Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.147.2.2
      1  1.147.2.2       jym /*	$NetBSD: kern_proc.c,v 1.147.2.2 2009/07/23 23:32:34 jym Exp $	*/
      2       1.33   thorpej 
      3       1.33   thorpej /*-
      4      1.131        ad  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.33   thorpej  * All rights reserved.
      6       1.33   thorpej  *
      7       1.33   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.33   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.100        ad  * NASA Ames Research Center, and by Andrew Doran.
     10       1.33   thorpej  *
     11       1.33   thorpej  * Redistribution and use in source and binary forms, with or without
     12       1.33   thorpej  * modification, are permitted provided that the following conditions
     13       1.33   thorpej  * are met:
     14       1.33   thorpej  * 1. Redistributions of source code must retain the above copyright
     15       1.33   thorpej  *    notice, this list of conditions and the following disclaimer.
     16       1.33   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.33   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18       1.33   thorpej  *    documentation and/or other materials provided with the distribution.
     19       1.33   thorpej  *
     20       1.33   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21       1.33   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22       1.33   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23       1.33   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24       1.33   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25       1.33   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26       1.33   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27       1.33   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28       1.33   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29       1.33   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30       1.33   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31       1.33   thorpej  */
     32        1.9       cgd 
     33        1.1       cgd /*
     34        1.7       cgd  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35        1.7       cgd  *	The Regents of the University of California.  All rights reserved.
     36        1.1       cgd  *
     37        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     38        1.1       cgd  * modification, are permitted provided that the following conditions
     39        1.1       cgd  * are met:
     40        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     41        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     42        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     43        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     44        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     45       1.65       agc  * 3. Neither the name of the University nor the names of its contributors
     46        1.1       cgd  *    may be used to endorse or promote products derived from this software
     47        1.1       cgd  *    without specific prior written permission.
     48        1.1       cgd  *
     49        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59        1.1       cgd  * SUCH DAMAGE.
     60        1.1       cgd  *
     61       1.23      fvdl  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62        1.1       cgd  */
     63       1.45     lukem 
     64       1.45     lukem #include <sys/cdefs.h>
     65  1.147.2.2       jym __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.147.2.2 2009/07/23 23:32:34 jym Exp $");
     66       1.48      yamt 
     67       1.48      yamt #include "opt_kstack.h"
     68       1.88      onoe #include "opt_maxuprc.h"
     69        1.1       cgd 
     70        1.5   mycroft #include <sys/param.h>
     71        1.5   mycroft #include <sys/systm.h>
     72        1.5   mycroft #include <sys/kernel.h>
     73        1.5   mycroft #include <sys/proc.h>
     74       1.28   thorpej #include <sys/resourcevar.h>
     75        1.5   mycroft #include <sys/buf.h>
     76        1.5   mycroft #include <sys/acct.h>
     77        1.5   mycroft #include <sys/wait.h>
     78        1.5   mycroft #include <sys/file.h>
     79        1.8   mycroft #include <ufs/ufs/quota.h>
     80        1.5   mycroft #include <sys/uio.h>
     81       1.24   thorpej #include <sys/pool.h>
     82      1.147     rmind #include <sys/pset.h>
     83        1.5   mycroft #include <sys/mbuf.h>
     84        1.5   mycroft #include <sys/ioctl.h>
     85        1.5   mycroft #include <sys/tty.h>
     86       1.11       cgd #include <sys/signalvar.h>
     87       1.51  gmcgarry #include <sys/ras.h>
     88      1.144  wrstuden #include <sys/sa.h>
     89      1.144  wrstuden #include <sys/savar.h>
     90       1.81  junyoung #include <sys/filedesc.h>
     91      1.103       dsl #include "sys/syscall_stats.h"
     92       1.89      elad #include <sys/kauth.h>
     93      1.100        ad #include <sys/sleepq.h>
     94      1.126        ad #include <sys/atomic.h>
     95      1.131        ad #include <sys/kmem.h>
     96       1.81  junyoung 
     97       1.81  junyoung #include <uvm/uvm.h>
     98       1.79      yamt #include <uvm/uvm_extern.h>
     99        1.5   mycroft 
    100        1.7       cgd /*
    101       1.10   mycroft  * Other process lists
    102        1.7       cgd  */
    103       1.31   thorpej 
    104       1.10   mycroft struct proclist allproc;
    105       1.32   thorpej struct proclist zombproc;	/* resources have been freed */
    106       1.32   thorpej 
    107      1.136        ad kmutex_t	*proc_lock;
    108       1.33   thorpej 
    109       1.33   thorpej /*
    110       1.72  junyoung  * pid to proc lookup is done by indexing the pid_table array.
    111       1.61       dsl  * Since pid numbers are only allocated when an empty slot
    112       1.61       dsl  * has been found, there is no need to search any lists ever.
    113       1.61       dsl  * (an orphaned pgrp will lock the slot, a session will lock
    114       1.61       dsl  * the pgrp with the same number.)
    115       1.61       dsl  * If the table is too small it is reallocated with twice the
    116       1.61       dsl  * previous size and the entries 'unzipped' into the two halves.
    117       1.61       dsl  * A linked list of free entries is passed through the pt_proc
    118       1.61       dsl  * field of 'free' items - set odd to be an invalid ptr.
    119       1.61       dsl  */
    120       1.61       dsl 
    121       1.61       dsl struct pid_table {
    122       1.61       dsl 	struct proc	*pt_proc;
    123       1.61       dsl 	struct pgrp	*pt_pgrp;
    124       1.72  junyoung };
    125       1.61       dsl #if 1	/* strongly typed cast - should be a noop */
    126       1.84     perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    127       1.61       dsl #else
    128       1.61       dsl #define p2u(p) ((uint)p)
    129       1.72  junyoung #endif
    130       1.61       dsl #define P_VALID(p) (!(p2u(p) & 1))
    131       1.61       dsl #define P_NEXT(p) (p2u(p) >> 1)
    132       1.61       dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    133       1.61       dsl 
    134       1.61       dsl #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    135       1.61       dsl static struct pid_table *pid_table;
    136       1.61       dsl static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    137       1.61       dsl static uint pid_alloc_lim;	/* max we allocate before growing table */
    138       1.61       dsl static uint pid_alloc_cnt;	/* number of allocated pids */
    139       1.61       dsl 
    140       1.61       dsl /* links through free slots - never empty! */
    141       1.61       dsl static uint next_free_pt, last_free_pt;
    142       1.61       dsl static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    143       1.31   thorpej 
    144       1.81  junyoung /* Components of the first process -- never freed. */
    145      1.123      matt 
    146      1.145        ad extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    147      1.123      matt 
    148      1.123      matt struct session session0 = {
    149      1.123      matt 	.s_count = 1,
    150      1.123      matt 	.s_sid = 0,
    151      1.123      matt };
    152      1.123      matt struct pgrp pgrp0 = {
    153      1.123      matt 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    154      1.123      matt 	.pg_session = &session0,
    155      1.123      matt };
    156      1.132        ad filedesc_t filedesc0;
    157      1.123      matt struct cwdinfo cwdi0 = {
    158      1.123      matt 	.cwdi_cmask = CMASK,		/* see cmask below */
    159      1.123      matt 	.cwdi_refcnt = 1,
    160      1.123      matt };
    161      1.143  gmcgarry struct plimit limit0;
    162       1.81  junyoung struct pstats pstat0;
    163       1.81  junyoung struct vmspace vmspace0;
    164       1.81  junyoung struct sigacts sigacts0;
    165      1.100        ad struct turnstile turnstile0;
    166      1.123      matt struct proc proc0 = {
    167      1.123      matt 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    168      1.123      matt 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    169      1.123      matt 	.p_nlwps = 1,
    170      1.123      matt 	.p_nrlwps = 1,
    171      1.123      matt 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    172      1.123      matt 	.p_pgrp = &pgrp0,
    173      1.123      matt 	.p_comm = "system",
    174      1.123      matt 	/*
    175      1.123      matt 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    176      1.123      matt 	 * when they exit.  init(8) can easily wait them out for us.
    177      1.123      matt 	 */
    178      1.123      matt 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    179      1.123      matt 	.p_stat = SACTIVE,
    180      1.123      matt 	.p_nice = NZERO,
    181      1.123      matt 	.p_emul = &emul_netbsd,
    182      1.123      matt 	.p_cwdi = &cwdi0,
    183      1.123      matt 	.p_limit = &limit0,
    184      1.132        ad 	.p_fd = &filedesc0,
    185      1.123      matt 	.p_vmspace = &vmspace0,
    186      1.123      matt 	.p_stats = &pstat0,
    187      1.123      matt 	.p_sigacts = &sigacts0,
    188      1.123      matt };
    189      1.123      matt struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    190      1.123      matt #ifdef LWP0_CPU_INFO
    191      1.123      matt 	.l_cpu = LWP0_CPU_INFO,
    192      1.123      matt #endif
    193      1.123      matt 	.l_proc = &proc0,
    194      1.123      matt 	.l_lid = 1,
    195      1.123      matt 	.l_flag = LW_INMEM | LW_SYSTEM,
    196      1.123      matt 	.l_stat = LSONPROC,
    197      1.123      matt 	.l_ts = &turnstile0,
    198      1.123      matt 	.l_syncobj = &sched_syncobj,
    199      1.123      matt 	.l_refcnt = 1,
    200      1.123      matt 	.l_priority = PRI_USER + NPRI_USER - 1,
    201      1.123      matt 	.l_inheritedprio = -1,
    202      1.123      matt 	.l_class = SCHED_OTHER,
    203      1.147     rmind 	.l_psid = PS_NONE,
    204      1.123      matt 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    205      1.123      matt 	.l_name = __UNCONST("swapper"),
    206  1.147.2.2       jym 	.l_fd = &filedesc0,
    207      1.123      matt };
    208      1.123      matt kauth_cred_t cred0;
    209       1.81  junyoung 
    210       1.81  junyoung extern struct user *proc0paddr;
    211       1.81  junyoung 
    212       1.81  junyoung int nofile = NOFILE;
    213       1.81  junyoung int maxuprc = MAXUPRC;
    214       1.81  junyoung int cmask = CMASK;
    215       1.81  junyoung 
    216       1.57   thorpej MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    217       1.57   thorpej MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    218       1.10   mycroft 
    219       1.31   thorpej /*
    220       1.31   thorpej  * The process list descriptors, used during pid allocation and
    221       1.31   thorpej  * by sysctl.  No locking on this data structure is needed since
    222       1.31   thorpej  * it is completely static.
    223       1.31   thorpej  */
    224       1.31   thorpej const struct proclist_desc proclists[] = {
    225       1.31   thorpej 	{ &allproc	},
    226       1.31   thorpej 	{ &zombproc	},
    227       1.31   thorpej 	{ NULL		},
    228       1.31   thorpej };
    229       1.31   thorpej 
    230  1.147.2.1       jym static struct pgrp *	pg_remove(pid_t);
    231  1.147.2.1       jym static void		pg_delete(pid_t);
    232  1.147.2.1       jym static void		orphanpg(struct pgrp *);
    233       1.13  christos 
    234       1.95   thorpej static specificdata_domain_t proc_specificdata_domain;
    235       1.95   thorpej 
    236      1.128        ad static pool_cache_t proc_cache;
    237      1.128        ad 
    238       1.10   mycroft /*
    239       1.10   mycroft  * Initialize global process hashing structures.
    240       1.10   mycroft  */
    241       1.11       cgd void
    242       1.59       dsl procinit(void)
    243        1.7       cgd {
    244       1.31   thorpej 	const struct proclist_desc *pd;
    245  1.147.2.1       jym 	u_int i;
    246       1.61       dsl #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    247       1.31   thorpej 
    248       1.31   thorpej 	for (pd = proclists; pd->pd_list != NULL; pd++)
    249       1.31   thorpej 		LIST_INIT(pd->pd_list);
    250        1.7       cgd 
    251      1.136        ad 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    252  1.147.2.1       jym 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    253  1.147.2.1       jym 	    * sizeof(struct pid_table), KM_SLEEP);
    254       1.33   thorpej 
    255       1.61       dsl 	/* Set free list running through table...
    256       1.61       dsl 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    257       1.61       dsl 	for (i = 0; i <= pid_tbl_mask; i++) {
    258       1.61       dsl 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    259       1.61       dsl 		pid_table[i].pt_pgrp = 0;
    260       1.61       dsl 	}
    261       1.61       dsl 	/* slot 0 is just grabbed */
    262       1.61       dsl 	next_free_pt = 1;
    263       1.61       dsl 	/* Need to fix last entry. */
    264       1.61       dsl 	last_free_pt = pid_tbl_mask;
    265       1.61       dsl 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    266       1.61       dsl 	/* point at which we grow table - to avoid reusing pids too often */
    267       1.61       dsl 	pid_alloc_lim = pid_tbl_mask - 1;
    268       1.61       dsl #undef LINK_EMPTY
    269       1.61       dsl 
    270       1.95   thorpej 	proc_specificdata_domain = specificdata_domain_create();
    271       1.95   thorpej 	KASSERT(proc_specificdata_domain != NULL);
    272      1.128        ad 
    273      1.128        ad 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    274      1.128        ad 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    275        1.7       cgd }
    276        1.1       cgd 
    277        1.7       cgd /*
    278       1.81  junyoung  * Initialize process 0.
    279       1.81  junyoung  */
    280       1.81  junyoung void
    281       1.81  junyoung proc0_init(void)
    282       1.81  junyoung {
    283       1.81  junyoung 	struct proc *p;
    284       1.81  junyoung 	struct pgrp *pg;
    285       1.81  junyoung 	struct session *sess;
    286       1.81  junyoung 	struct lwp *l;
    287       1.81  junyoung 	rlim_t lim;
    288      1.143  gmcgarry 	int i;
    289       1.81  junyoung 
    290       1.81  junyoung 	p = &proc0;
    291       1.81  junyoung 	pg = &pgrp0;
    292       1.81  junyoung 	sess = &session0;
    293       1.81  junyoung 	l = &lwp0;
    294       1.81  junyoung 
    295      1.123      matt 	KASSERT(l->l_lid == p->p_nlwpid);
    296      1.123      matt 
    297      1.127        ad 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    298      1.129        ad 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    299      1.113        ad 	mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    300      1.137        ad 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    301      1.107        ad 
    302      1.122        ad 	rw_init(&p->p_reflock);
    303      1.100        ad 	cv_init(&p->p_waitcv, "wait");
    304      1.100        ad 	cv_init(&p->p_lwpcv, "lwpwait");
    305      1.100        ad 
    306       1.81  junyoung 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    307      1.100        ad 
    308       1.81  junyoung 	pid_table[0].pt_proc = p;
    309       1.81  junyoung 	LIST_INSERT_HEAD(&allproc, p, p_list);
    310       1.81  junyoung 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    311       1.81  junyoung 
    312       1.81  junyoung 	pid_table[0].pt_pgrp = pg;
    313       1.81  junyoung 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    314       1.81  junyoung 
    315       1.81  junyoung #ifdef __HAVE_SYSCALL_INTERN
    316       1.81  junyoung 	(*p->p_emul->e_syscall_intern)(p);
    317       1.81  junyoung #endif
    318       1.81  junyoung 
    319      1.121        ad 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    320      1.115        ad 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    321      1.100        ad 	cv_init(&l->l_sigcv, "sigwait");
    322       1.81  junyoung 
    323       1.81  junyoung 	/* Create credentials. */
    324       1.89      elad 	cred0 = kauth_cred_alloc();
    325       1.89      elad 	p->p_cred = cred0;
    326      1.100        ad 	kauth_cred_hold(cred0);
    327      1.100        ad 	l->l_cred = cred0;
    328       1.81  junyoung 
    329       1.81  junyoung 	/* Create the CWD info. */
    330      1.113        ad 	rw_init(&cwdi0.cwdi_lock);
    331       1.81  junyoung 
    332       1.81  junyoung 	/* Create the limits structures. */
    333      1.116       dsl 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    334      1.143  gmcgarry 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
    335      1.143  gmcgarry 		limit0.pl_rlimit[i].rlim_cur =
    336      1.143  gmcgarry 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    337       1.81  junyoung 
    338       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    339       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    340       1.81  junyoung 	    maxfiles < nofile ? maxfiles : nofile;
    341       1.81  junyoung 
    342       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    343       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    344       1.81  junyoung 	    maxproc < maxuprc ? maxproc : maxuprc;
    345       1.81  junyoung 
    346       1.81  junyoung 	lim = ptoa(uvmexp.free);
    347       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    348       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    349       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    350      1.143  gmcgarry 	limit0.pl_corename = defcorename;
    351      1.143  gmcgarry 	limit0.pl_refcnt = 1;
    352      1.143  gmcgarry 	limit0.pl_sv_limit = NULL;
    353       1.81  junyoung 
    354       1.81  junyoung 	/* Configure virtual memory system, set vm rlimits. */
    355       1.81  junyoung 	uvm_init_limits(p);
    356       1.81  junyoung 
    357       1.81  junyoung 	/* Initialize file descriptor table for proc0. */
    358      1.132        ad 	fd_init(&filedesc0);
    359       1.81  junyoung 
    360       1.81  junyoung 	/*
    361       1.81  junyoung 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    362       1.81  junyoung 	 * All kernel processes (which never have user space mappings)
    363       1.81  junyoung 	 * share proc0's vmspace, and thus, the kernel pmap.
    364       1.81  junyoung 	 */
    365       1.81  junyoung 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    366       1.81  junyoung 	    trunc_page(VM_MAX_ADDRESS));
    367       1.81  junyoung 
    368       1.81  junyoung 	l->l_addr = proc0paddr;				/* XXX */
    369       1.81  junyoung 
    370      1.127        ad 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    371      1.127        ad 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    372       1.81  junyoung 	siginit(p);
    373       1.96  christos 
    374       1.96  christos 	proc_initspecific(p);
    375       1.96  christos 	lwp_initspecific(l);
    376      1.103       dsl 
    377      1.103       dsl 	SYSCALL_TIME_LWP_INIT(l);
    378       1.81  junyoung }
    379       1.81  junyoung 
    380       1.81  junyoung /*
    381  1.147.2.1       jym  * Session reference counting.
    382  1.147.2.1       jym  */
    383  1.147.2.1       jym 
    384  1.147.2.1       jym void
    385  1.147.2.1       jym proc_sesshold(struct session *ss)
    386  1.147.2.1       jym {
    387  1.147.2.1       jym 
    388  1.147.2.1       jym 	KASSERT(mutex_owned(proc_lock));
    389  1.147.2.1       jym 	ss->s_count++;
    390  1.147.2.1       jym }
    391  1.147.2.1       jym 
    392  1.147.2.1       jym void
    393  1.147.2.1       jym proc_sessrele(struct session *ss)
    394  1.147.2.1       jym {
    395  1.147.2.1       jym 
    396  1.147.2.1       jym 	KASSERT(mutex_owned(proc_lock));
    397  1.147.2.1       jym 	/*
    398  1.147.2.1       jym 	 * We keep the pgrp with the same id as the session in order to
    399  1.147.2.1       jym 	 * stop a process being given the same pid.  Since the pgrp holds
    400  1.147.2.1       jym 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    401  1.147.2.1       jym 	 */
    402  1.147.2.1       jym 	if (--ss->s_count == 0) {
    403  1.147.2.1       jym 		struct pgrp *pg;
    404  1.147.2.1       jym 
    405  1.147.2.1       jym 		pg = pg_remove(ss->s_sid);
    406  1.147.2.1       jym 		mutex_exit(proc_lock);
    407  1.147.2.1       jym 
    408  1.147.2.1       jym 		kmem_free(pg, sizeof(struct pgrp));
    409  1.147.2.1       jym 		kmem_free(ss, sizeof(struct session));
    410  1.147.2.1       jym 	} else {
    411  1.147.2.1       jym 		mutex_exit(proc_lock);
    412  1.147.2.1       jym 	}
    413  1.147.2.1       jym }
    414  1.147.2.1       jym 
    415  1.147.2.1       jym /*
    416       1.74  junyoung  * Check that the specified process group is in the session of the
    417       1.60       dsl  * specified process.
    418       1.60       dsl  * Treats -ve ids as process ids.
    419       1.60       dsl  * Used to validate TIOCSPGRP requests.
    420       1.60       dsl  */
    421       1.60       dsl int
    422       1.60       dsl pgid_in_session(struct proc *p, pid_t pg_id)
    423       1.60       dsl {
    424       1.60       dsl 	struct pgrp *pgrp;
    425      1.101       dsl 	struct session *session;
    426      1.107        ad 	int error;
    427      1.101       dsl 
    428      1.136        ad 	mutex_enter(proc_lock);
    429       1.60       dsl 	if (pg_id < 0) {
    430      1.101       dsl 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    431       1.64       dsl 		if (p1 == NULL)
    432       1.64       dsl 			return EINVAL;
    433       1.60       dsl 		pgrp = p1->p_pgrp;
    434       1.60       dsl 	} else {
    435      1.101       dsl 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    436       1.60       dsl 		if (pgrp == NULL)
    437       1.64       dsl 			return EINVAL;
    438       1.60       dsl 	}
    439      1.101       dsl 	session = pgrp->pg_session;
    440      1.101       dsl 	if (session != p->p_pgrp->pg_session)
    441      1.107        ad 		error = EPERM;
    442      1.107        ad 	else
    443      1.107        ad 		error = 0;
    444      1.136        ad 	mutex_exit(proc_lock);
    445      1.107        ad 
    446      1.107        ad 	return error;
    447        1.7       cgd }
    448        1.4    andrew 
    449        1.1       cgd /*
    450  1.147.2.1       jym  * p_inferior: is p an inferior of q?
    451        1.1       cgd  */
    452  1.147.2.1       jym static inline bool
    453  1.147.2.1       jym p_inferior(struct proc *p, struct proc *q)
    454        1.1       cgd {
    455        1.1       cgd 
    456  1.147.2.1       jym 	KASSERT(mutex_owned(proc_lock));
    457  1.147.2.1       jym 
    458       1.41  sommerfe 	for (; p != q; p = p->p_pptr)
    459        1.1       cgd 		if (p->p_pid == 0)
    460  1.147.2.1       jym 			return false;
    461  1.147.2.1       jym 	return true;
    462        1.1       cgd }
    463        1.1       cgd 
    464        1.1       cgd /*
    465        1.1       cgd  * Locate a process by number
    466        1.1       cgd  */
    467        1.1       cgd struct proc *
    468       1.68       dsl p_find(pid_t pid, uint flags)
    469        1.1       cgd {
    470       1.33   thorpej 	struct proc *p;
    471       1.68       dsl 	char stat;
    472        1.1       cgd 
    473       1.68       dsl 	if (!(flags & PFIND_LOCKED))
    474      1.136        ad 		mutex_enter(proc_lock);
    475      1.100        ad 
    476       1.61       dsl 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    477      1.100        ad 
    478       1.61       dsl 	/* Only allow live processes to be found by pid. */
    479      1.100        ad 	/* XXXSMP p_stat */
    480      1.100        ad 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    481      1.100        ad 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    482      1.100        ad 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    483       1.68       dsl 		if (flags & PFIND_UNLOCK_OK)
    484      1.136        ad 			 mutex_exit(proc_lock);
    485       1.68       dsl 		return p;
    486       1.68       dsl 	}
    487       1.68       dsl 	if (flags & PFIND_UNLOCK_FAIL)
    488      1.136        ad 		mutex_exit(proc_lock);
    489       1.68       dsl 	return NULL;
    490        1.1       cgd }
    491        1.1       cgd 
    492       1.61       dsl 
    493        1.1       cgd /*
    494        1.1       cgd  * Locate a process group by number
    495        1.1       cgd  */
    496        1.1       cgd struct pgrp *
    497       1.68       dsl pg_find(pid_t pgid, uint flags)
    498        1.1       cgd {
    499       1.68       dsl 	struct pgrp *pg;
    500        1.1       cgd 
    501       1.68       dsl 	if (!(flags & PFIND_LOCKED))
    502      1.136        ad 		mutex_enter(proc_lock);
    503       1.68       dsl 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    504       1.61       dsl 	/*
    505       1.61       dsl 	 * Can't look up a pgrp that only exists because the session
    506       1.61       dsl 	 * hasn't died yet (traditional)
    507       1.61       dsl 	 */
    508       1.68       dsl 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    509       1.68       dsl 		if (flags & PFIND_UNLOCK_FAIL)
    510      1.136        ad 			 mutex_exit(proc_lock);
    511       1.68       dsl 		return NULL;
    512       1.68       dsl 	}
    513       1.68       dsl 
    514       1.68       dsl 	if (flags & PFIND_UNLOCK_OK)
    515      1.136        ad 		mutex_exit(proc_lock);
    516       1.68       dsl 	return pg;
    517        1.1       cgd }
    518        1.1       cgd 
    519       1.61       dsl static void
    520       1.61       dsl expand_pid_table(void)
    521        1.1       cgd {
    522  1.147.2.1       jym 	size_t pt_size, tsz;
    523       1.61       dsl 	struct pid_table *n_pt, *new_pt;
    524       1.61       dsl 	struct proc *proc;
    525       1.61       dsl 	struct pgrp *pgrp;
    526       1.61       dsl 	pid_t pid;
    527  1.147.2.1       jym 	u_int i;
    528        1.1       cgd 
    529  1.147.2.1       jym 	pt_size = pid_tbl_mask + 1;
    530  1.147.2.1       jym 	tsz = pt_size * 2 * sizeof(struct pid_table);
    531  1.147.2.1       jym 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    532       1.61       dsl 
    533      1.136        ad 	mutex_enter(proc_lock);
    534       1.61       dsl 	if (pt_size != pid_tbl_mask + 1) {
    535       1.61       dsl 		/* Another process beat us to it... */
    536      1.136        ad 		mutex_exit(proc_lock);
    537  1.147.2.1       jym 		kmem_free(new_pt, tsz);
    538       1.61       dsl 		return;
    539       1.61       dsl 	}
    540       1.72  junyoung 
    541       1.61       dsl 	/*
    542       1.61       dsl 	 * Copy entries from old table into new one.
    543       1.61       dsl 	 * If 'pid' is 'odd' we need to place in the upper half,
    544       1.61       dsl 	 * even pid's to the lower half.
    545       1.61       dsl 	 * Free items stay in the low half so we don't have to
    546       1.61       dsl 	 * fixup the reference to them.
    547       1.61       dsl 	 * We stuff free items on the front of the freelist
    548       1.61       dsl 	 * because we can't write to unmodified entries.
    549       1.74  junyoung 	 * Processing the table backwards maintains a semblance
    550       1.61       dsl 	 * of issueing pid numbers that increase with time.
    551       1.61       dsl 	 */
    552       1.61       dsl 	i = pt_size - 1;
    553       1.61       dsl 	n_pt = new_pt + i;
    554       1.61       dsl 	for (; ; i--, n_pt--) {
    555       1.61       dsl 		proc = pid_table[i].pt_proc;
    556       1.61       dsl 		pgrp = pid_table[i].pt_pgrp;
    557       1.61       dsl 		if (!P_VALID(proc)) {
    558       1.61       dsl 			/* Up 'use count' so that link is valid */
    559       1.61       dsl 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    560       1.61       dsl 			proc = P_FREE(pid);
    561       1.61       dsl 			if (pgrp)
    562       1.61       dsl 				pid = pgrp->pg_id;
    563       1.61       dsl 		} else
    564       1.61       dsl 			pid = proc->p_pid;
    565       1.72  junyoung 
    566       1.61       dsl 		/* Save entry in appropriate half of table */
    567       1.61       dsl 		n_pt[pid & pt_size].pt_proc = proc;
    568       1.61       dsl 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    569       1.61       dsl 
    570       1.61       dsl 		/* Put other piece on start of free list */
    571       1.61       dsl 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    572       1.61       dsl 		n_pt[pid & pt_size].pt_proc =
    573       1.61       dsl 				    P_FREE((pid & ~pt_size) | next_free_pt);
    574       1.61       dsl 		n_pt[pid & pt_size].pt_pgrp = 0;
    575       1.61       dsl 		next_free_pt = i | (pid & pt_size);
    576       1.61       dsl 		if (i == 0)
    577       1.61       dsl 			break;
    578       1.61       dsl 	}
    579       1.61       dsl 
    580  1.147.2.1       jym 	/* Save old table size and switch tables */
    581  1.147.2.1       jym 	tsz = pt_size * sizeof(struct pid_table);
    582       1.61       dsl 	n_pt = pid_table;
    583       1.61       dsl 	pid_table = new_pt;
    584       1.61       dsl 	pid_tbl_mask = pt_size * 2 - 1;
    585       1.61       dsl 
    586       1.61       dsl 	/*
    587       1.61       dsl 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    588       1.61       dsl 	 * allocated pids we need it to be larger!
    589       1.61       dsl 	 */
    590       1.61       dsl 	if (pid_tbl_mask > PID_MAX) {
    591       1.61       dsl 		pid_max = pid_tbl_mask * 2 + 1;
    592       1.61       dsl 		pid_alloc_lim |= pid_alloc_lim << 1;
    593       1.61       dsl 	} else
    594       1.61       dsl 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    595       1.61       dsl 
    596      1.136        ad 	mutex_exit(proc_lock);
    597  1.147.2.1       jym 	kmem_free(n_pt, tsz);
    598       1.61       dsl }
    599       1.61       dsl 
    600       1.61       dsl struct proc *
    601       1.61       dsl proc_alloc(void)
    602       1.61       dsl {
    603       1.61       dsl 	struct proc *p;
    604      1.100        ad 	int nxt;
    605       1.61       dsl 	pid_t pid;
    606       1.61       dsl 	struct pid_table *pt;
    607       1.61       dsl 
    608      1.128        ad 	p = pool_cache_get(proc_cache, PR_WAITOK);
    609       1.61       dsl 	p->p_stat = SIDL;			/* protect against others */
    610       1.61       dsl 
    611       1.96  christos 	proc_initspecific(p);
    612       1.61       dsl 	/* allocate next free pid */
    613       1.61       dsl 
    614       1.61       dsl 	for (;;expand_pid_table()) {
    615       1.61       dsl 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    616       1.61       dsl 			/* ensure pids cycle through 2000+ values */
    617       1.61       dsl 			continue;
    618      1.136        ad 		mutex_enter(proc_lock);
    619       1.61       dsl 		pt = &pid_table[next_free_pt];
    620        1.1       cgd #ifdef DIAGNOSTIC
    621       1.63  christos 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    622       1.61       dsl 			panic("proc_alloc: slot busy");
    623        1.1       cgd #endif
    624       1.61       dsl 		nxt = P_NEXT(pt->pt_proc);
    625       1.61       dsl 		if (nxt & pid_tbl_mask)
    626       1.61       dsl 			break;
    627       1.61       dsl 		/* Table full - expand (NB last entry not used....) */
    628      1.136        ad 		mutex_exit(proc_lock);
    629       1.61       dsl 	}
    630       1.61       dsl 
    631       1.61       dsl 	/* pid is 'saved use count' + 'size' + entry */
    632       1.61       dsl 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    633       1.61       dsl 	if ((uint)pid > (uint)pid_max)
    634       1.61       dsl 		pid &= pid_tbl_mask;
    635       1.61       dsl 	p->p_pid = pid;
    636       1.61       dsl 	next_free_pt = nxt & pid_tbl_mask;
    637       1.61       dsl 
    638       1.61       dsl 	/* Grab table slot */
    639       1.61       dsl 	pt->pt_proc = p;
    640       1.61       dsl 	pid_alloc_cnt++;
    641       1.61       dsl 
    642      1.136        ad 	mutex_exit(proc_lock);
    643       1.61       dsl 
    644       1.61       dsl 	return p;
    645       1.61       dsl }
    646       1.61       dsl 
    647       1.61       dsl /*
    648      1.118        ad  * Free a process id - called from proc_free (in kern_exit.c)
    649      1.100        ad  *
    650      1.136        ad  * Called with the proc_lock held.
    651       1.61       dsl  */
    652       1.61       dsl void
    653      1.118        ad proc_free_pid(struct proc *p)
    654       1.61       dsl {
    655       1.61       dsl 	pid_t pid = p->p_pid;
    656       1.61       dsl 	struct pid_table *pt;
    657       1.61       dsl 
    658      1.136        ad 	KASSERT(mutex_owned(proc_lock));
    659       1.61       dsl 
    660       1.61       dsl 	pt = &pid_table[pid & pid_tbl_mask];
    661        1.1       cgd #ifdef DIAGNOSTIC
    662       1.63  christos 	if (__predict_false(pt->pt_proc != p))
    663       1.61       dsl 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    664       1.61       dsl 			pid, p);
    665        1.1       cgd #endif
    666       1.61       dsl 	/* save pid use count in slot */
    667       1.61       dsl 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    668       1.61       dsl 
    669       1.61       dsl 	if (pt->pt_pgrp == NULL) {
    670       1.61       dsl 		/* link last freed entry onto ours */
    671       1.61       dsl 		pid &= pid_tbl_mask;
    672       1.61       dsl 		pt = &pid_table[last_free_pt];
    673       1.61       dsl 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    674       1.61       dsl 		last_free_pt = pid;
    675       1.61       dsl 		pid_alloc_cnt--;
    676       1.61       dsl 	}
    677       1.61       dsl 
    678      1.126        ad 	atomic_dec_uint(&nprocs);
    679       1.61       dsl }
    680       1.61       dsl 
    681      1.128        ad void
    682      1.128        ad proc_free_mem(struct proc *p)
    683      1.128        ad {
    684      1.128        ad 
    685      1.128        ad 	pool_cache_put(proc_cache, p);
    686      1.128        ad }
    687      1.128        ad 
    688       1.61       dsl /*
    689  1.147.2.1       jym  * proc_enterpgrp: move p to a new or existing process group (and session).
    690       1.61       dsl  *
    691       1.61       dsl  * If we are creating a new pgrp, the pgid should equal
    692       1.72  junyoung  * the calling process' pid.
    693       1.61       dsl  * If is only valid to enter a process group that is in the session
    694       1.61       dsl  * of the process.
    695       1.61       dsl  * Also mksess should only be set if we are creating a process group
    696       1.61       dsl  *
    697      1.134      yamt  * Only called from sys_setsid and sys_setpgid.
    698       1.61       dsl  */
    699       1.61       dsl int
    700  1.147.2.1       jym proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    701       1.61       dsl {
    702       1.61       dsl 	struct pgrp *new_pgrp, *pgrp;
    703       1.61       dsl 	struct session *sess;
    704      1.100        ad 	struct proc *p;
    705       1.61       dsl 	int rval;
    706       1.61       dsl 	pid_t pg_id = NO_PGID;
    707       1.61       dsl 
    708  1.147.2.1       jym 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    709       1.61       dsl 
    710      1.107        ad 	/* Allocate data areas we might need before doing any validity checks */
    711      1.136        ad 	mutex_enter(proc_lock);		/* Because pid_table might change */
    712      1.107        ad 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    713      1.136        ad 		mutex_exit(proc_lock);
    714      1.131        ad 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    715      1.136        ad 		mutex_enter(proc_lock);
    716      1.107        ad 	} else
    717      1.107        ad 		new_pgrp = NULL;
    718       1.61       dsl 	rval = EPERM;	/* most common error (to save typing) */
    719       1.61       dsl 
    720       1.61       dsl 	/* Check pgrp exists or can be created */
    721       1.61       dsl 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    722       1.61       dsl 	if (pgrp != NULL && pgrp->pg_id != pgid)
    723       1.61       dsl 		goto done;
    724       1.61       dsl 
    725       1.61       dsl 	/* Can only set another process under restricted circumstances. */
    726      1.100        ad 	if (pid != curp->p_pid) {
    727       1.61       dsl 		/* must exist and be one of our children... */
    728      1.100        ad 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    729  1.147.2.1       jym 		    !p_inferior(p, curp)) {
    730       1.61       dsl 			rval = ESRCH;
    731       1.61       dsl 			goto done;
    732       1.61       dsl 		}
    733       1.61       dsl 		/* ... in the same session... */
    734       1.61       dsl 		if (sess != NULL || p->p_session != curp->p_session)
    735       1.61       dsl 			goto done;
    736       1.61       dsl 		/* ... existing pgid must be in same session ... */
    737       1.61       dsl 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    738       1.61       dsl 			goto done;
    739       1.61       dsl 		/* ... and not done an exec. */
    740      1.102     pavel 		if (p->p_flag & PK_EXEC) {
    741       1.61       dsl 			rval = EACCES;
    742       1.61       dsl 			goto done;
    743       1.49     enami 		}
    744      1.100        ad 	} else {
    745      1.100        ad 		/* ... setsid() cannot re-enter a pgrp */
    746      1.100        ad 		if (mksess && (curp->p_pgid == curp->p_pid ||
    747      1.100        ad 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    748      1.100        ad 			goto done;
    749      1.100        ad 		p = curp;
    750       1.61       dsl 	}
    751        1.1       cgd 
    752       1.61       dsl 	/* Changing the process group/session of a session
    753       1.61       dsl 	   leader is definitely off limits. */
    754       1.61       dsl 	if (SESS_LEADER(p)) {
    755       1.61       dsl 		if (sess == NULL && p->p_pgrp == pgrp)
    756       1.61       dsl 			/* unless it's a definite noop */
    757       1.61       dsl 			rval = 0;
    758       1.61       dsl 		goto done;
    759       1.61       dsl 	}
    760       1.61       dsl 
    761       1.61       dsl 	/* Can only create a process group with id of process */
    762       1.61       dsl 	if (pgrp == NULL && pgid != pid)
    763       1.61       dsl 		goto done;
    764       1.61       dsl 
    765       1.61       dsl 	/* Can only create a session if creating pgrp */
    766       1.61       dsl 	if (sess != NULL && pgrp != NULL)
    767       1.61       dsl 		goto done;
    768       1.61       dsl 
    769       1.61       dsl 	/* Check we allocated memory for a pgrp... */
    770       1.61       dsl 	if (pgrp == NULL && new_pgrp == NULL)
    771       1.61       dsl 		goto done;
    772       1.61       dsl 
    773       1.61       dsl 	/* Don't attach to 'zombie' pgrp */
    774       1.61       dsl 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    775       1.61       dsl 		goto done;
    776       1.61       dsl 
    777       1.61       dsl 	/* Expect to succeed now */
    778       1.61       dsl 	rval = 0;
    779       1.61       dsl 
    780       1.61       dsl 	if (pgrp == p->p_pgrp)
    781       1.61       dsl 		/* nothing to do */
    782       1.61       dsl 		goto done;
    783       1.61       dsl 
    784       1.61       dsl 	/* Ok all setup, link up required structures */
    785      1.100        ad 
    786       1.61       dsl 	if (pgrp == NULL) {
    787       1.61       dsl 		pgrp = new_pgrp;
    788      1.141      yamt 		new_pgrp = NULL;
    789       1.61       dsl 		if (sess != NULL) {
    790       1.21   thorpej 			sess->s_sid = p->p_pid;
    791        1.1       cgd 			sess->s_leader = p;
    792        1.1       cgd 			sess->s_count = 1;
    793        1.1       cgd 			sess->s_ttyvp = NULL;
    794        1.1       cgd 			sess->s_ttyp = NULL;
    795       1.58       dsl 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    796       1.25     perry 			memcpy(sess->s_login, p->p_session->s_login,
    797        1.1       cgd 			    sizeof(sess->s_login));
    798      1.100        ad 			p->p_lflag &= ~PL_CONTROLT;
    799        1.1       cgd 		} else {
    800       1.61       dsl 			sess = p->p_pgrp->pg_session;
    801  1.147.2.1       jym 			proc_sesshold(sess);
    802        1.1       cgd 		}
    803       1.61       dsl 		pgrp->pg_session = sess;
    804      1.141      yamt 		sess = NULL;
    805       1.61       dsl 
    806        1.1       cgd 		pgrp->pg_id = pgid;
    807       1.10   mycroft 		LIST_INIT(&pgrp->pg_members);
    808       1.61       dsl #ifdef DIAGNOSTIC
    809       1.63  christos 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    810       1.61       dsl 			panic("enterpgrp: pgrp table slot in use");
    811       1.63  christos 		if (__predict_false(mksess && p != curp))
    812       1.63  christos 			panic("enterpgrp: mksession and p != curproc");
    813       1.61       dsl #endif
    814       1.61       dsl 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    815        1.1       cgd 		pgrp->pg_jobc = 0;
    816      1.136        ad 	}
    817        1.1       cgd 
    818        1.1       cgd 	/*
    819        1.1       cgd 	 * Adjust eligibility of affected pgrps to participate in job control.
    820        1.1       cgd 	 * Increment eligibility counts before decrementing, otherwise we
    821        1.1       cgd 	 * could reach 0 spuriously during the first call.
    822        1.1       cgd 	 */
    823        1.1       cgd 	fixjobc(p, pgrp, 1);
    824        1.1       cgd 	fixjobc(p, p->p_pgrp, 0);
    825        1.1       cgd 
    826      1.139        ad 	/* Interlock with ttread(). */
    827      1.139        ad 	mutex_spin_enter(&tty_lock);
    828      1.139        ad 
    829      1.100        ad 	/* Move process to requested group. */
    830       1.10   mycroft 	LIST_REMOVE(p, p_pglist);
    831       1.52      matt 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    832       1.61       dsl 		/* defer delete until we've dumped the lock */
    833       1.61       dsl 		pg_id = p->p_pgrp->pg_id;
    834        1.1       cgd 	p->p_pgrp = pgrp;
    835       1.10   mycroft 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    836      1.100        ad 
    837      1.100        ad 	/* Done with the swap; we can release the tty mutex. */
    838      1.128        ad 	mutex_spin_exit(&tty_lock);
    839      1.128        ad 
    840       1.61       dsl     done:
    841  1.147.2.1       jym 	if (pg_id != NO_PGID) {
    842  1.147.2.1       jym 		/* Releases proc_lock. */
    843      1.100        ad 		pg_delete(pg_id);
    844  1.147.2.1       jym 	} else {
    845  1.147.2.1       jym 		mutex_exit(proc_lock);
    846  1.147.2.1       jym 	}
    847       1.61       dsl 	if (sess != NULL)
    848      1.131        ad 		kmem_free(sess, sizeof(*sess));
    849       1.61       dsl 	if (new_pgrp != NULL)
    850      1.131        ad 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    851       1.63  christos #ifdef DEBUG_PGRP
    852       1.63  christos 	if (__predict_false(rval))
    853       1.61       dsl 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    854       1.61       dsl 			pid, pgid, mksess, curp->p_pid, rval);
    855       1.61       dsl #endif
    856       1.61       dsl 	return rval;
    857        1.1       cgd }
    858        1.1       cgd 
    859        1.1       cgd /*
    860  1.147.2.1       jym  * proc_leavepgrp: remove a process from its process group.
    861  1.147.2.1       jym  *  => must be called with the proc_lock held, which will be released;
    862        1.1       cgd  */
    863      1.100        ad void
    864  1.147.2.1       jym proc_leavepgrp(struct proc *p)
    865        1.1       cgd {
    866       1.61       dsl 	struct pgrp *pgrp;
    867        1.1       cgd 
    868      1.136        ad 	KASSERT(mutex_owned(proc_lock));
    869      1.100        ad 
    870      1.139        ad 	/* Interlock with ttread() */
    871      1.128        ad 	mutex_spin_enter(&tty_lock);
    872       1.61       dsl 	pgrp = p->p_pgrp;
    873       1.10   mycroft 	LIST_REMOVE(p, p_pglist);
    874       1.94        ad 	p->p_pgrp = NULL;
    875      1.128        ad 	mutex_spin_exit(&tty_lock);
    876      1.100        ad 
    877  1.147.2.1       jym 	if (LIST_EMPTY(&pgrp->pg_members)) {
    878  1.147.2.1       jym 		/* Releases proc_lock. */
    879      1.100        ad 		pg_delete(pgrp->pg_id);
    880  1.147.2.1       jym 	} else {
    881  1.147.2.1       jym 		mutex_exit(proc_lock);
    882  1.147.2.1       jym 	}
    883       1.61       dsl }
    884       1.61       dsl 
    885      1.100        ad /*
    886  1.147.2.1       jym  * pg_remove: remove a process group from the table.
    887  1.147.2.1       jym  *  => must be called with the proc_lock held;
    888  1.147.2.1       jym  *  => returns process group to free;
    889      1.100        ad  */
    890  1.147.2.1       jym static struct pgrp *
    891  1.147.2.1       jym pg_remove(pid_t pg_id)
    892       1.61       dsl {
    893       1.61       dsl 	struct pgrp *pgrp;
    894       1.61       dsl 	struct pid_table *pt;
    895       1.61       dsl 
    896      1.136        ad 	KASSERT(mutex_owned(proc_lock));
    897      1.100        ad 
    898       1.61       dsl 	pt = &pid_table[pg_id & pid_tbl_mask];
    899       1.61       dsl 	pgrp = pt->pt_pgrp;
    900  1.147.2.1       jym 
    901  1.147.2.1       jym 	KASSERT(pgrp != NULL);
    902  1.147.2.1       jym 	KASSERT(pgrp->pg_id == pg_id);
    903  1.147.2.1       jym 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
    904  1.147.2.1       jym 
    905  1.147.2.1       jym 	pt->pt_pgrp = NULL;
    906       1.61       dsl 
    907       1.61       dsl 	if (!P_VALID(pt->pt_proc)) {
    908  1.147.2.1       jym 		/* Orphaned pgrp, put slot onto free list. */
    909  1.147.2.1       jym 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
    910       1.61       dsl 		pg_id &= pid_tbl_mask;
    911       1.61       dsl 		pt = &pid_table[last_free_pt];
    912       1.61       dsl 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    913       1.61       dsl 		last_free_pt = pg_id;
    914       1.61       dsl 		pid_alloc_cnt--;
    915       1.61       dsl 	}
    916  1.147.2.1       jym 	return pgrp;
    917        1.1       cgd }
    918        1.1       cgd 
    919        1.1       cgd /*
    920  1.147.2.1       jym  * pg_delete: delete and free a process group.
    921  1.147.2.1       jym  *  => must be called with the proc_lock held, which will be released.
    922        1.1       cgd  */
    923       1.61       dsl static void
    924       1.61       dsl pg_delete(pid_t pg_id)
    925       1.61       dsl {
    926  1.147.2.1       jym 	struct pgrp *pg;
    927       1.61       dsl 	struct tty *ttyp;
    928       1.61       dsl 	struct session *ss;
    929      1.100        ad 
    930      1.136        ad 	KASSERT(mutex_owned(proc_lock));
    931       1.61       dsl 
    932  1.147.2.1       jym 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    933  1.147.2.1       jym 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
    934  1.147.2.1       jym 		mutex_exit(proc_lock);
    935       1.61       dsl 		return;
    936  1.147.2.1       jym 	}
    937       1.61       dsl 
    938  1.147.2.1       jym 	ss = pg->pg_session;
    939       1.71        pk 
    940       1.61       dsl 	/* Remove reference (if any) from tty to this process group */
    941      1.128        ad 	mutex_spin_enter(&tty_lock);
    942       1.71        pk 	ttyp = ss->s_ttyp;
    943  1.147.2.1       jym 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
    944       1.61       dsl 		ttyp->t_pgrp = NULL;
    945  1.147.2.1       jym 		KASSERT(ttyp->t_session == ss);
    946       1.71        pk 	}
    947      1.128        ad 	mutex_spin_exit(&tty_lock);
    948       1.61       dsl 
    949       1.71        pk 	/*
    950  1.147.2.1       jym 	 * The leading process group in a session is freed by proc_sessrele(),
    951  1.147.2.1       jym 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
    952       1.71        pk 	 */
    953  1.147.2.1       jym 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
    954  1.147.2.1       jym 	proc_sessrele(ss);
    955      1.100        ad 
    956  1.147.2.1       jym 	if (pg != NULL) {
    957  1.147.2.1       jym 		/* Free it, if was not done by proc_sessrele(). */
    958  1.147.2.1       jym 		kmem_free(pg, sizeof(struct pgrp));
    959  1.147.2.1       jym 	}
    960        1.1       cgd }
    961        1.1       cgd 
    962        1.1       cgd /*
    963        1.1       cgd  * Adjust pgrp jobc counters when specified process changes process group.
    964        1.1       cgd  * We count the number of processes in each process group that "qualify"
    965        1.1       cgd  * the group for terminal job control (those with a parent in a different
    966        1.1       cgd  * process group of the same session).  If that count reaches zero, the
    967        1.1       cgd  * process group becomes orphaned.  Check both the specified process'
    968        1.1       cgd  * process group and that of its children.
    969        1.1       cgd  * entering == 0 => p is leaving specified group.
    970        1.1       cgd  * entering == 1 => p is entering specified group.
    971       1.68       dsl  *
    972      1.136        ad  * Call with proc_lock held.
    973        1.1       cgd  */
    974        1.4    andrew void
    975       1.59       dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
    976        1.1       cgd {
    977       1.39  augustss 	struct pgrp *hispgrp;
    978       1.39  augustss 	struct session *mysession = pgrp->pg_session;
    979       1.68       dsl 	struct proc *child;
    980        1.1       cgd 
    981      1.136        ad 	KASSERT(mutex_owned(proc_lock));
    982      1.100        ad 
    983        1.1       cgd 	/*
    984        1.1       cgd 	 * Check p's parent to see whether p qualifies its own process
    985        1.1       cgd 	 * group; if so, adjust count for p's process group.
    986        1.1       cgd 	 */
    987       1.68       dsl 	hispgrp = p->p_pptr->p_pgrp;
    988       1.68       dsl 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
    989      1.100        ad 		if (entering) {
    990        1.1       cgd 			pgrp->pg_jobc++;
    991      1.136        ad 			p->p_lflag &= ~PL_ORPHANPG;
    992      1.100        ad 		} else if (--pgrp->pg_jobc == 0)
    993        1.1       cgd 			orphanpg(pgrp);
    994       1.26   thorpej 	}
    995        1.1       cgd 
    996        1.1       cgd 	/*
    997        1.1       cgd 	 * Check this process' children to see whether they qualify
    998        1.1       cgd 	 * their process groups; if so, adjust counts for children's
    999        1.1       cgd 	 * process groups.
   1000        1.1       cgd 	 */
   1001       1.68       dsl 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1002       1.68       dsl 		hispgrp = child->p_pgrp;
   1003       1.68       dsl 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1004       1.68       dsl 		    !P_ZOMBIE(child)) {
   1005      1.100        ad 			if (entering) {
   1006      1.136        ad 				child->p_lflag &= ~PL_ORPHANPG;
   1007        1.1       cgd 				hispgrp->pg_jobc++;
   1008      1.100        ad 			} else if (--hispgrp->pg_jobc == 0)
   1009        1.1       cgd 				orphanpg(hispgrp);
   1010       1.26   thorpej 		}
   1011       1.26   thorpej 	}
   1012        1.1       cgd }
   1013        1.1       cgd 
   1014       1.72  junyoung /*
   1015        1.1       cgd  * A process group has become orphaned;
   1016        1.1       cgd  * if there are any stopped processes in the group,
   1017        1.1       cgd  * hang-up all process in that group.
   1018       1.68       dsl  *
   1019      1.136        ad  * Call with proc_lock held.
   1020        1.1       cgd  */
   1021        1.4    andrew static void
   1022       1.59       dsl orphanpg(struct pgrp *pg)
   1023        1.1       cgd {
   1024       1.39  augustss 	struct proc *p;
   1025      1.100        ad 	int doit;
   1026      1.100        ad 
   1027      1.136        ad 	KASSERT(mutex_owned(proc_lock));
   1028      1.100        ad 
   1029      1.100        ad 	doit = 0;
   1030        1.1       cgd 
   1031       1.52      matt 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1032        1.1       cgd 		if (p->p_stat == SSTOP) {
   1033      1.136        ad 			p->p_lflag |= PL_ORPHANPG;
   1034      1.100        ad 			psignal(p, SIGHUP);
   1035      1.100        ad 			psignal(p, SIGCONT);
   1036       1.35    bouyer 		}
   1037       1.35    bouyer 	}
   1038       1.35    bouyer }
   1039        1.1       cgd 
   1040       1.61       dsl #ifdef DDB
   1041       1.61       dsl #include <ddb/db_output.h>
   1042       1.61       dsl void pidtbl_dump(void);
   1043       1.14  christos void
   1044       1.61       dsl pidtbl_dump(void)
   1045        1.1       cgd {
   1046       1.61       dsl 	struct pid_table *pt;
   1047       1.61       dsl 	struct proc *p;
   1048       1.39  augustss 	struct pgrp *pgrp;
   1049       1.61       dsl 	int id;
   1050        1.1       cgd 
   1051       1.61       dsl 	db_printf("pid table %p size %x, next %x, last %x\n",
   1052       1.61       dsl 		pid_table, pid_tbl_mask+1,
   1053       1.61       dsl 		next_free_pt, last_free_pt);
   1054       1.61       dsl 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1055       1.61       dsl 		p = pt->pt_proc;
   1056       1.61       dsl 		if (!P_VALID(p) && !pt->pt_pgrp)
   1057       1.61       dsl 			continue;
   1058       1.61       dsl 		db_printf("  id %x: ", id);
   1059       1.61       dsl 		if (P_VALID(p))
   1060       1.61       dsl 			db_printf("proc %p id %d (0x%x) %s\n",
   1061       1.61       dsl 				p, p->p_pid, p->p_pid, p->p_comm);
   1062       1.61       dsl 		else
   1063       1.61       dsl 			db_printf("next %x use %x\n",
   1064       1.61       dsl 				P_NEXT(p) & pid_tbl_mask,
   1065       1.61       dsl 				P_NEXT(p) & ~pid_tbl_mask);
   1066       1.61       dsl 		if ((pgrp = pt->pt_pgrp)) {
   1067       1.61       dsl 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1068       1.61       dsl 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1069       1.61       dsl 			    pgrp->pg_session->s_count,
   1070       1.61       dsl 			    pgrp->pg_session->s_login);
   1071       1.61       dsl 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1072       1.61       dsl 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1073      1.135      yamt 			    LIST_FIRST(&pgrp->pg_members));
   1074      1.135      yamt 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1075       1.72  junyoung 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1076       1.61       dsl 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1077       1.10   mycroft 			}
   1078        1.1       cgd 		}
   1079        1.1       cgd 	}
   1080        1.1       cgd }
   1081       1.61       dsl #endif /* DDB */
   1082       1.48      yamt 
   1083       1.48      yamt #ifdef KSTACK_CHECK_MAGIC
   1084       1.48      yamt #include <sys/user.h>
   1085       1.48      yamt 
   1086       1.48      yamt #define	KSTACK_MAGIC	0xdeadbeaf
   1087       1.48      yamt 
   1088       1.48      yamt /* XXX should be per process basis? */
   1089  1.147.2.1       jym static int	kstackleftmin = KSTACK_SIZE;
   1090  1.147.2.1       jym static int	kstackleftthres = KSTACK_SIZE / 8;
   1091       1.48      yamt 
   1092       1.48      yamt void
   1093       1.56      yamt kstack_setup_magic(const struct lwp *l)
   1094       1.48      yamt {
   1095       1.85     perry 	uint32_t *ip;
   1096       1.85     perry 	uint32_t const *end;
   1097       1.48      yamt 
   1098       1.56      yamt 	KASSERT(l != NULL);
   1099       1.56      yamt 	KASSERT(l != &lwp0);
   1100       1.48      yamt 
   1101       1.48      yamt 	/*
   1102       1.48      yamt 	 * fill all the stack with magic number
   1103       1.48      yamt 	 * so that later modification on it can be detected.
   1104       1.48      yamt 	 */
   1105       1.85     perry 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1106      1.114    dyoung 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1107       1.48      yamt 	for (; ip < end; ip++) {
   1108       1.48      yamt 		*ip = KSTACK_MAGIC;
   1109       1.48      yamt 	}
   1110       1.48      yamt }
   1111       1.48      yamt 
   1112       1.48      yamt void
   1113       1.56      yamt kstack_check_magic(const struct lwp *l)
   1114       1.48      yamt {
   1115       1.85     perry 	uint32_t const *ip, *end;
   1116       1.48      yamt 	int stackleft;
   1117       1.48      yamt 
   1118       1.56      yamt 	KASSERT(l != NULL);
   1119       1.48      yamt 
   1120       1.48      yamt 	/* don't check proc0 */ /*XXX*/
   1121       1.56      yamt 	if (l == &lwp0)
   1122       1.48      yamt 		return;
   1123       1.48      yamt 
   1124       1.48      yamt #ifdef __MACHINE_STACK_GROWS_UP
   1125       1.48      yamt 	/* stack grows upwards (eg. hppa) */
   1126      1.106  christos 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1127       1.85     perry 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1128       1.48      yamt 	for (ip--; ip >= end; ip--)
   1129       1.48      yamt 		if (*ip != KSTACK_MAGIC)
   1130       1.48      yamt 			break;
   1131       1.72  junyoung 
   1132      1.106  christos 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1133       1.48      yamt #else /* __MACHINE_STACK_GROWS_UP */
   1134       1.48      yamt 	/* stack grows downwards (eg. i386) */
   1135       1.85     perry 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1136      1.114    dyoung 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1137       1.48      yamt 	for (; ip < end; ip++)
   1138       1.48      yamt 		if (*ip != KSTACK_MAGIC)
   1139       1.48      yamt 			break;
   1140       1.48      yamt 
   1141       1.93  christos 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1142       1.48      yamt #endif /* __MACHINE_STACK_GROWS_UP */
   1143       1.48      yamt 
   1144       1.48      yamt 	if (kstackleftmin > stackleft) {
   1145       1.48      yamt 		kstackleftmin = stackleft;
   1146       1.48      yamt 		if (stackleft < kstackleftthres)
   1147       1.56      yamt 			printf("warning: kernel stack left %d bytes"
   1148       1.56      yamt 			    "(pid %u:lid %u)\n", stackleft,
   1149       1.56      yamt 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1150       1.48      yamt 	}
   1151       1.48      yamt 
   1152       1.48      yamt 	if (stackleft <= 0) {
   1153       1.56      yamt 		panic("magic on the top of kernel stack changed for "
   1154       1.56      yamt 		    "pid %u, lid %u: maybe kernel stack overflow",
   1155       1.56      yamt 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1156       1.48      yamt 	}
   1157       1.48      yamt }
   1158       1.50     enami #endif /* KSTACK_CHECK_MAGIC */
   1159       1.79      yamt 
   1160       1.79      yamt int
   1161       1.79      yamt proclist_foreach_call(struct proclist *list,
   1162       1.79      yamt     int (*callback)(struct proc *, void *arg), void *arg)
   1163       1.79      yamt {
   1164       1.79      yamt 	struct proc marker;
   1165       1.79      yamt 	struct proc *p;
   1166       1.79      yamt 	struct lwp * const l = curlwp;
   1167       1.79      yamt 	int ret = 0;
   1168       1.79      yamt 
   1169      1.102     pavel 	marker.p_flag = PK_MARKER;
   1170      1.113        ad 	uvm_lwp_hold(l);
   1171      1.136        ad 	mutex_enter(proc_lock);
   1172       1.79      yamt 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1173      1.102     pavel 		if (p->p_flag & PK_MARKER) {
   1174       1.79      yamt 			p = LIST_NEXT(p, p_list);
   1175       1.79      yamt 			continue;
   1176       1.79      yamt 		}
   1177       1.79      yamt 		LIST_INSERT_AFTER(p, &marker, p_list);
   1178       1.79      yamt 		ret = (*callback)(p, arg);
   1179      1.136        ad 		KASSERT(mutex_owned(proc_lock));
   1180       1.79      yamt 		p = LIST_NEXT(&marker, p_list);
   1181       1.79      yamt 		LIST_REMOVE(&marker, p_list);
   1182       1.79      yamt 	}
   1183      1.136        ad 	mutex_exit(proc_lock);
   1184      1.113        ad 	uvm_lwp_rele(l);
   1185       1.79      yamt 
   1186       1.79      yamt 	return ret;
   1187       1.79      yamt }
   1188       1.86      yamt 
   1189       1.86      yamt int
   1190       1.86      yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1191       1.86      yamt {
   1192       1.86      yamt 
   1193       1.86      yamt 	/* XXXCDC: how should locking work here? */
   1194       1.86      yamt 
   1195       1.87      yamt 	/* curproc exception is for coredump. */
   1196       1.87      yamt 
   1197      1.100        ad 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1198       1.86      yamt 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1199       1.86      yamt 		return EFAULT;
   1200       1.86      yamt 	}
   1201       1.86      yamt 
   1202       1.86      yamt 	uvmspace_addref(p->p_vmspace);
   1203       1.86      yamt 	*vm = p->p_vmspace;
   1204       1.86      yamt 
   1205       1.86      yamt 	return 0;
   1206       1.86      yamt }
   1207       1.94        ad 
   1208       1.94        ad /*
   1209       1.94        ad  * Acquire a write lock on the process credential.
   1210       1.94        ad  */
   1211       1.94        ad void
   1212      1.100        ad proc_crmod_enter(void)
   1213       1.94        ad {
   1214      1.100        ad 	struct lwp *l = curlwp;
   1215      1.100        ad 	struct proc *p = l->l_proc;
   1216      1.100        ad 	struct plimit *lim;
   1217      1.100        ad 	kauth_cred_t oc;
   1218      1.100        ad 	char *cn;
   1219       1.94        ad 
   1220      1.117       dsl 	/* Reset what needs to be reset in plimit. */
   1221      1.117       dsl 	if (p->p_limit->pl_corename != defcorename) {
   1222      1.117       dsl 		lim_privatise(p, false);
   1223      1.117       dsl 		lim = p->p_limit;
   1224      1.117       dsl 		mutex_enter(&lim->pl_lock);
   1225      1.117       dsl 		cn = lim->pl_corename;
   1226      1.117       dsl 		lim->pl_corename = defcorename;
   1227      1.117       dsl 		mutex_exit(&lim->pl_lock);
   1228      1.117       dsl 		if (cn != defcorename)
   1229      1.117       dsl 			free(cn, M_TEMP);
   1230      1.117       dsl 	}
   1231      1.117       dsl 
   1232      1.137        ad 	mutex_enter(p->p_lock);
   1233      1.100        ad 
   1234      1.100        ad 	/* Ensure the LWP cached credentials are up to date. */
   1235      1.100        ad 	if ((oc = l->l_cred) != p->p_cred) {
   1236      1.100        ad 		kauth_cred_hold(p->p_cred);
   1237      1.100        ad 		l->l_cred = p->p_cred;
   1238      1.100        ad 		kauth_cred_free(oc);
   1239      1.100        ad 	}
   1240      1.100        ad 
   1241       1.94        ad }
   1242       1.94        ad 
   1243       1.94        ad /*
   1244      1.100        ad  * Set in a new process credential, and drop the write lock.  The credential
   1245      1.100        ad  * must have a reference already.  Optionally, free a no-longer required
   1246      1.100        ad  * credential.  The scheduler also needs to inspect p_cred, so we also
   1247      1.100        ad  * briefly acquire the sched state mutex.
   1248       1.94        ad  */
   1249       1.94        ad void
   1250      1.104   thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1251       1.94        ad {
   1252      1.133        ad 	struct lwp *l = curlwp, *l2;
   1253      1.100        ad 	struct proc *p = l->l_proc;
   1254      1.100        ad 	kauth_cred_t oc;
   1255      1.100        ad 
   1256      1.137        ad 	KASSERT(mutex_owned(p->p_lock));
   1257      1.137        ad 
   1258      1.100        ad 	/* Is there a new credential to set in? */
   1259      1.100        ad 	if (scred != NULL) {
   1260      1.100        ad 		p->p_cred = scred;
   1261      1.133        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1262      1.133        ad 			if (l2 != l)
   1263      1.133        ad 				l2->l_prflag |= LPR_CRMOD;
   1264      1.133        ad 		}
   1265      1.100        ad 
   1266      1.100        ad 		/* Ensure the LWP cached credentials are up to date. */
   1267      1.100        ad 		if ((oc = l->l_cred) != scred) {
   1268      1.100        ad 			kauth_cred_hold(scred);
   1269      1.100        ad 			l->l_cred = scred;
   1270      1.100        ad 		}
   1271      1.100        ad 	} else
   1272      1.100        ad 		oc = NULL;	/* XXXgcc */
   1273      1.100        ad 
   1274      1.100        ad 	if (sugid) {
   1275      1.100        ad 		/*
   1276      1.100        ad 		 * Mark process as having changed credentials, stops
   1277      1.100        ad 		 * tracing etc.
   1278      1.100        ad 		 */
   1279      1.102     pavel 		p->p_flag |= PK_SUGID;
   1280      1.100        ad 	}
   1281       1.94        ad 
   1282      1.137        ad 	mutex_exit(p->p_lock);
   1283      1.100        ad 
   1284      1.100        ad 	/* If there is a credential to be released, free it now. */
   1285      1.100        ad 	if (fcred != NULL) {
   1286      1.100        ad 		KASSERT(scred != NULL);
   1287       1.94        ad 		kauth_cred_free(fcred);
   1288      1.100        ad 		if (oc != scred)
   1289      1.100        ad 			kauth_cred_free(oc);
   1290      1.100        ad 	}
   1291      1.100        ad }
   1292      1.100        ad 
   1293      1.100        ad /*
   1294       1.95   thorpej  * proc_specific_key_create --
   1295       1.95   thorpej  *	Create a key for subsystem proc-specific data.
   1296       1.95   thorpej  */
   1297       1.95   thorpej int
   1298       1.95   thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1299       1.95   thorpej {
   1300       1.95   thorpej 
   1301       1.98   thorpej 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1302       1.95   thorpej }
   1303       1.95   thorpej 
   1304       1.95   thorpej /*
   1305       1.95   thorpej  * proc_specific_key_delete --
   1306       1.95   thorpej  *	Delete a key for subsystem proc-specific data.
   1307       1.95   thorpej  */
   1308       1.95   thorpej void
   1309       1.95   thorpej proc_specific_key_delete(specificdata_key_t key)
   1310       1.95   thorpej {
   1311       1.95   thorpej 
   1312       1.95   thorpej 	specificdata_key_delete(proc_specificdata_domain, key);
   1313       1.95   thorpej }
   1314       1.95   thorpej 
   1315       1.98   thorpej /*
   1316       1.98   thorpej  * proc_initspecific --
   1317       1.98   thorpej  *	Initialize a proc's specificdata container.
   1318       1.98   thorpej  */
   1319       1.96  christos void
   1320       1.96  christos proc_initspecific(struct proc *p)
   1321       1.96  christos {
   1322       1.96  christos 	int error;
   1323       1.98   thorpej 
   1324       1.96  christos 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1325       1.96  christos 	KASSERT(error == 0);
   1326       1.96  christos }
   1327       1.96  christos 
   1328       1.95   thorpej /*
   1329       1.98   thorpej  * proc_finispecific --
   1330       1.98   thorpej  *	Finalize a proc's specificdata container.
   1331       1.98   thorpej  */
   1332       1.98   thorpej void
   1333       1.98   thorpej proc_finispecific(struct proc *p)
   1334       1.98   thorpej {
   1335       1.98   thorpej 
   1336       1.98   thorpej 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1337       1.98   thorpej }
   1338       1.98   thorpej 
   1339       1.98   thorpej /*
   1340       1.95   thorpej  * proc_getspecific --
   1341       1.95   thorpej  *	Return proc-specific data corresponding to the specified key.
   1342       1.95   thorpej  */
   1343       1.95   thorpej void *
   1344       1.95   thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
   1345       1.95   thorpej {
   1346       1.95   thorpej 
   1347       1.95   thorpej 	return (specificdata_getspecific(proc_specificdata_domain,
   1348       1.95   thorpej 					 &p->p_specdataref, key));
   1349       1.95   thorpej }
   1350       1.95   thorpej 
   1351       1.95   thorpej /*
   1352       1.95   thorpej  * proc_setspecific --
   1353       1.95   thorpej  *	Set proc-specific data corresponding to the specified key.
   1354       1.95   thorpej  */
   1355       1.95   thorpej void
   1356       1.95   thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1357       1.95   thorpej {
   1358       1.95   thorpej 
   1359       1.95   thorpej 	specificdata_setspecific(proc_specificdata_domain,
   1360       1.95   thorpej 				 &p->p_specdataref, key, data);
   1361       1.95   thorpej }
   1362