Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.139.2.4
      1  1.139.2.4      yamt /*	$NetBSD: kern_proc.c,v 1.139.2.4 2010/03/11 15:04:17 yamt Exp $	*/
      2       1.33   thorpej 
      3       1.33   thorpej /*-
      4      1.131        ad  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.33   thorpej  * All rights reserved.
      6       1.33   thorpej  *
      7       1.33   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.33   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.100        ad  * NASA Ames Research Center, and by Andrew Doran.
     10       1.33   thorpej  *
     11       1.33   thorpej  * Redistribution and use in source and binary forms, with or without
     12       1.33   thorpej  * modification, are permitted provided that the following conditions
     13       1.33   thorpej  * are met:
     14       1.33   thorpej  * 1. Redistributions of source code must retain the above copyright
     15       1.33   thorpej  *    notice, this list of conditions and the following disclaimer.
     16       1.33   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.33   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18       1.33   thorpej  *    documentation and/or other materials provided with the distribution.
     19       1.33   thorpej  *
     20       1.33   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21       1.33   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22       1.33   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23       1.33   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24       1.33   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25       1.33   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26       1.33   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27       1.33   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28       1.33   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29       1.33   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30       1.33   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31       1.33   thorpej  */
     32        1.9       cgd 
     33        1.1       cgd /*
     34        1.7       cgd  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35        1.7       cgd  *	The Regents of the University of California.  All rights reserved.
     36        1.1       cgd  *
     37        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     38        1.1       cgd  * modification, are permitted provided that the following conditions
     39        1.1       cgd  * are met:
     40        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     41        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     42        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     43        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     44        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     45       1.65       agc  * 3. Neither the name of the University nor the names of its contributors
     46        1.1       cgd  *    may be used to endorse or promote products derived from this software
     47        1.1       cgd  *    without specific prior written permission.
     48        1.1       cgd  *
     49        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59        1.1       cgd  * SUCH DAMAGE.
     60        1.1       cgd  *
     61       1.23      fvdl  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62        1.1       cgd  */
     63       1.45     lukem 
     64       1.45     lukem #include <sys/cdefs.h>
     65  1.139.2.4      yamt __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.139.2.4 2010/03/11 15:04:17 yamt Exp $");
     66       1.48      yamt 
     67       1.48      yamt #include "opt_kstack.h"
     68       1.88      onoe #include "opt_maxuprc.h"
     69  1.139.2.4      yamt #include "opt_dtrace.h"
     70        1.1       cgd 
     71        1.5   mycroft #include <sys/param.h>
     72        1.5   mycroft #include <sys/systm.h>
     73        1.5   mycroft #include <sys/kernel.h>
     74        1.5   mycroft #include <sys/proc.h>
     75       1.28   thorpej #include <sys/resourcevar.h>
     76        1.5   mycroft #include <sys/buf.h>
     77        1.5   mycroft #include <sys/acct.h>
     78        1.5   mycroft #include <sys/wait.h>
     79        1.5   mycroft #include <sys/file.h>
     80        1.8   mycroft #include <ufs/ufs/quota.h>
     81        1.5   mycroft #include <sys/uio.h>
     82       1.24   thorpej #include <sys/pool.h>
     83  1.139.2.2      yamt #include <sys/pset.h>
     84        1.5   mycroft #include <sys/mbuf.h>
     85        1.5   mycroft #include <sys/ioctl.h>
     86        1.5   mycroft #include <sys/tty.h>
     87       1.11       cgd #include <sys/signalvar.h>
     88       1.51  gmcgarry #include <sys/ras.h>
     89  1.139.2.2      yamt #include <sys/sa.h>
     90  1.139.2.2      yamt #include <sys/savar.h>
     91       1.81  junyoung #include <sys/filedesc.h>
     92      1.103       dsl #include "sys/syscall_stats.h"
     93       1.89      elad #include <sys/kauth.h>
     94      1.100        ad #include <sys/sleepq.h>
     95      1.126        ad #include <sys/atomic.h>
     96      1.131        ad #include <sys/kmem.h>
     97  1.139.2.4      yamt #include <sys/dtrace_bsd.h>
     98       1.81  junyoung 
     99       1.81  junyoung #include <uvm/uvm.h>
    100       1.79      yamt #include <uvm/uvm_extern.h>
    101        1.5   mycroft 
    102        1.7       cgd /*
    103       1.10   mycroft  * Other process lists
    104        1.7       cgd  */
    105       1.31   thorpej 
    106       1.10   mycroft struct proclist allproc;
    107       1.32   thorpej struct proclist zombproc;	/* resources have been freed */
    108       1.32   thorpej 
    109      1.136        ad kmutex_t	*proc_lock;
    110       1.33   thorpej 
    111       1.33   thorpej /*
    112       1.72  junyoung  * pid to proc lookup is done by indexing the pid_table array.
    113       1.61       dsl  * Since pid numbers are only allocated when an empty slot
    114       1.61       dsl  * has been found, there is no need to search any lists ever.
    115       1.61       dsl  * (an orphaned pgrp will lock the slot, a session will lock
    116       1.61       dsl  * the pgrp with the same number.)
    117       1.61       dsl  * If the table is too small it is reallocated with twice the
    118       1.61       dsl  * previous size and the entries 'unzipped' into the two halves.
    119       1.61       dsl  * A linked list of free entries is passed through the pt_proc
    120       1.61       dsl  * field of 'free' items - set odd to be an invalid ptr.
    121       1.61       dsl  */
    122       1.61       dsl 
    123       1.61       dsl struct pid_table {
    124       1.61       dsl 	struct proc	*pt_proc;
    125       1.61       dsl 	struct pgrp	*pt_pgrp;
    126       1.72  junyoung };
    127       1.61       dsl #if 1	/* strongly typed cast - should be a noop */
    128       1.84     perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    129       1.61       dsl #else
    130       1.61       dsl #define p2u(p) ((uint)p)
    131       1.72  junyoung #endif
    132       1.61       dsl #define P_VALID(p) (!(p2u(p) & 1))
    133       1.61       dsl #define P_NEXT(p) (p2u(p) >> 1)
    134       1.61       dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    135       1.61       dsl 
    136       1.61       dsl #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    137       1.61       dsl static struct pid_table *pid_table;
    138       1.61       dsl static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    139       1.61       dsl static uint pid_alloc_lim;	/* max we allocate before growing table */
    140       1.61       dsl static uint pid_alloc_cnt;	/* number of allocated pids */
    141       1.61       dsl 
    142       1.61       dsl /* links through free slots - never empty! */
    143       1.61       dsl static uint next_free_pt, last_free_pt;
    144       1.61       dsl static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    145       1.31   thorpej 
    146       1.81  junyoung /* Components of the first process -- never freed. */
    147      1.123      matt 
    148  1.139.2.2      yamt extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    149      1.123      matt 
    150      1.123      matt struct session session0 = {
    151      1.123      matt 	.s_count = 1,
    152      1.123      matt 	.s_sid = 0,
    153      1.123      matt };
    154      1.123      matt struct pgrp pgrp0 = {
    155      1.123      matt 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    156      1.123      matt 	.pg_session = &session0,
    157      1.123      matt };
    158      1.132        ad filedesc_t filedesc0;
    159      1.123      matt struct cwdinfo cwdi0 = {
    160      1.123      matt 	.cwdi_cmask = CMASK,		/* see cmask below */
    161      1.123      matt 	.cwdi_refcnt = 1,
    162      1.123      matt };
    163  1.139.2.2      yamt struct plimit limit0;
    164       1.81  junyoung struct pstats pstat0;
    165       1.81  junyoung struct vmspace vmspace0;
    166       1.81  junyoung struct sigacts sigacts0;
    167      1.100        ad struct turnstile turnstile0;
    168      1.123      matt struct proc proc0 = {
    169      1.123      matt 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    170      1.123      matt 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    171      1.123      matt 	.p_nlwps = 1,
    172      1.123      matt 	.p_nrlwps = 1,
    173      1.123      matt 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    174      1.123      matt 	.p_pgrp = &pgrp0,
    175      1.123      matt 	.p_comm = "system",
    176      1.123      matt 	/*
    177      1.123      matt 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    178      1.123      matt 	 * when they exit.  init(8) can easily wait them out for us.
    179      1.123      matt 	 */
    180      1.123      matt 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    181      1.123      matt 	.p_stat = SACTIVE,
    182      1.123      matt 	.p_nice = NZERO,
    183      1.123      matt 	.p_emul = &emul_netbsd,
    184      1.123      matt 	.p_cwdi = &cwdi0,
    185      1.123      matt 	.p_limit = &limit0,
    186      1.132        ad 	.p_fd = &filedesc0,
    187      1.123      matt 	.p_vmspace = &vmspace0,
    188      1.123      matt 	.p_stats = &pstat0,
    189      1.123      matt 	.p_sigacts = &sigacts0,
    190      1.123      matt };
    191      1.123      matt struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    192      1.123      matt #ifdef LWP0_CPU_INFO
    193      1.123      matt 	.l_cpu = LWP0_CPU_INFO,
    194      1.123      matt #endif
    195      1.123      matt 	.l_proc = &proc0,
    196      1.123      matt 	.l_lid = 1,
    197  1.139.2.4      yamt 	.l_flag = LW_SYSTEM,
    198      1.123      matt 	.l_stat = LSONPROC,
    199      1.123      matt 	.l_ts = &turnstile0,
    200      1.123      matt 	.l_syncobj = &sched_syncobj,
    201      1.123      matt 	.l_refcnt = 1,
    202      1.123      matt 	.l_priority = PRI_USER + NPRI_USER - 1,
    203      1.123      matt 	.l_inheritedprio = -1,
    204      1.123      matt 	.l_class = SCHED_OTHER,
    205  1.139.2.2      yamt 	.l_psid = PS_NONE,
    206      1.123      matt 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    207      1.123      matt 	.l_name = __UNCONST("swapper"),
    208  1.139.2.3      yamt 	.l_fd = &filedesc0,
    209      1.123      matt };
    210      1.123      matt kauth_cred_t cred0;
    211       1.81  junyoung 
    212       1.81  junyoung int nofile = NOFILE;
    213       1.81  junyoung int maxuprc = MAXUPRC;
    214       1.81  junyoung int cmask = CMASK;
    215       1.81  junyoung 
    216       1.57   thorpej MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    217       1.57   thorpej MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    218       1.10   mycroft 
    219       1.31   thorpej /*
    220       1.31   thorpej  * The process list descriptors, used during pid allocation and
    221       1.31   thorpej  * by sysctl.  No locking on this data structure is needed since
    222       1.31   thorpej  * it is completely static.
    223       1.31   thorpej  */
    224       1.31   thorpej const struct proclist_desc proclists[] = {
    225       1.31   thorpej 	{ &allproc	},
    226       1.31   thorpej 	{ &zombproc	},
    227       1.31   thorpej 	{ NULL		},
    228       1.31   thorpej };
    229       1.31   thorpej 
    230  1.139.2.2      yamt static struct pgrp *	pg_remove(pid_t);
    231  1.139.2.2      yamt static void		pg_delete(pid_t);
    232  1.139.2.2      yamt static void		orphanpg(struct pgrp *);
    233       1.13  christos 
    234       1.95   thorpej static specificdata_domain_t proc_specificdata_domain;
    235       1.95   thorpej 
    236      1.128        ad static pool_cache_t proc_cache;
    237      1.128        ad 
    238  1.139.2.4      yamt static kauth_listener_t proc_listener;
    239  1.139.2.4      yamt 
    240  1.139.2.4      yamt static int
    241  1.139.2.4      yamt proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    242  1.139.2.4      yamt     void *arg0, void *arg1, void *arg2, void *arg3)
    243  1.139.2.4      yamt {
    244  1.139.2.4      yamt 	struct proc *p;
    245  1.139.2.4      yamt 	int result;
    246  1.139.2.4      yamt 
    247  1.139.2.4      yamt 	result = KAUTH_RESULT_DEFER;
    248  1.139.2.4      yamt 	p = arg0;
    249  1.139.2.4      yamt 
    250  1.139.2.4      yamt 	switch (action) {
    251  1.139.2.4      yamt 	case KAUTH_PROCESS_CANSEE: {
    252  1.139.2.4      yamt 		enum kauth_process_req req;
    253  1.139.2.4      yamt 
    254  1.139.2.4      yamt 		req = (enum kauth_process_req)arg1;
    255  1.139.2.4      yamt 
    256  1.139.2.4      yamt 		switch (req) {
    257  1.139.2.4      yamt 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    258  1.139.2.4      yamt 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    259  1.139.2.4      yamt 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    260  1.139.2.4      yamt 			result = KAUTH_RESULT_ALLOW;
    261  1.139.2.4      yamt 
    262  1.139.2.4      yamt 			break;
    263  1.139.2.4      yamt 
    264  1.139.2.4      yamt 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    265  1.139.2.4      yamt 			if (kauth_cred_getuid(cred) !=
    266  1.139.2.4      yamt 			    kauth_cred_getuid(p->p_cred) ||
    267  1.139.2.4      yamt 			    kauth_cred_getuid(cred) !=
    268  1.139.2.4      yamt 			    kauth_cred_getsvuid(p->p_cred))
    269  1.139.2.4      yamt 				break;
    270  1.139.2.4      yamt 
    271  1.139.2.4      yamt 			result = KAUTH_RESULT_ALLOW;
    272  1.139.2.4      yamt 
    273  1.139.2.4      yamt 			break;
    274  1.139.2.4      yamt 
    275  1.139.2.4      yamt 		default:
    276  1.139.2.4      yamt 			break;
    277  1.139.2.4      yamt 		}
    278  1.139.2.4      yamt 
    279  1.139.2.4      yamt 		break;
    280  1.139.2.4      yamt 		}
    281  1.139.2.4      yamt 
    282  1.139.2.4      yamt 	case KAUTH_PROCESS_FORK: {
    283  1.139.2.4      yamt 		int lnprocs = (int)(unsigned long)arg2;
    284  1.139.2.4      yamt 
    285  1.139.2.4      yamt 		/*
    286  1.139.2.4      yamt 		 * Don't allow a nonprivileged user to use the last few
    287  1.139.2.4      yamt 		 * processes. The variable lnprocs is the current number of
    288  1.139.2.4      yamt 		 * processes, maxproc is the limit.
    289  1.139.2.4      yamt 		 */
    290  1.139.2.4      yamt 		if (__predict_false((lnprocs >= maxproc - 5)))
    291  1.139.2.4      yamt 			break;
    292  1.139.2.4      yamt 
    293  1.139.2.4      yamt 		result = KAUTH_RESULT_ALLOW;
    294  1.139.2.4      yamt 
    295  1.139.2.4      yamt 		break;
    296  1.139.2.4      yamt 		}
    297  1.139.2.4      yamt 
    298  1.139.2.4      yamt 	case KAUTH_PROCESS_CORENAME:
    299  1.139.2.4      yamt 	case KAUTH_PROCESS_STOPFLAG:
    300  1.139.2.4      yamt 		if (proc_uidmatch(cred, p->p_cred) == 0)
    301  1.139.2.4      yamt 			result = KAUTH_RESULT_ALLOW;
    302  1.139.2.4      yamt 
    303  1.139.2.4      yamt 		break;
    304  1.139.2.4      yamt 
    305  1.139.2.4      yamt 	default:
    306  1.139.2.4      yamt 		break;
    307  1.139.2.4      yamt 	}
    308  1.139.2.4      yamt 
    309  1.139.2.4      yamt 	return result;
    310  1.139.2.4      yamt }
    311  1.139.2.4      yamt 
    312       1.10   mycroft /*
    313       1.10   mycroft  * Initialize global process hashing structures.
    314       1.10   mycroft  */
    315       1.11       cgd void
    316       1.59       dsl procinit(void)
    317        1.7       cgd {
    318       1.31   thorpej 	const struct proclist_desc *pd;
    319  1.139.2.2      yamt 	u_int i;
    320       1.61       dsl #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    321       1.31   thorpej 
    322       1.31   thorpej 	for (pd = proclists; pd->pd_list != NULL; pd++)
    323       1.31   thorpej 		LIST_INIT(pd->pd_list);
    324        1.7       cgd 
    325      1.136        ad 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    326  1.139.2.2      yamt 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    327  1.139.2.2      yamt 	    * sizeof(struct pid_table), KM_SLEEP);
    328       1.33   thorpej 
    329       1.61       dsl 	/* Set free list running through table...
    330       1.61       dsl 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    331       1.61       dsl 	for (i = 0; i <= pid_tbl_mask; i++) {
    332       1.61       dsl 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    333       1.61       dsl 		pid_table[i].pt_pgrp = 0;
    334       1.61       dsl 	}
    335       1.61       dsl 	/* slot 0 is just grabbed */
    336       1.61       dsl 	next_free_pt = 1;
    337       1.61       dsl 	/* Need to fix last entry. */
    338       1.61       dsl 	last_free_pt = pid_tbl_mask;
    339       1.61       dsl 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    340       1.61       dsl 	/* point at which we grow table - to avoid reusing pids too often */
    341       1.61       dsl 	pid_alloc_lim = pid_tbl_mask - 1;
    342       1.61       dsl #undef LINK_EMPTY
    343       1.61       dsl 
    344       1.95   thorpej 	proc_specificdata_domain = specificdata_domain_create();
    345       1.95   thorpej 	KASSERT(proc_specificdata_domain != NULL);
    346      1.128        ad 
    347      1.128        ad 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    348      1.128        ad 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    349  1.139.2.4      yamt 
    350  1.139.2.4      yamt 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    351  1.139.2.4      yamt 	    proc_listener_cb, NULL);
    352        1.7       cgd }
    353        1.1       cgd 
    354        1.7       cgd /*
    355       1.81  junyoung  * Initialize process 0.
    356       1.81  junyoung  */
    357       1.81  junyoung void
    358       1.81  junyoung proc0_init(void)
    359       1.81  junyoung {
    360       1.81  junyoung 	struct proc *p;
    361       1.81  junyoung 	struct pgrp *pg;
    362       1.81  junyoung 	struct lwp *l;
    363       1.81  junyoung 	rlim_t lim;
    364  1.139.2.2      yamt 	int i;
    365       1.81  junyoung 
    366       1.81  junyoung 	p = &proc0;
    367       1.81  junyoung 	pg = &pgrp0;
    368       1.81  junyoung 	l = &lwp0;
    369       1.81  junyoung 
    370  1.139.2.4      yamt 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    371      1.123      matt 	KASSERT(l->l_lid == p->p_nlwpid);
    372      1.123      matt 
    373      1.127        ad 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    374      1.129        ad 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    375      1.137        ad 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    376      1.107        ad 
    377      1.122        ad 	rw_init(&p->p_reflock);
    378      1.100        ad 	cv_init(&p->p_waitcv, "wait");
    379      1.100        ad 	cv_init(&p->p_lwpcv, "lwpwait");
    380      1.100        ad 
    381       1.81  junyoung 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    382      1.100        ad 
    383       1.81  junyoung 	pid_table[0].pt_proc = p;
    384       1.81  junyoung 	LIST_INSERT_HEAD(&allproc, p, p_list);
    385       1.81  junyoung 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    386       1.81  junyoung 
    387       1.81  junyoung 	pid_table[0].pt_pgrp = pg;
    388       1.81  junyoung 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    389       1.81  junyoung 
    390       1.81  junyoung #ifdef __HAVE_SYSCALL_INTERN
    391       1.81  junyoung 	(*p->p_emul->e_syscall_intern)(p);
    392       1.81  junyoung #endif
    393       1.81  junyoung 
    394      1.121        ad 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    395      1.115        ad 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    396      1.100        ad 	cv_init(&l->l_sigcv, "sigwait");
    397       1.81  junyoung 
    398       1.81  junyoung 	/* Create credentials. */
    399       1.89      elad 	cred0 = kauth_cred_alloc();
    400       1.89      elad 	p->p_cred = cred0;
    401      1.100        ad 	kauth_cred_hold(cred0);
    402      1.100        ad 	l->l_cred = cred0;
    403       1.81  junyoung 
    404       1.81  junyoung 	/* Create the CWD info. */
    405      1.113        ad 	rw_init(&cwdi0.cwdi_lock);
    406       1.81  junyoung 
    407       1.81  junyoung 	/* Create the limits structures. */
    408      1.116       dsl 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    409  1.139.2.2      yamt 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
    410  1.139.2.2      yamt 		limit0.pl_rlimit[i].rlim_cur =
    411  1.139.2.2      yamt 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    412       1.81  junyoung 
    413       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    414       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    415       1.81  junyoung 	    maxfiles < nofile ? maxfiles : nofile;
    416       1.81  junyoung 
    417       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    418       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    419       1.81  junyoung 	    maxproc < maxuprc ? maxproc : maxuprc;
    420       1.81  junyoung 
    421  1.139.2.4      yamt 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    422       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    423       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    424       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    425  1.139.2.2      yamt 	limit0.pl_corename = defcorename;
    426  1.139.2.2      yamt 	limit0.pl_refcnt = 1;
    427  1.139.2.2      yamt 	limit0.pl_sv_limit = NULL;
    428       1.81  junyoung 
    429       1.81  junyoung 	/* Configure virtual memory system, set vm rlimits. */
    430       1.81  junyoung 	uvm_init_limits(p);
    431       1.81  junyoung 
    432       1.81  junyoung 	/* Initialize file descriptor table for proc0. */
    433      1.132        ad 	fd_init(&filedesc0);
    434       1.81  junyoung 
    435       1.81  junyoung 	/*
    436       1.81  junyoung 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    437       1.81  junyoung 	 * All kernel processes (which never have user space mappings)
    438       1.81  junyoung 	 * share proc0's vmspace, and thus, the kernel pmap.
    439       1.81  junyoung 	 */
    440       1.81  junyoung 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    441       1.81  junyoung 	    trunc_page(VM_MAX_ADDRESS));
    442       1.81  junyoung 
    443      1.127        ad 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    444      1.127        ad 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    445       1.81  junyoung 	siginit(p);
    446       1.96  christos 
    447  1.139.2.4      yamt 	kdtrace_proc_ctor(NULL, p);
    448  1.139.2.4      yamt 
    449       1.96  christos 	proc_initspecific(p);
    450       1.96  christos 	lwp_initspecific(l);
    451      1.103       dsl 
    452      1.103       dsl 	SYSCALL_TIME_LWP_INIT(l);
    453       1.81  junyoung }
    454       1.81  junyoung 
    455       1.81  junyoung /*
    456  1.139.2.2      yamt  * Session reference counting.
    457  1.139.2.2      yamt  */
    458  1.139.2.2      yamt 
    459  1.139.2.2      yamt void
    460  1.139.2.2      yamt proc_sesshold(struct session *ss)
    461  1.139.2.2      yamt {
    462  1.139.2.2      yamt 
    463  1.139.2.2      yamt 	KASSERT(mutex_owned(proc_lock));
    464  1.139.2.2      yamt 	ss->s_count++;
    465  1.139.2.2      yamt }
    466  1.139.2.2      yamt 
    467  1.139.2.2      yamt void
    468  1.139.2.2      yamt proc_sessrele(struct session *ss)
    469  1.139.2.2      yamt {
    470  1.139.2.2      yamt 
    471  1.139.2.2      yamt 	KASSERT(mutex_owned(proc_lock));
    472  1.139.2.2      yamt 	/*
    473  1.139.2.2      yamt 	 * We keep the pgrp with the same id as the session in order to
    474  1.139.2.2      yamt 	 * stop a process being given the same pid.  Since the pgrp holds
    475  1.139.2.2      yamt 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    476  1.139.2.2      yamt 	 */
    477  1.139.2.2      yamt 	if (--ss->s_count == 0) {
    478  1.139.2.2      yamt 		struct pgrp *pg;
    479  1.139.2.2      yamt 
    480  1.139.2.2      yamt 		pg = pg_remove(ss->s_sid);
    481  1.139.2.2      yamt 		mutex_exit(proc_lock);
    482  1.139.2.2      yamt 
    483  1.139.2.2      yamt 		kmem_free(pg, sizeof(struct pgrp));
    484  1.139.2.2      yamt 		kmem_free(ss, sizeof(struct session));
    485  1.139.2.2      yamt 	} else {
    486  1.139.2.2      yamt 		mutex_exit(proc_lock);
    487  1.139.2.2      yamt 	}
    488  1.139.2.2      yamt }
    489  1.139.2.2      yamt 
    490  1.139.2.2      yamt /*
    491       1.74  junyoung  * Check that the specified process group is in the session of the
    492       1.60       dsl  * specified process.
    493       1.60       dsl  * Treats -ve ids as process ids.
    494       1.60       dsl  * Used to validate TIOCSPGRP requests.
    495       1.60       dsl  */
    496       1.60       dsl int
    497       1.60       dsl pgid_in_session(struct proc *p, pid_t pg_id)
    498       1.60       dsl {
    499       1.60       dsl 	struct pgrp *pgrp;
    500      1.101       dsl 	struct session *session;
    501      1.107        ad 	int error;
    502      1.101       dsl 
    503      1.136        ad 	mutex_enter(proc_lock);
    504       1.60       dsl 	if (pg_id < 0) {
    505      1.101       dsl 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    506       1.64       dsl 		if (p1 == NULL)
    507       1.64       dsl 			return EINVAL;
    508       1.60       dsl 		pgrp = p1->p_pgrp;
    509       1.60       dsl 	} else {
    510      1.101       dsl 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    511       1.60       dsl 		if (pgrp == NULL)
    512       1.64       dsl 			return EINVAL;
    513       1.60       dsl 	}
    514      1.101       dsl 	session = pgrp->pg_session;
    515      1.101       dsl 	if (session != p->p_pgrp->pg_session)
    516      1.107        ad 		error = EPERM;
    517      1.107        ad 	else
    518      1.107        ad 		error = 0;
    519      1.136        ad 	mutex_exit(proc_lock);
    520      1.107        ad 
    521      1.107        ad 	return error;
    522        1.7       cgd }
    523        1.4    andrew 
    524        1.1       cgd /*
    525  1.139.2.2      yamt  * p_inferior: is p an inferior of q?
    526        1.1       cgd  */
    527  1.139.2.2      yamt static inline bool
    528  1.139.2.2      yamt p_inferior(struct proc *p, struct proc *q)
    529        1.1       cgd {
    530        1.1       cgd 
    531  1.139.2.2      yamt 	KASSERT(mutex_owned(proc_lock));
    532  1.139.2.2      yamt 
    533       1.41  sommerfe 	for (; p != q; p = p->p_pptr)
    534        1.1       cgd 		if (p->p_pid == 0)
    535  1.139.2.2      yamt 			return false;
    536  1.139.2.2      yamt 	return true;
    537        1.1       cgd }
    538        1.1       cgd 
    539        1.1       cgd /*
    540        1.1       cgd  * Locate a process by number
    541        1.1       cgd  */
    542        1.1       cgd struct proc *
    543       1.68       dsl p_find(pid_t pid, uint flags)
    544        1.1       cgd {
    545       1.33   thorpej 	struct proc *p;
    546       1.68       dsl 	char stat;
    547        1.1       cgd 
    548       1.68       dsl 	if (!(flags & PFIND_LOCKED))
    549      1.136        ad 		mutex_enter(proc_lock);
    550      1.100        ad 
    551       1.61       dsl 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    552      1.100        ad 
    553       1.61       dsl 	/* Only allow live processes to be found by pid. */
    554      1.100        ad 	/* XXXSMP p_stat */
    555      1.100        ad 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    556      1.100        ad 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    557      1.100        ad 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    558       1.68       dsl 		if (flags & PFIND_UNLOCK_OK)
    559      1.136        ad 			 mutex_exit(proc_lock);
    560       1.68       dsl 		return p;
    561       1.68       dsl 	}
    562       1.68       dsl 	if (flags & PFIND_UNLOCK_FAIL)
    563      1.136        ad 		mutex_exit(proc_lock);
    564       1.68       dsl 	return NULL;
    565        1.1       cgd }
    566        1.1       cgd 
    567       1.61       dsl 
    568        1.1       cgd /*
    569        1.1       cgd  * Locate a process group by number
    570        1.1       cgd  */
    571        1.1       cgd struct pgrp *
    572       1.68       dsl pg_find(pid_t pgid, uint flags)
    573        1.1       cgd {
    574       1.68       dsl 	struct pgrp *pg;
    575        1.1       cgd 
    576       1.68       dsl 	if (!(flags & PFIND_LOCKED))
    577      1.136        ad 		mutex_enter(proc_lock);
    578       1.68       dsl 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    579       1.61       dsl 	/*
    580       1.61       dsl 	 * Can't look up a pgrp that only exists because the session
    581       1.61       dsl 	 * hasn't died yet (traditional)
    582       1.61       dsl 	 */
    583       1.68       dsl 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    584       1.68       dsl 		if (flags & PFIND_UNLOCK_FAIL)
    585      1.136        ad 			 mutex_exit(proc_lock);
    586       1.68       dsl 		return NULL;
    587       1.68       dsl 	}
    588       1.68       dsl 
    589       1.68       dsl 	if (flags & PFIND_UNLOCK_OK)
    590      1.136        ad 		mutex_exit(proc_lock);
    591       1.68       dsl 	return pg;
    592        1.1       cgd }
    593        1.1       cgd 
    594       1.61       dsl static void
    595       1.61       dsl expand_pid_table(void)
    596        1.1       cgd {
    597  1.139.2.2      yamt 	size_t pt_size, tsz;
    598       1.61       dsl 	struct pid_table *n_pt, *new_pt;
    599       1.61       dsl 	struct proc *proc;
    600       1.61       dsl 	struct pgrp *pgrp;
    601       1.61       dsl 	pid_t pid;
    602  1.139.2.2      yamt 	u_int i;
    603        1.1       cgd 
    604  1.139.2.2      yamt 	pt_size = pid_tbl_mask + 1;
    605  1.139.2.2      yamt 	tsz = pt_size * 2 * sizeof(struct pid_table);
    606  1.139.2.2      yamt 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    607       1.61       dsl 
    608      1.136        ad 	mutex_enter(proc_lock);
    609       1.61       dsl 	if (pt_size != pid_tbl_mask + 1) {
    610       1.61       dsl 		/* Another process beat us to it... */
    611      1.136        ad 		mutex_exit(proc_lock);
    612  1.139.2.2      yamt 		kmem_free(new_pt, tsz);
    613       1.61       dsl 		return;
    614       1.61       dsl 	}
    615       1.72  junyoung 
    616       1.61       dsl 	/*
    617       1.61       dsl 	 * Copy entries from old table into new one.
    618       1.61       dsl 	 * If 'pid' is 'odd' we need to place in the upper half,
    619       1.61       dsl 	 * even pid's to the lower half.
    620       1.61       dsl 	 * Free items stay in the low half so we don't have to
    621       1.61       dsl 	 * fixup the reference to them.
    622       1.61       dsl 	 * We stuff free items on the front of the freelist
    623       1.61       dsl 	 * because we can't write to unmodified entries.
    624       1.74  junyoung 	 * Processing the table backwards maintains a semblance
    625       1.61       dsl 	 * of issueing pid numbers that increase with time.
    626       1.61       dsl 	 */
    627       1.61       dsl 	i = pt_size - 1;
    628       1.61       dsl 	n_pt = new_pt + i;
    629       1.61       dsl 	for (; ; i--, n_pt--) {
    630       1.61       dsl 		proc = pid_table[i].pt_proc;
    631       1.61       dsl 		pgrp = pid_table[i].pt_pgrp;
    632       1.61       dsl 		if (!P_VALID(proc)) {
    633       1.61       dsl 			/* Up 'use count' so that link is valid */
    634       1.61       dsl 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    635       1.61       dsl 			proc = P_FREE(pid);
    636       1.61       dsl 			if (pgrp)
    637       1.61       dsl 				pid = pgrp->pg_id;
    638       1.61       dsl 		} else
    639       1.61       dsl 			pid = proc->p_pid;
    640       1.72  junyoung 
    641       1.61       dsl 		/* Save entry in appropriate half of table */
    642       1.61       dsl 		n_pt[pid & pt_size].pt_proc = proc;
    643       1.61       dsl 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    644       1.61       dsl 
    645       1.61       dsl 		/* Put other piece on start of free list */
    646       1.61       dsl 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    647       1.61       dsl 		n_pt[pid & pt_size].pt_proc =
    648       1.61       dsl 				    P_FREE((pid & ~pt_size) | next_free_pt);
    649       1.61       dsl 		n_pt[pid & pt_size].pt_pgrp = 0;
    650       1.61       dsl 		next_free_pt = i | (pid & pt_size);
    651       1.61       dsl 		if (i == 0)
    652       1.61       dsl 			break;
    653       1.61       dsl 	}
    654       1.61       dsl 
    655  1.139.2.2      yamt 	/* Save old table size and switch tables */
    656  1.139.2.2      yamt 	tsz = pt_size * sizeof(struct pid_table);
    657       1.61       dsl 	n_pt = pid_table;
    658       1.61       dsl 	pid_table = new_pt;
    659       1.61       dsl 	pid_tbl_mask = pt_size * 2 - 1;
    660       1.61       dsl 
    661       1.61       dsl 	/*
    662       1.61       dsl 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    663       1.61       dsl 	 * allocated pids we need it to be larger!
    664       1.61       dsl 	 */
    665       1.61       dsl 	if (pid_tbl_mask > PID_MAX) {
    666       1.61       dsl 		pid_max = pid_tbl_mask * 2 + 1;
    667       1.61       dsl 		pid_alloc_lim |= pid_alloc_lim << 1;
    668       1.61       dsl 	} else
    669       1.61       dsl 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    670       1.61       dsl 
    671      1.136        ad 	mutex_exit(proc_lock);
    672  1.139.2.2      yamt 	kmem_free(n_pt, tsz);
    673       1.61       dsl }
    674       1.61       dsl 
    675       1.61       dsl struct proc *
    676       1.61       dsl proc_alloc(void)
    677       1.61       dsl {
    678       1.61       dsl 	struct proc *p;
    679      1.100        ad 	int nxt;
    680       1.61       dsl 	pid_t pid;
    681       1.61       dsl 	struct pid_table *pt;
    682       1.61       dsl 
    683      1.128        ad 	p = pool_cache_get(proc_cache, PR_WAITOK);
    684       1.61       dsl 	p->p_stat = SIDL;			/* protect against others */
    685       1.61       dsl 
    686       1.96  christos 	proc_initspecific(p);
    687       1.61       dsl 	/* allocate next free pid */
    688       1.61       dsl 
    689       1.61       dsl 	for (;;expand_pid_table()) {
    690       1.61       dsl 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    691       1.61       dsl 			/* ensure pids cycle through 2000+ values */
    692       1.61       dsl 			continue;
    693      1.136        ad 		mutex_enter(proc_lock);
    694       1.61       dsl 		pt = &pid_table[next_free_pt];
    695        1.1       cgd #ifdef DIAGNOSTIC
    696       1.63  christos 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    697       1.61       dsl 			panic("proc_alloc: slot busy");
    698        1.1       cgd #endif
    699       1.61       dsl 		nxt = P_NEXT(pt->pt_proc);
    700       1.61       dsl 		if (nxt & pid_tbl_mask)
    701       1.61       dsl 			break;
    702       1.61       dsl 		/* Table full - expand (NB last entry not used....) */
    703      1.136        ad 		mutex_exit(proc_lock);
    704       1.61       dsl 	}
    705       1.61       dsl 
    706       1.61       dsl 	/* pid is 'saved use count' + 'size' + entry */
    707       1.61       dsl 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    708       1.61       dsl 	if ((uint)pid > (uint)pid_max)
    709       1.61       dsl 		pid &= pid_tbl_mask;
    710       1.61       dsl 	p->p_pid = pid;
    711       1.61       dsl 	next_free_pt = nxt & pid_tbl_mask;
    712       1.61       dsl 
    713       1.61       dsl 	/* Grab table slot */
    714       1.61       dsl 	pt->pt_proc = p;
    715       1.61       dsl 	pid_alloc_cnt++;
    716       1.61       dsl 
    717  1.139.2.4      yamt 	kdtrace_proc_ctor(NULL, p);
    718  1.139.2.4      yamt 
    719      1.136        ad 	mutex_exit(proc_lock);
    720       1.61       dsl 
    721       1.61       dsl 	return p;
    722       1.61       dsl }
    723       1.61       dsl 
    724       1.61       dsl /*
    725      1.118        ad  * Free a process id - called from proc_free (in kern_exit.c)
    726      1.100        ad  *
    727      1.136        ad  * Called with the proc_lock held.
    728       1.61       dsl  */
    729       1.61       dsl void
    730      1.118        ad proc_free_pid(struct proc *p)
    731       1.61       dsl {
    732       1.61       dsl 	pid_t pid = p->p_pid;
    733       1.61       dsl 	struct pid_table *pt;
    734       1.61       dsl 
    735      1.136        ad 	KASSERT(mutex_owned(proc_lock));
    736       1.61       dsl 
    737       1.61       dsl 	pt = &pid_table[pid & pid_tbl_mask];
    738        1.1       cgd #ifdef DIAGNOSTIC
    739       1.63  christos 	if (__predict_false(pt->pt_proc != p))
    740       1.61       dsl 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    741       1.61       dsl 			pid, p);
    742        1.1       cgd #endif
    743       1.61       dsl 	/* save pid use count in slot */
    744       1.61       dsl 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    745       1.61       dsl 
    746       1.61       dsl 	if (pt->pt_pgrp == NULL) {
    747       1.61       dsl 		/* link last freed entry onto ours */
    748       1.61       dsl 		pid &= pid_tbl_mask;
    749       1.61       dsl 		pt = &pid_table[last_free_pt];
    750       1.61       dsl 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    751       1.61       dsl 		last_free_pt = pid;
    752       1.61       dsl 		pid_alloc_cnt--;
    753       1.61       dsl 	}
    754       1.61       dsl 
    755      1.126        ad 	atomic_dec_uint(&nprocs);
    756       1.61       dsl }
    757       1.61       dsl 
    758      1.128        ad void
    759      1.128        ad proc_free_mem(struct proc *p)
    760      1.128        ad {
    761      1.128        ad 
    762  1.139.2.4      yamt 	kdtrace_proc_dtor(NULL, p);
    763      1.128        ad 	pool_cache_put(proc_cache, p);
    764      1.128        ad }
    765      1.128        ad 
    766       1.61       dsl /*
    767  1.139.2.2      yamt  * proc_enterpgrp: move p to a new or existing process group (and session).
    768       1.61       dsl  *
    769       1.61       dsl  * If we are creating a new pgrp, the pgid should equal
    770       1.72  junyoung  * the calling process' pid.
    771       1.61       dsl  * If is only valid to enter a process group that is in the session
    772       1.61       dsl  * of the process.
    773       1.61       dsl  * Also mksess should only be set if we are creating a process group
    774       1.61       dsl  *
    775      1.134      yamt  * Only called from sys_setsid and sys_setpgid.
    776       1.61       dsl  */
    777       1.61       dsl int
    778  1.139.2.2      yamt proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    779       1.61       dsl {
    780       1.61       dsl 	struct pgrp *new_pgrp, *pgrp;
    781       1.61       dsl 	struct session *sess;
    782      1.100        ad 	struct proc *p;
    783       1.61       dsl 	int rval;
    784       1.61       dsl 	pid_t pg_id = NO_PGID;
    785       1.61       dsl 
    786  1.139.2.2      yamt 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    787       1.61       dsl 
    788      1.107        ad 	/* Allocate data areas we might need before doing any validity checks */
    789      1.136        ad 	mutex_enter(proc_lock);		/* Because pid_table might change */
    790      1.107        ad 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    791      1.136        ad 		mutex_exit(proc_lock);
    792      1.131        ad 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    793      1.136        ad 		mutex_enter(proc_lock);
    794      1.107        ad 	} else
    795      1.107        ad 		new_pgrp = NULL;
    796       1.61       dsl 	rval = EPERM;	/* most common error (to save typing) */
    797       1.61       dsl 
    798       1.61       dsl 	/* Check pgrp exists or can be created */
    799       1.61       dsl 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    800       1.61       dsl 	if (pgrp != NULL && pgrp->pg_id != pgid)
    801       1.61       dsl 		goto done;
    802       1.61       dsl 
    803       1.61       dsl 	/* Can only set another process under restricted circumstances. */
    804      1.100        ad 	if (pid != curp->p_pid) {
    805       1.61       dsl 		/* must exist and be one of our children... */
    806      1.100        ad 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    807  1.139.2.2      yamt 		    !p_inferior(p, curp)) {
    808       1.61       dsl 			rval = ESRCH;
    809       1.61       dsl 			goto done;
    810       1.61       dsl 		}
    811       1.61       dsl 		/* ... in the same session... */
    812       1.61       dsl 		if (sess != NULL || p->p_session != curp->p_session)
    813       1.61       dsl 			goto done;
    814       1.61       dsl 		/* ... existing pgid must be in same session ... */
    815       1.61       dsl 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    816       1.61       dsl 			goto done;
    817       1.61       dsl 		/* ... and not done an exec. */
    818      1.102     pavel 		if (p->p_flag & PK_EXEC) {
    819       1.61       dsl 			rval = EACCES;
    820       1.61       dsl 			goto done;
    821       1.49     enami 		}
    822      1.100        ad 	} else {
    823      1.100        ad 		/* ... setsid() cannot re-enter a pgrp */
    824      1.100        ad 		if (mksess && (curp->p_pgid == curp->p_pid ||
    825      1.100        ad 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    826      1.100        ad 			goto done;
    827      1.100        ad 		p = curp;
    828       1.61       dsl 	}
    829        1.1       cgd 
    830       1.61       dsl 	/* Changing the process group/session of a session
    831       1.61       dsl 	   leader is definitely off limits. */
    832       1.61       dsl 	if (SESS_LEADER(p)) {
    833       1.61       dsl 		if (sess == NULL && p->p_pgrp == pgrp)
    834       1.61       dsl 			/* unless it's a definite noop */
    835       1.61       dsl 			rval = 0;
    836       1.61       dsl 		goto done;
    837       1.61       dsl 	}
    838       1.61       dsl 
    839       1.61       dsl 	/* Can only create a process group with id of process */
    840       1.61       dsl 	if (pgrp == NULL && pgid != pid)
    841       1.61       dsl 		goto done;
    842       1.61       dsl 
    843       1.61       dsl 	/* Can only create a session if creating pgrp */
    844       1.61       dsl 	if (sess != NULL && pgrp != NULL)
    845       1.61       dsl 		goto done;
    846       1.61       dsl 
    847       1.61       dsl 	/* Check we allocated memory for a pgrp... */
    848       1.61       dsl 	if (pgrp == NULL && new_pgrp == NULL)
    849       1.61       dsl 		goto done;
    850       1.61       dsl 
    851       1.61       dsl 	/* Don't attach to 'zombie' pgrp */
    852       1.61       dsl 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    853       1.61       dsl 		goto done;
    854       1.61       dsl 
    855       1.61       dsl 	/* Expect to succeed now */
    856       1.61       dsl 	rval = 0;
    857       1.61       dsl 
    858       1.61       dsl 	if (pgrp == p->p_pgrp)
    859       1.61       dsl 		/* nothing to do */
    860       1.61       dsl 		goto done;
    861       1.61       dsl 
    862       1.61       dsl 	/* Ok all setup, link up required structures */
    863      1.100        ad 
    864       1.61       dsl 	if (pgrp == NULL) {
    865       1.61       dsl 		pgrp = new_pgrp;
    866  1.139.2.1      yamt 		new_pgrp = NULL;
    867       1.61       dsl 		if (sess != NULL) {
    868       1.21   thorpej 			sess->s_sid = p->p_pid;
    869        1.1       cgd 			sess->s_leader = p;
    870        1.1       cgd 			sess->s_count = 1;
    871        1.1       cgd 			sess->s_ttyvp = NULL;
    872        1.1       cgd 			sess->s_ttyp = NULL;
    873       1.58       dsl 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    874       1.25     perry 			memcpy(sess->s_login, p->p_session->s_login,
    875        1.1       cgd 			    sizeof(sess->s_login));
    876      1.100        ad 			p->p_lflag &= ~PL_CONTROLT;
    877        1.1       cgd 		} else {
    878       1.61       dsl 			sess = p->p_pgrp->pg_session;
    879  1.139.2.2      yamt 			proc_sesshold(sess);
    880        1.1       cgd 		}
    881       1.61       dsl 		pgrp->pg_session = sess;
    882  1.139.2.1      yamt 		sess = NULL;
    883       1.61       dsl 
    884        1.1       cgd 		pgrp->pg_id = pgid;
    885       1.10   mycroft 		LIST_INIT(&pgrp->pg_members);
    886       1.61       dsl #ifdef DIAGNOSTIC
    887       1.63  christos 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    888       1.61       dsl 			panic("enterpgrp: pgrp table slot in use");
    889       1.63  christos 		if (__predict_false(mksess && p != curp))
    890       1.63  christos 			panic("enterpgrp: mksession and p != curproc");
    891       1.61       dsl #endif
    892       1.61       dsl 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    893        1.1       cgd 		pgrp->pg_jobc = 0;
    894      1.136        ad 	}
    895        1.1       cgd 
    896        1.1       cgd 	/*
    897        1.1       cgd 	 * Adjust eligibility of affected pgrps to participate in job control.
    898        1.1       cgd 	 * Increment eligibility counts before decrementing, otherwise we
    899        1.1       cgd 	 * could reach 0 spuriously during the first call.
    900        1.1       cgd 	 */
    901        1.1       cgd 	fixjobc(p, pgrp, 1);
    902        1.1       cgd 	fixjobc(p, p->p_pgrp, 0);
    903        1.1       cgd 
    904      1.139        ad 	/* Interlock with ttread(). */
    905      1.139        ad 	mutex_spin_enter(&tty_lock);
    906      1.139        ad 
    907      1.100        ad 	/* Move process to requested group. */
    908       1.10   mycroft 	LIST_REMOVE(p, p_pglist);
    909       1.52      matt 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    910       1.61       dsl 		/* defer delete until we've dumped the lock */
    911       1.61       dsl 		pg_id = p->p_pgrp->pg_id;
    912        1.1       cgd 	p->p_pgrp = pgrp;
    913       1.10   mycroft 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    914      1.100        ad 
    915      1.100        ad 	/* Done with the swap; we can release the tty mutex. */
    916      1.128        ad 	mutex_spin_exit(&tty_lock);
    917      1.128        ad 
    918       1.61       dsl     done:
    919  1.139.2.2      yamt 	if (pg_id != NO_PGID) {
    920  1.139.2.2      yamt 		/* Releases proc_lock. */
    921      1.100        ad 		pg_delete(pg_id);
    922  1.139.2.2      yamt 	} else {
    923  1.139.2.2      yamt 		mutex_exit(proc_lock);
    924  1.139.2.2      yamt 	}
    925       1.61       dsl 	if (sess != NULL)
    926      1.131        ad 		kmem_free(sess, sizeof(*sess));
    927       1.61       dsl 	if (new_pgrp != NULL)
    928      1.131        ad 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    929       1.63  christos #ifdef DEBUG_PGRP
    930       1.63  christos 	if (__predict_false(rval))
    931       1.61       dsl 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    932       1.61       dsl 			pid, pgid, mksess, curp->p_pid, rval);
    933       1.61       dsl #endif
    934       1.61       dsl 	return rval;
    935        1.1       cgd }
    936        1.1       cgd 
    937        1.1       cgd /*
    938  1.139.2.2      yamt  * proc_leavepgrp: remove a process from its process group.
    939  1.139.2.2      yamt  *  => must be called with the proc_lock held, which will be released;
    940        1.1       cgd  */
    941      1.100        ad void
    942  1.139.2.2      yamt proc_leavepgrp(struct proc *p)
    943        1.1       cgd {
    944       1.61       dsl 	struct pgrp *pgrp;
    945        1.1       cgd 
    946      1.136        ad 	KASSERT(mutex_owned(proc_lock));
    947      1.100        ad 
    948      1.139        ad 	/* Interlock with ttread() */
    949      1.128        ad 	mutex_spin_enter(&tty_lock);
    950       1.61       dsl 	pgrp = p->p_pgrp;
    951       1.10   mycroft 	LIST_REMOVE(p, p_pglist);
    952       1.94        ad 	p->p_pgrp = NULL;
    953      1.128        ad 	mutex_spin_exit(&tty_lock);
    954      1.100        ad 
    955  1.139.2.2      yamt 	if (LIST_EMPTY(&pgrp->pg_members)) {
    956  1.139.2.2      yamt 		/* Releases proc_lock. */
    957      1.100        ad 		pg_delete(pgrp->pg_id);
    958  1.139.2.2      yamt 	} else {
    959  1.139.2.2      yamt 		mutex_exit(proc_lock);
    960  1.139.2.2      yamt 	}
    961       1.61       dsl }
    962       1.61       dsl 
    963      1.100        ad /*
    964  1.139.2.2      yamt  * pg_remove: remove a process group from the table.
    965  1.139.2.2      yamt  *  => must be called with the proc_lock held;
    966  1.139.2.2      yamt  *  => returns process group to free;
    967      1.100        ad  */
    968  1.139.2.2      yamt static struct pgrp *
    969  1.139.2.2      yamt pg_remove(pid_t pg_id)
    970       1.61       dsl {
    971       1.61       dsl 	struct pgrp *pgrp;
    972       1.61       dsl 	struct pid_table *pt;
    973       1.61       dsl 
    974      1.136        ad 	KASSERT(mutex_owned(proc_lock));
    975      1.100        ad 
    976       1.61       dsl 	pt = &pid_table[pg_id & pid_tbl_mask];
    977       1.61       dsl 	pgrp = pt->pt_pgrp;
    978  1.139.2.2      yamt 
    979  1.139.2.2      yamt 	KASSERT(pgrp != NULL);
    980  1.139.2.2      yamt 	KASSERT(pgrp->pg_id == pg_id);
    981  1.139.2.2      yamt 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
    982  1.139.2.2      yamt 
    983  1.139.2.2      yamt 	pt->pt_pgrp = NULL;
    984       1.61       dsl 
    985       1.61       dsl 	if (!P_VALID(pt->pt_proc)) {
    986  1.139.2.2      yamt 		/* Orphaned pgrp, put slot onto free list. */
    987  1.139.2.2      yamt 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
    988       1.61       dsl 		pg_id &= pid_tbl_mask;
    989       1.61       dsl 		pt = &pid_table[last_free_pt];
    990       1.61       dsl 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    991       1.61       dsl 		last_free_pt = pg_id;
    992       1.61       dsl 		pid_alloc_cnt--;
    993       1.61       dsl 	}
    994  1.139.2.2      yamt 	return pgrp;
    995        1.1       cgd }
    996        1.1       cgd 
    997        1.1       cgd /*
    998  1.139.2.2      yamt  * pg_delete: delete and free a process group.
    999  1.139.2.2      yamt  *  => must be called with the proc_lock held, which will be released.
   1000        1.1       cgd  */
   1001       1.61       dsl static void
   1002       1.61       dsl pg_delete(pid_t pg_id)
   1003       1.61       dsl {
   1004  1.139.2.2      yamt 	struct pgrp *pg;
   1005       1.61       dsl 	struct tty *ttyp;
   1006       1.61       dsl 	struct session *ss;
   1007      1.100        ad 
   1008      1.136        ad 	KASSERT(mutex_owned(proc_lock));
   1009       1.61       dsl 
   1010  1.139.2.2      yamt 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1011  1.139.2.2      yamt 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1012  1.139.2.2      yamt 		mutex_exit(proc_lock);
   1013       1.61       dsl 		return;
   1014  1.139.2.2      yamt 	}
   1015       1.61       dsl 
   1016  1.139.2.2      yamt 	ss = pg->pg_session;
   1017       1.71        pk 
   1018       1.61       dsl 	/* Remove reference (if any) from tty to this process group */
   1019      1.128        ad 	mutex_spin_enter(&tty_lock);
   1020       1.71        pk 	ttyp = ss->s_ttyp;
   1021  1.139.2.2      yamt 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1022       1.61       dsl 		ttyp->t_pgrp = NULL;
   1023  1.139.2.2      yamt 		KASSERT(ttyp->t_session == ss);
   1024       1.71        pk 	}
   1025      1.128        ad 	mutex_spin_exit(&tty_lock);
   1026       1.61       dsl 
   1027       1.71        pk 	/*
   1028  1.139.2.2      yamt 	 * The leading process group in a session is freed by proc_sessrele(),
   1029  1.139.2.2      yamt 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
   1030       1.71        pk 	 */
   1031  1.139.2.2      yamt 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1032  1.139.2.2      yamt 	proc_sessrele(ss);
   1033      1.100        ad 
   1034  1.139.2.2      yamt 	if (pg != NULL) {
   1035  1.139.2.2      yamt 		/* Free it, if was not done by proc_sessrele(). */
   1036  1.139.2.2      yamt 		kmem_free(pg, sizeof(struct pgrp));
   1037  1.139.2.2      yamt 	}
   1038        1.1       cgd }
   1039        1.1       cgd 
   1040        1.1       cgd /*
   1041        1.1       cgd  * Adjust pgrp jobc counters when specified process changes process group.
   1042        1.1       cgd  * We count the number of processes in each process group that "qualify"
   1043        1.1       cgd  * the group for terminal job control (those with a parent in a different
   1044        1.1       cgd  * process group of the same session).  If that count reaches zero, the
   1045        1.1       cgd  * process group becomes orphaned.  Check both the specified process'
   1046        1.1       cgd  * process group and that of its children.
   1047        1.1       cgd  * entering == 0 => p is leaving specified group.
   1048        1.1       cgd  * entering == 1 => p is entering specified group.
   1049       1.68       dsl  *
   1050      1.136        ad  * Call with proc_lock held.
   1051        1.1       cgd  */
   1052        1.4    andrew void
   1053       1.59       dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1054        1.1       cgd {
   1055       1.39  augustss 	struct pgrp *hispgrp;
   1056       1.39  augustss 	struct session *mysession = pgrp->pg_session;
   1057       1.68       dsl 	struct proc *child;
   1058        1.1       cgd 
   1059      1.136        ad 	KASSERT(mutex_owned(proc_lock));
   1060      1.100        ad 
   1061        1.1       cgd 	/*
   1062        1.1       cgd 	 * Check p's parent to see whether p qualifies its own process
   1063        1.1       cgd 	 * group; if so, adjust count for p's process group.
   1064        1.1       cgd 	 */
   1065       1.68       dsl 	hispgrp = p->p_pptr->p_pgrp;
   1066       1.68       dsl 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1067      1.100        ad 		if (entering) {
   1068        1.1       cgd 			pgrp->pg_jobc++;
   1069      1.136        ad 			p->p_lflag &= ~PL_ORPHANPG;
   1070      1.100        ad 		} else if (--pgrp->pg_jobc == 0)
   1071        1.1       cgd 			orphanpg(pgrp);
   1072       1.26   thorpej 	}
   1073        1.1       cgd 
   1074        1.1       cgd 	/*
   1075        1.1       cgd 	 * Check this process' children to see whether they qualify
   1076        1.1       cgd 	 * their process groups; if so, adjust counts for children's
   1077        1.1       cgd 	 * process groups.
   1078        1.1       cgd 	 */
   1079       1.68       dsl 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1080       1.68       dsl 		hispgrp = child->p_pgrp;
   1081       1.68       dsl 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1082       1.68       dsl 		    !P_ZOMBIE(child)) {
   1083      1.100        ad 			if (entering) {
   1084      1.136        ad 				child->p_lflag &= ~PL_ORPHANPG;
   1085        1.1       cgd 				hispgrp->pg_jobc++;
   1086      1.100        ad 			} else if (--hispgrp->pg_jobc == 0)
   1087        1.1       cgd 				orphanpg(hispgrp);
   1088       1.26   thorpej 		}
   1089       1.26   thorpej 	}
   1090        1.1       cgd }
   1091        1.1       cgd 
   1092       1.72  junyoung /*
   1093        1.1       cgd  * A process group has become orphaned;
   1094        1.1       cgd  * if there are any stopped processes in the group,
   1095        1.1       cgd  * hang-up all process in that group.
   1096       1.68       dsl  *
   1097      1.136        ad  * Call with proc_lock held.
   1098        1.1       cgd  */
   1099        1.4    andrew static void
   1100       1.59       dsl orphanpg(struct pgrp *pg)
   1101        1.1       cgd {
   1102       1.39  augustss 	struct proc *p;
   1103      1.100        ad 
   1104      1.136        ad 	KASSERT(mutex_owned(proc_lock));
   1105      1.100        ad 
   1106       1.52      matt 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1107        1.1       cgd 		if (p->p_stat == SSTOP) {
   1108      1.136        ad 			p->p_lflag |= PL_ORPHANPG;
   1109      1.100        ad 			psignal(p, SIGHUP);
   1110      1.100        ad 			psignal(p, SIGCONT);
   1111       1.35    bouyer 		}
   1112       1.35    bouyer 	}
   1113       1.35    bouyer }
   1114        1.1       cgd 
   1115       1.61       dsl #ifdef DDB
   1116       1.61       dsl #include <ddb/db_output.h>
   1117       1.61       dsl void pidtbl_dump(void);
   1118       1.14  christos void
   1119       1.61       dsl pidtbl_dump(void)
   1120        1.1       cgd {
   1121       1.61       dsl 	struct pid_table *pt;
   1122       1.61       dsl 	struct proc *p;
   1123       1.39  augustss 	struct pgrp *pgrp;
   1124       1.61       dsl 	int id;
   1125        1.1       cgd 
   1126       1.61       dsl 	db_printf("pid table %p size %x, next %x, last %x\n",
   1127       1.61       dsl 		pid_table, pid_tbl_mask+1,
   1128       1.61       dsl 		next_free_pt, last_free_pt);
   1129       1.61       dsl 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1130       1.61       dsl 		p = pt->pt_proc;
   1131       1.61       dsl 		if (!P_VALID(p) && !pt->pt_pgrp)
   1132       1.61       dsl 			continue;
   1133       1.61       dsl 		db_printf("  id %x: ", id);
   1134       1.61       dsl 		if (P_VALID(p))
   1135       1.61       dsl 			db_printf("proc %p id %d (0x%x) %s\n",
   1136       1.61       dsl 				p, p->p_pid, p->p_pid, p->p_comm);
   1137       1.61       dsl 		else
   1138       1.61       dsl 			db_printf("next %x use %x\n",
   1139       1.61       dsl 				P_NEXT(p) & pid_tbl_mask,
   1140       1.61       dsl 				P_NEXT(p) & ~pid_tbl_mask);
   1141       1.61       dsl 		if ((pgrp = pt->pt_pgrp)) {
   1142       1.61       dsl 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1143       1.61       dsl 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1144       1.61       dsl 			    pgrp->pg_session->s_count,
   1145       1.61       dsl 			    pgrp->pg_session->s_login);
   1146       1.61       dsl 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1147       1.61       dsl 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1148      1.135      yamt 			    LIST_FIRST(&pgrp->pg_members));
   1149      1.135      yamt 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1150       1.72  junyoung 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1151       1.61       dsl 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1152       1.10   mycroft 			}
   1153        1.1       cgd 		}
   1154        1.1       cgd 	}
   1155        1.1       cgd }
   1156       1.61       dsl #endif /* DDB */
   1157       1.48      yamt 
   1158       1.48      yamt #ifdef KSTACK_CHECK_MAGIC
   1159       1.48      yamt 
   1160       1.48      yamt #define	KSTACK_MAGIC	0xdeadbeaf
   1161       1.48      yamt 
   1162       1.48      yamt /* XXX should be per process basis? */
   1163  1.139.2.2      yamt static int	kstackleftmin = KSTACK_SIZE;
   1164  1.139.2.2      yamt static int	kstackleftthres = KSTACK_SIZE / 8;
   1165       1.48      yamt 
   1166       1.48      yamt void
   1167       1.56      yamt kstack_setup_magic(const struct lwp *l)
   1168       1.48      yamt {
   1169       1.85     perry 	uint32_t *ip;
   1170       1.85     perry 	uint32_t const *end;
   1171       1.48      yamt 
   1172       1.56      yamt 	KASSERT(l != NULL);
   1173       1.56      yamt 	KASSERT(l != &lwp0);
   1174       1.48      yamt 
   1175       1.48      yamt 	/*
   1176       1.48      yamt 	 * fill all the stack with magic number
   1177       1.48      yamt 	 * so that later modification on it can be detected.
   1178       1.48      yamt 	 */
   1179       1.85     perry 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1180      1.114    dyoung 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1181       1.48      yamt 	for (; ip < end; ip++) {
   1182       1.48      yamt 		*ip = KSTACK_MAGIC;
   1183       1.48      yamt 	}
   1184       1.48      yamt }
   1185       1.48      yamt 
   1186       1.48      yamt void
   1187       1.56      yamt kstack_check_magic(const struct lwp *l)
   1188       1.48      yamt {
   1189       1.85     perry 	uint32_t const *ip, *end;
   1190       1.48      yamt 	int stackleft;
   1191       1.48      yamt 
   1192       1.56      yamt 	KASSERT(l != NULL);
   1193       1.48      yamt 
   1194       1.48      yamt 	/* don't check proc0 */ /*XXX*/
   1195       1.56      yamt 	if (l == &lwp0)
   1196       1.48      yamt 		return;
   1197       1.48      yamt 
   1198       1.48      yamt #ifdef __MACHINE_STACK_GROWS_UP
   1199       1.48      yamt 	/* stack grows upwards (eg. hppa) */
   1200      1.106  christos 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1201       1.85     perry 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1202       1.48      yamt 	for (ip--; ip >= end; ip--)
   1203       1.48      yamt 		if (*ip != KSTACK_MAGIC)
   1204       1.48      yamt 			break;
   1205       1.72  junyoung 
   1206      1.106  christos 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1207       1.48      yamt #else /* __MACHINE_STACK_GROWS_UP */
   1208       1.48      yamt 	/* stack grows downwards (eg. i386) */
   1209       1.85     perry 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1210      1.114    dyoung 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1211       1.48      yamt 	for (; ip < end; ip++)
   1212       1.48      yamt 		if (*ip != KSTACK_MAGIC)
   1213       1.48      yamt 			break;
   1214       1.48      yamt 
   1215       1.93  christos 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1216       1.48      yamt #endif /* __MACHINE_STACK_GROWS_UP */
   1217       1.48      yamt 
   1218       1.48      yamt 	if (kstackleftmin > stackleft) {
   1219       1.48      yamt 		kstackleftmin = stackleft;
   1220       1.48      yamt 		if (stackleft < kstackleftthres)
   1221       1.56      yamt 			printf("warning: kernel stack left %d bytes"
   1222       1.56      yamt 			    "(pid %u:lid %u)\n", stackleft,
   1223       1.56      yamt 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1224       1.48      yamt 	}
   1225       1.48      yamt 
   1226       1.48      yamt 	if (stackleft <= 0) {
   1227       1.56      yamt 		panic("magic on the top of kernel stack changed for "
   1228       1.56      yamt 		    "pid %u, lid %u: maybe kernel stack overflow",
   1229       1.56      yamt 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1230       1.48      yamt 	}
   1231       1.48      yamt }
   1232       1.50     enami #endif /* KSTACK_CHECK_MAGIC */
   1233       1.79      yamt 
   1234       1.79      yamt int
   1235       1.79      yamt proclist_foreach_call(struct proclist *list,
   1236       1.79      yamt     int (*callback)(struct proc *, void *arg), void *arg)
   1237       1.79      yamt {
   1238       1.79      yamt 	struct proc marker;
   1239       1.79      yamt 	struct proc *p;
   1240       1.79      yamt 	int ret = 0;
   1241       1.79      yamt 
   1242      1.102     pavel 	marker.p_flag = PK_MARKER;
   1243      1.136        ad 	mutex_enter(proc_lock);
   1244       1.79      yamt 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1245      1.102     pavel 		if (p->p_flag & PK_MARKER) {
   1246       1.79      yamt 			p = LIST_NEXT(p, p_list);
   1247       1.79      yamt 			continue;
   1248       1.79      yamt 		}
   1249       1.79      yamt 		LIST_INSERT_AFTER(p, &marker, p_list);
   1250       1.79      yamt 		ret = (*callback)(p, arg);
   1251      1.136        ad 		KASSERT(mutex_owned(proc_lock));
   1252       1.79      yamt 		p = LIST_NEXT(&marker, p_list);
   1253       1.79      yamt 		LIST_REMOVE(&marker, p_list);
   1254       1.79      yamt 	}
   1255      1.136        ad 	mutex_exit(proc_lock);
   1256       1.79      yamt 
   1257       1.79      yamt 	return ret;
   1258       1.79      yamt }
   1259       1.86      yamt 
   1260       1.86      yamt int
   1261       1.86      yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1262       1.86      yamt {
   1263       1.86      yamt 
   1264       1.86      yamt 	/* XXXCDC: how should locking work here? */
   1265       1.86      yamt 
   1266       1.87      yamt 	/* curproc exception is for coredump. */
   1267       1.87      yamt 
   1268      1.100        ad 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1269       1.86      yamt 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1270       1.86      yamt 		return EFAULT;
   1271       1.86      yamt 	}
   1272       1.86      yamt 
   1273       1.86      yamt 	uvmspace_addref(p->p_vmspace);
   1274       1.86      yamt 	*vm = p->p_vmspace;
   1275       1.86      yamt 
   1276       1.86      yamt 	return 0;
   1277       1.86      yamt }
   1278       1.94        ad 
   1279       1.94        ad /*
   1280       1.94        ad  * Acquire a write lock on the process credential.
   1281       1.94        ad  */
   1282       1.94        ad void
   1283      1.100        ad proc_crmod_enter(void)
   1284       1.94        ad {
   1285      1.100        ad 	struct lwp *l = curlwp;
   1286      1.100        ad 	struct proc *p = l->l_proc;
   1287      1.100        ad 	struct plimit *lim;
   1288      1.100        ad 	kauth_cred_t oc;
   1289      1.100        ad 	char *cn;
   1290       1.94        ad 
   1291      1.117       dsl 	/* Reset what needs to be reset in plimit. */
   1292      1.117       dsl 	if (p->p_limit->pl_corename != defcorename) {
   1293      1.117       dsl 		lim_privatise(p, false);
   1294      1.117       dsl 		lim = p->p_limit;
   1295      1.117       dsl 		mutex_enter(&lim->pl_lock);
   1296      1.117       dsl 		cn = lim->pl_corename;
   1297      1.117       dsl 		lim->pl_corename = defcorename;
   1298      1.117       dsl 		mutex_exit(&lim->pl_lock);
   1299      1.117       dsl 		if (cn != defcorename)
   1300      1.117       dsl 			free(cn, M_TEMP);
   1301      1.117       dsl 	}
   1302      1.117       dsl 
   1303      1.137        ad 	mutex_enter(p->p_lock);
   1304      1.100        ad 
   1305      1.100        ad 	/* Ensure the LWP cached credentials are up to date. */
   1306      1.100        ad 	if ((oc = l->l_cred) != p->p_cred) {
   1307      1.100        ad 		kauth_cred_hold(p->p_cred);
   1308      1.100        ad 		l->l_cred = p->p_cred;
   1309      1.100        ad 		kauth_cred_free(oc);
   1310      1.100        ad 	}
   1311      1.100        ad 
   1312       1.94        ad }
   1313       1.94        ad 
   1314       1.94        ad /*
   1315      1.100        ad  * Set in a new process credential, and drop the write lock.  The credential
   1316      1.100        ad  * must have a reference already.  Optionally, free a no-longer required
   1317      1.100        ad  * credential.  The scheduler also needs to inspect p_cred, so we also
   1318      1.100        ad  * briefly acquire the sched state mutex.
   1319       1.94        ad  */
   1320       1.94        ad void
   1321      1.104   thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1322       1.94        ad {
   1323      1.133        ad 	struct lwp *l = curlwp, *l2;
   1324      1.100        ad 	struct proc *p = l->l_proc;
   1325      1.100        ad 	kauth_cred_t oc;
   1326      1.100        ad 
   1327      1.137        ad 	KASSERT(mutex_owned(p->p_lock));
   1328      1.137        ad 
   1329      1.100        ad 	/* Is there a new credential to set in? */
   1330      1.100        ad 	if (scred != NULL) {
   1331      1.100        ad 		p->p_cred = scred;
   1332      1.133        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1333      1.133        ad 			if (l2 != l)
   1334      1.133        ad 				l2->l_prflag |= LPR_CRMOD;
   1335      1.133        ad 		}
   1336      1.100        ad 
   1337      1.100        ad 		/* Ensure the LWP cached credentials are up to date. */
   1338      1.100        ad 		if ((oc = l->l_cred) != scred) {
   1339      1.100        ad 			kauth_cred_hold(scred);
   1340      1.100        ad 			l->l_cred = scred;
   1341      1.100        ad 		}
   1342      1.100        ad 	} else
   1343      1.100        ad 		oc = NULL;	/* XXXgcc */
   1344      1.100        ad 
   1345      1.100        ad 	if (sugid) {
   1346      1.100        ad 		/*
   1347      1.100        ad 		 * Mark process as having changed credentials, stops
   1348      1.100        ad 		 * tracing etc.
   1349      1.100        ad 		 */
   1350      1.102     pavel 		p->p_flag |= PK_SUGID;
   1351      1.100        ad 	}
   1352       1.94        ad 
   1353      1.137        ad 	mutex_exit(p->p_lock);
   1354      1.100        ad 
   1355      1.100        ad 	/* If there is a credential to be released, free it now. */
   1356      1.100        ad 	if (fcred != NULL) {
   1357      1.100        ad 		KASSERT(scred != NULL);
   1358       1.94        ad 		kauth_cred_free(fcred);
   1359      1.100        ad 		if (oc != scred)
   1360      1.100        ad 			kauth_cred_free(oc);
   1361      1.100        ad 	}
   1362      1.100        ad }
   1363      1.100        ad 
   1364      1.100        ad /*
   1365       1.95   thorpej  * proc_specific_key_create --
   1366       1.95   thorpej  *	Create a key for subsystem proc-specific data.
   1367       1.95   thorpej  */
   1368       1.95   thorpej int
   1369       1.95   thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1370       1.95   thorpej {
   1371       1.95   thorpej 
   1372       1.98   thorpej 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1373       1.95   thorpej }
   1374       1.95   thorpej 
   1375       1.95   thorpej /*
   1376       1.95   thorpej  * proc_specific_key_delete --
   1377       1.95   thorpej  *	Delete a key for subsystem proc-specific data.
   1378       1.95   thorpej  */
   1379       1.95   thorpej void
   1380       1.95   thorpej proc_specific_key_delete(specificdata_key_t key)
   1381       1.95   thorpej {
   1382       1.95   thorpej 
   1383       1.95   thorpej 	specificdata_key_delete(proc_specificdata_domain, key);
   1384       1.95   thorpej }
   1385       1.95   thorpej 
   1386       1.98   thorpej /*
   1387       1.98   thorpej  * proc_initspecific --
   1388       1.98   thorpej  *	Initialize a proc's specificdata container.
   1389       1.98   thorpej  */
   1390       1.96  christos void
   1391       1.96  christos proc_initspecific(struct proc *p)
   1392       1.96  christos {
   1393       1.96  christos 	int error;
   1394       1.98   thorpej 
   1395       1.96  christos 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1396       1.96  christos 	KASSERT(error == 0);
   1397       1.96  christos }
   1398       1.96  christos 
   1399       1.95   thorpej /*
   1400       1.98   thorpej  * proc_finispecific --
   1401       1.98   thorpej  *	Finalize a proc's specificdata container.
   1402       1.98   thorpej  */
   1403       1.98   thorpej void
   1404       1.98   thorpej proc_finispecific(struct proc *p)
   1405       1.98   thorpej {
   1406       1.98   thorpej 
   1407       1.98   thorpej 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1408       1.98   thorpej }
   1409       1.98   thorpej 
   1410       1.98   thorpej /*
   1411       1.95   thorpej  * proc_getspecific --
   1412       1.95   thorpej  *	Return proc-specific data corresponding to the specified key.
   1413       1.95   thorpej  */
   1414       1.95   thorpej void *
   1415       1.95   thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
   1416       1.95   thorpej {
   1417       1.95   thorpej 
   1418       1.95   thorpej 	return (specificdata_getspecific(proc_specificdata_domain,
   1419       1.95   thorpej 					 &p->p_specdataref, key));
   1420       1.95   thorpej }
   1421       1.95   thorpej 
   1422       1.95   thorpej /*
   1423       1.95   thorpej  * proc_setspecific --
   1424       1.95   thorpej  *	Set proc-specific data corresponding to the specified key.
   1425       1.95   thorpej  */
   1426       1.95   thorpej void
   1427       1.95   thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1428       1.95   thorpej {
   1429       1.95   thorpej 
   1430       1.95   thorpej 	specificdata_setspecific(proc_specificdata_domain,
   1431       1.95   thorpej 				 &p->p_specdataref, key, data);
   1432       1.95   thorpej }
   1433  1.139.2.4      yamt 
   1434  1.139.2.4      yamt int
   1435  1.139.2.4      yamt proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1436  1.139.2.4      yamt {
   1437  1.139.2.4      yamt 	int r = 0;
   1438  1.139.2.4      yamt 
   1439  1.139.2.4      yamt 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1440  1.139.2.4      yamt 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1441  1.139.2.4      yamt 		/*
   1442  1.139.2.4      yamt 		 * suid proc of ours or proc not ours
   1443  1.139.2.4      yamt 		 */
   1444  1.139.2.4      yamt 		r = EPERM;
   1445  1.139.2.4      yamt 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1446  1.139.2.4      yamt 		/*
   1447  1.139.2.4      yamt 		 * sgid proc has sgid back to us temporarily
   1448  1.139.2.4      yamt 		 */
   1449  1.139.2.4      yamt 		r = EPERM;
   1450  1.139.2.4      yamt 	} else {
   1451  1.139.2.4      yamt 		/*
   1452  1.139.2.4      yamt 		 * our rgid must be in target's group list (ie,
   1453  1.139.2.4      yamt 		 * sub-processes started by a sgid process)
   1454  1.139.2.4      yamt 		 */
   1455  1.139.2.4      yamt 		int ismember = 0;
   1456  1.139.2.4      yamt 
   1457  1.139.2.4      yamt 		if (kauth_cred_ismember_gid(cred,
   1458  1.139.2.4      yamt 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1459  1.139.2.4      yamt 		    !ismember)
   1460  1.139.2.4      yamt 			r = EPERM;
   1461  1.139.2.4      yamt 	}
   1462  1.139.2.4      yamt 
   1463  1.139.2.4      yamt 	return (r);
   1464  1.139.2.4      yamt }
   1465  1.139.2.4      yamt 
   1466