1321 1.98 thorpej */
1322 1.98 thorpej void
1323 1.98 thorpej proc_finispecific(struct proc *p)
1324 1.98 thorpej {
1325 1.98 thorpej
1326 1.98 thorpej specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1327 1.98 thorpej }
1328 1.98 thorpej
1329 1.98 thorpej /*
1330 1.95 thorpej * proc_getspecific --
1331 1.95 thorpej * Return proc-specific data corresponding to the specified key.
1332 1.95 thorpej */
1333 1.95 thorpej void *
1334 1.95 thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
1335 1.95 thorpej {
1336 1.95 thorpej
1337 1.95 thorpej return (specificdata_getspecific(proc_specificdata_domain,
1338 1.95 thorpej &p->p_specdataref, key));
1339 1.95 thorpej }
1340 1.95 thorpej
1341 1.95 thorpej /*
1342 1.95 thorpej * proc_setspecific --
1343 1.95 thorpej * Set proc-specific data corresponding to the specified key.
1344 1.95 thorpej */
1345 1.95 thorpej void
1346 1.95 thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1347 1.95 thorpej {
1348 1.95 thorpej
1349 1.95 thorpej specificdata_setspecific(proc_specificdata_domain,
1350 1.95 thorpej &p->p_specdataref, key, data);
1351 1.95 thorpej }
1352