kern_proc.c revision 1.147 1 1.147 rmind /* $NetBSD: kern_proc.c,v 1.147 2009/01/24 22:42:32 rmind Exp $ */
2 1.33 thorpej
3 1.33 thorpej /*-
4 1.131 ad * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.33 thorpej * All rights reserved.
6 1.33 thorpej *
7 1.33 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.33 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.100 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.33 thorpej *
11 1.33 thorpej * Redistribution and use in source and binary forms, with or without
12 1.33 thorpej * modification, are permitted provided that the following conditions
13 1.33 thorpej * are met:
14 1.33 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.33 thorpej * notice, this list of conditions and the following disclaimer.
16 1.33 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.33 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.33 thorpej * documentation and/or other materials provided with the distribution.
19 1.33 thorpej *
20 1.33 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.33 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.33 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.33 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.33 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.33 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.33 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.33 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.33 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.33 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.33 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.33 thorpej */
32 1.9 cgd
33 1.1 cgd /*
34 1.7 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 1.7 cgd * The Regents of the University of California. All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Redistribution and use in source and binary forms, with or without
38 1.1 cgd * modification, are permitted provided that the following conditions
39 1.1 cgd * are met:
40 1.1 cgd * 1. Redistributions of source code must retain the above copyright
41 1.1 cgd * notice, this list of conditions and the following disclaimer.
42 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 cgd * notice, this list of conditions and the following disclaimer in the
44 1.1 cgd * documentation and/or other materials provided with the distribution.
45 1.65 agc * 3. Neither the name of the University nor the names of its contributors
46 1.1 cgd * may be used to endorse or promote products derived from this software
47 1.1 cgd * without specific prior written permission.
48 1.1 cgd *
49 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.1 cgd * SUCH DAMAGE.
60 1.1 cgd *
61 1.23 fvdl * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 1.1 cgd */
63 1.45 lukem
64 1.45 lukem #include <sys/cdefs.h>
65 1.147 rmind __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.147 2009/01/24 22:42:32 rmind Exp $");
66 1.48 yamt
67 1.48 yamt #include "opt_kstack.h"
68 1.88 onoe #include "opt_maxuprc.h"
69 1.1 cgd
70 1.5 mycroft #include <sys/param.h>
71 1.5 mycroft #include <sys/systm.h>
72 1.5 mycroft #include <sys/kernel.h>
73 1.5 mycroft #include <sys/proc.h>
74 1.28 thorpej #include <sys/resourcevar.h>
75 1.5 mycroft #include <sys/buf.h>
76 1.5 mycroft #include <sys/acct.h>
77 1.5 mycroft #include <sys/wait.h>
78 1.5 mycroft #include <sys/file.h>
79 1.8 mycroft #include <ufs/ufs/quota.h>
80 1.5 mycroft #include <sys/uio.h>
81 1.5 mycroft #include <sys/malloc.h>
82 1.24 thorpej #include <sys/pool.h>
83 1.147 rmind #include <sys/pset.h>
84 1.5 mycroft #include <sys/mbuf.h>
85 1.5 mycroft #include <sys/ioctl.h>
86 1.5 mycroft #include <sys/tty.h>
87 1.11 cgd #include <sys/signalvar.h>
88 1.51 gmcgarry #include <sys/ras.h>
89 1.144 wrstuden #include <sys/sa.h>
90 1.144 wrstuden #include <sys/savar.h>
91 1.81 junyoung #include <sys/filedesc.h>
92 1.103 dsl #include "sys/syscall_stats.h"
93 1.89 elad #include <sys/kauth.h>
94 1.100 ad #include <sys/sleepq.h>
95 1.126 ad #include <sys/atomic.h>
96 1.131 ad #include <sys/kmem.h>
97 1.81 junyoung
98 1.81 junyoung #include <uvm/uvm.h>
99 1.79 yamt #include <uvm/uvm_extern.h>
100 1.5 mycroft
101 1.7 cgd /*
102 1.10 mycroft * Other process lists
103 1.7 cgd */
104 1.31 thorpej
105 1.10 mycroft struct proclist allproc;
106 1.32 thorpej struct proclist zombproc; /* resources have been freed */
107 1.32 thorpej
108 1.136 ad kmutex_t *proc_lock;
109 1.33 thorpej
110 1.33 thorpej /*
111 1.72 junyoung * pid to proc lookup is done by indexing the pid_table array.
112 1.61 dsl * Since pid numbers are only allocated when an empty slot
113 1.61 dsl * has been found, there is no need to search any lists ever.
114 1.61 dsl * (an orphaned pgrp will lock the slot, a session will lock
115 1.61 dsl * the pgrp with the same number.)
116 1.61 dsl * If the table is too small it is reallocated with twice the
117 1.61 dsl * previous size and the entries 'unzipped' into the two halves.
118 1.61 dsl * A linked list of free entries is passed through the pt_proc
119 1.61 dsl * field of 'free' items - set odd to be an invalid ptr.
120 1.61 dsl */
121 1.61 dsl
122 1.61 dsl struct pid_table {
123 1.61 dsl struct proc *pt_proc;
124 1.61 dsl struct pgrp *pt_pgrp;
125 1.72 junyoung };
126 1.61 dsl #if 1 /* strongly typed cast - should be a noop */
127 1.84 perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
128 1.61 dsl #else
129 1.61 dsl #define p2u(p) ((uint)p)
130 1.72 junyoung #endif
131 1.61 dsl #define P_VALID(p) (!(p2u(p) & 1))
132 1.61 dsl #define P_NEXT(p) (p2u(p) >> 1)
133 1.61 dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
134 1.61 dsl
135 1.61 dsl #define INITIAL_PID_TABLE_SIZE (1 << 5)
136 1.61 dsl static struct pid_table *pid_table;
137 1.61 dsl static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
138 1.61 dsl static uint pid_alloc_lim; /* max we allocate before growing table */
139 1.61 dsl static uint pid_alloc_cnt; /* number of allocated pids */
140 1.61 dsl
141 1.61 dsl /* links through free slots - never empty! */
142 1.61 dsl static uint next_free_pt, last_free_pt;
143 1.61 dsl static pid_t pid_max = PID_MAX; /* largest value we allocate */
144 1.31 thorpej
145 1.81 junyoung /* Components of the first process -- never freed. */
146 1.123 matt
147 1.145 ad extern struct emul emul_netbsd; /* defined in kern_exec.c */
148 1.123 matt
149 1.123 matt struct session session0 = {
150 1.123 matt .s_count = 1,
151 1.123 matt .s_sid = 0,
152 1.123 matt };
153 1.123 matt struct pgrp pgrp0 = {
154 1.123 matt .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
155 1.123 matt .pg_session = &session0,
156 1.123 matt };
157 1.132 ad filedesc_t filedesc0;
158 1.123 matt struct cwdinfo cwdi0 = {
159 1.123 matt .cwdi_cmask = CMASK, /* see cmask below */
160 1.123 matt .cwdi_refcnt = 1,
161 1.123 matt };
162 1.143 gmcgarry struct plimit limit0;
163 1.81 junyoung struct pstats pstat0;
164 1.81 junyoung struct vmspace vmspace0;
165 1.81 junyoung struct sigacts sigacts0;
166 1.100 ad struct turnstile turnstile0;
167 1.123 matt struct proc proc0 = {
168 1.123 matt .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
169 1.123 matt .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
170 1.123 matt .p_nlwps = 1,
171 1.123 matt .p_nrlwps = 1,
172 1.123 matt .p_nlwpid = 1, /* must match lwp0.l_lid */
173 1.123 matt .p_pgrp = &pgrp0,
174 1.123 matt .p_comm = "system",
175 1.123 matt /*
176 1.123 matt * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
177 1.123 matt * when they exit. init(8) can easily wait them out for us.
178 1.123 matt */
179 1.123 matt .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
180 1.123 matt .p_stat = SACTIVE,
181 1.123 matt .p_nice = NZERO,
182 1.123 matt .p_emul = &emul_netbsd,
183 1.123 matt .p_cwdi = &cwdi0,
184 1.123 matt .p_limit = &limit0,
185 1.132 ad .p_fd = &filedesc0,
186 1.123 matt .p_vmspace = &vmspace0,
187 1.123 matt .p_stats = &pstat0,
188 1.123 matt .p_sigacts = &sigacts0,
189 1.123 matt };
190 1.123 matt struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
191 1.123 matt #ifdef LWP0_CPU_INFO
192 1.123 matt .l_cpu = LWP0_CPU_INFO,
193 1.123 matt #endif
194 1.123 matt .l_proc = &proc0,
195 1.123 matt .l_lid = 1,
196 1.123 matt .l_flag = LW_INMEM | LW_SYSTEM,
197 1.123 matt .l_stat = LSONPROC,
198 1.123 matt .l_ts = &turnstile0,
199 1.123 matt .l_syncobj = &sched_syncobj,
200 1.123 matt .l_refcnt = 1,
201 1.123 matt .l_priority = PRI_USER + NPRI_USER - 1,
202 1.123 matt .l_inheritedprio = -1,
203 1.123 matt .l_class = SCHED_OTHER,
204 1.147 rmind .l_psid = PS_NONE,
205 1.123 matt .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
206 1.123 matt .l_name = __UNCONST("swapper"),
207 1.123 matt };
208 1.123 matt kauth_cred_t cred0;
209 1.81 junyoung
210 1.81 junyoung extern struct user *proc0paddr;
211 1.81 junyoung
212 1.81 junyoung int nofile = NOFILE;
213 1.81 junyoung int maxuprc = MAXUPRC;
214 1.81 junyoung int cmask = CMASK;
215 1.81 junyoung
216 1.57 thorpej MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
217 1.57 thorpej MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
218 1.57 thorpej MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
219 1.10 mycroft
220 1.31 thorpej /*
221 1.31 thorpej * The process list descriptors, used during pid allocation and
222 1.31 thorpej * by sysctl. No locking on this data structure is needed since
223 1.31 thorpej * it is completely static.
224 1.31 thorpej */
225 1.31 thorpej const struct proclist_desc proclists[] = {
226 1.31 thorpej { &allproc },
227 1.31 thorpej { &zombproc },
228 1.31 thorpej { NULL },
229 1.31 thorpej };
230 1.31 thorpej
231 1.72 junyoung static void orphanpg(struct pgrp *);
232 1.72 junyoung static void pg_delete(pid_t);
233 1.13 christos
234 1.95 thorpej static specificdata_domain_t proc_specificdata_domain;
235 1.95 thorpej
236 1.128 ad static pool_cache_t proc_cache;
237 1.128 ad
238 1.10 mycroft /*
239 1.10 mycroft * Initialize global process hashing structures.
240 1.10 mycroft */
241 1.11 cgd void
242 1.59 dsl procinit(void)
243 1.7 cgd {
244 1.31 thorpej const struct proclist_desc *pd;
245 1.61 dsl int i;
246 1.61 dsl #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
247 1.31 thorpej
248 1.31 thorpej for (pd = proclists; pd->pd_list != NULL; pd++)
249 1.31 thorpej LIST_INIT(pd->pd_list);
250 1.7 cgd
251 1.136 ad proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
252 1.33 thorpej
253 1.61 dsl pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
254 1.61 dsl M_PROC, M_WAITOK);
255 1.61 dsl /* Set free list running through table...
256 1.61 dsl Preset 'use count' above PID_MAX so we allocate pid 1 next. */
257 1.61 dsl for (i = 0; i <= pid_tbl_mask; i++) {
258 1.61 dsl pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
259 1.61 dsl pid_table[i].pt_pgrp = 0;
260 1.61 dsl }
261 1.61 dsl /* slot 0 is just grabbed */
262 1.61 dsl next_free_pt = 1;
263 1.61 dsl /* Need to fix last entry. */
264 1.61 dsl last_free_pt = pid_tbl_mask;
265 1.61 dsl pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
266 1.61 dsl /* point at which we grow table - to avoid reusing pids too often */
267 1.61 dsl pid_alloc_lim = pid_tbl_mask - 1;
268 1.61 dsl #undef LINK_EMPTY
269 1.61 dsl
270 1.95 thorpej proc_specificdata_domain = specificdata_domain_create();
271 1.95 thorpej KASSERT(proc_specificdata_domain != NULL);
272 1.128 ad
273 1.128 ad proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
274 1.128 ad "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
275 1.7 cgd }
276 1.1 cgd
277 1.7 cgd /*
278 1.81 junyoung * Initialize process 0.
279 1.81 junyoung */
280 1.81 junyoung void
281 1.81 junyoung proc0_init(void)
282 1.81 junyoung {
283 1.81 junyoung struct proc *p;
284 1.81 junyoung struct pgrp *pg;
285 1.81 junyoung struct session *sess;
286 1.81 junyoung struct lwp *l;
287 1.81 junyoung rlim_t lim;
288 1.143 gmcgarry int i;
289 1.81 junyoung
290 1.81 junyoung p = &proc0;
291 1.81 junyoung pg = &pgrp0;
292 1.81 junyoung sess = &session0;
293 1.81 junyoung l = &lwp0;
294 1.81 junyoung
295 1.123 matt KASSERT(l->l_lid == p->p_nlwpid);
296 1.123 matt
297 1.127 ad mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
298 1.129 ad mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
299 1.113 ad mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
300 1.137 ad p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
301 1.107 ad
302 1.122 ad rw_init(&p->p_reflock);
303 1.100 ad cv_init(&p->p_waitcv, "wait");
304 1.100 ad cv_init(&p->p_lwpcv, "lwpwait");
305 1.100 ad
306 1.81 junyoung LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
307 1.100 ad
308 1.81 junyoung pid_table[0].pt_proc = p;
309 1.81 junyoung LIST_INSERT_HEAD(&allproc, p, p_list);
310 1.81 junyoung LIST_INSERT_HEAD(&alllwp, l, l_list);
311 1.81 junyoung
312 1.81 junyoung pid_table[0].pt_pgrp = pg;
313 1.81 junyoung LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
314 1.81 junyoung
315 1.81 junyoung #ifdef __HAVE_SYSCALL_INTERN
316 1.81 junyoung (*p->p_emul->e_syscall_intern)(p);
317 1.81 junyoung #endif
318 1.81 junyoung
319 1.121 ad callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
320 1.115 ad callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
321 1.100 ad cv_init(&l->l_sigcv, "sigwait");
322 1.81 junyoung
323 1.81 junyoung /* Create credentials. */
324 1.89 elad cred0 = kauth_cred_alloc();
325 1.89 elad p->p_cred = cred0;
326 1.100 ad kauth_cred_hold(cred0);
327 1.100 ad l->l_cred = cred0;
328 1.81 junyoung
329 1.81 junyoung /* Create the CWD info. */
330 1.113 ad rw_init(&cwdi0.cwdi_lock);
331 1.81 junyoung
332 1.81 junyoung /* Create the limits structures. */
333 1.116 dsl mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
334 1.143 gmcgarry for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
335 1.143 gmcgarry limit0.pl_rlimit[i].rlim_cur =
336 1.143 gmcgarry limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
337 1.81 junyoung
338 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
339 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
340 1.81 junyoung maxfiles < nofile ? maxfiles : nofile;
341 1.81 junyoung
342 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
343 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
344 1.81 junyoung maxproc < maxuprc ? maxproc : maxuprc;
345 1.81 junyoung
346 1.81 junyoung lim = ptoa(uvmexp.free);
347 1.81 junyoung limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
348 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
349 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
350 1.143 gmcgarry limit0.pl_corename = defcorename;
351 1.143 gmcgarry limit0.pl_refcnt = 1;
352 1.143 gmcgarry limit0.pl_sv_limit = NULL;
353 1.81 junyoung
354 1.81 junyoung /* Configure virtual memory system, set vm rlimits. */
355 1.81 junyoung uvm_init_limits(p);
356 1.81 junyoung
357 1.81 junyoung /* Initialize file descriptor table for proc0. */
358 1.132 ad fd_init(&filedesc0);
359 1.81 junyoung
360 1.81 junyoung /*
361 1.81 junyoung * Initialize proc0's vmspace, which uses the kernel pmap.
362 1.81 junyoung * All kernel processes (which never have user space mappings)
363 1.81 junyoung * share proc0's vmspace, and thus, the kernel pmap.
364 1.81 junyoung */
365 1.81 junyoung uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
366 1.81 junyoung trunc_page(VM_MAX_ADDRESS));
367 1.81 junyoung
368 1.81 junyoung l->l_addr = proc0paddr; /* XXX */
369 1.81 junyoung
370 1.127 ad /* Initialize signal state for proc0. XXX IPL_SCHED */
371 1.127 ad mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
372 1.81 junyoung siginit(p);
373 1.96 christos
374 1.96 christos proc_initspecific(p);
375 1.96 christos lwp_initspecific(l);
376 1.103 dsl
377 1.103 dsl SYSCALL_TIME_LWP_INIT(l);
378 1.81 junyoung }
379 1.81 junyoung
380 1.81 junyoung /*
381 1.74 junyoung * Check that the specified process group is in the session of the
382 1.60 dsl * specified process.
383 1.60 dsl * Treats -ve ids as process ids.
384 1.60 dsl * Used to validate TIOCSPGRP requests.
385 1.60 dsl */
386 1.60 dsl int
387 1.60 dsl pgid_in_session(struct proc *p, pid_t pg_id)
388 1.60 dsl {
389 1.60 dsl struct pgrp *pgrp;
390 1.101 dsl struct session *session;
391 1.107 ad int error;
392 1.101 dsl
393 1.136 ad mutex_enter(proc_lock);
394 1.60 dsl if (pg_id < 0) {
395 1.101 dsl struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
396 1.64 dsl if (p1 == NULL)
397 1.64 dsl return EINVAL;
398 1.60 dsl pgrp = p1->p_pgrp;
399 1.60 dsl } else {
400 1.101 dsl pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
401 1.60 dsl if (pgrp == NULL)
402 1.64 dsl return EINVAL;
403 1.60 dsl }
404 1.101 dsl session = pgrp->pg_session;
405 1.101 dsl if (session != p->p_pgrp->pg_session)
406 1.107 ad error = EPERM;
407 1.107 ad else
408 1.107 ad error = 0;
409 1.136 ad mutex_exit(proc_lock);
410 1.107 ad
411 1.107 ad return error;
412 1.7 cgd }
413 1.4 andrew
414 1.1 cgd /*
415 1.41 sommerfe * Is p an inferior of q?
416 1.94 ad *
417 1.136 ad * Call with the proc_lock held.
418 1.1 cgd */
419 1.11 cgd int
420 1.59 dsl inferior(struct proc *p, struct proc *q)
421 1.1 cgd {
422 1.1 cgd
423 1.41 sommerfe for (; p != q; p = p->p_pptr)
424 1.1 cgd if (p->p_pid == 0)
425 1.82 junyoung return 0;
426 1.82 junyoung return 1;
427 1.1 cgd }
428 1.1 cgd
429 1.1 cgd /*
430 1.1 cgd * Locate a process by number
431 1.1 cgd */
432 1.1 cgd struct proc *
433 1.68 dsl p_find(pid_t pid, uint flags)
434 1.1 cgd {
435 1.33 thorpej struct proc *p;
436 1.68 dsl char stat;
437 1.1 cgd
438 1.68 dsl if (!(flags & PFIND_LOCKED))
439 1.136 ad mutex_enter(proc_lock);
440 1.100 ad
441 1.61 dsl p = pid_table[pid & pid_tbl_mask].pt_proc;
442 1.100 ad
443 1.61 dsl /* Only allow live processes to be found by pid. */
444 1.100 ad /* XXXSMP p_stat */
445 1.100 ad if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
446 1.100 ad stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
447 1.100 ad (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
448 1.68 dsl if (flags & PFIND_UNLOCK_OK)
449 1.136 ad mutex_exit(proc_lock);
450 1.68 dsl return p;
451 1.68 dsl }
452 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
453 1.136 ad mutex_exit(proc_lock);
454 1.68 dsl return NULL;
455 1.1 cgd }
456 1.1 cgd
457 1.61 dsl
458 1.1 cgd /*
459 1.1 cgd * Locate a process group by number
460 1.1 cgd */
461 1.1 cgd struct pgrp *
462 1.68 dsl pg_find(pid_t pgid, uint flags)
463 1.1 cgd {
464 1.68 dsl struct pgrp *pg;
465 1.1 cgd
466 1.68 dsl if (!(flags & PFIND_LOCKED))
467 1.136 ad mutex_enter(proc_lock);
468 1.68 dsl pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
469 1.61 dsl /*
470 1.61 dsl * Can't look up a pgrp that only exists because the session
471 1.61 dsl * hasn't died yet (traditional)
472 1.61 dsl */
473 1.68 dsl if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
474 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
475 1.136 ad mutex_exit(proc_lock);
476 1.68 dsl return NULL;
477 1.68 dsl }
478 1.68 dsl
479 1.68 dsl if (flags & PFIND_UNLOCK_OK)
480 1.136 ad mutex_exit(proc_lock);
481 1.68 dsl return pg;
482 1.1 cgd }
483 1.1 cgd
484 1.61 dsl static void
485 1.61 dsl expand_pid_table(void)
486 1.1 cgd {
487 1.61 dsl uint pt_size = pid_tbl_mask + 1;
488 1.61 dsl struct pid_table *n_pt, *new_pt;
489 1.61 dsl struct proc *proc;
490 1.61 dsl struct pgrp *pgrp;
491 1.61 dsl int i;
492 1.61 dsl pid_t pid;
493 1.1 cgd
494 1.61 dsl new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
495 1.61 dsl
496 1.136 ad mutex_enter(proc_lock);
497 1.61 dsl if (pt_size != pid_tbl_mask + 1) {
498 1.61 dsl /* Another process beat us to it... */
499 1.136 ad mutex_exit(proc_lock);
500 1.146 cegger free(new_pt, M_PROC);
501 1.61 dsl return;
502 1.61 dsl }
503 1.72 junyoung
504 1.61 dsl /*
505 1.61 dsl * Copy entries from old table into new one.
506 1.61 dsl * If 'pid' is 'odd' we need to place in the upper half,
507 1.61 dsl * even pid's to the lower half.
508 1.61 dsl * Free items stay in the low half so we don't have to
509 1.61 dsl * fixup the reference to them.
510 1.61 dsl * We stuff free items on the front of the freelist
511 1.61 dsl * because we can't write to unmodified entries.
512 1.74 junyoung * Processing the table backwards maintains a semblance
513 1.61 dsl * of issueing pid numbers that increase with time.
514 1.61 dsl */
515 1.61 dsl i = pt_size - 1;
516 1.61 dsl n_pt = new_pt + i;
517 1.61 dsl for (; ; i--, n_pt--) {
518 1.61 dsl proc = pid_table[i].pt_proc;
519 1.61 dsl pgrp = pid_table[i].pt_pgrp;
520 1.61 dsl if (!P_VALID(proc)) {
521 1.61 dsl /* Up 'use count' so that link is valid */
522 1.61 dsl pid = (P_NEXT(proc) + pt_size) & ~pt_size;
523 1.61 dsl proc = P_FREE(pid);
524 1.61 dsl if (pgrp)
525 1.61 dsl pid = pgrp->pg_id;
526 1.61 dsl } else
527 1.61 dsl pid = proc->p_pid;
528 1.72 junyoung
529 1.61 dsl /* Save entry in appropriate half of table */
530 1.61 dsl n_pt[pid & pt_size].pt_proc = proc;
531 1.61 dsl n_pt[pid & pt_size].pt_pgrp = pgrp;
532 1.61 dsl
533 1.61 dsl /* Put other piece on start of free list */
534 1.61 dsl pid = (pid ^ pt_size) & ~pid_tbl_mask;
535 1.61 dsl n_pt[pid & pt_size].pt_proc =
536 1.61 dsl P_FREE((pid & ~pt_size) | next_free_pt);
537 1.61 dsl n_pt[pid & pt_size].pt_pgrp = 0;
538 1.61 dsl next_free_pt = i | (pid & pt_size);
539 1.61 dsl if (i == 0)
540 1.61 dsl break;
541 1.61 dsl }
542 1.61 dsl
543 1.61 dsl /* Switch tables */
544 1.61 dsl n_pt = pid_table;
545 1.61 dsl pid_table = new_pt;
546 1.61 dsl pid_tbl_mask = pt_size * 2 - 1;
547 1.61 dsl
548 1.61 dsl /*
549 1.61 dsl * pid_max starts as PID_MAX (= 30000), once we have 16384
550 1.61 dsl * allocated pids we need it to be larger!
551 1.61 dsl */
552 1.61 dsl if (pid_tbl_mask > PID_MAX) {
553 1.61 dsl pid_max = pid_tbl_mask * 2 + 1;
554 1.61 dsl pid_alloc_lim |= pid_alloc_lim << 1;
555 1.61 dsl } else
556 1.61 dsl pid_alloc_lim <<= 1; /* doubles number of free slots... */
557 1.61 dsl
558 1.136 ad mutex_exit(proc_lock);
559 1.146 cegger free(n_pt, M_PROC);
560 1.61 dsl }
561 1.61 dsl
562 1.61 dsl struct proc *
563 1.61 dsl proc_alloc(void)
564 1.61 dsl {
565 1.61 dsl struct proc *p;
566 1.100 ad int nxt;
567 1.61 dsl pid_t pid;
568 1.61 dsl struct pid_table *pt;
569 1.61 dsl
570 1.128 ad p = pool_cache_get(proc_cache, PR_WAITOK);
571 1.61 dsl p->p_stat = SIDL; /* protect against others */
572 1.61 dsl
573 1.96 christos proc_initspecific(p);
574 1.61 dsl /* allocate next free pid */
575 1.61 dsl
576 1.61 dsl for (;;expand_pid_table()) {
577 1.61 dsl if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
578 1.61 dsl /* ensure pids cycle through 2000+ values */
579 1.61 dsl continue;
580 1.136 ad mutex_enter(proc_lock);
581 1.61 dsl pt = &pid_table[next_free_pt];
582 1.1 cgd #ifdef DIAGNOSTIC
583 1.63 christos if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
584 1.61 dsl panic("proc_alloc: slot busy");
585 1.1 cgd #endif
586 1.61 dsl nxt = P_NEXT(pt->pt_proc);
587 1.61 dsl if (nxt & pid_tbl_mask)
588 1.61 dsl break;
589 1.61 dsl /* Table full - expand (NB last entry not used....) */
590 1.136 ad mutex_exit(proc_lock);
591 1.61 dsl }
592 1.61 dsl
593 1.61 dsl /* pid is 'saved use count' + 'size' + entry */
594 1.61 dsl pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
595 1.61 dsl if ((uint)pid > (uint)pid_max)
596 1.61 dsl pid &= pid_tbl_mask;
597 1.61 dsl p->p_pid = pid;
598 1.61 dsl next_free_pt = nxt & pid_tbl_mask;
599 1.61 dsl
600 1.61 dsl /* Grab table slot */
601 1.61 dsl pt->pt_proc = p;
602 1.61 dsl pid_alloc_cnt++;
603 1.61 dsl
604 1.136 ad mutex_exit(proc_lock);
605 1.61 dsl
606 1.61 dsl return p;
607 1.61 dsl }
608 1.61 dsl
609 1.61 dsl /*
610 1.118 ad * Free a process id - called from proc_free (in kern_exit.c)
611 1.100 ad *
612 1.136 ad * Called with the proc_lock held.
613 1.61 dsl */
614 1.61 dsl void
615 1.118 ad proc_free_pid(struct proc *p)
616 1.61 dsl {
617 1.61 dsl pid_t pid = p->p_pid;
618 1.61 dsl struct pid_table *pt;
619 1.61 dsl
620 1.136 ad KASSERT(mutex_owned(proc_lock));
621 1.61 dsl
622 1.61 dsl pt = &pid_table[pid & pid_tbl_mask];
623 1.1 cgd #ifdef DIAGNOSTIC
624 1.63 christos if (__predict_false(pt->pt_proc != p))
625 1.61 dsl panic("proc_free: pid_table mismatch, pid %x, proc %p",
626 1.61 dsl pid, p);
627 1.1 cgd #endif
628 1.61 dsl /* save pid use count in slot */
629 1.61 dsl pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
630 1.61 dsl
631 1.61 dsl if (pt->pt_pgrp == NULL) {
632 1.61 dsl /* link last freed entry onto ours */
633 1.61 dsl pid &= pid_tbl_mask;
634 1.61 dsl pt = &pid_table[last_free_pt];
635 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
636 1.61 dsl last_free_pt = pid;
637 1.61 dsl pid_alloc_cnt--;
638 1.61 dsl }
639 1.61 dsl
640 1.126 ad atomic_dec_uint(&nprocs);
641 1.61 dsl }
642 1.61 dsl
643 1.128 ad void
644 1.128 ad proc_free_mem(struct proc *p)
645 1.128 ad {
646 1.128 ad
647 1.128 ad pool_cache_put(proc_cache, p);
648 1.128 ad }
649 1.128 ad
650 1.61 dsl /*
651 1.61 dsl * Move p to a new or existing process group (and session)
652 1.61 dsl *
653 1.61 dsl * If we are creating a new pgrp, the pgid should equal
654 1.72 junyoung * the calling process' pid.
655 1.61 dsl * If is only valid to enter a process group that is in the session
656 1.61 dsl * of the process.
657 1.61 dsl * Also mksess should only be set if we are creating a process group
658 1.61 dsl *
659 1.134 yamt * Only called from sys_setsid and sys_setpgid.
660 1.61 dsl */
661 1.61 dsl int
662 1.100 ad enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
663 1.61 dsl {
664 1.61 dsl struct pgrp *new_pgrp, *pgrp;
665 1.61 dsl struct session *sess;
666 1.100 ad struct proc *p;
667 1.61 dsl int rval;
668 1.61 dsl pid_t pg_id = NO_PGID;
669 1.61 dsl
670 1.61 dsl if (mksess)
671 1.131 ad sess = kmem_alloc(sizeof(*sess), KM_SLEEP);
672 1.61 dsl else
673 1.61 dsl sess = NULL;
674 1.61 dsl
675 1.107 ad /* Allocate data areas we might need before doing any validity checks */
676 1.136 ad mutex_enter(proc_lock); /* Because pid_table might change */
677 1.107 ad if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
678 1.136 ad mutex_exit(proc_lock);
679 1.131 ad new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
680 1.136 ad mutex_enter(proc_lock);
681 1.107 ad } else
682 1.107 ad new_pgrp = NULL;
683 1.61 dsl rval = EPERM; /* most common error (to save typing) */
684 1.61 dsl
685 1.61 dsl /* Check pgrp exists or can be created */
686 1.61 dsl pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
687 1.61 dsl if (pgrp != NULL && pgrp->pg_id != pgid)
688 1.61 dsl goto done;
689 1.61 dsl
690 1.61 dsl /* Can only set another process under restricted circumstances. */
691 1.100 ad if (pid != curp->p_pid) {
692 1.61 dsl /* must exist and be one of our children... */
693 1.100 ad if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
694 1.100 ad !inferior(p, curp)) {
695 1.61 dsl rval = ESRCH;
696 1.61 dsl goto done;
697 1.61 dsl }
698 1.61 dsl /* ... in the same session... */
699 1.61 dsl if (sess != NULL || p->p_session != curp->p_session)
700 1.61 dsl goto done;
701 1.61 dsl /* ... existing pgid must be in same session ... */
702 1.61 dsl if (pgrp != NULL && pgrp->pg_session != p->p_session)
703 1.61 dsl goto done;
704 1.61 dsl /* ... and not done an exec. */
705 1.102 pavel if (p->p_flag & PK_EXEC) {
706 1.61 dsl rval = EACCES;
707 1.61 dsl goto done;
708 1.49 enami }
709 1.100 ad } else {
710 1.100 ad /* ... setsid() cannot re-enter a pgrp */
711 1.100 ad if (mksess && (curp->p_pgid == curp->p_pid ||
712 1.100 ad pg_find(curp->p_pid, PFIND_LOCKED)))
713 1.100 ad goto done;
714 1.100 ad p = curp;
715 1.61 dsl }
716 1.1 cgd
717 1.61 dsl /* Changing the process group/session of a session
718 1.61 dsl leader is definitely off limits. */
719 1.61 dsl if (SESS_LEADER(p)) {
720 1.61 dsl if (sess == NULL && p->p_pgrp == pgrp)
721 1.61 dsl /* unless it's a definite noop */
722 1.61 dsl rval = 0;
723 1.61 dsl goto done;
724 1.61 dsl }
725 1.61 dsl
726 1.61 dsl /* Can only create a process group with id of process */
727 1.61 dsl if (pgrp == NULL && pgid != pid)
728 1.61 dsl goto done;
729 1.61 dsl
730 1.61 dsl /* Can only create a session if creating pgrp */
731 1.61 dsl if (sess != NULL && pgrp != NULL)
732 1.61 dsl goto done;
733 1.61 dsl
734 1.61 dsl /* Check we allocated memory for a pgrp... */
735 1.61 dsl if (pgrp == NULL && new_pgrp == NULL)
736 1.61 dsl goto done;
737 1.61 dsl
738 1.61 dsl /* Don't attach to 'zombie' pgrp */
739 1.61 dsl if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
740 1.61 dsl goto done;
741 1.61 dsl
742 1.61 dsl /* Expect to succeed now */
743 1.61 dsl rval = 0;
744 1.61 dsl
745 1.61 dsl if (pgrp == p->p_pgrp)
746 1.61 dsl /* nothing to do */
747 1.61 dsl goto done;
748 1.61 dsl
749 1.61 dsl /* Ok all setup, link up required structures */
750 1.100 ad
751 1.61 dsl if (pgrp == NULL) {
752 1.61 dsl pgrp = new_pgrp;
753 1.141 yamt new_pgrp = NULL;
754 1.61 dsl if (sess != NULL) {
755 1.21 thorpej sess->s_sid = p->p_pid;
756 1.1 cgd sess->s_leader = p;
757 1.1 cgd sess->s_count = 1;
758 1.1 cgd sess->s_ttyvp = NULL;
759 1.1 cgd sess->s_ttyp = NULL;
760 1.58 dsl sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
761 1.25 perry memcpy(sess->s_login, p->p_session->s_login,
762 1.1 cgd sizeof(sess->s_login));
763 1.100 ad p->p_lflag &= ~PL_CONTROLT;
764 1.1 cgd } else {
765 1.61 dsl sess = p->p_pgrp->pg_session;
766 1.61 dsl SESSHOLD(sess);
767 1.1 cgd }
768 1.61 dsl pgrp->pg_session = sess;
769 1.141 yamt sess = NULL;
770 1.61 dsl
771 1.1 cgd pgrp->pg_id = pgid;
772 1.10 mycroft LIST_INIT(&pgrp->pg_members);
773 1.61 dsl #ifdef DIAGNOSTIC
774 1.63 christos if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
775 1.61 dsl panic("enterpgrp: pgrp table slot in use");
776 1.63 christos if (__predict_false(mksess && p != curp))
777 1.63 christos panic("enterpgrp: mksession and p != curproc");
778 1.61 dsl #endif
779 1.61 dsl pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
780 1.1 cgd pgrp->pg_jobc = 0;
781 1.136 ad }
782 1.1 cgd
783 1.1 cgd /*
784 1.1 cgd * Adjust eligibility of affected pgrps to participate in job control.
785 1.1 cgd * Increment eligibility counts before decrementing, otherwise we
786 1.1 cgd * could reach 0 spuriously during the first call.
787 1.1 cgd */
788 1.1 cgd fixjobc(p, pgrp, 1);
789 1.1 cgd fixjobc(p, p->p_pgrp, 0);
790 1.1 cgd
791 1.139 ad /* Interlock with ttread(). */
792 1.139 ad mutex_spin_enter(&tty_lock);
793 1.139 ad
794 1.100 ad /* Move process to requested group. */
795 1.10 mycroft LIST_REMOVE(p, p_pglist);
796 1.52 matt if (LIST_EMPTY(&p->p_pgrp->pg_members))
797 1.61 dsl /* defer delete until we've dumped the lock */
798 1.61 dsl pg_id = p->p_pgrp->pg_id;
799 1.1 cgd p->p_pgrp = pgrp;
800 1.10 mycroft LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
801 1.100 ad
802 1.100 ad /* Done with the swap; we can release the tty mutex. */
803 1.128 ad mutex_spin_exit(&tty_lock);
804 1.128 ad
805 1.61 dsl done:
806 1.100 ad if (pg_id != NO_PGID)
807 1.100 ad pg_delete(pg_id);
808 1.136 ad mutex_exit(proc_lock);
809 1.61 dsl if (sess != NULL)
810 1.131 ad kmem_free(sess, sizeof(*sess));
811 1.61 dsl if (new_pgrp != NULL)
812 1.131 ad kmem_free(new_pgrp, sizeof(*new_pgrp));
813 1.63 christos #ifdef DEBUG_PGRP
814 1.63 christos if (__predict_false(rval))
815 1.61 dsl printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
816 1.61 dsl pid, pgid, mksess, curp->p_pid, rval);
817 1.61 dsl #endif
818 1.61 dsl return rval;
819 1.1 cgd }
820 1.1 cgd
821 1.1 cgd /*
822 1.100 ad * Remove a process from its process group. Must be called with the
823 1.136 ad * proc_lock held.
824 1.1 cgd */
825 1.100 ad void
826 1.59 dsl leavepgrp(struct proc *p)
827 1.1 cgd {
828 1.61 dsl struct pgrp *pgrp;
829 1.1 cgd
830 1.136 ad KASSERT(mutex_owned(proc_lock));
831 1.100 ad
832 1.139 ad /* Interlock with ttread() */
833 1.128 ad mutex_spin_enter(&tty_lock);
834 1.61 dsl pgrp = p->p_pgrp;
835 1.10 mycroft LIST_REMOVE(p, p_pglist);
836 1.94 ad p->p_pgrp = NULL;
837 1.128 ad mutex_spin_exit(&tty_lock);
838 1.100 ad
839 1.100 ad if (LIST_EMPTY(&pgrp->pg_members))
840 1.100 ad pg_delete(pgrp->pg_id);
841 1.61 dsl }
842 1.61 dsl
843 1.100 ad /*
844 1.136 ad * Free a process group. Must be called with the proc_lock held.
845 1.100 ad */
846 1.61 dsl static void
847 1.61 dsl pg_free(pid_t pg_id)
848 1.61 dsl {
849 1.61 dsl struct pgrp *pgrp;
850 1.61 dsl struct pid_table *pt;
851 1.61 dsl
852 1.136 ad KASSERT(mutex_owned(proc_lock));
853 1.100 ad
854 1.61 dsl pt = &pid_table[pg_id & pid_tbl_mask];
855 1.61 dsl pgrp = pt->pt_pgrp;
856 1.61 dsl #ifdef DIAGNOSTIC
857 1.63 christos if (__predict_false(!pgrp || pgrp->pg_id != pg_id
858 1.63 christos || !LIST_EMPTY(&pgrp->pg_members)))
859 1.61 dsl panic("pg_free: process group absent or has members");
860 1.61 dsl #endif
861 1.61 dsl pt->pt_pgrp = 0;
862 1.61 dsl
863 1.61 dsl if (!P_VALID(pt->pt_proc)) {
864 1.61 dsl /* orphaned pgrp, put slot onto free list */
865 1.61 dsl #ifdef DIAGNOSTIC
866 1.63 christos if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
867 1.61 dsl panic("pg_free: process slot on free list");
868 1.61 dsl #endif
869 1.61 dsl pg_id &= pid_tbl_mask;
870 1.61 dsl pt = &pid_table[last_free_pt];
871 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
872 1.61 dsl last_free_pt = pg_id;
873 1.61 dsl pid_alloc_cnt--;
874 1.61 dsl }
875 1.131 ad kmem_free(pgrp, sizeof(*pgrp));
876 1.1 cgd }
877 1.1 cgd
878 1.1 cgd /*
879 1.136 ad * Delete a process group. Must be called with the proc_lock held.
880 1.1 cgd */
881 1.61 dsl static void
882 1.61 dsl pg_delete(pid_t pg_id)
883 1.61 dsl {
884 1.61 dsl struct pgrp *pgrp;
885 1.61 dsl struct tty *ttyp;
886 1.61 dsl struct session *ss;
887 1.100 ad int is_pgrp_leader;
888 1.100 ad
889 1.136 ad KASSERT(mutex_owned(proc_lock));
890 1.61 dsl
891 1.61 dsl pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
892 1.61 dsl if (pgrp == NULL || pgrp->pg_id != pg_id ||
893 1.100 ad !LIST_EMPTY(&pgrp->pg_members))
894 1.61 dsl return;
895 1.61 dsl
896 1.71 pk ss = pgrp->pg_session;
897 1.71 pk
898 1.61 dsl /* Remove reference (if any) from tty to this process group */
899 1.128 ad mutex_spin_enter(&tty_lock);
900 1.71 pk ttyp = ss->s_ttyp;
901 1.71 pk if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
902 1.61 dsl ttyp->t_pgrp = NULL;
903 1.71 pk #ifdef DIAGNOSTIC
904 1.71 pk if (ttyp->t_session != ss)
905 1.71 pk panic("pg_delete: wrong session on terminal");
906 1.71 pk #endif
907 1.71 pk }
908 1.128 ad mutex_spin_exit(&tty_lock);
909 1.61 dsl
910 1.71 pk /*
911 1.71 pk * The leading process group in a session is freed
912 1.71 pk * by sessdelete() if last reference.
913 1.71 pk */
914 1.71 pk is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
915 1.71 pk SESSRELE(ss);
916 1.61 dsl
917 1.71 pk if (is_pgrp_leader)
918 1.61 dsl return;
919 1.61 dsl
920 1.61 dsl pg_free(pg_id);
921 1.61 dsl }
922 1.61 dsl
923 1.61 dsl /*
924 1.61 dsl * Delete session - called from SESSRELE when s_count becomes zero.
925 1.136 ad * Must be called with the proc_lock held.
926 1.61 dsl */
927 1.11 cgd void
928 1.61 dsl sessdelete(struct session *ss)
929 1.1 cgd {
930 1.100 ad
931 1.136 ad KASSERT(mutex_owned(proc_lock));
932 1.100 ad
933 1.61 dsl /*
934 1.61 dsl * We keep the pgrp with the same id as the session in
935 1.61 dsl * order to stop a process being given the same pid.
936 1.61 dsl * Since the pgrp holds a reference to the session, it
937 1.61 dsl * must be a 'zombie' pgrp by now.
938 1.61 dsl */
939 1.61 dsl pg_free(ss->s_sid);
940 1.131 ad kmem_free(ss, sizeof(*ss));
941 1.1 cgd }
942 1.1 cgd
943 1.1 cgd /*
944 1.1 cgd * Adjust pgrp jobc counters when specified process changes process group.
945 1.1 cgd * We count the number of processes in each process group that "qualify"
946 1.1 cgd * the group for terminal job control (those with a parent in a different
947 1.1 cgd * process group of the same session). If that count reaches zero, the
948 1.1 cgd * process group becomes orphaned. Check both the specified process'
949 1.1 cgd * process group and that of its children.
950 1.1 cgd * entering == 0 => p is leaving specified group.
951 1.1 cgd * entering == 1 => p is entering specified group.
952 1.68 dsl *
953 1.136 ad * Call with proc_lock held.
954 1.1 cgd */
955 1.4 andrew void
956 1.59 dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
957 1.1 cgd {
958 1.39 augustss struct pgrp *hispgrp;
959 1.39 augustss struct session *mysession = pgrp->pg_session;
960 1.68 dsl struct proc *child;
961 1.1 cgd
962 1.136 ad KASSERT(mutex_owned(proc_lock));
963 1.100 ad
964 1.1 cgd /*
965 1.1 cgd * Check p's parent to see whether p qualifies its own process
966 1.1 cgd * group; if so, adjust count for p's process group.
967 1.1 cgd */
968 1.68 dsl hispgrp = p->p_pptr->p_pgrp;
969 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
970 1.100 ad if (entering) {
971 1.1 cgd pgrp->pg_jobc++;
972 1.136 ad p->p_lflag &= ~PL_ORPHANPG;
973 1.100 ad } else if (--pgrp->pg_jobc == 0)
974 1.1 cgd orphanpg(pgrp);
975 1.26 thorpej }
976 1.1 cgd
977 1.1 cgd /*
978 1.1 cgd * Check this process' children to see whether they qualify
979 1.1 cgd * their process groups; if so, adjust counts for children's
980 1.1 cgd * process groups.
981 1.1 cgd */
982 1.68 dsl LIST_FOREACH(child, &p->p_children, p_sibling) {
983 1.68 dsl hispgrp = child->p_pgrp;
984 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
985 1.68 dsl !P_ZOMBIE(child)) {
986 1.100 ad if (entering) {
987 1.136 ad child->p_lflag &= ~PL_ORPHANPG;
988 1.1 cgd hispgrp->pg_jobc++;
989 1.100 ad } else if (--hispgrp->pg_jobc == 0)
990 1.1 cgd orphanpg(hispgrp);
991 1.26 thorpej }
992 1.26 thorpej }
993 1.1 cgd }
994 1.1 cgd
995 1.72 junyoung /*
996 1.1 cgd * A process group has become orphaned;
997 1.1 cgd * if there are any stopped processes in the group,
998 1.1 cgd * hang-up all process in that group.
999 1.68 dsl *
1000 1.136 ad * Call with proc_lock held.
1001 1.1 cgd */
1002 1.4 andrew static void
1003 1.59 dsl orphanpg(struct pgrp *pg)
1004 1.1 cgd {
1005 1.39 augustss struct proc *p;
1006 1.100 ad int doit;
1007 1.100 ad
1008 1.136 ad KASSERT(mutex_owned(proc_lock));
1009 1.100 ad
1010 1.100 ad doit = 0;
1011 1.1 cgd
1012 1.52 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1013 1.1 cgd if (p->p_stat == SSTOP) {
1014 1.136 ad p->p_lflag |= PL_ORPHANPG;
1015 1.100 ad psignal(p, SIGHUP);
1016 1.100 ad psignal(p, SIGCONT);
1017 1.35 bouyer }
1018 1.35 bouyer }
1019 1.35 bouyer }
1020 1.1 cgd
1021 1.61 dsl #ifdef DDB
1022 1.61 dsl #include <ddb/db_output.h>
1023 1.61 dsl void pidtbl_dump(void);
1024 1.14 christos void
1025 1.61 dsl pidtbl_dump(void)
1026 1.1 cgd {
1027 1.61 dsl struct pid_table *pt;
1028 1.61 dsl struct proc *p;
1029 1.39 augustss struct pgrp *pgrp;
1030 1.61 dsl int id;
1031 1.1 cgd
1032 1.61 dsl db_printf("pid table %p size %x, next %x, last %x\n",
1033 1.61 dsl pid_table, pid_tbl_mask+1,
1034 1.61 dsl next_free_pt, last_free_pt);
1035 1.61 dsl for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1036 1.61 dsl p = pt->pt_proc;
1037 1.61 dsl if (!P_VALID(p) && !pt->pt_pgrp)
1038 1.61 dsl continue;
1039 1.61 dsl db_printf(" id %x: ", id);
1040 1.61 dsl if (P_VALID(p))
1041 1.61 dsl db_printf("proc %p id %d (0x%x) %s\n",
1042 1.61 dsl p, p->p_pid, p->p_pid, p->p_comm);
1043 1.61 dsl else
1044 1.61 dsl db_printf("next %x use %x\n",
1045 1.61 dsl P_NEXT(p) & pid_tbl_mask,
1046 1.61 dsl P_NEXT(p) & ~pid_tbl_mask);
1047 1.61 dsl if ((pgrp = pt->pt_pgrp)) {
1048 1.61 dsl db_printf("\tsession %p, sid %d, count %d, login %s\n",
1049 1.61 dsl pgrp->pg_session, pgrp->pg_session->s_sid,
1050 1.61 dsl pgrp->pg_session->s_count,
1051 1.61 dsl pgrp->pg_session->s_login);
1052 1.61 dsl db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1053 1.61 dsl pgrp, pgrp->pg_id, pgrp->pg_jobc,
1054 1.135 yamt LIST_FIRST(&pgrp->pg_members));
1055 1.135 yamt LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1056 1.72 junyoung db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1057 1.61 dsl p->p_pid, p, p->p_pgrp, p->p_comm);
1058 1.10 mycroft }
1059 1.1 cgd }
1060 1.1 cgd }
1061 1.1 cgd }
1062 1.61 dsl #endif /* DDB */
1063 1.48 yamt
1064 1.48 yamt #ifdef KSTACK_CHECK_MAGIC
1065 1.48 yamt #include <sys/user.h>
1066 1.48 yamt
1067 1.48 yamt #define KSTACK_MAGIC 0xdeadbeaf
1068 1.48 yamt
1069 1.48 yamt /* XXX should be per process basis? */
1070 1.48 yamt int kstackleftmin = KSTACK_SIZE;
1071 1.50 enami int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1072 1.50 enami less than this */
1073 1.48 yamt
1074 1.48 yamt void
1075 1.56 yamt kstack_setup_magic(const struct lwp *l)
1076 1.48 yamt {
1077 1.85 perry uint32_t *ip;
1078 1.85 perry uint32_t const *end;
1079 1.48 yamt
1080 1.56 yamt KASSERT(l != NULL);
1081 1.56 yamt KASSERT(l != &lwp0);
1082 1.48 yamt
1083 1.48 yamt /*
1084 1.48 yamt * fill all the stack with magic number
1085 1.48 yamt * so that later modification on it can be detected.
1086 1.48 yamt */
1087 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1088 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1089 1.48 yamt for (; ip < end; ip++) {
1090 1.48 yamt *ip = KSTACK_MAGIC;
1091 1.48 yamt }
1092 1.48 yamt }
1093 1.48 yamt
1094 1.48 yamt void
1095 1.56 yamt kstack_check_magic(const struct lwp *l)
1096 1.48 yamt {
1097 1.85 perry uint32_t const *ip, *end;
1098 1.48 yamt int stackleft;
1099 1.48 yamt
1100 1.56 yamt KASSERT(l != NULL);
1101 1.48 yamt
1102 1.48 yamt /* don't check proc0 */ /*XXX*/
1103 1.56 yamt if (l == &lwp0)
1104 1.48 yamt return;
1105 1.48 yamt
1106 1.48 yamt #ifdef __MACHINE_STACK_GROWS_UP
1107 1.48 yamt /* stack grows upwards (eg. hppa) */
1108 1.106 christos ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1109 1.85 perry end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1110 1.48 yamt for (ip--; ip >= end; ip--)
1111 1.48 yamt if (*ip != KSTACK_MAGIC)
1112 1.48 yamt break;
1113 1.72 junyoung
1114 1.106 christos stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1115 1.48 yamt #else /* __MACHINE_STACK_GROWS_UP */
1116 1.48 yamt /* stack grows downwards (eg. i386) */
1117 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1118 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1119 1.48 yamt for (; ip < end; ip++)
1120 1.48 yamt if (*ip != KSTACK_MAGIC)
1121 1.48 yamt break;
1122 1.48 yamt
1123 1.93 christos stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1124 1.48 yamt #endif /* __MACHINE_STACK_GROWS_UP */
1125 1.48 yamt
1126 1.48 yamt if (kstackleftmin > stackleft) {
1127 1.48 yamt kstackleftmin = stackleft;
1128 1.48 yamt if (stackleft < kstackleftthres)
1129 1.56 yamt printf("warning: kernel stack left %d bytes"
1130 1.56 yamt "(pid %u:lid %u)\n", stackleft,
1131 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1132 1.48 yamt }
1133 1.48 yamt
1134 1.48 yamt if (stackleft <= 0) {
1135 1.56 yamt panic("magic on the top of kernel stack changed for "
1136 1.56 yamt "pid %u, lid %u: maybe kernel stack overflow",
1137 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1138 1.48 yamt }
1139 1.48 yamt }
1140 1.50 enami #endif /* KSTACK_CHECK_MAGIC */
1141 1.79 yamt
1142 1.79 yamt int
1143 1.79 yamt proclist_foreach_call(struct proclist *list,
1144 1.79 yamt int (*callback)(struct proc *, void *arg), void *arg)
1145 1.79 yamt {
1146 1.79 yamt struct proc marker;
1147 1.79 yamt struct proc *p;
1148 1.79 yamt struct lwp * const l = curlwp;
1149 1.79 yamt int ret = 0;
1150 1.79 yamt
1151 1.102 pavel marker.p_flag = PK_MARKER;
1152 1.113 ad uvm_lwp_hold(l);
1153 1.136 ad mutex_enter(proc_lock);
1154 1.79 yamt for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1155 1.102 pavel if (p->p_flag & PK_MARKER) {
1156 1.79 yamt p = LIST_NEXT(p, p_list);
1157 1.79 yamt continue;
1158 1.79 yamt }
1159 1.79 yamt LIST_INSERT_AFTER(p, &marker, p_list);
1160 1.79 yamt ret = (*callback)(p, arg);
1161 1.136 ad KASSERT(mutex_owned(proc_lock));
1162 1.79 yamt p = LIST_NEXT(&marker, p_list);
1163 1.79 yamt LIST_REMOVE(&marker, p_list);
1164 1.79 yamt }
1165 1.136 ad mutex_exit(proc_lock);
1166 1.113 ad uvm_lwp_rele(l);
1167 1.79 yamt
1168 1.79 yamt return ret;
1169 1.79 yamt }
1170 1.86 yamt
1171 1.86 yamt int
1172 1.86 yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1173 1.86 yamt {
1174 1.86 yamt
1175 1.86 yamt /* XXXCDC: how should locking work here? */
1176 1.86 yamt
1177 1.87 yamt /* curproc exception is for coredump. */
1178 1.87 yamt
1179 1.100 ad if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1180 1.86 yamt (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1181 1.86 yamt return EFAULT;
1182 1.86 yamt }
1183 1.86 yamt
1184 1.86 yamt uvmspace_addref(p->p_vmspace);
1185 1.86 yamt *vm = p->p_vmspace;
1186 1.86 yamt
1187 1.86 yamt return 0;
1188 1.86 yamt }
1189 1.94 ad
1190 1.94 ad /*
1191 1.94 ad * Acquire a write lock on the process credential.
1192 1.94 ad */
1193 1.94 ad void
1194 1.100 ad proc_crmod_enter(void)
1195 1.94 ad {
1196 1.100 ad struct lwp *l = curlwp;
1197 1.100 ad struct proc *p = l->l_proc;
1198 1.100 ad struct plimit *lim;
1199 1.100 ad kauth_cred_t oc;
1200 1.100 ad char *cn;
1201 1.94 ad
1202 1.117 dsl /* Reset what needs to be reset in plimit. */
1203 1.117 dsl if (p->p_limit->pl_corename != defcorename) {
1204 1.117 dsl lim_privatise(p, false);
1205 1.117 dsl lim = p->p_limit;
1206 1.117 dsl mutex_enter(&lim->pl_lock);
1207 1.117 dsl cn = lim->pl_corename;
1208 1.117 dsl lim->pl_corename = defcorename;
1209 1.117 dsl mutex_exit(&lim->pl_lock);
1210 1.117 dsl if (cn != defcorename)
1211 1.117 dsl free(cn, M_TEMP);
1212 1.117 dsl }
1213 1.117 dsl
1214 1.137 ad mutex_enter(p->p_lock);
1215 1.100 ad
1216 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1217 1.100 ad if ((oc = l->l_cred) != p->p_cred) {
1218 1.100 ad kauth_cred_hold(p->p_cred);
1219 1.100 ad l->l_cred = p->p_cred;
1220 1.100 ad kauth_cred_free(oc);
1221 1.100 ad }
1222 1.100 ad
1223 1.94 ad }
1224 1.94 ad
1225 1.94 ad /*
1226 1.100 ad * Set in a new process credential, and drop the write lock. The credential
1227 1.100 ad * must have a reference already. Optionally, free a no-longer required
1228 1.100 ad * credential. The scheduler also needs to inspect p_cred, so we also
1229 1.100 ad * briefly acquire the sched state mutex.
1230 1.94 ad */
1231 1.94 ad void
1232 1.104 thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1233 1.94 ad {
1234 1.133 ad struct lwp *l = curlwp, *l2;
1235 1.100 ad struct proc *p = l->l_proc;
1236 1.100 ad kauth_cred_t oc;
1237 1.100 ad
1238 1.137 ad KASSERT(mutex_owned(p->p_lock));
1239 1.137 ad
1240 1.100 ad /* Is there a new credential to set in? */
1241 1.100 ad if (scred != NULL) {
1242 1.100 ad p->p_cred = scred;
1243 1.133 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1244 1.133 ad if (l2 != l)
1245 1.133 ad l2->l_prflag |= LPR_CRMOD;
1246 1.133 ad }
1247 1.100 ad
1248 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1249 1.100 ad if ((oc = l->l_cred) != scred) {
1250 1.100 ad kauth_cred_hold(scred);
1251 1.100 ad l->l_cred = scred;
1252 1.100 ad }
1253 1.100 ad } else
1254 1.100 ad oc = NULL; /* XXXgcc */
1255 1.100 ad
1256 1.100 ad if (sugid) {
1257 1.100 ad /*
1258 1.100 ad * Mark process as having changed credentials, stops
1259 1.100 ad * tracing etc.
1260 1.100 ad */
1261 1.102 pavel p->p_flag |= PK_SUGID;
1262 1.100 ad }
1263 1.94 ad
1264 1.137 ad mutex_exit(p->p_lock);
1265 1.100 ad
1266 1.100 ad /* If there is a credential to be released, free it now. */
1267 1.100 ad if (fcred != NULL) {
1268 1.100 ad KASSERT(scred != NULL);
1269 1.94 ad kauth_cred_free(fcred);
1270 1.100 ad if (oc != scred)
1271 1.100 ad kauth_cred_free(oc);
1272 1.100 ad }
1273 1.100 ad }
1274 1.100 ad
1275 1.100 ad /*
1276 1.95 thorpej * proc_specific_key_create --
1277 1.95 thorpej * Create a key for subsystem proc-specific data.
1278 1.95 thorpej */
1279 1.95 thorpej int
1280 1.95 thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1281 1.95 thorpej {
1282 1.95 thorpej
1283 1.98 thorpej return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1284 1.95 thorpej }
1285 1.95 thorpej
1286 1.95 thorpej /*
1287 1.95 thorpej * proc_specific_key_delete --
1288 1.95 thorpej * Delete a key for subsystem proc-specific data.
1289 1.95 thorpej */
1290 1.95 thorpej void
1291 1.95 thorpej proc_specific_key_delete(specificdata_key_t key)
1292 1.95 thorpej {
1293 1.95 thorpej
1294 1.95 thorpej specificdata_key_delete(proc_specificdata_domain, key);
1295 1.95 thorpej }
1296 1.95 thorpej
1297 1.98 thorpej /*
1298 1.98 thorpej * proc_initspecific --
1299 1.98 thorpej * Initialize a proc's specificdata container.
1300 1.98 thorpej */
1301 1.96 christos void
1302 1.96 christos proc_initspecific(struct proc *p)
1303 1.96 christos {
1304 1.96 christos int error;
1305 1.98 thorpej
1306 1.96 christos error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1307 1.96 christos KASSERT(error == 0);
1308 1.96 christos }
1309 1.96 christos
1310 1.95 thorpej /*
1311 1.98 thorpej * proc_finispecific --
1312 1.98 thorpej * Finalize a proc's specificdata container.
1313 1.98 thorpej */
1314 1.98 thorpej void
1315 1.98 thorpej proc_finispecific(struct proc *p)
1316 1.98 thorpej {
1317 1.98 thorpej
1318 1.98 thorpej specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1319 1.98 thorpej }
1320 1.98 thorpej
1321 1.98 thorpej /*
1322 1.95 thorpej * proc_getspecific --
1323 1.95 thorpej * Return proc-specific data corresponding to the specified key.
1324 1.95 thorpej */
1325 1.95 thorpej void *
1326 1.95 thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
1327 1.95 thorpej {
1328 1.95 thorpej
1329 1.95 thorpej return (specificdata_getspecific(proc_specificdata_domain,
1330 1.95 thorpej &p->p_specdataref, key));
1331 1.95 thorpej }
1332 1.95 thorpej
1333 1.95 thorpej /*
1334 1.95 thorpej * proc_setspecific --
1335 1.95 thorpej * Set proc-specific data corresponding to the specified key.
1336 1.95 thorpej */
1337 1.95 thorpej void
1338 1.95 thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1339 1.95 thorpej {
1340 1.95 thorpej
1341 1.95 thorpej specificdata_setspecific(proc_specificdata_domain,
1342 1.95 thorpej &p->p_specdataref, key, data);
1343 1.95 thorpej }
1344