Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.151
      1  1.151     rmind /*	$NetBSD: kern_proc.c,v 1.151 2009/04/25 15:06:31 rmind Exp $	*/
      2   1.33   thorpej 
      3   1.33   thorpej /*-
      4  1.131        ad  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.33   thorpej  * All rights reserved.
      6   1.33   thorpej  *
      7   1.33   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.33   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.100        ad  * NASA Ames Research Center, and by Andrew Doran.
     10   1.33   thorpej  *
     11   1.33   thorpej  * Redistribution and use in source and binary forms, with or without
     12   1.33   thorpej  * modification, are permitted provided that the following conditions
     13   1.33   thorpej  * are met:
     14   1.33   thorpej  * 1. Redistributions of source code must retain the above copyright
     15   1.33   thorpej  *    notice, this list of conditions and the following disclaimer.
     16   1.33   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.33   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18   1.33   thorpej  *    documentation and/or other materials provided with the distribution.
     19   1.33   thorpej  *
     20   1.33   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21   1.33   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22   1.33   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23   1.33   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24   1.33   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.33   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.33   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.33   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.33   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.33   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.33   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31   1.33   thorpej  */
     32    1.9       cgd 
     33    1.1       cgd /*
     34    1.7       cgd  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35    1.7       cgd  *	The Regents of the University of California.  All rights reserved.
     36    1.1       cgd  *
     37    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     38    1.1       cgd  * modification, are permitted provided that the following conditions
     39    1.1       cgd  * are met:
     40    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     41    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     42    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     43    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     44    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     45   1.65       agc  * 3. Neither the name of the University nor the names of its contributors
     46    1.1       cgd  *    may be used to endorse or promote products derived from this software
     47    1.1       cgd  *    without specific prior written permission.
     48    1.1       cgd  *
     49    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59    1.1       cgd  * SUCH DAMAGE.
     60    1.1       cgd  *
     61   1.23      fvdl  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62    1.1       cgd  */
     63   1.45     lukem 
     64   1.45     lukem #include <sys/cdefs.h>
     65  1.151     rmind __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.151 2009/04/25 15:06:31 rmind Exp $");
     66   1.48      yamt 
     67   1.48      yamt #include "opt_kstack.h"
     68   1.88      onoe #include "opt_maxuprc.h"
     69    1.1       cgd 
     70    1.5   mycroft #include <sys/param.h>
     71    1.5   mycroft #include <sys/systm.h>
     72    1.5   mycroft #include <sys/kernel.h>
     73    1.5   mycroft #include <sys/proc.h>
     74   1.28   thorpej #include <sys/resourcevar.h>
     75    1.5   mycroft #include <sys/buf.h>
     76    1.5   mycroft #include <sys/acct.h>
     77    1.5   mycroft #include <sys/wait.h>
     78    1.5   mycroft #include <sys/file.h>
     79    1.8   mycroft #include <ufs/ufs/quota.h>
     80    1.5   mycroft #include <sys/uio.h>
     81   1.24   thorpej #include <sys/pool.h>
     82  1.147     rmind #include <sys/pset.h>
     83    1.5   mycroft #include <sys/mbuf.h>
     84    1.5   mycroft #include <sys/ioctl.h>
     85    1.5   mycroft #include <sys/tty.h>
     86   1.11       cgd #include <sys/signalvar.h>
     87   1.51  gmcgarry #include <sys/ras.h>
     88  1.144  wrstuden #include <sys/sa.h>
     89  1.144  wrstuden #include <sys/savar.h>
     90   1.81  junyoung #include <sys/filedesc.h>
     91  1.103       dsl #include "sys/syscall_stats.h"
     92   1.89      elad #include <sys/kauth.h>
     93  1.100        ad #include <sys/sleepq.h>
     94  1.126        ad #include <sys/atomic.h>
     95  1.131        ad #include <sys/kmem.h>
     96   1.81  junyoung 
     97   1.81  junyoung #include <uvm/uvm.h>
     98   1.79      yamt #include <uvm/uvm_extern.h>
     99    1.5   mycroft 
    100    1.7       cgd /*
    101   1.10   mycroft  * Other process lists
    102    1.7       cgd  */
    103   1.31   thorpej 
    104   1.10   mycroft struct proclist allproc;
    105   1.32   thorpej struct proclist zombproc;	/* resources have been freed */
    106   1.32   thorpej 
    107  1.136        ad kmutex_t	*proc_lock;
    108   1.33   thorpej 
    109   1.33   thorpej /*
    110   1.72  junyoung  * pid to proc lookup is done by indexing the pid_table array.
    111   1.61       dsl  * Since pid numbers are only allocated when an empty slot
    112   1.61       dsl  * has been found, there is no need to search any lists ever.
    113   1.61       dsl  * (an orphaned pgrp will lock the slot, a session will lock
    114   1.61       dsl  * the pgrp with the same number.)
    115   1.61       dsl  * If the table is too small it is reallocated with twice the
    116   1.61       dsl  * previous size and the entries 'unzipped' into the two halves.
    117   1.61       dsl  * A linked list of free entries is passed through the pt_proc
    118   1.61       dsl  * field of 'free' items - set odd to be an invalid ptr.
    119   1.61       dsl  */
    120   1.61       dsl 
    121   1.61       dsl struct pid_table {
    122   1.61       dsl 	struct proc	*pt_proc;
    123   1.61       dsl 	struct pgrp	*pt_pgrp;
    124   1.72  junyoung };
    125   1.61       dsl #if 1	/* strongly typed cast - should be a noop */
    126   1.84     perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    127   1.61       dsl #else
    128   1.61       dsl #define p2u(p) ((uint)p)
    129   1.72  junyoung #endif
    130   1.61       dsl #define P_VALID(p) (!(p2u(p) & 1))
    131   1.61       dsl #define P_NEXT(p) (p2u(p) >> 1)
    132   1.61       dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    133   1.61       dsl 
    134   1.61       dsl #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    135   1.61       dsl static struct pid_table *pid_table;
    136   1.61       dsl static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    137   1.61       dsl static uint pid_alloc_lim;	/* max we allocate before growing table */
    138   1.61       dsl static uint pid_alloc_cnt;	/* number of allocated pids */
    139   1.61       dsl 
    140   1.61       dsl /* links through free slots - never empty! */
    141   1.61       dsl static uint next_free_pt, last_free_pt;
    142   1.61       dsl static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    143   1.31   thorpej 
    144   1.81  junyoung /* Components of the first process -- never freed. */
    145  1.123      matt 
    146  1.145        ad extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    147  1.123      matt 
    148  1.123      matt struct session session0 = {
    149  1.123      matt 	.s_count = 1,
    150  1.123      matt 	.s_sid = 0,
    151  1.123      matt };
    152  1.123      matt struct pgrp pgrp0 = {
    153  1.123      matt 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    154  1.123      matt 	.pg_session = &session0,
    155  1.123      matt };
    156  1.132        ad filedesc_t filedesc0;
    157  1.123      matt struct cwdinfo cwdi0 = {
    158  1.123      matt 	.cwdi_cmask = CMASK,		/* see cmask below */
    159  1.123      matt 	.cwdi_refcnt = 1,
    160  1.123      matt };
    161  1.143  gmcgarry struct plimit limit0;
    162   1.81  junyoung struct pstats pstat0;
    163   1.81  junyoung struct vmspace vmspace0;
    164   1.81  junyoung struct sigacts sigacts0;
    165  1.100        ad struct turnstile turnstile0;
    166  1.123      matt struct proc proc0 = {
    167  1.123      matt 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    168  1.123      matt 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    169  1.123      matt 	.p_nlwps = 1,
    170  1.123      matt 	.p_nrlwps = 1,
    171  1.123      matt 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    172  1.123      matt 	.p_pgrp = &pgrp0,
    173  1.123      matt 	.p_comm = "system",
    174  1.123      matt 	/*
    175  1.123      matt 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    176  1.123      matt 	 * when they exit.  init(8) can easily wait them out for us.
    177  1.123      matt 	 */
    178  1.123      matt 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    179  1.123      matt 	.p_stat = SACTIVE,
    180  1.123      matt 	.p_nice = NZERO,
    181  1.123      matt 	.p_emul = &emul_netbsd,
    182  1.123      matt 	.p_cwdi = &cwdi0,
    183  1.123      matt 	.p_limit = &limit0,
    184  1.132        ad 	.p_fd = &filedesc0,
    185  1.123      matt 	.p_vmspace = &vmspace0,
    186  1.123      matt 	.p_stats = &pstat0,
    187  1.123      matt 	.p_sigacts = &sigacts0,
    188  1.123      matt };
    189  1.123      matt struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    190  1.123      matt #ifdef LWP0_CPU_INFO
    191  1.123      matt 	.l_cpu = LWP0_CPU_INFO,
    192  1.123      matt #endif
    193  1.123      matt 	.l_proc = &proc0,
    194  1.123      matt 	.l_lid = 1,
    195  1.123      matt 	.l_flag = LW_INMEM | LW_SYSTEM,
    196  1.123      matt 	.l_stat = LSONPROC,
    197  1.123      matt 	.l_ts = &turnstile0,
    198  1.123      matt 	.l_syncobj = &sched_syncobj,
    199  1.123      matt 	.l_refcnt = 1,
    200  1.123      matt 	.l_priority = PRI_USER + NPRI_USER - 1,
    201  1.123      matt 	.l_inheritedprio = -1,
    202  1.123      matt 	.l_class = SCHED_OTHER,
    203  1.147     rmind 	.l_psid = PS_NONE,
    204  1.123      matt 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    205  1.123      matt 	.l_name = __UNCONST("swapper"),
    206  1.123      matt };
    207  1.123      matt kauth_cred_t cred0;
    208   1.81  junyoung 
    209   1.81  junyoung extern struct user *proc0paddr;
    210   1.81  junyoung 
    211   1.81  junyoung int nofile = NOFILE;
    212   1.81  junyoung int maxuprc = MAXUPRC;
    213   1.81  junyoung int cmask = CMASK;
    214   1.81  junyoung 
    215   1.57   thorpej MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    216   1.57   thorpej MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    217   1.10   mycroft 
    218   1.31   thorpej /*
    219   1.31   thorpej  * The process list descriptors, used during pid allocation and
    220   1.31   thorpej  * by sysctl.  No locking on this data structure is needed since
    221   1.31   thorpej  * it is completely static.
    222   1.31   thorpej  */
    223   1.31   thorpej const struct proclist_desc proclists[] = {
    224   1.31   thorpej 	{ &allproc	},
    225   1.31   thorpej 	{ &zombproc	},
    226   1.31   thorpej 	{ NULL		},
    227   1.31   thorpej };
    228   1.31   thorpej 
    229  1.151     rmind static struct pgrp *	pg_remove(pid_t);
    230  1.151     rmind static void		pg_delete(pid_t);
    231  1.151     rmind static void		orphanpg(struct pgrp *);
    232   1.13  christos 
    233   1.95   thorpej static specificdata_domain_t proc_specificdata_domain;
    234   1.95   thorpej 
    235  1.128        ad static pool_cache_t proc_cache;
    236  1.128        ad 
    237   1.10   mycroft /*
    238   1.10   mycroft  * Initialize global process hashing structures.
    239   1.10   mycroft  */
    240   1.11       cgd void
    241   1.59       dsl procinit(void)
    242    1.7       cgd {
    243   1.31   thorpej 	const struct proclist_desc *pd;
    244  1.150     rmind 	u_int i;
    245   1.61       dsl #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    246   1.31   thorpej 
    247   1.31   thorpej 	for (pd = proclists; pd->pd_list != NULL; pd++)
    248   1.31   thorpej 		LIST_INIT(pd->pd_list);
    249    1.7       cgd 
    250  1.136        ad 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    251  1.150     rmind 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    252  1.150     rmind 	    * sizeof(struct pid_table), KM_SLEEP);
    253   1.33   thorpej 
    254   1.61       dsl 	/* Set free list running through table...
    255   1.61       dsl 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    256   1.61       dsl 	for (i = 0; i <= pid_tbl_mask; i++) {
    257   1.61       dsl 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    258   1.61       dsl 		pid_table[i].pt_pgrp = 0;
    259   1.61       dsl 	}
    260   1.61       dsl 	/* slot 0 is just grabbed */
    261   1.61       dsl 	next_free_pt = 1;
    262   1.61       dsl 	/* Need to fix last entry. */
    263   1.61       dsl 	last_free_pt = pid_tbl_mask;
    264   1.61       dsl 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    265   1.61       dsl 	/* point at which we grow table - to avoid reusing pids too often */
    266   1.61       dsl 	pid_alloc_lim = pid_tbl_mask - 1;
    267   1.61       dsl #undef LINK_EMPTY
    268   1.61       dsl 
    269   1.95   thorpej 	proc_specificdata_domain = specificdata_domain_create();
    270   1.95   thorpej 	KASSERT(proc_specificdata_domain != NULL);
    271  1.128        ad 
    272  1.128        ad 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    273  1.128        ad 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    274    1.7       cgd }
    275    1.1       cgd 
    276    1.7       cgd /*
    277   1.81  junyoung  * Initialize process 0.
    278   1.81  junyoung  */
    279   1.81  junyoung void
    280   1.81  junyoung proc0_init(void)
    281   1.81  junyoung {
    282   1.81  junyoung 	struct proc *p;
    283   1.81  junyoung 	struct pgrp *pg;
    284   1.81  junyoung 	struct session *sess;
    285   1.81  junyoung 	struct lwp *l;
    286   1.81  junyoung 	rlim_t lim;
    287  1.143  gmcgarry 	int i;
    288   1.81  junyoung 
    289   1.81  junyoung 	p = &proc0;
    290   1.81  junyoung 	pg = &pgrp0;
    291   1.81  junyoung 	sess = &session0;
    292   1.81  junyoung 	l = &lwp0;
    293   1.81  junyoung 
    294  1.123      matt 	KASSERT(l->l_lid == p->p_nlwpid);
    295  1.123      matt 
    296  1.127        ad 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    297  1.129        ad 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    298  1.113        ad 	mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    299  1.137        ad 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    300  1.107        ad 
    301  1.122        ad 	rw_init(&p->p_reflock);
    302  1.100        ad 	cv_init(&p->p_waitcv, "wait");
    303  1.100        ad 	cv_init(&p->p_lwpcv, "lwpwait");
    304  1.100        ad 
    305   1.81  junyoung 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    306  1.100        ad 
    307   1.81  junyoung 	pid_table[0].pt_proc = p;
    308   1.81  junyoung 	LIST_INSERT_HEAD(&allproc, p, p_list);
    309   1.81  junyoung 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    310   1.81  junyoung 
    311   1.81  junyoung 	pid_table[0].pt_pgrp = pg;
    312   1.81  junyoung 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    313   1.81  junyoung 
    314   1.81  junyoung #ifdef __HAVE_SYSCALL_INTERN
    315   1.81  junyoung 	(*p->p_emul->e_syscall_intern)(p);
    316   1.81  junyoung #endif
    317   1.81  junyoung 
    318  1.121        ad 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    319  1.115        ad 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    320  1.100        ad 	cv_init(&l->l_sigcv, "sigwait");
    321   1.81  junyoung 
    322   1.81  junyoung 	/* Create credentials. */
    323   1.89      elad 	cred0 = kauth_cred_alloc();
    324   1.89      elad 	p->p_cred = cred0;
    325  1.100        ad 	kauth_cred_hold(cred0);
    326  1.100        ad 	l->l_cred = cred0;
    327   1.81  junyoung 
    328   1.81  junyoung 	/* Create the CWD info. */
    329  1.113        ad 	rw_init(&cwdi0.cwdi_lock);
    330   1.81  junyoung 
    331   1.81  junyoung 	/* Create the limits structures. */
    332  1.116       dsl 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    333  1.143  gmcgarry 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
    334  1.143  gmcgarry 		limit0.pl_rlimit[i].rlim_cur =
    335  1.143  gmcgarry 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    336   1.81  junyoung 
    337   1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    338   1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    339   1.81  junyoung 	    maxfiles < nofile ? maxfiles : nofile;
    340   1.81  junyoung 
    341   1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    342   1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    343   1.81  junyoung 	    maxproc < maxuprc ? maxproc : maxuprc;
    344   1.81  junyoung 
    345   1.81  junyoung 	lim = ptoa(uvmexp.free);
    346   1.81  junyoung 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    347   1.81  junyoung 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    348   1.81  junyoung 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    349  1.143  gmcgarry 	limit0.pl_corename = defcorename;
    350  1.143  gmcgarry 	limit0.pl_refcnt = 1;
    351  1.143  gmcgarry 	limit0.pl_sv_limit = NULL;
    352   1.81  junyoung 
    353   1.81  junyoung 	/* Configure virtual memory system, set vm rlimits. */
    354   1.81  junyoung 	uvm_init_limits(p);
    355   1.81  junyoung 
    356   1.81  junyoung 	/* Initialize file descriptor table for proc0. */
    357  1.132        ad 	fd_init(&filedesc0);
    358   1.81  junyoung 
    359   1.81  junyoung 	/*
    360   1.81  junyoung 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    361   1.81  junyoung 	 * All kernel processes (which never have user space mappings)
    362   1.81  junyoung 	 * share proc0's vmspace, and thus, the kernel pmap.
    363   1.81  junyoung 	 */
    364   1.81  junyoung 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    365   1.81  junyoung 	    trunc_page(VM_MAX_ADDRESS));
    366   1.81  junyoung 
    367   1.81  junyoung 	l->l_addr = proc0paddr;				/* XXX */
    368   1.81  junyoung 
    369  1.127        ad 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    370  1.127        ad 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    371   1.81  junyoung 	siginit(p);
    372   1.96  christos 
    373   1.96  christos 	proc_initspecific(p);
    374   1.96  christos 	lwp_initspecific(l);
    375  1.103       dsl 
    376  1.103       dsl 	SYSCALL_TIME_LWP_INIT(l);
    377   1.81  junyoung }
    378   1.81  junyoung 
    379   1.81  junyoung /*
    380  1.151     rmind  * Session reference counting.
    381  1.151     rmind  */
    382  1.151     rmind 
    383  1.151     rmind void
    384  1.151     rmind proc_sesshold(struct session *ss)
    385  1.151     rmind {
    386  1.151     rmind 
    387  1.151     rmind 	KASSERT(mutex_owned(proc_lock));
    388  1.151     rmind 	ss->s_count++;
    389  1.151     rmind }
    390  1.151     rmind 
    391  1.151     rmind void
    392  1.151     rmind proc_sessrele(struct session *ss)
    393  1.151     rmind {
    394  1.151     rmind 
    395  1.151     rmind 	KASSERT(mutex_owned(proc_lock));
    396  1.151     rmind 	/*
    397  1.151     rmind 	 * We keep the pgrp with the same id as the session in order to
    398  1.151     rmind 	 * stop a process being given the same pid.  Since the pgrp holds
    399  1.151     rmind 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    400  1.151     rmind 	 */
    401  1.151     rmind 	if (--ss->s_count == 0) {
    402  1.151     rmind 		struct pgrp *pg;
    403  1.151     rmind 
    404  1.151     rmind 		pg = pg_remove(ss->s_sid);
    405  1.151     rmind 		mutex_exit(proc_lock);
    406  1.151     rmind 
    407  1.151     rmind 		kmem_free(pg, sizeof(struct pgrp));
    408  1.151     rmind 		kmem_free(ss, sizeof(struct session));
    409  1.151     rmind 	} else {
    410  1.151     rmind 		mutex_exit(proc_lock);
    411  1.151     rmind 	}
    412  1.151     rmind }
    413  1.151     rmind 
    414  1.151     rmind /*
    415   1.74  junyoung  * Check that the specified process group is in the session of the
    416   1.60       dsl  * specified process.
    417   1.60       dsl  * Treats -ve ids as process ids.
    418   1.60       dsl  * Used to validate TIOCSPGRP requests.
    419   1.60       dsl  */
    420   1.60       dsl int
    421   1.60       dsl pgid_in_session(struct proc *p, pid_t pg_id)
    422   1.60       dsl {
    423   1.60       dsl 	struct pgrp *pgrp;
    424  1.101       dsl 	struct session *session;
    425  1.107        ad 	int error;
    426  1.101       dsl 
    427  1.136        ad 	mutex_enter(proc_lock);
    428   1.60       dsl 	if (pg_id < 0) {
    429  1.101       dsl 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    430   1.64       dsl 		if (p1 == NULL)
    431   1.64       dsl 			return EINVAL;
    432   1.60       dsl 		pgrp = p1->p_pgrp;
    433   1.60       dsl 	} else {
    434  1.101       dsl 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    435   1.60       dsl 		if (pgrp == NULL)
    436   1.64       dsl 			return EINVAL;
    437   1.60       dsl 	}
    438  1.101       dsl 	session = pgrp->pg_session;
    439  1.101       dsl 	if (session != p->p_pgrp->pg_session)
    440  1.107        ad 		error = EPERM;
    441  1.107        ad 	else
    442  1.107        ad 		error = 0;
    443  1.136        ad 	mutex_exit(proc_lock);
    444  1.107        ad 
    445  1.107        ad 	return error;
    446    1.7       cgd }
    447    1.4    andrew 
    448    1.1       cgd /*
    449  1.148     rmind  * p_inferior: is p an inferior of q?
    450    1.1       cgd  */
    451  1.148     rmind static inline bool
    452  1.148     rmind p_inferior(struct proc *p, struct proc *q)
    453    1.1       cgd {
    454    1.1       cgd 
    455  1.148     rmind 	KASSERT(mutex_owned(proc_lock));
    456  1.148     rmind 
    457   1.41  sommerfe 	for (; p != q; p = p->p_pptr)
    458    1.1       cgd 		if (p->p_pid == 0)
    459  1.148     rmind 			return false;
    460  1.148     rmind 	return true;
    461    1.1       cgd }
    462    1.1       cgd 
    463    1.1       cgd /*
    464    1.1       cgd  * Locate a process by number
    465    1.1       cgd  */
    466    1.1       cgd struct proc *
    467   1.68       dsl p_find(pid_t pid, uint flags)
    468    1.1       cgd {
    469   1.33   thorpej 	struct proc *p;
    470   1.68       dsl 	char stat;
    471    1.1       cgd 
    472   1.68       dsl 	if (!(flags & PFIND_LOCKED))
    473  1.136        ad 		mutex_enter(proc_lock);
    474  1.100        ad 
    475   1.61       dsl 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    476  1.100        ad 
    477   1.61       dsl 	/* Only allow live processes to be found by pid. */
    478  1.100        ad 	/* XXXSMP p_stat */
    479  1.100        ad 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    480  1.100        ad 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    481  1.100        ad 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    482   1.68       dsl 		if (flags & PFIND_UNLOCK_OK)
    483  1.136        ad 			 mutex_exit(proc_lock);
    484   1.68       dsl 		return p;
    485   1.68       dsl 	}
    486   1.68       dsl 	if (flags & PFIND_UNLOCK_FAIL)
    487  1.136        ad 		mutex_exit(proc_lock);
    488   1.68       dsl 	return NULL;
    489    1.1       cgd }
    490    1.1       cgd 
    491   1.61       dsl 
    492    1.1       cgd /*
    493    1.1       cgd  * Locate a process group by number
    494    1.1       cgd  */
    495    1.1       cgd struct pgrp *
    496   1.68       dsl pg_find(pid_t pgid, uint flags)
    497    1.1       cgd {
    498   1.68       dsl 	struct pgrp *pg;
    499    1.1       cgd 
    500   1.68       dsl 	if (!(flags & PFIND_LOCKED))
    501  1.136        ad 		mutex_enter(proc_lock);
    502   1.68       dsl 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    503   1.61       dsl 	/*
    504   1.61       dsl 	 * Can't look up a pgrp that only exists because the session
    505   1.61       dsl 	 * hasn't died yet (traditional)
    506   1.61       dsl 	 */
    507   1.68       dsl 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    508   1.68       dsl 		if (flags & PFIND_UNLOCK_FAIL)
    509  1.136        ad 			 mutex_exit(proc_lock);
    510   1.68       dsl 		return NULL;
    511   1.68       dsl 	}
    512   1.68       dsl 
    513   1.68       dsl 	if (flags & PFIND_UNLOCK_OK)
    514  1.136        ad 		mutex_exit(proc_lock);
    515   1.68       dsl 	return pg;
    516    1.1       cgd }
    517    1.1       cgd 
    518   1.61       dsl static void
    519   1.61       dsl expand_pid_table(void)
    520    1.1       cgd {
    521  1.150     rmind 	size_t pt_size, tsz;
    522   1.61       dsl 	struct pid_table *n_pt, *new_pt;
    523   1.61       dsl 	struct proc *proc;
    524   1.61       dsl 	struct pgrp *pgrp;
    525   1.61       dsl 	pid_t pid;
    526  1.150     rmind 	u_int i;
    527    1.1       cgd 
    528  1.150     rmind 	pt_size = pid_tbl_mask + 1;
    529  1.150     rmind 	tsz = pt_size * 2 * sizeof(struct pid_table);
    530  1.150     rmind 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    531   1.61       dsl 
    532  1.136        ad 	mutex_enter(proc_lock);
    533   1.61       dsl 	if (pt_size != pid_tbl_mask + 1) {
    534   1.61       dsl 		/* Another process beat us to it... */
    535  1.136        ad 		mutex_exit(proc_lock);
    536  1.150     rmind 		kmem_free(new_pt, tsz);
    537   1.61       dsl 		return;
    538   1.61       dsl 	}
    539   1.72  junyoung 
    540   1.61       dsl 	/*
    541   1.61       dsl 	 * Copy entries from old table into new one.
    542   1.61       dsl 	 * If 'pid' is 'odd' we need to place in the upper half,
    543   1.61       dsl 	 * even pid's to the lower half.
    544   1.61       dsl 	 * Free items stay in the low half so we don't have to
    545   1.61       dsl 	 * fixup the reference to them.
    546   1.61       dsl 	 * We stuff free items on the front of the freelist
    547   1.61       dsl 	 * because we can't write to unmodified entries.
    548   1.74  junyoung 	 * Processing the table backwards maintains a semblance
    549   1.61       dsl 	 * of issueing pid numbers that increase with time.
    550   1.61       dsl 	 */
    551   1.61       dsl 	i = pt_size - 1;
    552   1.61       dsl 	n_pt = new_pt + i;
    553   1.61       dsl 	for (; ; i--, n_pt--) {
    554   1.61       dsl 		proc = pid_table[i].pt_proc;
    555   1.61       dsl 		pgrp = pid_table[i].pt_pgrp;
    556   1.61       dsl 		if (!P_VALID(proc)) {
    557   1.61       dsl 			/* Up 'use count' so that link is valid */
    558   1.61       dsl 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    559   1.61       dsl 			proc = P_FREE(pid);
    560   1.61       dsl 			if (pgrp)
    561   1.61       dsl 				pid = pgrp->pg_id;
    562   1.61       dsl 		} else
    563   1.61       dsl 			pid = proc->p_pid;
    564   1.72  junyoung 
    565   1.61       dsl 		/* Save entry in appropriate half of table */
    566   1.61       dsl 		n_pt[pid & pt_size].pt_proc = proc;
    567   1.61       dsl 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    568   1.61       dsl 
    569   1.61       dsl 		/* Put other piece on start of free list */
    570   1.61       dsl 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    571   1.61       dsl 		n_pt[pid & pt_size].pt_proc =
    572   1.61       dsl 				    P_FREE((pid & ~pt_size) | next_free_pt);
    573   1.61       dsl 		n_pt[pid & pt_size].pt_pgrp = 0;
    574   1.61       dsl 		next_free_pt = i | (pid & pt_size);
    575   1.61       dsl 		if (i == 0)
    576   1.61       dsl 			break;
    577   1.61       dsl 	}
    578   1.61       dsl 
    579  1.150     rmind 	/* Save old table size and switch tables */
    580  1.150     rmind 	tsz = pt_size * sizeof(struct pid_table);
    581   1.61       dsl 	n_pt = pid_table;
    582   1.61       dsl 	pid_table = new_pt;
    583   1.61       dsl 	pid_tbl_mask = pt_size * 2 - 1;
    584   1.61       dsl 
    585   1.61       dsl 	/*
    586   1.61       dsl 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    587   1.61       dsl 	 * allocated pids we need it to be larger!
    588   1.61       dsl 	 */
    589   1.61       dsl 	if (pid_tbl_mask > PID_MAX) {
    590   1.61       dsl 		pid_max = pid_tbl_mask * 2 + 1;
    591   1.61       dsl 		pid_alloc_lim |= pid_alloc_lim << 1;
    592   1.61       dsl 	} else
    593   1.61       dsl 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    594   1.61       dsl 
    595  1.136        ad 	mutex_exit(proc_lock);
    596  1.150     rmind 	kmem_free(n_pt, tsz);
    597   1.61       dsl }
    598   1.61       dsl 
    599   1.61       dsl struct proc *
    600   1.61       dsl proc_alloc(void)
    601   1.61       dsl {
    602   1.61       dsl 	struct proc *p;
    603  1.100        ad 	int nxt;
    604   1.61       dsl 	pid_t pid;
    605   1.61       dsl 	struct pid_table *pt;
    606   1.61       dsl 
    607  1.128        ad 	p = pool_cache_get(proc_cache, PR_WAITOK);
    608   1.61       dsl 	p->p_stat = SIDL;			/* protect against others */
    609   1.61       dsl 
    610   1.96  christos 	proc_initspecific(p);
    611   1.61       dsl 	/* allocate next free pid */
    612   1.61       dsl 
    613   1.61       dsl 	for (;;expand_pid_table()) {
    614   1.61       dsl 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    615   1.61       dsl 			/* ensure pids cycle through 2000+ values */
    616   1.61       dsl 			continue;
    617  1.136        ad 		mutex_enter(proc_lock);
    618   1.61       dsl 		pt = &pid_table[next_free_pt];
    619    1.1       cgd #ifdef DIAGNOSTIC
    620   1.63  christos 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    621   1.61       dsl 			panic("proc_alloc: slot busy");
    622    1.1       cgd #endif
    623   1.61       dsl 		nxt = P_NEXT(pt->pt_proc);
    624   1.61       dsl 		if (nxt & pid_tbl_mask)
    625   1.61       dsl 			break;
    626   1.61       dsl 		/* Table full - expand (NB last entry not used....) */
    627  1.136        ad 		mutex_exit(proc_lock);
    628   1.61       dsl 	}
    629   1.61       dsl 
    630   1.61       dsl 	/* pid is 'saved use count' + 'size' + entry */
    631   1.61       dsl 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    632   1.61       dsl 	if ((uint)pid > (uint)pid_max)
    633   1.61       dsl 		pid &= pid_tbl_mask;
    634   1.61       dsl 	p->p_pid = pid;
    635   1.61       dsl 	next_free_pt = nxt & pid_tbl_mask;
    636   1.61       dsl 
    637   1.61       dsl 	/* Grab table slot */
    638   1.61       dsl 	pt->pt_proc = p;
    639   1.61       dsl 	pid_alloc_cnt++;
    640   1.61       dsl 
    641  1.136        ad 	mutex_exit(proc_lock);
    642   1.61       dsl 
    643   1.61       dsl 	return p;
    644   1.61       dsl }
    645   1.61       dsl 
    646   1.61       dsl /*
    647  1.118        ad  * Free a process id - called from proc_free (in kern_exit.c)
    648  1.100        ad  *
    649  1.136        ad  * Called with the proc_lock held.
    650   1.61       dsl  */
    651   1.61       dsl void
    652  1.118        ad proc_free_pid(struct proc *p)
    653   1.61       dsl {
    654   1.61       dsl 	pid_t pid = p->p_pid;
    655   1.61       dsl 	struct pid_table *pt;
    656   1.61       dsl 
    657  1.136        ad 	KASSERT(mutex_owned(proc_lock));
    658   1.61       dsl 
    659   1.61       dsl 	pt = &pid_table[pid & pid_tbl_mask];
    660    1.1       cgd #ifdef DIAGNOSTIC
    661   1.63  christos 	if (__predict_false(pt->pt_proc != p))
    662   1.61       dsl 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    663   1.61       dsl 			pid, p);
    664    1.1       cgd #endif
    665   1.61       dsl 	/* save pid use count in slot */
    666   1.61       dsl 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    667   1.61       dsl 
    668   1.61       dsl 	if (pt->pt_pgrp == NULL) {
    669   1.61       dsl 		/* link last freed entry onto ours */
    670   1.61       dsl 		pid &= pid_tbl_mask;
    671   1.61       dsl 		pt = &pid_table[last_free_pt];
    672   1.61       dsl 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    673   1.61       dsl 		last_free_pt = pid;
    674   1.61       dsl 		pid_alloc_cnt--;
    675   1.61       dsl 	}
    676   1.61       dsl 
    677  1.126        ad 	atomic_dec_uint(&nprocs);
    678   1.61       dsl }
    679   1.61       dsl 
    680  1.128        ad void
    681  1.128        ad proc_free_mem(struct proc *p)
    682  1.128        ad {
    683  1.128        ad 
    684  1.128        ad 	pool_cache_put(proc_cache, p);
    685  1.128        ad }
    686  1.128        ad 
    687   1.61       dsl /*
    688  1.151     rmind  * proc_enterpgrp: move p to a new or existing process group (and session).
    689   1.61       dsl  *
    690   1.61       dsl  * If we are creating a new pgrp, the pgid should equal
    691   1.72  junyoung  * the calling process' pid.
    692   1.61       dsl  * If is only valid to enter a process group that is in the session
    693   1.61       dsl  * of the process.
    694   1.61       dsl  * Also mksess should only be set if we are creating a process group
    695   1.61       dsl  *
    696  1.134      yamt  * Only called from sys_setsid and sys_setpgid.
    697   1.61       dsl  */
    698   1.61       dsl int
    699  1.151     rmind proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    700   1.61       dsl {
    701   1.61       dsl 	struct pgrp *new_pgrp, *pgrp;
    702   1.61       dsl 	struct session *sess;
    703  1.100        ad 	struct proc *p;
    704   1.61       dsl 	int rval;
    705   1.61       dsl 	pid_t pg_id = NO_PGID;
    706   1.61       dsl 
    707  1.151     rmind 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    708   1.61       dsl 
    709  1.107        ad 	/* Allocate data areas we might need before doing any validity checks */
    710  1.136        ad 	mutex_enter(proc_lock);		/* Because pid_table might change */
    711  1.107        ad 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    712  1.136        ad 		mutex_exit(proc_lock);
    713  1.131        ad 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    714  1.136        ad 		mutex_enter(proc_lock);
    715  1.107        ad 	} else
    716  1.107        ad 		new_pgrp = NULL;
    717   1.61       dsl 	rval = EPERM;	/* most common error (to save typing) */
    718   1.61       dsl 
    719   1.61       dsl 	/* Check pgrp exists or can be created */
    720   1.61       dsl 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    721   1.61       dsl 	if (pgrp != NULL && pgrp->pg_id != pgid)
    722   1.61       dsl 		goto done;
    723   1.61       dsl 
    724   1.61       dsl 	/* Can only set another process under restricted circumstances. */
    725  1.100        ad 	if (pid != curp->p_pid) {
    726   1.61       dsl 		/* must exist and be one of our children... */
    727  1.100        ad 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    728  1.148     rmind 		    !p_inferior(p, curp)) {
    729   1.61       dsl 			rval = ESRCH;
    730   1.61       dsl 			goto done;
    731   1.61       dsl 		}
    732   1.61       dsl 		/* ... in the same session... */
    733   1.61       dsl 		if (sess != NULL || p->p_session != curp->p_session)
    734   1.61       dsl 			goto done;
    735   1.61       dsl 		/* ... existing pgid must be in same session ... */
    736   1.61       dsl 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    737   1.61       dsl 			goto done;
    738   1.61       dsl 		/* ... and not done an exec. */
    739  1.102     pavel 		if (p->p_flag & PK_EXEC) {
    740   1.61       dsl 			rval = EACCES;
    741   1.61       dsl 			goto done;
    742   1.49     enami 		}
    743  1.100        ad 	} else {
    744  1.100        ad 		/* ... setsid() cannot re-enter a pgrp */
    745  1.100        ad 		if (mksess && (curp->p_pgid == curp->p_pid ||
    746  1.100        ad 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    747  1.100        ad 			goto done;
    748  1.100        ad 		p = curp;
    749   1.61       dsl 	}
    750    1.1       cgd 
    751   1.61       dsl 	/* Changing the process group/session of a session
    752   1.61       dsl 	   leader is definitely off limits. */
    753   1.61       dsl 	if (SESS_LEADER(p)) {
    754   1.61       dsl 		if (sess == NULL && p->p_pgrp == pgrp)
    755   1.61       dsl 			/* unless it's a definite noop */
    756   1.61       dsl 			rval = 0;
    757   1.61       dsl 		goto done;
    758   1.61       dsl 	}
    759   1.61       dsl 
    760   1.61       dsl 	/* Can only create a process group with id of process */
    761   1.61       dsl 	if (pgrp == NULL && pgid != pid)
    762   1.61       dsl 		goto done;
    763   1.61       dsl 
    764   1.61       dsl 	/* Can only create a session if creating pgrp */
    765   1.61       dsl 	if (sess != NULL && pgrp != NULL)
    766   1.61       dsl 		goto done;
    767   1.61       dsl 
    768   1.61       dsl 	/* Check we allocated memory for a pgrp... */
    769   1.61       dsl 	if (pgrp == NULL && new_pgrp == NULL)
    770   1.61       dsl 		goto done;
    771   1.61       dsl 
    772   1.61       dsl 	/* Don't attach to 'zombie' pgrp */
    773   1.61       dsl 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    774   1.61       dsl 		goto done;
    775   1.61       dsl 
    776   1.61       dsl 	/* Expect to succeed now */
    777   1.61       dsl 	rval = 0;
    778   1.61       dsl 
    779   1.61       dsl 	if (pgrp == p->p_pgrp)
    780   1.61       dsl 		/* nothing to do */
    781   1.61       dsl 		goto done;
    782   1.61       dsl 
    783   1.61       dsl 	/* Ok all setup, link up required structures */
    784  1.100        ad 
    785   1.61       dsl 	if (pgrp == NULL) {
    786   1.61       dsl 		pgrp = new_pgrp;
    787  1.141      yamt 		new_pgrp = NULL;
    788   1.61       dsl 		if (sess != NULL) {
    789   1.21   thorpej 			sess->s_sid = p->p_pid;
    790    1.1       cgd 			sess->s_leader = p;
    791    1.1       cgd 			sess->s_count = 1;
    792    1.1       cgd 			sess->s_ttyvp = NULL;
    793    1.1       cgd 			sess->s_ttyp = NULL;
    794   1.58       dsl 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    795   1.25     perry 			memcpy(sess->s_login, p->p_session->s_login,
    796    1.1       cgd 			    sizeof(sess->s_login));
    797  1.100        ad 			p->p_lflag &= ~PL_CONTROLT;
    798    1.1       cgd 		} else {
    799   1.61       dsl 			sess = p->p_pgrp->pg_session;
    800  1.151     rmind 			proc_sesshold(sess);
    801    1.1       cgd 		}
    802   1.61       dsl 		pgrp->pg_session = sess;
    803  1.141      yamt 		sess = NULL;
    804   1.61       dsl 
    805    1.1       cgd 		pgrp->pg_id = pgid;
    806   1.10   mycroft 		LIST_INIT(&pgrp->pg_members);
    807   1.61       dsl #ifdef DIAGNOSTIC
    808   1.63  christos 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    809   1.61       dsl 			panic("enterpgrp: pgrp table slot in use");
    810   1.63  christos 		if (__predict_false(mksess && p != curp))
    811   1.63  christos 			panic("enterpgrp: mksession and p != curproc");
    812   1.61       dsl #endif
    813   1.61       dsl 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    814    1.1       cgd 		pgrp->pg_jobc = 0;
    815  1.136        ad 	}
    816    1.1       cgd 
    817    1.1       cgd 	/*
    818    1.1       cgd 	 * Adjust eligibility of affected pgrps to participate in job control.
    819    1.1       cgd 	 * Increment eligibility counts before decrementing, otherwise we
    820    1.1       cgd 	 * could reach 0 spuriously during the first call.
    821    1.1       cgd 	 */
    822    1.1       cgd 	fixjobc(p, pgrp, 1);
    823    1.1       cgd 	fixjobc(p, p->p_pgrp, 0);
    824    1.1       cgd 
    825  1.139        ad 	/* Interlock with ttread(). */
    826  1.139        ad 	mutex_spin_enter(&tty_lock);
    827  1.139        ad 
    828  1.100        ad 	/* Move process to requested group. */
    829   1.10   mycroft 	LIST_REMOVE(p, p_pglist);
    830   1.52      matt 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    831   1.61       dsl 		/* defer delete until we've dumped the lock */
    832   1.61       dsl 		pg_id = p->p_pgrp->pg_id;
    833    1.1       cgd 	p->p_pgrp = pgrp;
    834   1.10   mycroft 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    835  1.100        ad 
    836  1.100        ad 	/* Done with the swap; we can release the tty mutex. */
    837  1.128        ad 	mutex_spin_exit(&tty_lock);
    838  1.128        ad 
    839   1.61       dsl     done:
    840  1.151     rmind 	if (pg_id != NO_PGID) {
    841  1.151     rmind 		/* Releases proc_lock. */
    842  1.100        ad 		pg_delete(pg_id);
    843  1.151     rmind 	} else {
    844  1.151     rmind 		mutex_exit(proc_lock);
    845  1.151     rmind 	}
    846   1.61       dsl 	if (sess != NULL)
    847  1.131        ad 		kmem_free(sess, sizeof(*sess));
    848   1.61       dsl 	if (new_pgrp != NULL)
    849  1.131        ad 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    850   1.63  christos #ifdef DEBUG_PGRP
    851   1.63  christos 	if (__predict_false(rval))
    852   1.61       dsl 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    853   1.61       dsl 			pid, pgid, mksess, curp->p_pid, rval);
    854   1.61       dsl #endif
    855   1.61       dsl 	return rval;
    856    1.1       cgd }
    857    1.1       cgd 
    858    1.1       cgd /*
    859  1.151     rmind  * proc_leavepgrp: remove a process from its process group.
    860  1.151     rmind  *  => must be called with the proc_lock held, which will be released;
    861    1.1       cgd  */
    862  1.100        ad void
    863  1.151     rmind proc_leavepgrp(struct proc *p)
    864    1.1       cgd {
    865   1.61       dsl 	struct pgrp *pgrp;
    866    1.1       cgd 
    867  1.136        ad 	KASSERT(mutex_owned(proc_lock));
    868  1.100        ad 
    869  1.139        ad 	/* Interlock with ttread() */
    870  1.128        ad 	mutex_spin_enter(&tty_lock);
    871   1.61       dsl 	pgrp = p->p_pgrp;
    872   1.10   mycroft 	LIST_REMOVE(p, p_pglist);
    873   1.94        ad 	p->p_pgrp = NULL;
    874  1.128        ad 	mutex_spin_exit(&tty_lock);
    875  1.100        ad 
    876  1.151     rmind 	if (LIST_EMPTY(&pgrp->pg_members)) {
    877  1.151     rmind 		/* Releases proc_lock. */
    878  1.100        ad 		pg_delete(pgrp->pg_id);
    879  1.151     rmind 	} else {
    880  1.151     rmind 		mutex_exit(proc_lock);
    881  1.151     rmind 	}
    882   1.61       dsl }
    883   1.61       dsl 
    884  1.100        ad /*
    885  1.151     rmind  * pg_remove: remove a process group from the table.
    886  1.151     rmind  *  => must be called with the proc_lock held;
    887  1.151     rmind  *  => returns process group to free;
    888  1.100        ad  */
    889  1.151     rmind static struct pgrp *
    890  1.151     rmind pg_remove(pid_t pg_id)
    891   1.61       dsl {
    892   1.61       dsl 	struct pgrp *pgrp;
    893   1.61       dsl 	struct pid_table *pt;
    894   1.61       dsl 
    895  1.136        ad 	KASSERT(mutex_owned(proc_lock));
    896  1.100        ad 
    897   1.61       dsl 	pt = &pid_table[pg_id & pid_tbl_mask];
    898   1.61       dsl 	pgrp = pt->pt_pgrp;
    899  1.151     rmind 
    900  1.151     rmind 	KASSERT(pgrp != NULL);
    901  1.151     rmind 	KASSERT(pgrp->pg_id == pg_id);
    902  1.151     rmind 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
    903  1.151     rmind 
    904  1.151     rmind 	pt->pt_pgrp = NULL;
    905   1.61       dsl 
    906   1.61       dsl 	if (!P_VALID(pt->pt_proc)) {
    907  1.151     rmind 		/* Orphaned pgrp, put slot onto free list. */
    908  1.151     rmind 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
    909   1.61       dsl 		pg_id &= pid_tbl_mask;
    910   1.61       dsl 		pt = &pid_table[last_free_pt];
    911   1.61       dsl 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    912   1.61       dsl 		last_free_pt = pg_id;
    913   1.61       dsl 		pid_alloc_cnt--;
    914   1.61       dsl 	}
    915  1.151     rmind 	return pgrp;
    916    1.1       cgd }
    917    1.1       cgd 
    918    1.1       cgd /*
    919  1.151     rmind  * pg_delete: delete and free a process group.
    920  1.151     rmind  *  => must be called with the proc_lock held, which will be released.
    921    1.1       cgd  */
    922   1.61       dsl static void
    923   1.61       dsl pg_delete(pid_t pg_id)
    924   1.61       dsl {
    925  1.151     rmind 	struct pgrp *pg;
    926   1.61       dsl 	struct tty *ttyp;
    927   1.61       dsl 	struct session *ss;
    928  1.100        ad 
    929  1.136        ad 	KASSERT(mutex_owned(proc_lock));
    930   1.61       dsl 
    931  1.151     rmind 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    932  1.151     rmind 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
    933  1.151     rmind 		mutex_exit(proc_lock);
    934   1.61       dsl 		return;
    935  1.151     rmind 	}
    936   1.61       dsl 
    937  1.151     rmind 	ss = pg->pg_session;
    938   1.71        pk 
    939   1.61       dsl 	/* Remove reference (if any) from tty to this process group */
    940  1.128        ad 	mutex_spin_enter(&tty_lock);
    941   1.71        pk 	ttyp = ss->s_ttyp;
    942  1.151     rmind 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
    943   1.61       dsl 		ttyp->t_pgrp = NULL;
    944  1.151     rmind 		KASSERT(ttyp->t_session == ss);
    945   1.71        pk 	}
    946  1.128        ad 	mutex_spin_exit(&tty_lock);
    947   1.61       dsl 
    948   1.71        pk 	/*
    949  1.151     rmind 	 * The leading process group in a session is freed by proc_sessrele(),
    950  1.151     rmind 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
    951   1.71        pk 	 */
    952  1.151     rmind 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
    953  1.151     rmind 	proc_sessrele(ss);
    954   1.61       dsl 
    955  1.151     rmind 	if (pg != NULL) {
    956  1.151     rmind 		/* Free it, if was not done by proc_sessrele(). */
    957  1.151     rmind 		kmem_free(pg, sizeof(struct pgrp));
    958  1.151     rmind 	}
    959    1.1       cgd }
    960    1.1       cgd 
    961    1.1       cgd /*
    962    1.1       cgd  * Adjust pgrp jobc counters when specified process changes process group.
    963    1.1       cgd  * We count the number of processes in each process group that "qualify"
    964    1.1       cgd  * the group for terminal job control (those with a parent in a different
    965    1.1       cgd  * process group of the same session).  If that count reaches zero, the
    966    1.1       cgd  * process group becomes orphaned.  Check both the specified process'
    967    1.1       cgd  * process group and that of its children.
    968    1.1       cgd  * entering == 0 => p is leaving specified group.
    969    1.1       cgd  * entering == 1 => p is entering specified group.
    970   1.68       dsl  *
    971  1.136        ad  * Call with proc_lock held.
    972    1.1       cgd  */
    973    1.4    andrew void
    974   1.59       dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
    975    1.1       cgd {
    976   1.39  augustss 	struct pgrp *hispgrp;
    977   1.39  augustss 	struct session *mysession = pgrp->pg_session;
    978   1.68       dsl 	struct proc *child;
    979    1.1       cgd 
    980  1.136        ad 	KASSERT(mutex_owned(proc_lock));
    981  1.100        ad 
    982    1.1       cgd 	/*
    983    1.1       cgd 	 * Check p's parent to see whether p qualifies its own process
    984    1.1       cgd 	 * group; if so, adjust count for p's process group.
    985    1.1       cgd 	 */
    986   1.68       dsl 	hispgrp = p->p_pptr->p_pgrp;
    987   1.68       dsl 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
    988  1.100        ad 		if (entering) {
    989    1.1       cgd 			pgrp->pg_jobc++;
    990  1.136        ad 			p->p_lflag &= ~PL_ORPHANPG;
    991  1.100        ad 		} else if (--pgrp->pg_jobc == 0)
    992    1.1       cgd 			orphanpg(pgrp);
    993   1.26   thorpej 	}
    994    1.1       cgd 
    995    1.1       cgd 	/*
    996    1.1       cgd 	 * Check this process' children to see whether they qualify
    997    1.1       cgd 	 * their process groups; if so, adjust counts for children's
    998    1.1       cgd 	 * process groups.
    999    1.1       cgd 	 */
   1000   1.68       dsl 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1001   1.68       dsl 		hispgrp = child->p_pgrp;
   1002   1.68       dsl 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1003   1.68       dsl 		    !P_ZOMBIE(child)) {
   1004  1.100        ad 			if (entering) {
   1005  1.136        ad 				child->p_lflag &= ~PL_ORPHANPG;
   1006    1.1       cgd 				hispgrp->pg_jobc++;
   1007  1.100        ad 			} else if (--hispgrp->pg_jobc == 0)
   1008    1.1       cgd 				orphanpg(hispgrp);
   1009   1.26   thorpej 		}
   1010   1.26   thorpej 	}
   1011    1.1       cgd }
   1012    1.1       cgd 
   1013   1.72  junyoung /*
   1014    1.1       cgd  * A process group has become orphaned;
   1015    1.1       cgd  * if there are any stopped processes in the group,
   1016    1.1       cgd  * hang-up all process in that group.
   1017   1.68       dsl  *
   1018  1.136        ad  * Call with proc_lock held.
   1019    1.1       cgd  */
   1020    1.4    andrew static void
   1021   1.59       dsl orphanpg(struct pgrp *pg)
   1022    1.1       cgd {
   1023   1.39  augustss 	struct proc *p;
   1024  1.100        ad 	int doit;
   1025  1.100        ad 
   1026  1.136        ad 	KASSERT(mutex_owned(proc_lock));
   1027  1.100        ad 
   1028  1.100        ad 	doit = 0;
   1029    1.1       cgd 
   1030   1.52      matt 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1031    1.1       cgd 		if (p->p_stat == SSTOP) {
   1032  1.136        ad 			p->p_lflag |= PL_ORPHANPG;
   1033  1.100        ad 			psignal(p, SIGHUP);
   1034  1.100        ad 			psignal(p, SIGCONT);
   1035   1.35    bouyer 		}
   1036   1.35    bouyer 	}
   1037   1.35    bouyer }
   1038    1.1       cgd 
   1039   1.61       dsl #ifdef DDB
   1040   1.61       dsl #include <ddb/db_output.h>
   1041   1.61       dsl void pidtbl_dump(void);
   1042   1.14  christos void
   1043   1.61       dsl pidtbl_dump(void)
   1044    1.1       cgd {
   1045   1.61       dsl 	struct pid_table *pt;
   1046   1.61       dsl 	struct proc *p;
   1047   1.39  augustss 	struct pgrp *pgrp;
   1048   1.61       dsl 	int id;
   1049    1.1       cgd 
   1050   1.61       dsl 	db_printf("pid table %p size %x, next %x, last %x\n",
   1051   1.61       dsl 		pid_table, pid_tbl_mask+1,
   1052   1.61       dsl 		next_free_pt, last_free_pt);
   1053   1.61       dsl 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1054   1.61       dsl 		p = pt->pt_proc;
   1055   1.61       dsl 		if (!P_VALID(p) && !pt->pt_pgrp)
   1056   1.61       dsl 			continue;
   1057   1.61       dsl 		db_printf("  id %x: ", id);
   1058   1.61       dsl 		if (P_VALID(p))
   1059   1.61       dsl 			db_printf("proc %p id %d (0x%x) %s\n",
   1060   1.61       dsl 				p, p->p_pid, p->p_pid, p->p_comm);
   1061   1.61       dsl 		else
   1062   1.61       dsl 			db_printf("next %x use %x\n",
   1063   1.61       dsl 				P_NEXT(p) & pid_tbl_mask,
   1064   1.61       dsl 				P_NEXT(p) & ~pid_tbl_mask);
   1065   1.61       dsl 		if ((pgrp = pt->pt_pgrp)) {
   1066   1.61       dsl 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1067   1.61       dsl 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1068   1.61       dsl 			    pgrp->pg_session->s_count,
   1069   1.61       dsl 			    pgrp->pg_session->s_login);
   1070   1.61       dsl 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1071   1.61       dsl 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1072  1.135      yamt 			    LIST_FIRST(&pgrp->pg_members));
   1073  1.135      yamt 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1074   1.72  junyoung 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1075   1.61       dsl 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1076   1.10   mycroft 			}
   1077    1.1       cgd 		}
   1078    1.1       cgd 	}
   1079    1.1       cgd }
   1080   1.61       dsl #endif /* DDB */
   1081   1.48      yamt 
   1082   1.48      yamt #ifdef KSTACK_CHECK_MAGIC
   1083   1.48      yamt #include <sys/user.h>
   1084   1.48      yamt 
   1085   1.48      yamt #define	KSTACK_MAGIC	0xdeadbeaf
   1086   1.48      yamt 
   1087   1.48      yamt /* XXX should be per process basis? */
   1088  1.149     rmind static int	kstackleftmin = KSTACK_SIZE;
   1089  1.149     rmind static int	kstackleftthres = KSTACK_SIZE / 8;
   1090   1.48      yamt 
   1091   1.48      yamt void
   1092   1.56      yamt kstack_setup_magic(const struct lwp *l)
   1093   1.48      yamt {
   1094   1.85     perry 	uint32_t *ip;
   1095   1.85     perry 	uint32_t const *end;
   1096   1.48      yamt 
   1097   1.56      yamt 	KASSERT(l != NULL);
   1098   1.56      yamt 	KASSERT(l != &lwp0);
   1099   1.48      yamt 
   1100   1.48      yamt 	/*
   1101   1.48      yamt 	 * fill all the stack with magic number
   1102   1.48      yamt 	 * so that later modification on it can be detected.
   1103   1.48      yamt 	 */
   1104   1.85     perry 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1105  1.114    dyoung 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1106   1.48      yamt 	for (; ip < end; ip++) {
   1107   1.48      yamt 		*ip = KSTACK_MAGIC;
   1108   1.48      yamt 	}
   1109   1.48      yamt }
   1110   1.48      yamt 
   1111   1.48      yamt void
   1112   1.56      yamt kstack_check_magic(const struct lwp *l)
   1113   1.48      yamt {
   1114   1.85     perry 	uint32_t const *ip, *end;
   1115   1.48      yamt 	int stackleft;
   1116   1.48      yamt 
   1117   1.56      yamt 	KASSERT(l != NULL);
   1118   1.48      yamt 
   1119   1.48      yamt 	/* don't check proc0 */ /*XXX*/
   1120   1.56      yamt 	if (l == &lwp0)
   1121   1.48      yamt 		return;
   1122   1.48      yamt 
   1123   1.48      yamt #ifdef __MACHINE_STACK_GROWS_UP
   1124   1.48      yamt 	/* stack grows upwards (eg. hppa) */
   1125  1.106  christos 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1126   1.85     perry 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1127   1.48      yamt 	for (ip--; ip >= end; ip--)
   1128   1.48      yamt 		if (*ip != KSTACK_MAGIC)
   1129   1.48      yamt 			break;
   1130   1.72  junyoung 
   1131  1.106  christos 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1132   1.48      yamt #else /* __MACHINE_STACK_GROWS_UP */
   1133   1.48      yamt 	/* stack grows downwards (eg. i386) */
   1134   1.85     perry 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1135  1.114    dyoung 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1136   1.48      yamt 	for (; ip < end; ip++)
   1137   1.48      yamt 		if (*ip != KSTACK_MAGIC)
   1138   1.48      yamt 			break;
   1139   1.48      yamt 
   1140   1.93  christos 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1141   1.48      yamt #endif /* __MACHINE_STACK_GROWS_UP */
   1142   1.48      yamt 
   1143   1.48      yamt 	if (kstackleftmin > stackleft) {
   1144   1.48      yamt 		kstackleftmin = stackleft;
   1145   1.48      yamt 		if (stackleft < kstackleftthres)
   1146   1.56      yamt 			printf("warning: kernel stack left %d bytes"
   1147   1.56      yamt 			    "(pid %u:lid %u)\n", stackleft,
   1148   1.56      yamt 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1149   1.48      yamt 	}
   1150   1.48      yamt 
   1151   1.48      yamt 	if (stackleft <= 0) {
   1152   1.56      yamt 		panic("magic on the top of kernel stack changed for "
   1153   1.56      yamt 		    "pid %u, lid %u: maybe kernel stack overflow",
   1154   1.56      yamt 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1155   1.48      yamt 	}
   1156   1.48      yamt }
   1157   1.50     enami #endif /* KSTACK_CHECK_MAGIC */
   1158   1.79      yamt 
   1159   1.79      yamt int
   1160   1.79      yamt proclist_foreach_call(struct proclist *list,
   1161   1.79      yamt     int (*callback)(struct proc *, void *arg), void *arg)
   1162   1.79      yamt {
   1163   1.79      yamt 	struct proc marker;
   1164   1.79      yamt 	struct proc *p;
   1165   1.79      yamt 	struct lwp * const l = curlwp;
   1166   1.79      yamt 	int ret = 0;
   1167   1.79      yamt 
   1168  1.102     pavel 	marker.p_flag = PK_MARKER;
   1169  1.113        ad 	uvm_lwp_hold(l);
   1170  1.136        ad 	mutex_enter(proc_lock);
   1171   1.79      yamt 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1172  1.102     pavel 		if (p->p_flag & PK_MARKER) {
   1173   1.79      yamt 			p = LIST_NEXT(p, p_list);
   1174   1.79      yamt 			continue;
   1175   1.79      yamt 		}
   1176   1.79      yamt 		LIST_INSERT_AFTER(p, &marker, p_list);
   1177   1.79      yamt 		ret = (*callback)(p, arg);
   1178  1.136        ad 		KASSERT(mutex_owned(proc_lock));
   1179   1.79      yamt 		p = LIST_NEXT(&marker, p_list);
   1180   1.79      yamt 		LIST_REMOVE(&marker, p_list);
   1181   1.79      yamt 	}
   1182  1.136        ad 	mutex_exit(proc_lock);
   1183  1.113        ad 	uvm_lwp_rele(l);
   1184   1.79      yamt 
   1185   1.79      yamt 	return ret;
   1186   1.79      yamt }
   1187   1.86      yamt 
   1188   1.86      yamt int
   1189   1.86      yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1190   1.86      yamt {
   1191   1.86      yamt 
   1192   1.86      yamt 	/* XXXCDC: how should locking work here? */
   1193   1.86      yamt 
   1194   1.87      yamt 	/* curproc exception is for coredump. */
   1195   1.87      yamt 
   1196  1.100        ad 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1197   1.86      yamt 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1198   1.86      yamt 		return EFAULT;
   1199   1.86      yamt 	}
   1200   1.86      yamt 
   1201   1.86      yamt 	uvmspace_addref(p->p_vmspace);
   1202   1.86      yamt 	*vm = p->p_vmspace;
   1203   1.86      yamt 
   1204   1.86      yamt 	return 0;
   1205   1.86      yamt }
   1206   1.94        ad 
   1207   1.94        ad /*
   1208   1.94        ad  * Acquire a write lock on the process credential.
   1209   1.94        ad  */
   1210   1.94        ad void
   1211  1.100        ad proc_crmod_enter(void)
   1212   1.94        ad {
   1213  1.100        ad 	struct lwp *l = curlwp;
   1214  1.100        ad 	struct proc *p = l->l_proc;
   1215  1.100        ad 	struct plimit *lim;
   1216  1.100        ad 	kauth_cred_t oc;
   1217  1.100        ad 	char *cn;
   1218   1.94        ad 
   1219  1.117       dsl 	/* Reset what needs to be reset in plimit. */
   1220  1.117       dsl 	if (p->p_limit->pl_corename != defcorename) {
   1221  1.117       dsl 		lim_privatise(p, false);
   1222  1.117       dsl 		lim = p->p_limit;
   1223  1.117       dsl 		mutex_enter(&lim->pl_lock);
   1224  1.117       dsl 		cn = lim->pl_corename;
   1225  1.117       dsl 		lim->pl_corename = defcorename;
   1226  1.117       dsl 		mutex_exit(&lim->pl_lock);
   1227  1.117       dsl 		if (cn != defcorename)
   1228  1.117       dsl 			free(cn, M_TEMP);
   1229  1.117       dsl 	}
   1230  1.117       dsl 
   1231  1.137        ad 	mutex_enter(p->p_lock);
   1232  1.100        ad 
   1233  1.100        ad 	/* Ensure the LWP cached credentials are up to date. */
   1234  1.100        ad 	if ((oc = l->l_cred) != p->p_cred) {
   1235  1.100        ad 		kauth_cred_hold(p->p_cred);
   1236  1.100        ad 		l->l_cred = p->p_cred;
   1237  1.100        ad 		kauth_cred_free(oc);
   1238  1.100        ad 	}
   1239  1.100        ad 
   1240   1.94        ad }
   1241   1.94        ad 
   1242   1.94        ad /*
   1243  1.100        ad  * Set in a new process credential, and drop the write lock.  The credential
   1244  1.100        ad  * must have a reference already.  Optionally, free a no-longer required
   1245  1.100        ad  * credential.  The scheduler also needs to inspect p_cred, so we also
   1246  1.100        ad  * briefly acquire the sched state mutex.
   1247   1.94        ad  */
   1248   1.94        ad void
   1249  1.104   thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1250   1.94        ad {
   1251  1.133        ad 	struct lwp *l = curlwp, *l2;
   1252  1.100        ad 	struct proc *p = l->l_proc;
   1253  1.100        ad 	kauth_cred_t oc;
   1254  1.100        ad 
   1255  1.137        ad 	KASSERT(mutex_owned(p->p_lock));
   1256  1.137        ad 
   1257  1.100        ad 	/* Is there a new credential to set in? */
   1258  1.100        ad 	if (scred != NULL) {
   1259  1.100        ad 		p->p_cred = scred;
   1260  1.133        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1261  1.133        ad 			if (l2 != l)
   1262  1.133        ad 				l2->l_prflag |= LPR_CRMOD;
   1263  1.133        ad 		}
   1264  1.100        ad 
   1265  1.100        ad 		/* Ensure the LWP cached credentials are up to date. */
   1266  1.100        ad 		if ((oc = l->l_cred) != scred) {
   1267  1.100        ad 			kauth_cred_hold(scred);
   1268  1.100        ad 			l->l_cred = scred;
   1269  1.100        ad 		}
   1270  1.100        ad 	} else
   1271  1.100        ad 		oc = NULL;	/* XXXgcc */
   1272  1.100        ad 
   1273  1.100        ad 	if (sugid) {
   1274  1.100        ad 		/*
   1275  1.100        ad 		 * Mark process as having changed credentials, stops
   1276  1.100        ad 		 * tracing etc.
   1277  1.100        ad 		 */
   1278  1.102     pavel 		p->p_flag |= PK_SUGID;
   1279  1.100        ad 	}
   1280   1.94        ad 
   1281  1.137        ad 	mutex_exit(p->p_lock);
   1282  1.100        ad 
   1283  1.100        ad 	/* If there is a credential to be released, free it now. */
   1284  1.100        ad 	if (fcred != NULL) {
   1285  1.100        ad 		KASSERT(scred != NULL);
   1286   1.94        ad 		kauth_cred_free(fcred);
   1287  1.100        ad 		if (oc != scred)
   1288  1.100        ad 			kauth_cred_free(oc);
   1289  1.100        ad 	}
   1290  1.100        ad }
   1291  1.100        ad 
   1292  1.100        ad /*
   1293   1.95   thorpej  * proc_specific_key_create --
   1294   1.95   thorpej  *	Create a key for subsystem proc-specific data.
   1295   1.95   thorpej  */
   1296   1.95   thorpej int
   1297   1.95   thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1298   1.95   thorpej {
   1299   1.95   thorpej 
   1300   1.98   thorpej 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1301   1.95   thorpej }
   1302   1.95   thorpej 
   1303   1.95   thorpej /*
   1304   1.95   thorpej  * proc_specific_key_delete --
   1305   1.95   thorpej  *	Delete a key for subsystem proc-specific data.
   1306   1.95   thorpej  */
   1307   1.95   thorpej void
   1308   1.95   thorpej proc_specific_key_delete(specificdata_key_t key)
   1309   1.95   thorpej {
   1310   1.95   thorpej 
   1311   1.95   thorpej 	specificdata_key_delete(proc_specificdata_domain, key);
   1312   1.95   thorpej }
   1313   1.95   thorpej 
   1314   1.98   thorpej /*
   1315   1.98   thorpej  * proc_initspecific --
   1316   1.98   thorpej  *	Initialize a proc's specificdata container.
   1317   1.98   thorpej  */
   1318   1.96  christos void
   1319   1.96  christos proc_initspecific(struct proc *p)
   1320   1.96  christos {
   1321   1.96  christos 	int error;
   1322   1.98   thorpej 
   1323   1.96  christos 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1324   1.96  christos 	KASSERT(error == 0);
   1325   1.96  christos }
   1326   1.96  christos 
   1327   1.95   thorpej /*
   1328   1.98   thorpej  * proc_finispecific --
   1329   1.98   thorpej  *	Finalize a proc's specificdata container.
   1330   1.98   thorpej  */
   1331   1.98   thorpej void
   1332   1.98   thorpej proc_finispecific(struct proc *p)
   1333   1.98   thorpej {
   1334   1.98   thorpej 
   1335   1.98   thorpej 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1336   1.98   thorpej }
   1337   1.98   thorpej 
   1338   1.98   thorpej /*
   1339   1.95   thorpej  * proc_getspecific --
   1340   1.95   thorpej  *	Return proc-specific data corresponding to the specified key.
   1341   1.95   thorpej  */
   1342   1.95   thorpej void *
   1343   1.95   thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
   1344   1.95   thorpej {
   1345   1.95   thorpej 
   1346   1.95   thorpej 	return (specificdata_getspecific(proc_specificdata_domain,
   1347   1.95   thorpej 					 &p->p_specdataref, key));
   1348   1.95   thorpej }
   1349   1.95   thorpej 
   1350   1.95   thorpej /*
   1351   1.95   thorpej  * proc_setspecific --
   1352   1.95   thorpej  *	Set proc-specific data corresponding to the specified key.
   1353   1.95   thorpej  */
   1354   1.95   thorpej void
   1355   1.95   thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1356   1.95   thorpej {
   1357   1.95   thorpej 
   1358   1.95   thorpej 	specificdata_setspecific(proc_specificdata_domain,
   1359   1.95   thorpej 				 &p->p_specdataref, key, data);
   1360   1.95   thorpej }
   1361