kern_proc.c revision 1.161 1 1.161 darran /* $NetBSD: kern_proc.c,v 1.161 2010/02/21 07:01:57 darran Exp $ */
2 1.33 thorpej
3 1.33 thorpej /*-
4 1.131 ad * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.33 thorpej * All rights reserved.
6 1.33 thorpej *
7 1.33 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.33 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.100 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.33 thorpej *
11 1.33 thorpej * Redistribution and use in source and binary forms, with or without
12 1.33 thorpej * modification, are permitted provided that the following conditions
13 1.33 thorpej * are met:
14 1.33 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.33 thorpej * notice, this list of conditions and the following disclaimer.
16 1.33 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.33 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.33 thorpej * documentation and/or other materials provided with the distribution.
19 1.33 thorpej *
20 1.33 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.33 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.33 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.33 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.33 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.33 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.33 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.33 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.33 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.33 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.33 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.33 thorpej */
32 1.9 cgd
33 1.1 cgd /*
34 1.7 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 1.7 cgd * The Regents of the University of California. All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Redistribution and use in source and binary forms, with or without
38 1.1 cgd * modification, are permitted provided that the following conditions
39 1.1 cgd * are met:
40 1.1 cgd * 1. Redistributions of source code must retain the above copyright
41 1.1 cgd * notice, this list of conditions and the following disclaimer.
42 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 cgd * notice, this list of conditions and the following disclaimer in the
44 1.1 cgd * documentation and/or other materials provided with the distribution.
45 1.65 agc * 3. Neither the name of the University nor the names of its contributors
46 1.1 cgd * may be used to endorse or promote products derived from this software
47 1.1 cgd * without specific prior written permission.
48 1.1 cgd *
49 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.1 cgd * SUCH DAMAGE.
60 1.1 cgd *
61 1.23 fvdl * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 1.1 cgd */
63 1.45 lukem
64 1.45 lukem #include <sys/cdefs.h>
65 1.161 darran __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.161 2010/02/21 07:01:57 darran Exp $");
66 1.48 yamt
67 1.48 yamt #include "opt_kstack.h"
68 1.88 onoe #include "opt_maxuprc.h"
69 1.161 darran #include "opt_dtrace.h"
70 1.1 cgd
71 1.5 mycroft #include <sys/param.h>
72 1.5 mycroft #include <sys/systm.h>
73 1.5 mycroft #include <sys/kernel.h>
74 1.5 mycroft #include <sys/proc.h>
75 1.28 thorpej #include <sys/resourcevar.h>
76 1.5 mycroft #include <sys/buf.h>
77 1.5 mycroft #include <sys/acct.h>
78 1.5 mycroft #include <sys/wait.h>
79 1.5 mycroft #include <sys/file.h>
80 1.8 mycroft #include <ufs/ufs/quota.h>
81 1.5 mycroft #include <sys/uio.h>
82 1.24 thorpej #include <sys/pool.h>
83 1.147 rmind #include <sys/pset.h>
84 1.5 mycroft #include <sys/mbuf.h>
85 1.5 mycroft #include <sys/ioctl.h>
86 1.5 mycroft #include <sys/tty.h>
87 1.11 cgd #include <sys/signalvar.h>
88 1.51 gmcgarry #include <sys/ras.h>
89 1.144 wrstuden #include <sys/sa.h>
90 1.144 wrstuden #include <sys/savar.h>
91 1.81 junyoung #include <sys/filedesc.h>
92 1.103 dsl #include "sys/syscall_stats.h"
93 1.89 elad #include <sys/kauth.h>
94 1.100 ad #include <sys/sleepq.h>
95 1.126 ad #include <sys/atomic.h>
96 1.131 ad #include <sys/kmem.h>
97 1.81 junyoung
98 1.160 darran #ifdef KDTRACE_HOOKS
99 1.160 darran #include <sys/dtrace_bsd.h>
100 1.160 darran #endif
101 1.160 darran
102 1.81 junyoung #include <uvm/uvm.h>
103 1.79 yamt #include <uvm/uvm_extern.h>
104 1.5 mycroft
105 1.7 cgd /*
106 1.10 mycroft * Other process lists
107 1.7 cgd */
108 1.31 thorpej
109 1.10 mycroft struct proclist allproc;
110 1.32 thorpej struct proclist zombproc; /* resources have been freed */
111 1.32 thorpej
112 1.136 ad kmutex_t *proc_lock;
113 1.33 thorpej
114 1.33 thorpej /*
115 1.72 junyoung * pid to proc lookup is done by indexing the pid_table array.
116 1.61 dsl * Since pid numbers are only allocated when an empty slot
117 1.61 dsl * has been found, there is no need to search any lists ever.
118 1.61 dsl * (an orphaned pgrp will lock the slot, a session will lock
119 1.61 dsl * the pgrp with the same number.)
120 1.61 dsl * If the table is too small it is reallocated with twice the
121 1.61 dsl * previous size and the entries 'unzipped' into the two halves.
122 1.61 dsl * A linked list of free entries is passed through the pt_proc
123 1.61 dsl * field of 'free' items - set odd to be an invalid ptr.
124 1.61 dsl */
125 1.61 dsl
126 1.61 dsl struct pid_table {
127 1.61 dsl struct proc *pt_proc;
128 1.61 dsl struct pgrp *pt_pgrp;
129 1.72 junyoung };
130 1.61 dsl #if 1 /* strongly typed cast - should be a noop */
131 1.84 perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
132 1.61 dsl #else
133 1.61 dsl #define p2u(p) ((uint)p)
134 1.72 junyoung #endif
135 1.61 dsl #define P_VALID(p) (!(p2u(p) & 1))
136 1.61 dsl #define P_NEXT(p) (p2u(p) >> 1)
137 1.61 dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
138 1.61 dsl
139 1.61 dsl #define INITIAL_PID_TABLE_SIZE (1 << 5)
140 1.61 dsl static struct pid_table *pid_table;
141 1.61 dsl static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
142 1.61 dsl static uint pid_alloc_lim; /* max we allocate before growing table */
143 1.61 dsl static uint pid_alloc_cnt; /* number of allocated pids */
144 1.61 dsl
145 1.61 dsl /* links through free slots - never empty! */
146 1.61 dsl static uint next_free_pt, last_free_pt;
147 1.61 dsl static pid_t pid_max = PID_MAX; /* largest value we allocate */
148 1.31 thorpej
149 1.81 junyoung /* Components of the first process -- never freed. */
150 1.123 matt
151 1.145 ad extern struct emul emul_netbsd; /* defined in kern_exec.c */
152 1.123 matt
153 1.123 matt struct session session0 = {
154 1.123 matt .s_count = 1,
155 1.123 matt .s_sid = 0,
156 1.123 matt };
157 1.123 matt struct pgrp pgrp0 = {
158 1.123 matt .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
159 1.123 matt .pg_session = &session0,
160 1.123 matt };
161 1.132 ad filedesc_t filedesc0;
162 1.123 matt struct cwdinfo cwdi0 = {
163 1.123 matt .cwdi_cmask = CMASK, /* see cmask below */
164 1.123 matt .cwdi_refcnt = 1,
165 1.123 matt };
166 1.143 gmcgarry struct plimit limit0;
167 1.81 junyoung struct pstats pstat0;
168 1.81 junyoung struct vmspace vmspace0;
169 1.81 junyoung struct sigacts sigacts0;
170 1.100 ad struct turnstile turnstile0;
171 1.123 matt struct proc proc0 = {
172 1.123 matt .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
173 1.123 matt .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
174 1.123 matt .p_nlwps = 1,
175 1.123 matt .p_nrlwps = 1,
176 1.123 matt .p_nlwpid = 1, /* must match lwp0.l_lid */
177 1.123 matt .p_pgrp = &pgrp0,
178 1.123 matt .p_comm = "system",
179 1.123 matt /*
180 1.123 matt * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
181 1.123 matt * when they exit. init(8) can easily wait them out for us.
182 1.123 matt */
183 1.123 matt .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
184 1.123 matt .p_stat = SACTIVE,
185 1.123 matt .p_nice = NZERO,
186 1.123 matt .p_emul = &emul_netbsd,
187 1.123 matt .p_cwdi = &cwdi0,
188 1.123 matt .p_limit = &limit0,
189 1.132 ad .p_fd = &filedesc0,
190 1.123 matt .p_vmspace = &vmspace0,
191 1.123 matt .p_stats = &pstat0,
192 1.123 matt .p_sigacts = &sigacts0,
193 1.123 matt };
194 1.123 matt struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
195 1.123 matt #ifdef LWP0_CPU_INFO
196 1.123 matt .l_cpu = LWP0_CPU_INFO,
197 1.123 matt #endif
198 1.123 matt .l_proc = &proc0,
199 1.123 matt .l_lid = 1,
200 1.155 rmind .l_flag = LW_SYSTEM,
201 1.123 matt .l_stat = LSONPROC,
202 1.123 matt .l_ts = &turnstile0,
203 1.123 matt .l_syncobj = &sched_syncobj,
204 1.123 matt .l_refcnt = 1,
205 1.123 matt .l_priority = PRI_USER + NPRI_USER - 1,
206 1.123 matt .l_inheritedprio = -1,
207 1.123 matt .l_class = SCHED_OTHER,
208 1.147 rmind .l_psid = PS_NONE,
209 1.123 matt .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
210 1.123 matt .l_name = __UNCONST("swapper"),
211 1.152 ad .l_fd = &filedesc0,
212 1.123 matt };
213 1.123 matt kauth_cred_t cred0;
214 1.81 junyoung
215 1.81 junyoung int nofile = NOFILE;
216 1.81 junyoung int maxuprc = MAXUPRC;
217 1.81 junyoung int cmask = CMASK;
218 1.81 junyoung
219 1.57 thorpej MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
220 1.57 thorpej MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
221 1.10 mycroft
222 1.31 thorpej /*
223 1.31 thorpej * The process list descriptors, used during pid allocation and
224 1.31 thorpej * by sysctl. No locking on this data structure is needed since
225 1.31 thorpej * it is completely static.
226 1.31 thorpej */
227 1.31 thorpej const struct proclist_desc proclists[] = {
228 1.31 thorpej { &allproc },
229 1.31 thorpej { &zombproc },
230 1.31 thorpej { NULL },
231 1.31 thorpej };
232 1.31 thorpej
233 1.151 rmind static struct pgrp * pg_remove(pid_t);
234 1.151 rmind static void pg_delete(pid_t);
235 1.151 rmind static void orphanpg(struct pgrp *);
236 1.13 christos
237 1.95 thorpej static specificdata_domain_t proc_specificdata_domain;
238 1.95 thorpej
239 1.128 ad static pool_cache_t proc_cache;
240 1.128 ad
241 1.153 elad static kauth_listener_t proc_listener;
242 1.153 elad
243 1.153 elad static int
244 1.153 elad proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
245 1.153 elad void *arg0, void *arg1, void *arg2, void *arg3)
246 1.153 elad {
247 1.153 elad struct proc *p;
248 1.153 elad int result;
249 1.153 elad
250 1.153 elad result = KAUTH_RESULT_DEFER;
251 1.153 elad p = arg0;
252 1.153 elad
253 1.153 elad switch (action) {
254 1.153 elad case KAUTH_PROCESS_CANSEE: {
255 1.153 elad enum kauth_process_req req;
256 1.153 elad
257 1.153 elad req = (enum kauth_process_req)arg1;
258 1.153 elad
259 1.153 elad switch (req) {
260 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_ARGS:
261 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
262 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
263 1.153 elad result = KAUTH_RESULT_ALLOW;
264 1.153 elad
265 1.153 elad break;
266 1.153 elad
267 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_ENV:
268 1.153 elad if (kauth_cred_getuid(cred) !=
269 1.153 elad kauth_cred_getuid(p->p_cred) ||
270 1.153 elad kauth_cred_getuid(cred) !=
271 1.153 elad kauth_cred_getsvuid(p->p_cred))
272 1.153 elad break;
273 1.153 elad
274 1.153 elad result = KAUTH_RESULT_ALLOW;
275 1.153 elad
276 1.153 elad break;
277 1.153 elad
278 1.153 elad default:
279 1.153 elad break;
280 1.153 elad }
281 1.153 elad
282 1.153 elad break;
283 1.153 elad }
284 1.153 elad
285 1.153 elad case KAUTH_PROCESS_FORK: {
286 1.153 elad int lnprocs = (int)(unsigned long)arg2;
287 1.153 elad
288 1.153 elad /*
289 1.153 elad * Don't allow a nonprivileged user to use the last few
290 1.153 elad * processes. The variable lnprocs is the current number of
291 1.153 elad * processes, maxproc is the limit.
292 1.153 elad */
293 1.153 elad if (__predict_false((lnprocs >= maxproc - 5)))
294 1.153 elad break;
295 1.153 elad
296 1.153 elad result = KAUTH_RESULT_ALLOW;
297 1.153 elad
298 1.153 elad break;
299 1.153 elad }
300 1.153 elad
301 1.153 elad case KAUTH_PROCESS_CORENAME:
302 1.153 elad case KAUTH_PROCESS_STOPFLAG:
303 1.153 elad if (proc_uidmatch(cred, p->p_cred) == 0)
304 1.153 elad result = KAUTH_RESULT_ALLOW;
305 1.153 elad
306 1.153 elad break;
307 1.153 elad
308 1.153 elad default:
309 1.153 elad break;
310 1.153 elad }
311 1.153 elad
312 1.153 elad return result;
313 1.153 elad }
314 1.153 elad
315 1.10 mycroft /*
316 1.10 mycroft * Initialize global process hashing structures.
317 1.10 mycroft */
318 1.11 cgd void
319 1.59 dsl procinit(void)
320 1.7 cgd {
321 1.31 thorpej const struct proclist_desc *pd;
322 1.150 rmind u_int i;
323 1.61 dsl #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
324 1.31 thorpej
325 1.31 thorpej for (pd = proclists; pd->pd_list != NULL; pd++)
326 1.31 thorpej LIST_INIT(pd->pd_list);
327 1.7 cgd
328 1.136 ad proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
329 1.150 rmind pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
330 1.150 rmind * sizeof(struct pid_table), KM_SLEEP);
331 1.33 thorpej
332 1.61 dsl /* Set free list running through table...
333 1.61 dsl Preset 'use count' above PID_MAX so we allocate pid 1 next. */
334 1.61 dsl for (i = 0; i <= pid_tbl_mask; i++) {
335 1.61 dsl pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
336 1.61 dsl pid_table[i].pt_pgrp = 0;
337 1.61 dsl }
338 1.61 dsl /* slot 0 is just grabbed */
339 1.61 dsl next_free_pt = 1;
340 1.61 dsl /* Need to fix last entry. */
341 1.61 dsl last_free_pt = pid_tbl_mask;
342 1.61 dsl pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
343 1.61 dsl /* point at which we grow table - to avoid reusing pids too often */
344 1.61 dsl pid_alloc_lim = pid_tbl_mask - 1;
345 1.61 dsl #undef LINK_EMPTY
346 1.61 dsl
347 1.95 thorpej proc_specificdata_domain = specificdata_domain_create();
348 1.95 thorpej KASSERT(proc_specificdata_domain != NULL);
349 1.128 ad
350 1.128 ad proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
351 1.128 ad "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
352 1.153 elad
353 1.153 elad proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
354 1.153 elad proc_listener_cb, NULL);
355 1.7 cgd }
356 1.1 cgd
357 1.7 cgd /*
358 1.81 junyoung * Initialize process 0.
359 1.81 junyoung */
360 1.81 junyoung void
361 1.81 junyoung proc0_init(void)
362 1.81 junyoung {
363 1.81 junyoung struct proc *p;
364 1.81 junyoung struct pgrp *pg;
365 1.81 junyoung struct lwp *l;
366 1.81 junyoung rlim_t lim;
367 1.143 gmcgarry int i;
368 1.81 junyoung
369 1.81 junyoung p = &proc0;
370 1.81 junyoung pg = &pgrp0;
371 1.81 junyoung l = &lwp0;
372 1.81 junyoung
373 1.159 rmind KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
374 1.123 matt KASSERT(l->l_lid == p->p_nlwpid);
375 1.123 matt
376 1.127 ad mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
377 1.129 ad mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
378 1.137 ad p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
379 1.107 ad
380 1.122 ad rw_init(&p->p_reflock);
381 1.100 ad cv_init(&p->p_waitcv, "wait");
382 1.100 ad cv_init(&p->p_lwpcv, "lwpwait");
383 1.100 ad
384 1.81 junyoung LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
385 1.100 ad
386 1.81 junyoung pid_table[0].pt_proc = p;
387 1.81 junyoung LIST_INSERT_HEAD(&allproc, p, p_list);
388 1.81 junyoung LIST_INSERT_HEAD(&alllwp, l, l_list);
389 1.81 junyoung
390 1.81 junyoung pid_table[0].pt_pgrp = pg;
391 1.81 junyoung LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
392 1.81 junyoung
393 1.81 junyoung #ifdef __HAVE_SYSCALL_INTERN
394 1.81 junyoung (*p->p_emul->e_syscall_intern)(p);
395 1.81 junyoung #endif
396 1.81 junyoung
397 1.121 ad callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
398 1.115 ad callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
399 1.100 ad cv_init(&l->l_sigcv, "sigwait");
400 1.81 junyoung
401 1.81 junyoung /* Create credentials. */
402 1.89 elad cred0 = kauth_cred_alloc();
403 1.89 elad p->p_cred = cred0;
404 1.100 ad kauth_cred_hold(cred0);
405 1.100 ad l->l_cred = cred0;
406 1.81 junyoung
407 1.81 junyoung /* Create the CWD info. */
408 1.113 ad rw_init(&cwdi0.cwdi_lock);
409 1.81 junyoung
410 1.81 junyoung /* Create the limits structures. */
411 1.116 dsl mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
412 1.143 gmcgarry for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
413 1.143 gmcgarry limit0.pl_rlimit[i].rlim_cur =
414 1.143 gmcgarry limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
415 1.81 junyoung
416 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
417 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
418 1.81 junyoung maxfiles < nofile ? maxfiles : nofile;
419 1.81 junyoung
420 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
421 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
422 1.81 junyoung maxproc < maxuprc ? maxproc : maxuprc;
423 1.81 junyoung
424 1.81 junyoung lim = ptoa(uvmexp.free);
425 1.81 junyoung limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
426 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
427 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
428 1.143 gmcgarry limit0.pl_corename = defcorename;
429 1.143 gmcgarry limit0.pl_refcnt = 1;
430 1.143 gmcgarry limit0.pl_sv_limit = NULL;
431 1.81 junyoung
432 1.81 junyoung /* Configure virtual memory system, set vm rlimits. */
433 1.81 junyoung uvm_init_limits(p);
434 1.81 junyoung
435 1.81 junyoung /* Initialize file descriptor table for proc0. */
436 1.132 ad fd_init(&filedesc0);
437 1.81 junyoung
438 1.81 junyoung /*
439 1.81 junyoung * Initialize proc0's vmspace, which uses the kernel pmap.
440 1.81 junyoung * All kernel processes (which never have user space mappings)
441 1.81 junyoung * share proc0's vmspace, and thus, the kernel pmap.
442 1.81 junyoung */
443 1.81 junyoung uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
444 1.81 junyoung trunc_page(VM_MAX_ADDRESS));
445 1.81 junyoung
446 1.127 ad /* Initialize signal state for proc0. XXX IPL_SCHED */
447 1.127 ad mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
448 1.81 junyoung siginit(p);
449 1.96 christos
450 1.160 darran #ifdef KDTRACE_HOOKS
451 1.160 darran kdtrace_proc_ctor(NULL, p);
452 1.160 darran #endif
453 1.160 darran
454 1.96 christos proc_initspecific(p);
455 1.96 christos lwp_initspecific(l);
456 1.103 dsl
457 1.103 dsl SYSCALL_TIME_LWP_INIT(l);
458 1.81 junyoung }
459 1.81 junyoung
460 1.81 junyoung /*
461 1.151 rmind * Session reference counting.
462 1.151 rmind */
463 1.151 rmind
464 1.151 rmind void
465 1.151 rmind proc_sesshold(struct session *ss)
466 1.151 rmind {
467 1.151 rmind
468 1.151 rmind KASSERT(mutex_owned(proc_lock));
469 1.151 rmind ss->s_count++;
470 1.151 rmind }
471 1.151 rmind
472 1.151 rmind void
473 1.151 rmind proc_sessrele(struct session *ss)
474 1.151 rmind {
475 1.151 rmind
476 1.151 rmind KASSERT(mutex_owned(proc_lock));
477 1.151 rmind /*
478 1.151 rmind * We keep the pgrp with the same id as the session in order to
479 1.151 rmind * stop a process being given the same pid. Since the pgrp holds
480 1.151 rmind * a reference to the session, it must be a 'zombie' pgrp by now.
481 1.151 rmind */
482 1.151 rmind if (--ss->s_count == 0) {
483 1.151 rmind struct pgrp *pg;
484 1.151 rmind
485 1.151 rmind pg = pg_remove(ss->s_sid);
486 1.151 rmind mutex_exit(proc_lock);
487 1.151 rmind
488 1.151 rmind kmem_free(pg, sizeof(struct pgrp));
489 1.151 rmind kmem_free(ss, sizeof(struct session));
490 1.151 rmind } else {
491 1.151 rmind mutex_exit(proc_lock);
492 1.151 rmind }
493 1.151 rmind }
494 1.151 rmind
495 1.151 rmind /*
496 1.74 junyoung * Check that the specified process group is in the session of the
497 1.60 dsl * specified process.
498 1.60 dsl * Treats -ve ids as process ids.
499 1.60 dsl * Used to validate TIOCSPGRP requests.
500 1.60 dsl */
501 1.60 dsl int
502 1.60 dsl pgid_in_session(struct proc *p, pid_t pg_id)
503 1.60 dsl {
504 1.60 dsl struct pgrp *pgrp;
505 1.101 dsl struct session *session;
506 1.107 ad int error;
507 1.101 dsl
508 1.136 ad mutex_enter(proc_lock);
509 1.60 dsl if (pg_id < 0) {
510 1.101 dsl struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
511 1.64 dsl if (p1 == NULL)
512 1.64 dsl return EINVAL;
513 1.60 dsl pgrp = p1->p_pgrp;
514 1.60 dsl } else {
515 1.101 dsl pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
516 1.60 dsl if (pgrp == NULL)
517 1.64 dsl return EINVAL;
518 1.60 dsl }
519 1.101 dsl session = pgrp->pg_session;
520 1.101 dsl if (session != p->p_pgrp->pg_session)
521 1.107 ad error = EPERM;
522 1.107 ad else
523 1.107 ad error = 0;
524 1.136 ad mutex_exit(proc_lock);
525 1.107 ad
526 1.107 ad return error;
527 1.7 cgd }
528 1.4 andrew
529 1.1 cgd /*
530 1.148 rmind * p_inferior: is p an inferior of q?
531 1.1 cgd */
532 1.148 rmind static inline bool
533 1.148 rmind p_inferior(struct proc *p, struct proc *q)
534 1.1 cgd {
535 1.1 cgd
536 1.148 rmind KASSERT(mutex_owned(proc_lock));
537 1.148 rmind
538 1.41 sommerfe for (; p != q; p = p->p_pptr)
539 1.1 cgd if (p->p_pid == 0)
540 1.148 rmind return false;
541 1.148 rmind return true;
542 1.1 cgd }
543 1.1 cgd
544 1.1 cgd /*
545 1.1 cgd * Locate a process by number
546 1.1 cgd */
547 1.1 cgd struct proc *
548 1.68 dsl p_find(pid_t pid, uint flags)
549 1.1 cgd {
550 1.33 thorpej struct proc *p;
551 1.68 dsl char stat;
552 1.1 cgd
553 1.68 dsl if (!(flags & PFIND_LOCKED))
554 1.136 ad mutex_enter(proc_lock);
555 1.100 ad
556 1.61 dsl p = pid_table[pid & pid_tbl_mask].pt_proc;
557 1.100 ad
558 1.61 dsl /* Only allow live processes to be found by pid. */
559 1.100 ad /* XXXSMP p_stat */
560 1.100 ad if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
561 1.100 ad stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
562 1.100 ad (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
563 1.68 dsl if (flags & PFIND_UNLOCK_OK)
564 1.136 ad mutex_exit(proc_lock);
565 1.68 dsl return p;
566 1.68 dsl }
567 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
568 1.136 ad mutex_exit(proc_lock);
569 1.68 dsl return NULL;
570 1.1 cgd }
571 1.1 cgd
572 1.61 dsl
573 1.1 cgd /*
574 1.1 cgd * Locate a process group by number
575 1.1 cgd */
576 1.1 cgd struct pgrp *
577 1.68 dsl pg_find(pid_t pgid, uint flags)
578 1.1 cgd {
579 1.68 dsl struct pgrp *pg;
580 1.1 cgd
581 1.68 dsl if (!(flags & PFIND_LOCKED))
582 1.136 ad mutex_enter(proc_lock);
583 1.68 dsl pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
584 1.61 dsl /*
585 1.61 dsl * Can't look up a pgrp that only exists because the session
586 1.61 dsl * hasn't died yet (traditional)
587 1.61 dsl */
588 1.68 dsl if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
589 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
590 1.136 ad mutex_exit(proc_lock);
591 1.68 dsl return NULL;
592 1.68 dsl }
593 1.68 dsl
594 1.68 dsl if (flags & PFIND_UNLOCK_OK)
595 1.136 ad mutex_exit(proc_lock);
596 1.68 dsl return pg;
597 1.1 cgd }
598 1.1 cgd
599 1.61 dsl static void
600 1.61 dsl expand_pid_table(void)
601 1.1 cgd {
602 1.150 rmind size_t pt_size, tsz;
603 1.61 dsl struct pid_table *n_pt, *new_pt;
604 1.61 dsl struct proc *proc;
605 1.61 dsl struct pgrp *pgrp;
606 1.61 dsl pid_t pid;
607 1.150 rmind u_int i;
608 1.1 cgd
609 1.150 rmind pt_size = pid_tbl_mask + 1;
610 1.150 rmind tsz = pt_size * 2 * sizeof(struct pid_table);
611 1.150 rmind new_pt = kmem_alloc(tsz, KM_SLEEP);
612 1.61 dsl
613 1.136 ad mutex_enter(proc_lock);
614 1.61 dsl if (pt_size != pid_tbl_mask + 1) {
615 1.61 dsl /* Another process beat us to it... */
616 1.136 ad mutex_exit(proc_lock);
617 1.150 rmind kmem_free(new_pt, tsz);
618 1.61 dsl return;
619 1.61 dsl }
620 1.72 junyoung
621 1.61 dsl /*
622 1.61 dsl * Copy entries from old table into new one.
623 1.61 dsl * If 'pid' is 'odd' we need to place in the upper half,
624 1.61 dsl * even pid's to the lower half.
625 1.61 dsl * Free items stay in the low half so we don't have to
626 1.61 dsl * fixup the reference to them.
627 1.61 dsl * We stuff free items on the front of the freelist
628 1.61 dsl * because we can't write to unmodified entries.
629 1.74 junyoung * Processing the table backwards maintains a semblance
630 1.61 dsl * of issueing pid numbers that increase with time.
631 1.61 dsl */
632 1.61 dsl i = pt_size - 1;
633 1.61 dsl n_pt = new_pt + i;
634 1.61 dsl for (; ; i--, n_pt--) {
635 1.61 dsl proc = pid_table[i].pt_proc;
636 1.61 dsl pgrp = pid_table[i].pt_pgrp;
637 1.61 dsl if (!P_VALID(proc)) {
638 1.61 dsl /* Up 'use count' so that link is valid */
639 1.61 dsl pid = (P_NEXT(proc) + pt_size) & ~pt_size;
640 1.61 dsl proc = P_FREE(pid);
641 1.61 dsl if (pgrp)
642 1.61 dsl pid = pgrp->pg_id;
643 1.61 dsl } else
644 1.61 dsl pid = proc->p_pid;
645 1.72 junyoung
646 1.61 dsl /* Save entry in appropriate half of table */
647 1.61 dsl n_pt[pid & pt_size].pt_proc = proc;
648 1.61 dsl n_pt[pid & pt_size].pt_pgrp = pgrp;
649 1.61 dsl
650 1.61 dsl /* Put other piece on start of free list */
651 1.61 dsl pid = (pid ^ pt_size) & ~pid_tbl_mask;
652 1.61 dsl n_pt[pid & pt_size].pt_proc =
653 1.61 dsl P_FREE((pid & ~pt_size) | next_free_pt);
654 1.61 dsl n_pt[pid & pt_size].pt_pgrp = 0;
655 1.61 dsl next_free_pt = i | (pid & pt_size);
656 1.61 dsl if (i == 0)
657 1.61 dsl break;
658 1.61 dsl }
659 1.61 dsl
660 1.150 rmind /* Save old table size and switch tables */
661 1.150 rmind tsz = pt_size * sizeof(struct pid_table);
662 1.61 dsl n_pt = pid_table;
663 1.61 dsl pid_table = new_pt;
664 1.61 dsl pid_tbl_mask = pt_size * 2 - 1;
665 1.61 dsl
666 1.61 dsl /*
667 1.61 dsl * pid_max starts as PID_MAX (= 30000), once we have 16384
668 1.61 dsl * allocated pids we need it to be larger!
669 1.61 dsl */
670 1.61 dsl if (pid_tbl_mask > PID_MAX) {
671 1.61 dsl pid_max = pid_tbl_mask * 2 + 1;
672 1.61 dsl pid_alloc_lim |= pid_alloc_lim << 1;
673 1.61 dsl } else
674 1.61 dsl pid_alloc_lim <<= 1; /* doubles number of free slots... */
675 1.61 dsl
676 1.136 ad mutex_exit(proc_lock);
677 1.150 rmind kmem_free(n_pt, tsz);
678 1.61 dsl }
679 1.61 dsl
680 1.61 dsl struct proc *
681 1.61 dsl proc_alloc(void)
682 1.61 dsl {
683 1.61 dsl struct proc *p;
684 1.100 ad int nxt;
685 1.61 dsl pid_t pid;
686 1.61 dsl struct pid_table *pt;
687 1.61 dsl
688 1.128 ad p = pool_cache_get(proc_cache, PR_WAITOK);
689 1.61 dsl p->p_stat = SIDL; /* protect against others */
690 1.61 dsl
691 1.96 christos proc_initspecific(p);
692 1.61 dsl /* allocate next free pid */
693 1.61 dsl
694 1.61 dsl for (;;expand_pid_table()) {
695 1.61 dsl if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
696 1.61 dsl /* ensure pids cycle through 2000+ values */
697 1.61 dsl continue;
698 1.136 ad mutex_enter(proc_lock);
699 1.61 dsl pt = &pid_table[next_free_pt];
700 1.1 cgd #ifdef DIAGNOSTIC
701 1.63 christos if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
702 1.61 dsl panic("proc_alloc: slot busy");
703 1.1 cgd #endif
704 1.61 dsl nxt = P_NEXT(pt->pt_proc);
705 1.61 dsl if (nxt & pid_tbl_mask)
706 1.61 dsl break;
707 1.61 dsl /* Table full - expand (NB last entry not used....) */
708 1.136 ad mutex_exit(proc_lock);
709 1.61 dsl }
710 1.61 dsl
711 1.61 dsl /* pid is 'saved use count' + 'size' + entry */
712 1.61 dsl pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
713 1.61 dsl if ((uint)pid > (uint)pid_max)
714 1.61 dsl pid &= pid_tbl_mask;
715 1.61 dsl p->p_pid = pid;
716 1.61 dsl next_free_pt = nxt & pid_tbl_mask;
717 1.61 dsl
718 1.61 dsl /* Grab table slot */
719 1.61 dsl pt->pt_proc = p;
720 1.61 dsl pid_alloc_cnt++;
721 1.61 dsl
722 1.160 darran #ifdef KDTRACE_HOOKS
723 1.160 darran kdtrace_proc_ctor(NULL, p);
724 1.160 darran #endif
725 1.160 darran
726 1.136 ad mutex_exit(proc_lock);
727 1.61 dsl
728 1.61 dsl return p;
729 1.61 dsl }
730 1.61 dsl
731 1.61 dsl /*
732 1.118 ad * Free a process id - called from proc_free (in kern_exit.c)
733 1.100 ad *
734 1.136 ad * Called with the proc_lock held.
735 1.61 dsl */
736 1.61 dsl void
737 1.118 ad proc_free_pid(struct proc *p)
738 1.61 dsl {
739 1.61 dsl pid_t pid = p->p_pid;
740 1.61 dsl struct pid_table *pt;
741 1.61 dsl
742 1.136 ad KASSERT(mutex_owned(proc_lock));
743 1.61 dsl
744 1.61 dsl pt = &pid_table[pid & pid_tbl_mask];
745 1.1 cgd #ifdef DIAGNOSTIC
746 1.63 christos if (__predict_false(pt->pt_proc != p))
747 1.61 dsl panic("proc_free: pid_table mismatch, pid %x, proc %p",
748 1.61 dsl pid, p);
749 1.1 cgd #endif
750 1.61 dsl /* save pid use count in slot */
751 1.61 dsl pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
752 1.61 dsl
753 1.61 dsl if (pt->pt_pgrp == NULL) {
754 1.61 dsl /* link last freed entry onto ours */
755 1.61 dsl pid &= pid_tbl_mask;
756 1.61 dsl pt = &pid_table[last_free_pt];
757 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
758 1.61 dsl last_free_pt = pid;
759 1.61 dsl pid_alloc_cnt--;
760 1.61 dsl }
761 1.61 dsl
762 1.126 ad atomic_dec_uint(&nprocs);
763 1.61 dsl }
764 1.61 dsl
765 1.128 ad void
766 1.128 ad proc_free_mem(struct proc *p)
767 1.128 ad {
768 1.128 ad
769 1.160 darran #ifdef KDTRACE_HOOKS
770 1.160 darran kdtrace_proc_dtor(NULL, p);
771 1.160 darran #endif
772 1.128 ad pool_cache_put(proc_cache, p);
773 1.128 ad }
774 1.128 ad
775 1.61 dsl /*
776 1.151 rmind * proc_enterpgrp: move p to a new or existing process group (and session).
777 1.61 dsl *
778 1.61 dsl * If we are creating a new pgrp, the pgid should equal
779 1.72 junyoung * the calling process' pid.
780 1.61 dsl * If is only valid to enter a process group that is in the session
781 1.61 dsl * of the process.
782 1.61 dsl * Also mksess should only be set if we are creating a process group
783 1.61 dsl *
784 1.134 yamt * Only called from sys_setsid and sys_setpgid.
785 1.61 dsl */
786 1.61 dsl int
787 1.151 rmind proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
788 1.61 dsl {
789 1.61 dsl struct pgrp *new_pgrp, *pgrp;
790 1.61 dsl struct session *sess;
791 1.100 ad struct proc *p;
792 1.61 dsl int rval;
793 1.61 dsl pid_t pg_id = NO_PGID;
794 1.61 dsl
795 1.151 rmind sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
796 1.61 dsl
797 1.107 ad /* Allocate data areas we might need before doing any validity checks */
798 1.136 ad mutex_enter(proc_lock); /* Because pid_table might change */
799 1.107 ad if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
800 1.136 ad mutex_exit(proc_lock);
801 1.131 ad new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
802 1.136 ad mutex_enter(proc_lock);
803 1.107 ad } else
804 1.107 ad new_pgrp = NULL;
805 1.61 dsl rval = EPERM; /* most common error (to save typing) */
806 1.61 dsl
807 1.61 dsl /* Check pgrp exists or can be created */
808 1.61 dsl pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
809 1.61 dsl if (pgrp != NULL && pgrp->pg_id != pgid)
810 1.61 dsl goto done;
811 1.61 dsl
812 1.61 dsl /* Can only set another process under restricted circumstances. */
813 1.100 ad if (pid != curp->p_pid) {
814 1.61 dsl /* must exist and be one of our children... */
815 1.100 ad if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
816 1.148 rmind !p_inferior(p, curp)) {
817 1.61 dsl rval = ESRCH;
818 1.61 dsl goto done;
819 1.61 dsl }
820 1.61 dsl /* ... in the same session... */
821 1.61 dsl if (sess != NULL || p->p_session != curp->p_session)
822 1.61 dsl goto done;
823 1.61 dsl /* ... existing pgid must be in same session ... */
824 1.61 dsl if (pgrp != NULL && pgrp->pg_session != p->p_session)
825 1.61 dsl goto done;
826 1.61 dsl /* ... and not done an exec. */
827 1.102 pavel if (p->p_flag & PK_EXEC) {
828 1.61 dsl rval = EACCES;
829 1.61 dsl goto done;
830 1.49 enami }
831 1.100 ad } else {
832 1.100 ad /* ... setsid() cannot re-enter a pgrp */
833 1.100 ad if (mksess && (curp->p_pgid == curp->p_pid ||
834 1.100 ad pg_find(curp->p_pid, PFIND_LOCKED)))
835 1.100 ad goto done;
836 1.100 ad p = curp;
837 1.61 dsl }
838 1.1 cgd
839 1.61 dsl /* Changing the process group/session of a session
840 1.61 dsl leader is definitely off limits. */
841 1.61 dsl if (SESS_LEADER(p)) {
842 1.61 dsl if (sess == NULL && p->p_pgrp == pgrp)
843 1.61 dsl /* unless it's a definite noop */
844 1.61 dsl rval = 0;
845 1.61 dsl goto done;
846 1.61 dsl }
847 1.61 dsl
848 1.61 dsl /* Can only create a process group with id of process */
849 1.61 dsl if (pgrp == NULL && pgid != pid)
850 1.61 dsl goto done;
851 1.61 dsl
852 1.61 dsl /* Can only create a session if creating pgrp */
853 1.61 dsl if (sess != NULL && pgrp != NULL)
854 1.61 dsl goto done;
855 1.61 dsl
856 1.61 dsl /* Check we allocated memory for a pgrp... */
857 1.61 dsl if (pgrp == NULL && new_pgrp == NULL)
858 1.61 dsl goto done;
859 1.61 dsl
860 1.61 dsl /* Don't attach to 'zombie' pgrp */
861 1.61 dsl if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
862 1.61 dsl goto done;
863 1.61 dsl
864 1.61 dsl /* Expect to succeed now */
865 1.61 dsl rval = 0;
866 1.61 dsl
867 1.61 dsl if (pgrp == p->p_pgrp)
868 1.61 dsl /* nothing to do */
869 1.61 dsl goto done;
870 1.61 dsl
871 1.61 dsl /* Ok all setup, link up required structures */
872 1.100 ad
873 1.61 dsl if (pgrp == NULL) {
874 1.61 dsl pgrp = new_pgrp;
875 1.141 yamt new_pgrp = NULL;
876 1.61 dsl if (sess != NULL) {
877 1.21 thorpej sess->s_sid = p->p_pid;
878 1.1 cgd sess->s_leader = p;
879 1.1 cgd sess->s_count = 1;
880 1.1 cgd sess->s_ttyvp = NULL;
881 1.1 cgd sess->s_ttyp = NULL;
882 1.58 dsl sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
883 1.25 perry memcpy(sess->s_login, p->p_session->s_login,
884 1.1 cgd sizeof(sess->s_login));
885 1.100 ad p->p_lflag &= ~PL_CONTROLT;
886 1.1 cgd } else {
887 1.61 dsl sess = p->p_pgrp->pg_session;
888 1.151 rmind proc_sesshold(sess);
889 1.1 cgd }
890 1.61 dsl pgrp->pg_session = sess;
891 1.141 yamt sess = NULL;
892 1.61 dsl
893 1.1 cgd pgrp->pg_id = pgid;
894 1.10 mycroft LIST_INIT(&pgrp->pg_members);
895 1.61 dsl #ifdef DIAGNOSTIC
896 1.63 christos if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
897 1.61 dsl panic("enterpgrp: pgrp table slot in use");
898 1.63 christos if (__predict_false(mksess && p != curp))
899 1.63 christos panic("enterpgrp: mksession and p != curproc");
900 1.61 dsl #endif
901 1.61 dsl pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
902 1.1 cgd pgrp->pg_jobc = 0;
903 1.136 ad }
904 1.1 cgd
905 1.1 cgd /*
906 1.1 cgd * Adjust eligibility of affected pgrps to participate in job control.
907 1.1 cgd * Increment eligibility counts before decrementing, otherwise we
908 1.1 cgd * could reach 0 spuriously during the first call.
909 1.1 cgd */
910 1.1 cgd fixjobc(p, pgrp, 1);
911 1.1 cgd fixjobc(p, p->p_pgrp, 0);
912 1.1 cgd
913 1.139 ad /* Interlock with ttread(). */
914 1.139 ad mutex_spin_enter(&tty_lock);
915 1.139 ad
916 1.100 ad /* Move process to requested group. */
917 1.10 mycroft LIST_REMOVE(p, p_pglist);
918 1.52 matt if (LIST_EMPTY(&p->p_pgrp->pg_members))
919 1.61 dsl /* defer delete until we've dumped the lock */
920 1.61 dsl pg_id = p->p_pgrp->pg_id;
921 1.1 cgd p->p_pgrp = pgrp;
922 1.10 mycroft LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
923 1.100 ad
924 1.100 ad /* Done with the swap; we can release the tty mutex. */
925 1.128 ad mutex_spin_exit(&tty_lock);
926 1.128 ad
927 1.61 dsl done:
928 1.151 rmind if (pg_id != NO_PGID) {
929 1.151 rmind /* Releases proc_lock. */
930 1.100 ad pg_delete(pg_id);
931 1.151 rmind } else {
932 1.151 rmind mutex_exit(proc_lock);
933 1.151 rmind }
934 1.61 dsl if (sess != NULL)
935 1.131 ad kmem_free(sess, sizeof(*sess));
936 1.61 dsl if (new_pgrp != NULL)
937 1.131 ad kmem_free(new_pgrp, sizeof(*new_pgrp));
938 1.63 christos #ifdef DEBUG_PGRP
939 1.63 christos if (__predict_false(rval))
940 1.61 dsl printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
941 1.61 dsl pid, pgid, mksess, curp->p_pid, rval);
942 1.61 dsl #endif
943 1.61 dsl return rval;
944 1.1 cgd }
945 1.1 cgd
946 1.1 cgd /*
947 1.151 rmind * proc_leavepgrp: remove a process from its process group.
948 1.151 rmind * => must be called with the proc_lock held, which will be released;
949 1.1 cgd */
950 1.100 ad void
951 1.151 rmind proc_leavepgrp(struct proc *p)
952 1.1 cgd {
953 1.61 dsl struct pgrp *pgrp;
954 1.1 cgd
955 1.136 ad KASSERT(mutex_owned(proc_lock));
956 1.100 ad
957 1.139 ad /* Interlock with ttread() */
958 1.128 ad mutex_spin_enter(&tty_lock);
959 1.61 dsl pgrp = p->p_pgrp;
960 1.10 mycroft LIST_REMOVE(p, p_pglist);
961 1.94 ad p->p_pgrp = NULL;
962 1.128 ad mutex_spin_exit(&tty_lock);
963 1.100 ad
964 1.151 rmind if (LIST_EMPTY(&pgrp->pg_members)) {
965 1.151 rmind /* Releases proc_lock. */
966 1.100 ad pg_delete(pgrp->pg_id);
967 1.151 rmind } else {
968 1.151 rmind mutex_exit(proc_lock);
969 1.151 rmind }
970 1.61 dsl }
971 1.61 dsl
972 1.100 ad /*
973 1.151 rmind * pg_remove: remove a process group from the table.
974 1.151 rmind * => must be called with the proc_lock held;
975 1.151 rmind * => returns process group to free;
976 1.100 ad */
977 1.151 rmind static struct pgrp *
978 1.151 rmind pg_remove(pid_t pg_id)
979 1.61 dsl {
980 1.61 dsl struct pgrp *pgrp;
981 1.61 dsl struct pid_table *pt;
982 1.61 dsl
983 1.136 ad KASSERT(mutex_owned(proc_lock));
984 1.100 ad
985 1.61 dsl pt = &pid_table[pg_id & pid_tbl_mask];
986 1.61 dsl pgrp = pt->pt_pgrp;
987 1.151 rmind
988 1.151 rmind KASSERT(pgrp != NULL);
989 1.151 rmind KASSERT(pgrp->pg_id == pg_id);
990 1.151 rmind KASSERT(LIST_EMPTY(&pgrp->pg_members));
991 1.151 rmind
992 1.151 rmind pt->pt_pgrp = NULL;
993 1.61 dsl
994 1.61 dsl if (!P_VALID(pt->pt_proc)) {
995 1.151 rmind /* Orphaned pgrp, put slot onto free list. */
996 1.151 rmind KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
997 1.61 dsl pg_id &= pid_tbl_mask;
998 1.61 dsl pt = &pid_table[last_free_pt];
999 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
1000 1.61 dsl last_free_pt = pg_id;
1001 1.61 dsl pid_alloc_cnt--;
1002 1.61 dsl }
1003 1.151 rmind return pgrp;
1004 1.1 cgd }
1005 1.1 cgd
1006 1.1 cgd /*
1007 1.151 rmind * pg_delete: delete and free a process group.
1008 1.151 rmind * => must be called with the proc_lock held, which will be released.
1009 1.1 cgd */
1010 1.61 dsl static void
1011 1.61 dsl pg_delete(pid_t pg_id)
1012 1.61 dsl {
1013 1.151 rmind struct pgrp *pg;
1014 1.61 dsl struct tty *ttyp;
1015 1.61 dsl struct session *ss;
1016 1.100 ad
1017 1.136 ad KASSERT(mutex_owned(proc_lock));
1018 1.61 dsl
1019 1.151 rmind pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1020 1.151 rmind if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1021 1.151 rmind mutex_exit(proc_lock);
1022 1.61 dsl return;
1023 1.151 rmind }
1024 1.61 dsl
1025 1.151 rmind ss = pg->pg_session;
1026 1.71 pk
1027 1.61 dsl /* Remove reference (if any) from tty to this process group */
1028 1.128 ad mutex_spin_enter(&tty_lock);
1029 1.71 pk ttyp = ss->s_ttyp;
1030 1.151 rmind if (ttyp != NULL && ttyp->t_pgrp == pg) {
1031 1.61 dsl ttyp->t_pgrp = NULL;
1032 1.151 rmind KASSERT(ttyp->t_session == ss);
1033 1.71 pk }
1034 1.128 ad mutex_spin_exit(&tty_lock);
1035 1.61 dsl
1036 1.71 pk /*
1037 1.151 rmind * The leading process group in a session is freed by proc_sessrele(),
1038 1.151 rmind * if last reference. Note: proc_sessrele() releases proc_lock.
1039 1.71 pk */
1040 1.151 rmind pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1041 1.151 rmind proc_sessrele(ss);
1042 1.61 dsl
1043 1.151 rmind if (pg != NULL) {
1044 1.151 rmind /* Free it, if was not done by proc_sessrele(). */
1045 1.151 rmind kmem_free(pg, sizeof(struct pgrp));
1046 1.151 rmind }
1047 1.1 cgd }
1048 1.1 cgd
1049 1.1 cgd /*
1050 1.1 cgd * Adjust pgrp jobc counters when specified process changes process group.
1051 1.1 cgd * We count the number of processes in each process group that "qualify"
1052 1.1 cgd * the group for terminal job control (those with a parent in a different
1053 1.1 cgd * process group of the same session). If that count reaches zero, the
1054 1.1 cgd * process group becomes orphaned. Check both the specified process'
1055 1.1 cgd * process group and that of its children.
1056 1.1 cgd * entering == 0 => p is leaving specified group.
1057 1.1 cgd * entering == 1 => p is entering specified group.
1058 1.68 dsl *
1059 1.136 ad * Call with proc_lock held.
1060 1.1 cgd */
1061 1.4 andrew void
1062 1.59 dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1063 1.1 cgd {
1064 1.39 augustss struct pgrp *hispgrp;
1065 1.39 augustss struct session *mysession = pgrp->pg_session;
1066 1.68 dsl struct proc *child;
1067 1.1 cgd
1068 1.136 ad KASSERT(mutex_owned(proc_lock));
1069 1.100 ad
1070 1.1 cgd /*
1071 1.1 cgd * Check p's parent to see whether p qualifies its own process
1072 1.1 cgd * group; if so, adjust count for p's process group.
1073 1.1 cgd */
1074 1.68 dsl hispgrp = p->p_pptr->p_pgrp;
1075 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1076 1.100 ad if (entering) {
1077 1.1 cgd pgrp->pg_jobc++;
1078 1.136 ad p->p_lflag &= ~PL_ORPHANPG;
1079 1.100 ad } else if (--pgrp->pg_jobc == 0)
1080 1.1 cgd orphanpg(pgrp);
1081 1.26 thorpej }
1082 1.1 cgd
1083 1.1 cgd /*
1084 1.1 cgd * Check this process' children to see whether they qualify
1085 1.1 cgd * their process groups; if so, adjust counts for children's
1086 1.1 cgd * process groups.
1087 1.1 cgd */
1088 1.68 dsl LIST_FOREACH(child, &p->p_children, p_sibling) {
1089 1.68 dsl hispgrp = child->p_pgrp;
1090 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1091 1.68 dsl !P_ZOMBIE(child)) {
1092 1.100 ad if (entering) {
1093 1.136 ad child->p_lflag &= ~PL_ORPHANPG;
1094 1.1 cgd hispgrp->pg_jobc++;
1095 1.100 ad } else if (--hispgrp->pg_jobc == 0)
1096 1.1 cgd orphanpg(hispgrp);
1097 1.26 thorpej }
1098 1.26 thorpej }
1099 1.1 cgd }
1100 1.1 cgd
1101 1.72 junyoung /*
1102 1.1 cgd * A process group has become orphaned;
1103 1.1 cgd * if there are any stopped processes in the group,
1104 1.1 cgd * hang-up all process in that group.
1105 1.68 dsl *
1106 1.136 ad * Call with proc_lock held.
1107 1.1 cgd */
1108 1.4 andrew static void
1109 1.59 dsl orphanpg(struct pgrp *pg)
1110 1.1 cgd {
1111 1.39 augustss struct proc *p;
1112 1.100 ad
1113 1.136 ad KASSERT(mutex_owned(proc_lock));
1114 1.100 ad
1115 1.52 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1116 1.1 cgd if (p->p_stat == SSTOP) {
1117 1.136 ad p->p_lflag |= PL_ORPHANPG;
1118 1.100 ad psignal(p, SIGHUP);
1119 1.100 ad psignal(p, SIGCONT);
1120 1.35 bouyer }
1121 1.35 bouyer }
1122 1.35 bouyer }
1123 1.1 cgd
1124 1.61 dsl #ifdef DDB
1125 1.61 dsl #include <ddb/db_output.h>
1126 1.61 dsl void pidtbl_dump(void);
1127 1.14 christos void
1128 1.61 dsl pidtbl_dump(void)
1129 1.1 cgd {
1130 1.61 dsl struct pid_table *pt;
1131 1.61 dsl struct proc *p;
1132 1.39 augustss struct pgrp *pgrp;
1133 1.61 dsl int id;
1134 1.1 cgd
1135 1.61 dsl db_printf("pid table %p size %x, next %x, last %x\n",
1136 1.61 dsl pid_table, pid_tbl_mask+1,
1137 1.61 dsl next_free_pt, last_free_pt);
1138 1.61 dsl for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1139 1.61 dsl p = pt->pt_proc;
1140 1.61 dsl if (!P_VALID(p) && !pt->pt_pgrp)
1141 1.61 dsl continue;
1142 1.61 dsl db_printf(" id %x: ", id);
1143 1.61 dsl if (P_VALID(p))
1144 1.61 dsl db_printf("proc %p id %d (0x%x) %s\n",
1145 1.61 dsl p, p->p_pid, p->p_pid, p->p_comm);
1146 1.61 dsl else
1147 1.61 dsl db_printf("next %x use %x\n",
1148 1.61 dsl P_NEXT(p) & pid_tbl_mask,
1149 1.61 dsl P_NEXT(p) & ~pid_tbl_mask);
1150 1.61 dsl if ((pgrp = pt->pt_pgrp)) {
1151 1.61 dsl db_printf("\tsession %p, sid %d, count %d, login %s\n",
1152 1.61 dsl pgrp->pg_session, pgrp->pg_session->s_sid,
1153 1.61 dsl pgrp->pg_session->s_count,
1154 1.61 dsl pgrp->pg_session->s_login);
1155 1.61 dsl db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1156 1.61 dsl pgrp, pgrp->pg_id, pgrp->pg_jobc,
1157 1.135 yamt LIST_FIRST(&pgrp->pg_members));
1158 1.135 yamt LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1159 1.72 junyoung db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1160 1.61 dsl p->p_pid, p, p->p_pgrp, p->p_comm);
1161 1.10 mycroft }
1162 1.1 cgd }
1163 1.1 cgd }
1164 1.1 cgd }
1165 1.61 dsl #endif /* DDB */
1166 1.48 yamt
1167 1.48 yamt #ifdef KSTACK_CHECK_MAGIC
1168 1.48 yamt
1169 1.48 yamt #define KSTACK_MAGIC 0xdeadbeaf
1170 1.48 yamt
1171 1.48 yamt /* XXX should be per process basis? */
1172 1.149 rmind static int kstackleftmin = KSTACK_SIZE;
1173 1.149 rmind static int kstackleftthres = KSTACK_SIZE / 8;
1174 1.48 yamt
1175 1.48 yamt void
1176 1.56 yamt kstack_setup_magic(const struct lwp *l)
1177 1.48 yamt {
1178 1.85 perry uint32_t *ip;
1179 1.85 perry uint32_t const *end;
1180 1.48 yamt
1181 1.56 yamt KASSERT(l != NULL);
1182 1.56 yamt KASSERT(l != &lwp0);
1183 1.48 yamt
1184 1.48 yamt /*
1185 1.48 yamt * fill all the stack with magic number
1186 1.48 yamt * so that later modification on it can be detected.
1187 1.48 yamt */
1188 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1189 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1190 1.48 yamt for (; ip < end; ip++) {
1191 1.48 yamt *ip = KSTACK_MAGIC;
1192 1.48 yamt }
1193 1.48 yamt }
1194 1.48 yamt
1195 1.48 yamt void
1196 1.56 yamt kstack_check_magic(const struct lwp *l)
1197 1.48 yamt {
1198 1.85 perry uint32_t const *ip, *end;
1199 1.48 yamt int stackleft;
1200 1.48 yamt
1201 1.56 yamt KASSERT(l != NULL);
1202 1.48 yamt
1203 1.48 yamt /* don't check proc0 */ /*XXX*/
1204 1.56 yamt if (l == &lwp0)
1205 1.48 yamt return;
1206 1.48 yamt
1207 1.48 yamt #ifdef __MACHINE_STACK_GROWS_UP
1208 1.48 yamt /* stack grows upwards (eg. hppa) */
1209 1.106 christos ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1210 1.85 perry end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1211 1.48 yamt for (ip--; ip >= end; ip--)
1212 1.48 yamt if (*ip != KSTACK_MAGIC)
1213 1.48 yamt break;
1214 1.72 junyoung
1215 1.106 christos stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1216 1.48 yamt #else /* __MACHINE_STACK_GROWS_UP */
1217 1.48 yamt /* stack grows downwards (eg. i386) */
1218 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1219 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1220 1.48 yamt for (; ip < end; ip++)
1221 1.48 yamt if (*ip != KSTACK_MAGIC)
1222 1.48 yamt break;
1223 1.48 yamt
1224 1.93 christos stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1225 1.48 yamt #endif /* __MACHINE_STACK_GROWS_UP */
1226 1.48 yamt
1227 1.48 yamt if (kstackleftmin > stackleft) {
1228 1.48 yamt kstackleftmin = stackleft;
1229 1.48 yamt if (stackleft < kstackleftthres)
1230 1.56 yamt printf("warning: kernel stack left %d bytes"
1231 1.56 yamt "(pid %u:lid %u)\n", stackleft,
1232 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1233 1.48 yamt }
1234 1.48 yamt
1235 1.48 yamt if (stackleft <= 0) {
1236 1.56 yamt panic("magic on the top of kernel stack changed for "
1237 1.56 yamt "pid %u, lid %u: maybe kernel stack overflow",
1238 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1239 1.48 yamt }
1240 1.48 yamt }
1241 1.50 enami #endif /* KSTACK_CHECK_MAGIC */
1242 1.79 yamt
1243 1.79 yamt int
1244 1.79 yamt proclist_foreach_call(struct proclist *list,
1245 1.79 yamt int (*callback)(struct proc *, void *arg), void *arg)
1246 1.79 yamt {
1247 1.79 yamt struct proc marker;
1248 1.79 yamt struct proc *p;
1249 1.79 yamt int ret = 0;
1250 1.79 yamt
1251 1.102 pavel marker.p_flag = PK_MARKER;
1252 1.136 ad mutex_enter(proc_lock);
1253 1.79 yamt for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1254 1.102 pavel if (p->p_flag & PK_MARKER) {
1255 1.79 yamt p = LIST_NEXT(p, p_list);
1256 1.79 yamt continue;
1257 1.79 yamt }
1258 1.79 yamt LIST_INSERT_AFTER(p, &marker, p_list);
1259 1.79 yamt ret = (*callback)(p, arg);
1260 1.136 ad KASSERT(mutex_owned(proc_lock));
1261 1.79 yamt p = LIST_NEXT(&marker, p_list);
1262 1.79 yamt LIST_REMOVE(&marker, p_list);
1263 1.79 yamt }
1264 1.136 ad mutex_exit(proc_lock);
1265 1.79 yamt
1266 1.79 yamt return ret;
1267 1.79 yamt }
1268 1.86 yamt
1269 1.86 yamt int
1270 1.86 yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1271 1.86 yamt {
1272 1.86 yamt
1273 1.86 yamt /* XXXCDC: how should locking work here? */
1274 1.86 yamt
1275 1.87 yamt /* curproc exception is for coredump. */
1276 1.87 yamt
1277 1.100 ad if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1278 1.86 yamt (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1279 1.86 yamt return EFAULT;
1280 1.86 yamt }
1281 1.86 yamt
1282 1.86 yamt uvmspace_addref(p->p_vmspace);
1283 1.86 yamt *vm = p->p_vmspace;
1284 1.86 yamt
1285 1.86 yamt return 0;
1286 1.86 yamt }
1287 1.94 ad
1288 1.94 ad /*
1289 1.94 ad * Acquire a write lock on the process credential.
1290 1.94 ad */
1291 1.94 ad void
1292 1.100 ad proc_crmod_enter(void)
1293 1.94 ad {
1294 1.100 ad struct lwp *l = curlwp;
1295 1.100 ad struct proc *p = l->l_proc;
1296 1.100 ad struct plimit *lim;
1297 1.100 ad kauth_cred_t oc;
1298 1.100 ad char *cn;
1299 1.94 ad
1300 1.117 dsl /* Reset what needs to be reset in plimit. */
1301 1.117 dsl if (p->p_limit->pl_corename != defcorename) {
1302 1.117 dsl lim_privatise(p, false);
1303 1.117 dsl lim = p->p_limit;
1304 1.117 dsl mutex_enter(&lim->pl_lock);
1305 1.117 dsl cn = lim->pl_corename;
1306 1.117 dsl lim->pl_corename = defcorename;
1307 1.117 dsl mutex_exit(&lim->pl_lock);
1308 1.117 dsl if (cn != defcorename)
1309 1.117 dsl free(cn, M_TEMP);
1310 1.117 dsl }
1311 1.117 dsl
1312 1.137 ad mutex_enter(p->p_lock);
1313 1.100 ad
1314 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1315 1.100 ad if ((oc = l->l_cred) != p->p_cred) {
1316 1.100 ad kauth_cred_hold(p->p_cred);
1317 1.100 ad l->l_cred = p->p_cred;
1318 1.100 ad kauth_cred_free(oc);
1319 1.100 ad }
1320 1.100 ad
1321 1.94 ad }
1322 1.94 ad
1323 1.94 ad /*
1324 1.100 ad * Set in a new process credential, and drop the write lock. The credential
1325 1.100 ad * must have a reference already. Optionally, free a no-longer required
1326 1.100 ad * credential. The scheduler also needs to inspect p_cred, so we also
1327 1.100 ad * briefly acquire the sched state mutex.
1328 1.94 ad */
1329 1.94 ad void
1330 1.104 thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1331 1.94 ad {
1332 1.133 ad struct lwp *l = curlwp, *l2;
1333 1.100 ad struct proc *p = l->l_proc;
1334 1.100 ad kauth_cred_t oc;
1335 1.100 ad
1336 1.137 ad KASSERT(mutex_owned(p->p_lock));
1337 1.137 ad
1338 1.100 ad /* Is there a new credential to set in? */
1339 1.100 ad if (scred != NULL) {
1340 1.100 ad p->p_cred = scred;
1341 1.133 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1342 1.133 ad if (l2 != l)
1343 1.133 ad l2->l_prflag |= LPR_CRMOD;
1344 1.133 ad }
1345 1.100 ad
1346 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1347 1.100 ad if ((oc = l->l_cred) != scred) {
1348 1.100 ad kauth_cred_hold(scred);
1349 1.100 ad l->l_cred = scred;
1350 1.100 ad }
1351 1.100 ad } else
1352 1.100 ad oc = NULL; /* XXXgcc */
1353 1.100 ad
1354 1.100 ad if (sugid) {
1355 1.100 ad /*
1356 1.100 ad * Mark process as having changed credentials, stops
1357 1.100 ad * tracing etc.
1358 1.100 ad */
1359 1.102 pavel p->p_flag |= PK_SUGID;
1360 1.100 ad }
1361 1.94 ad
1362 1.137 ad mutex_exit(p->p_lock);
1363 1.100 ad
1364 1.100 ad /* If there is a credential to be released, free it now. */
1365 1.100 ad if (fcred != NULL) {
1366 1.100 ad KASSERT(scred != NULL);
1367 1.94 ad kauth_cred_free(fcred);
1368 1.100 ad if (oc != scred)
1369 1.100 ad kauth_cred_free(oc);
1370 1.100 ad }
1371 1.100 ad }
1372 1.100 ad
1373 1.100 ad /*
1374 1.95 thorpej * proc_specific_key_create --
1375 1.95 thorpej * Create a key for subsystem proc-specific data.
1376 1.95 thorpej */
1377 1.95 thorpej int
1378 1.95 thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1379 1.95 thorpej {
1380 1.95 thorpej
1381 1.98 thorpej return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1382 1.95 thorpej }
1383 1.95 thorpej
1384 1.95 thorpej /*
1385 1.95 thorpej * proc_specific_key_delete --
1386 1.95 thorpej * Delete a key for subsystem proc-specific data.
1387 1.95 thorpej */
1388 1.95 thorpej void
1389 1.95 thorpej proc_specific_key_delete(specificdata_key_t key)
1390 1.95 thorpej {
1391 1.95 thorpej
1392 1.95 thorpej specificdata_key_delete(proc_specificdata_domain, key);
1393 1.95 thorpej }
1394 1.95 thorpej
1395 1.98 thorpej /*
1396 1.98 thorpej * proc_initspecific --
1397 1.98 thorpej * Initialize a proc's specificdata container.
1398 1.98 thorpej */
1399 1.96 christos void
1400 1.96 christos proc_initspecific(struct proc *p)
1401 1.96 christos {
1402 1.96 christos int error;
1403 1.98 thorpej
1404 1.96 christos error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1405 1.96 christos KASSERT(error == 0);
1406 1.96 christos }
1407 1.96 christos
1408 1.95 thorpej /*
1409 1.98 thorpej * proc_finispecific --
1410 1.98 thorpej * Finalize a proc's specificdata container.
1411 1.98 thorpej */
1412 1.98 thorpej void
1413 1.98 thorpej proc_finispecific(struct proc *p)
1414 1.98 thorpej {
1415 1.98 thorpej
1416 1.98 thorpej specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1417 1.98 thorpej }
1418 1.98 thorpej
1419 1.98 thorpej /*
1420 1.95 thorpej * proc_getspecific --
1421 1.95 thorpej * Return proc-specific data corresponding to the specified key.
1422 1.95 thorpej */
1423 1.95 thorpej void *
1424 1.95 thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
1425 1.95 thorpej {
1426 1.95 thorpej
1427 1.95 thorpej return (specificdata_getspecific(proc_specificdata_domain,
1428 1.95 thorpej &p->p_specdataref, key));
1429 1.95 thorpej }
1430 1.95 thorpej
1431 1.95 thorpej /*
1432 1.95 thorpej * proc_setspecific --
1433 1.95 thorpej * Set proc-specific data corresponding to the specified key.
1434 1.95 thorpej */
1435 1.95 thorpej void
1436 1.95 thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1437 1.95 thorpej {
1438 1.95 thorpej
1439 1.95 thorpej specificdata_setspecific(proc_specificdata_domain,
1440 1.95 thorpej &p->p_specdataref, key, data);
1441 1.95 thorpej }
1442 1.154 elad
1443 1.154 elad int
1444 1.154 elad proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1445 1.154 elad {
1446 1.154 elad int r = 0;
1447 1.154 elad
1448 1.154 elad if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1449 1.154 elad kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1450 1.154 elad /*
1451 1.154 elad * suid proc of ours or proc not ours
1452 1.154 elad */
1453 1.154 elad r = EPERM;
1454 1.154 elad } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1455 1.154 elad /*
1456 1.154 elad * sgid proc has sgid back to us temporarily
1457 1.154 elad */
1458 1.154 elad r = EPERM;
1459 1.154 elad } else {
1460 1.154 elad /*
1461 1.154 elad * our rgid must be in target's group list (ie,
1462 1.154 elad * sub-processes started by a sgid process)
1463 1.154 elad */
1464 1.154 elad int ismember = 0;
1465 1.154 elad
1466 1.154 elad if (kauth_cred_ismember_gid(cred,
1467 1.154 elad kauth_cred_getgid(target), &ismember) != 0 ||
1468 1.154 elad !ismember)
1469 1.154 elad r = EPERM;
1470 1.154 elad }
1471 1.154 elad
1472 1.154 elad return (r);
1473 1.154 elad }
1474 1.154 elad
1475