Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.163.2.1
      1  1.163.2.1     rmind /*	$NetBSD: kern_proc.c,v 1.163.2.1 2010/07/03 01:19:53 rmind Exp $	*/
      2       1.33   thorpej 
      3       1.33   thorpej /*-
      4      1.131        ad  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.33   thorpej  * All rights reserved.
      6       1.33   thorpej  *
      7       1.33   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.33   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.100        ad  * NASA Ames Research Center, and by Andrew Doran.
     10       1.33   thorpej  *
     11       1.33   thorpej  * Redistribution and use in source and binary forms, with or without
     12       1.33   thorpej  * modification, are permitted provided that the following conditions
     13       1.33   thorpej  * are met:
     14       1.33   thorpej  * 1. Redistributions of source code must retain the above copyright
     15       1.33   thorpej  *    notice, this list of conditions and the following disclaimer.
     16       1.33   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.33   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18       1.33   thorpej  *    documentation and/or other materials provided with the distribution.
     19       1.33   thorpej  *
     20       1.33   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21       1.33   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22       1.33   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23       1.33   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24       1.33   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25       1.33   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26       1.33   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27       1.33   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28       1.33   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29       1.33   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30       1.33   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31       1.33   thorpej  */
     32        1.9       cgd 
     33        1.1       cgd /*
     34        1.7       cgd  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35        1.7       cgd  *	The Regents of the University of California.  All rights reserved.
     36        1.1       cgd  *
     37        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     38        1.1       cgd  * modification, are permitted provided that the following conditions
     39        1.1       cgd  * are met:
     40        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     41        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     42        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     43        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     44        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     45       1.65       agc  * 3. Neither the name of the University nor the names of its contributors
     46        1.1       cgd  *    may be used to endorse or promote products derived from this software
     47        1.1       cgd  *    without specific prior written permission.
     48        1.1       cgd  *
     49        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59        1.1       cgd  * SUCH DAMAGE.
     60        1.1       cgd  *
     61       1.23      fvdl  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62        1.1       cgd  */
     63       1.45     lukem 
     64       1.45     lukem #include <sys/cdefs.h>
     65  1.163.2.1     rmind __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.163.2.1 2010/07/03 01:19:53 rmind Exp $");
     66       1.48      yamt 
     67  1.163.2.1     rmind #ifdef _KERNEL_OPT
     68       1.48      yamt #include "opt_kstack.h"
     69       1.88      onoe #include "opt_maxuprc.h"
     70      1.161    darran #include "opt_dtrace.h"
     71  1.163.2.1     rmind #endif
     72        1.1       cgd 
     73        1.5   mycroft #include <sys/param.h>
     74        1.5   mycroft #include <sys/systm.h>
     75        1.5   mycroft #include <sys/kernel.h>
     76        1.5   mycroft #include <sys/proc.h>
     77       1.28   thorpej #include <sys/resourcevar.h>
     78        1.5   mycroft #include <sys/buf.h>
     79        1.5   mycroft #include <sys/acct.h>
     80        1.5   mycroft #include <sys/wait.h>
     81        1.5   mycroft #include <sys/file.h>
     82        1.8   mycroft #include <ufs/ufs/quota.h>
     83        1.5   mycroft #include <sys/uio.h>
     84       1.24   thorpej #include <sys/pool.h>
     85      1.147     rmind #include <sys/pset.h>
     86        1.5   mycroft #include <sys/mbuf.h>
     87        1.5   mycroft #include <sys/ioctl.h>
     88        1.5   mycroft #include <sys/tty.h>
     89       1.11       cgd #include <sys/signalvar.h>
     90       1.51  gmcgarry #include <sys/ras.h>
     91      1.144  wrstuden #include <sys/sa.h>
     92      1.144  wrstuden #include <sys/savar.h>
     93       1.81  junyoung #include <sys/filedesc.h>
     94      1.103       dsl #include "sys/syscall_stats.h"
     95       1.89      elad #include <sys/kauth.h>
     96      1.100        ad #include <sys/sleepq.h>
     97      1.126        ad #include <sys/atomic.h>
     98      1.131        ad #include <sys/kmem.h>
     99      1.160    darran #include <sys/dtrace_bsd.h>
    100      1.160    darran 
    101       1.81  junyoung #include <uvm/uvm.h>
    102       1.79      yamt #include <uvm/uvm_extern.h>
    103        1.5   mycroft 
    104        1.7       cgd /*
    105       1.10   mycroft  * Other process lists
    106        1.7       cgd  */
    107       1.31   thorpej 
    108       1.10   mycroft struct proclist allproc;
    109       1.32   thorpej struct proclist zombproc;	/* resources have been freed */
    110       1.32   thorpej 
    111      1.136        ad kmutex_t	*proc_lock;
    112       1.33   thorpej 
    113       1.33   thorpej /*
    114       1.72  junyoung  * pid to proc lookup is done by indexing the pid_table array.
    115       1.61       dsl  * Since pid numbers are only allocated when an empty slot
    116       1.61       dsl  * has been found, there is no need to search any lists ever.
    117       1.61       dsl  * (an orphaned pgrp will lock the slot, a session will lock
    118       1.61       dsl  * the pgrp with the same number.)
    119       1.61       dsl  * If the table is too small it is reallocated with twice the
    120       1.61       dsl  * previous size and the entries 'unzipped' into the two halves.
    121       1.61       dsl  * A linked list of free entries is passed through the pt_proc
    122       1.61       dsl  * field of 'free' items - set odd to be an invalid ptr.
    123       1.61       dsl  */
    124       1.61       dsl 
    125       1.61       dsl struct pid_table {
    126       1.61       dsl 	struct proc	*pt_proc;
    127       1.61       dsl 	struct pgrp	*pt_pgrp;
    128       1.72  junyoung };
    129       1.61       dsl #if 1	/* strongly typed cast - should be a noop */
    130       1.84     perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    131       1.61       dsl #else
    132       1.61       dsl #define p2u(p) ((uint)p)
    133       1.72  junyoung #endif
    134       1.61       dsl #define P_VALID(p) (!(p2u(p) & 1))
    135       1.61       dsl #define P_NEXT(p) (p2u(p) >> 1)
    136       1.61       dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    137       1.61       dsl 
    138       1.61       dsl #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    139       1.61       dsl static struct pid_table *pid_table;
    140       1.61       dsl static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    141       1.61       dsl static uint pid_alloc_lim;	/* max we allocate before growing table */
    142       1.61       dsl static uint pid_alloc_cnt;	/* number of allocated pids */
    143       1.61       dsl 
    144       1.61       dsl /* links through free slots - never empty! */
    145       1.61       dsl static uint next_free_pt, last_free_pt;
    146       1.61       dsl static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    147       1.31   thorpej 
    148       1.81  junyoung /* Components of the first process -- never freed. */
    149      1.123      matt 
    150      1.145        ad extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    151      1.123      matt 
    152      1.123      matt struct session session0 = {
    153      1.123      matt 	.s_count = 1,
    154      1.123      matt 	.s_sid = 0,
    155      1.123      matt };
    156      1.123      matt struct pgrp pgrp0 = {
    157      1.123      matt 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    158      1.123      matt 	.pg_session = &session0,
    159      1.123      matt };
    160      1.132        ad filedesc_t filedesc0;
    161      1.123      matt struct cwdinfo cwdi0 = {
    162      1.123      matt 	.cwdi_cmask = CMASK,		/* see cmask below */
    163      1.123      matt 	.cwdi_refcnt = 1,
    164      1.123      matt };
    165      1.143  gmcgarry struct plimit limit0;
    166       1.81  junyoung struct pstats pstat0;
    167       1.81  junyoung struct vmspace vmspace0;
    168       1.81  junyoung struct sigacts sigacts0;
    169      1.123      matt struct proc proc0 = {
    170      1.123      matt 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    171      1.123      matt 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    172      1.123      matt 	.p_nlwps = 1,
    173      1.123      matt 	.p_nrlwps = 1,
    174      1.123      matt 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    175      1.123      matt 	.p_pgrp = &pgrp0,
    176      1.123      matt 	.p_comm = "system",
    177      1.123      matt 	/*
    178      1.123      matt 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    179      1.123      matt 	 * when they exit.  init(8) can easily wait them out for us.
    180      1.123      matt 	 */
    181      1.123      matt 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    182      1.123      matt 	.p_stat = SACTIVE,
    183      1.123      matt 	.p_nice = NZERO,
    184      1.123      matt 	.p_emul = &emul_netbsd,
    185      1.123      matt 	.p_cwdi = &cwdi0,
    186      1.123      matt 	.p_limit = &limit0,
    187      1.132        ad 	.p_fd = &filedesc0,
    188      1.123      matt 	.p_vmspace = &vmspace0,
    189      1.123      matt 	.p_stats = &pstat0,
    190      1.123      matt 	.p_sigacts = &sigacts0,
    191      1.123      matt };
    192      1.123      matt kauth_cred_t cred0;
    193       1.81  junyoung 
    194       1.81  junyoung int nofile = NOFILE;
    195       1.81  junyoung int maxuprc = MAXUPRC;
    196       1.81  junyoung int cmask = CMASK;
    197       1.81  junyoung 
    198       1.57   thorpej MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    199       1.57   thorpej MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    200       1.10   mycroft 
    201       1.31   thorpej /*
    202       1.31   thorpej  * The process list descriptors, used during pid allocation and
    203       1.31   thorpej  * by sysctl.  No locking on this data structure is needed since
    204       1.31   thorpej  * it is completely static.
    205       1.31   thorpej  */
    206       1.31   thorpej const struct proclist_desc proclists[] = {
    207       1.31   thorpej 	{ &allproc	},
    208       1.31   thorpej 	{ &zombproc	},
    209       1.31   thorpej 	{ NULL		},
    210       1.31   thorpej };
    211       1.31   thorpej 
    212      1.151     rmind static struct pgrp *	pg_remove(pid_t);
    213      1.151     rmind static void		pg_delete(pid_t);
    214      1.151     rmind static void		orphanpg(struct pgrp *);
    215       1.13  christos 
    216       1.95   thorpej static specificdata_domain_t proc_specificdata_domain;
    217       1.95   thorpej 
    218      1.128        ad static pool_cache_t proc_cache;
    219      1.128        ad 
    220      1.153      elad static kauth_listener_t proc_listener;
    221      1.153      elad 
    222      1.153      elad static int
    223      1.153      elad proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    224      1.153      elad     void *arg0, void *arg1, void *arg2, void *arg3)
    225      1.153      elad {
    226      1.153      elad 	struct proc *p;
    227      1.153      elad 	int result;
    228      1.153      elad 
    229      1.153      elad 	result = KAUTH_RESULT_DEFER;
    230      1.153      elad 	p = arg0;
    231      1.153      elad 
    232      1.153      elad 	switch (action) {
    233      1.153      elad 	case KAUTH_PROCESS_CANSEE: {
    234      1.153      elad 		enum kauth_process_req req;
    235      1.153      elad 
    236      1.153      elad 		req = (enum kauth_process_req)arg1;
    237      1.153      elad 
    238      1.153      elad 		switch (req) {
    239      1.153      elad 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    240      1.153      elad 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    241      1.153      elad 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    242      1.153      elad 			result = KAUTH_RESULT_ALLOW;
    243      1.153      elad 
    244      1.153      elad 			break;
    245      1.153      elad 
    246      1.153      elad 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    247      1.153      elad 			if (kauth_cred_getuid(cred) !=
    248      1.153      elad 			    kauth_cred_getuid(p->p_cred) ||
    249      1.153      elad 			    kauth_cred_getuid(cred) !=
    250      1.153      elad 			    kauth_cred_getsvuid(p->p_cred))
    251      1.153      elad 				break;
    252      1.153      elad 
    253      1.153      elad 			result = KAUTH_RESULT_ALLOW;
    254      1.153      elad 
    255      1.153      elad 			break;
    256      1.153      elad 
    257      1.153      elad 		default:
    258      1.153      elad 			break;
    259      1.153      elad 		}
    260      1.153      elad 
    261      1.153      elad 		break;
    262      1.153      elad 		}
    263      1.153      elad 
    264      1.153      elad 	case KAUTH_PROCESS_FORK: {
    265      1.153      elad 		int lnprocs = (int)(unsigned long)arg2;
    266      1.153      elad 
    267      1.153      elad 		/*
    268      1.153      elad 		 * Don't allow a nonprivileged user to use the last few
    269      1.153      elad 		 * processes. The variable lnprocs is the current number of
    270      1.153      elad 		 * processes, maxproc is the limit.
    271      1.153      elad 		 */
    272      1.153      elad 		if (__predict_false((lnprocs >= maxproc - 5)))
    273      1.153      elad 			break;
    274      1.153      elad 
    275      1.153      elad 		result = KAUTH_RESULT_ALLOW;
    276      1.153      elad 
    277      1.153      elad 		break;
    278      1.153      elad 		}
    279      1.153      elad 
    280      1.153      elad 	case KAUTH_PROCESS_CORENAME:
    281      1.153      elad 	case KAUTH_PROCESS_STOPFLAG:
    282      1.153      elad 		if (proc_uidmatch(cred, p->p_cred) == 0)
    283      1.153      elad 			result = KAUTH_RESULT_ALLOW;
    284      1.153      elad 
    285      1.153      elad 		break;
    286      1.153      elad 
    287      1.153      elad 	default:
    288      1.153      elad 		break;
    289      1.153      elad 	}
    290      1.153      elad 
    291      1.153      elad 	return result;
    292      1.153      elad }
    293      1.153      elad 
    294       1.10   mycroft /*
    295       1.10   mycroft  * Initialize global process hashing structures.
    296       1.10   mycroft  */
    297       1.11       cgd void
    298       1.59       dsl procinit(void)
    299        1.7       cgd {
    300       1.31   thorpej 	const struct proclist_desc *pd;
    301      1.150     rmind 	u_int i;
    302       1.61       dsl #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    303       1.31   thorpej 
    304       1.31   thorpej 	for (pd = proclists; pd->pd_list != NULL; pd++)
    305       1.31   thorpej 		LIST_INIT(pd->pd_list);
    306        1.7       cgd 
    307      1.136        ad 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    308      1.150     rmind 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    309      1.150     rmind 	    * sizeof(struct pid_table), KM_SLEEP);
    310       1.33   thorpej 
    311       1.61       dsl 	/* Set free list running through table...
    312       1.61       dsl 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    313       1.61       dsl 	for (i = 0; i <= pid_tbl_mask; i++) {
    314       1.61       dsl 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    315       1.61       dsl 		pid_table[i].pt_pgrp = 0;
    316       1.61       dsl 	}
    317       1.61       dsl 	/* slot 0 is just grabbed */
    318       1.61       dsl 	next_free_pt = 1;
    319       1.61       dsl 	/* Need to fix last entry. */
    320       1.61       dsl 	last_free_pt = pid_tbl_mask;
    321       1.61       dsl 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    322       1.61       dsl 	/* point at which we grow table - to avoid reusing pids too often */
    323       1.61       dsl 	pid_alloc_lim = pid_tbl_mask - 1;
    324       1.61       dsl #undef LINK_EMPTY
    325       1.61       dsl 
    326       1.95   thorpej 	proc_specificdata_domain = specificdata_domain_create();
    327       1.95   thorpej 	KASSERT(proc_specificdata_domain != NULL);
    328      1.128        ad 
    329      1.128        ad 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    330      1.128        ad 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    331      1.153      elad 
    332      1.153      elad 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    333      1.153      elad 	    proc_listener_cb, NULL);
    334        1.7       cgd }
    335        1.1       cgd 
    336        1.7       cgd /*
    337       1.81  junyoung  * Initialize process 0.
    338       1.81  junyoung  */
    339       1.81  junyoung void
    340       1.81  junyoung proc0_init(void)
    341       1.81  junyoung {
    342       1.81  junyoung 	struct proc *p;
    343       1.81  junyoung 	struct pgrp *pg;
    344       1.81  junyoung 	rlim_t lim;
    345      1.143  gmcgarry 	int i;
    346       1.81  junyoung 
    347       1.81  junyoung 	p = &proc0;
    348       1.81  junyoung 	pg = &pgrp0;
    349      1.123      matt 
    350      1.127        ad 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    351      1.129        ad 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    352      1.137        ad 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    353      1.107        ad 
    354      1.122        ad 	rw_init(&p->p_reflock);
    355      1.100        ad 	cv_init(&p->p_waitcv, "wait");
    356      1.100        ad 	cv_init(&p->p_lwpcv, "lwpwait");
    357      1.100        ad 
    358  1.163.2.1     rmind 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    359      1.100        ad 
    360       1.81  junyoung 	pid_table[0].pt_proc = p;
    361       1.81  junyoung 	LIST_INSERT_HEAD(&allproc, p, p_list);
    362       1.81  junyoung 
    363       1.81  junyoung 	pid_table[0].pt_pgrp = pg;
    364       1.81  junyoung 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    365       1.81  junyoung 
    366       1.81  junyoung #ifdef __HAVE_SYSCALL_INTERN
    367       1.81  junyoung 	(*p->p_emul->e_syscall_intern)(p);
    368       1.81  junyoung #endif
    369       1.81  junyoung 
    370       1.81  junyoung 	/* Create credentials. */
    371       1.89      elad 	cred0 = kauth_cred_alloc();
    372       1.89      elad 	p->p_cred = cred0;
    373       1.81  junyoung 
    374       1.81  junyoung 	/* Create the CWD info. */
    375      1.113        ad 	rw_init(&cwdi0.cwdi_lock);
    376       1.81  junyoung 
    377       1.81  junyoung 	/* Create the limits structures. */
    378      1.116       dsl 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    379      1.143  gmcgarry 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
    380      1.143  gmcgarry 		limit0.pl_rlimit[i].rlim_cur =
    381      1.143  gmcgarry 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    382       1.81  junyoung 
    383       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    384       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    385       1.81  junyoung 	    maxfiles < nofile ? maxfiles : nofile;
    386       1.81  junyoung 
    387       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    388       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    389       1.81  junyoung 	    maxproc < maxuprc ? maxproc : maxuprc;
    390       1.81  junyoung 
    391      1.163       jym 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    392       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    393       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    394       1.81  junyoung 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    395      1.143  gmcgarry 	limit0.pl_corename = defcorename;
    396      1.143  gmcgarry 	limit0.pl_refcnt = 1;
    397      1.143  gmcgarry 	limit0.pl_sv_limit = NULL;
    398       1.81  junyoung 
    399       1.81  junyoung 	/* Configure virtual memory system, set vm rlimits. */
    400       1.81  junyoung 	uvm_init_limits(p);
    401       1.81  junyoung 
    402       1.81  junyoung 	/* Initialize file descriptor table for proc0. */
    403      1.132        ad 	fd_init(&filedesc0);
    404       1.81  junyoung 
    405       1.81  junyoung 	/*
    406       1.81  junyoung 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    407       1.81  junyoung 	 * All kernel processes (which never have user space mappings)
    408       1.81  junyoung 	 * share proc0's vmspace, and thus, the kernel pmap.
    409       1.81  junyoung 	 */
    410       1.81  junyoung 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    411       1.81  junyoung 	    trunc_page(VM_MAX_ADDRESS));
    412       1.81  junyoung 
    413      1.127        ad 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    414      1.127        ad 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    415       1.81  junyoung 	siginit(p);
    416       1.96  christos 
    417       1.96  christos 	proc_initspecific(p);
    418  1.163.2.1     rmind 	kdtrace_proc_ctor(NULL, p);
    419       1.81  junyoung }
    420       1.81  junyoung 
    421       1.81  junyoung /*
    422      1.151     rmind  * Session reference counting.
    423      1.151     rmind  */
    424      1.151     rmind 
    425      1.151     rmind void
    426      1.151     rmind proc_sesshold(struct session *ss)
    427      1.151     rmind {
    428      1.151     rmind 
    429      1.151     rmind 	KASSERT(mutex_owned(proc_lock));
    430      1.151     rmind 	ss->s_count++;
    431      1.151     rmind }
    432      1.151     rmind 
    433      1.151     rmind void
    434      1.151     rmind proc_sessrele(struct session *ss)
    435      1.151     rmind {
    436      1.151     rmind 
    437      1.151     rmind 	KASSERT(mutex_owned(proc_lock));
    438      1.151     rmind 	/*
    439      1.151     rmind 	 * We keep the pgrp with the same id as the session in order to
    440      1.151     rmind 	 * stop a process being given the same pid.  Since the pgrp holds
    441      1.151     rmind 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    442      1.151     rmind 	 */
    443      1.151     rmind 	if (--ss->s_count == 0) {
    444      1.151     rmind 		struct pgrp *pg;
    445      1.151     rmind 
    446      1.151     rmind 		pg = pg_remove(ss->s_sid);
    447      1.151     rmind 		mutex_exit(proc_lock);
    448      1.151     rmind 
    449      1.151     rmind 		kmem_free(pg, sizeof(struct pgrp));
    450      1.151     rmind 		kmem_free(ss, sizeof(struct session));
    451      1.151     rmind 	} else {
    452      1.151     rmind 		mutex_exit(proc_lock);
    453      1.151     rmind 	}
    454      1.151     rmind }
    455      1.151     rmind 
    456      1.151     rmind /*
    457       1.74  junyoung  * Check that the specified process group is in the session of the
    458       1.60       dsl  * specified process.
    459       1.60       dsl  * Treats -ve ids as process ids.
    460       1.60       dsl  * Used to validate TIOCSPGRP requests.
    461       1.60       dsl  */
    462       1.60       dsl int
    463       1.60       dsl pgid_in_session(struct proc *p, pid_t pg_id)
    464       1.60       dsl {
    465       1.60       dsl 	struct pgrp *pgrp;
    466      1.101       dsl 	struct session *session;
    467      1.107        ad 	int error;
    468      1.101       dsl 
    469      1.136        ad 	mutex_enter(proc_lock);
    470       1.60       dsl 	if (pg_id < 0) {
    471  1.163.2.1     rmind 		struct proc *p1 = proc_find(-pg_id);
    472  1.163.2.1     rmind 		if (p1 == NULL) {
    473  1.163.2.1     rmind 			error = EINVAL;
    474  1.163.2.1     rmind 			goto fail;
    475  1.163.2.1     rmind 		}
    476       1.60       dsl 		pgrp = p1->p_pgrp;
    477       1.60       dsl 	} else {
    478  1.163.2.1     rmind 		pgrp = pgrp_find(pg_id);
    479  1.163.2.1     rmind 		if (pgrp == NULL) {
    480  1.163.2.1     rmind 			error = EINVAL;
    481  1.163.2.1     rmind 			goto fail;
    482  1.163.2.1     rmind 		}
    483       1.60       dsl 	}
    484      1.101       dsl 	session = pgrp->pg_session;
    485  1.163.2.1     rmind 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    486  1.163.2.1     rmind fail:
    487      1.136        ad 	mutex_exit(proc_lock);
    488      1.107        ad 	return error;
    489        1.7       cgd }
    490        1.4    andrew 
    491        1.1       cgd /*
    492      1.148     rmind  * p_inferior: is p an inferior of q?
    493        1.1       cgd  */
    494      1.148     rmind static inline bool
    495      1.148     rmind p_inferior(struct proc *p, struct proc *q)
    496        1.1       cgd {
    497        1.1       cgd 
    498      1.148     rmind 	KASSERT(mutex_owned(proc_lock));
    499      1.148     rmind 
    500       1.41  sommerfe 	for (; p != q; p = p->p_pptr)
    501        1.1       cgd 		if (p->p_pid == 0)
    502      1.148     rmind 			return false;
    503      1.148     rmind 	return true;
    504        1.1       cgd }
    505        1.1       cgd 
    506        1.1       cgd /*
    507  1.163.2.1     rmind  * proc_find: locate a process by the ID.
    508  1.163.2.1     rmind  *
    509  1.163.2.1     rmind  * => Must be called with proc_lock held.
    510        1.1       cgd  */
    511  1.163.2.1     rmind proc_t *
    512  1.163.2.1     rmind proc_find_raw(pid_t pid)
    513        1.1       cgd {
    514  1.163.2.1     rmind 	proc_t *p = pid_table[pid & pid_tbl_mask].pt_proc;
    515        1.1       cgd 
    516  1.163.2.1     rmind 	if (__predict_false(!P_VALID(p) || p->p_pid != pid)) {
    517  1.163.2.1     rmind 		return NULL;
    518  1.163.2.1     rmind 	}
    519  1.163.2.1     rmind 	return p;
    520  1.163.2.1     rmind }
    521      1.100        ad 
    522  1.163.2.1     rmind proc_t *
    523  1.163.2.1     rmind proc_find(pid_t pid)
    524  1.163.2.1     rmind {
    525  1.163.2.1     rmind 	proc_t *p;
    526  1.163.2.1     rmind 
    527  1.163.2.1     rmind 	KASSERT(mutex_owned(proc_lock));
    528      1.100        ad 
    529  1.163.2.1     rmind 	p = proc_find_raw(pid);
    530  1.163.2.1     rmind 	if (__predict_false(p == NULL)) {
    531  1.163.2.1     rmind 		return NULL;
    532  1.163.2.1     rmind 	}
    533  1.163.2.1     rmind 	/*
    534  1.163.2.1     rmind 	 * Only allow live processes to be found by PID.
    535  1.163.2.1     rmind 	 * XXX: p_stat might change, since unlocked.
    536  1.163.2.1     rmind 	 */
    537  1.163.2.1     rmind 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    538       1.68       dsl 		return p;
    539       1.68       dsl 	}
    540       1.68       dsl 	return NULL;
    541        1.1       cgd }
    542        1.1       cgd 
    543        1.1       cgd /*
    544  1.163.2.1     rmind  * pgrp_find: locate a process group by the ID.
    545  1.163.2.1     rmind  *
    546  1.163.2.1     rmind  * => Must be called with proc_lock held.
    547        1.1       cgd  */
    548        1.1       cgd struct pgrp *
    549  1.163.2.1     rmind pgrp_find(pid_t pgid)
    550        1.1       cgd {
    551       1.68       dsl 	struct pgrp *pg;
    552        1.1       cgd 
    553  1.163.2.1     rmind 	KASSERT(mutex_owned(proc_lock));
    554  1.163.2.1     rmind 
    555       1.68       dsl 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    556       1.61       dsl 	/*
    557  1.163.2.1     rmind 	 * Cannot look up a process group that only exists because the
    558  1.163.2.1     rmind 	 * session has not died yet (traditional).
    559       1.61       dsl 	 */
    560       1.68       dsl 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    561       1.68       dsl 		return NULL;
    562       1.68       dsl 	}
    563       1.68       dsl 	return pg;
    564        1.1       cgd }
    565        1.1       cgd 
    566       1.61       dsl static void
    567       1.61       dsl expand_pid_table(void)
    568        1.1       cgd {
    569      1.150     rmind 	size_t pt_size, tsz;
    570       1.61       dsl 	struct pid_table *n_pt, *new_pt;
    571       1.61       dsl 	struct proc *proc;
    572       1.61       dsl 	struct pgrp *pgrp;
    573       1.61       dsl 	pid_t pid;
    574      1.150     rmind 	u_int i;
    575        1.1       cgd 
    576      1.150     rmind 	pt_size = pid_tbl_mask + 1;
    577      1.150     rmind 	tsz = pt_size * 2 * sizeof(struct pid_table);
    578      1.150     rmind 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    579       1.61       dsl 
    580      1.136        ad 	mutex_enter(proc_lock);
    581       1.61       dsl 	if (pt_size != pid_tbl_mask + 1) {
    582       1.61       dsl 		/* Another process beat us to it... */
    583      1.136        ad 		mutex_exit(proc_lock);
    584      1.150     rmind 		kmem_free(new_pt, tsz);
    585       1.61       dsl 		return;
    586       1.61       dsl 	}
    587       1.72  junyoung 
    588       1.61       dsl 	/*
    589       1.61       dsl 	 * Copy entries from old table into new one.
    590       1.61       dsl 	 * If 'pid' is 'odd' we need to place in the upper half,
    591       1.61       dsl 	 * even pid's to the lower half.
    592       1.61       dsl 	 * Free items stay in the low half so we don't have to
    593       1.61       dsl 	 * fixup the reference to them.
    594       1.61       dsl 	 * We stuff free items on the front of the freelist
    595       1.61       dsl 	 * because we can't write to unmodified entries.
    596       1.74  junyoung 	 * Processing the table backwards maintains a semblance
    597       1.61       dsl 	 * of issueing pid numbers that increase with time.
    598       1.61       dsl 	 */
    599       1.61       dsl 	i = pt_size - 1;
    600       1.61       dsl 	n_pt = new_pt + i;
    601       1.61       dsl 	for (; ; i--, n_pt--) {
    602       1.61       dsl 		proc = pid_table[i].pt_proc;
    603       1.61       dsl 		pgrp = pid_table[i].pt_pgrp;
    604       1.61       dsl 		if (!P_VALID(proc)) {
    605       1.61       dsl 			/* Up 'use count' so that link is valid */
    606       1.61       dsl 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    607       1.61       dsl 			proc = P_FREE(pid);
    608       1.61       dsl 			if (pgrp)
    609       1.61       dsl 				pid = pgrp->pg_id;
    610       1.61       dsl 		} else
    611       1.61       dsl 			pid = proc->p_pid;
    612       1.72  junyoung 
    613       1.61       dsl 		/* Save entry in appropriate half of table */
    614       1.61       dsl 		n_pt[pid & pt_size].pt_proc = proc;
    615       1.61       dsl 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    616       1.61       dsl 
    617       1.61       dsl 		/* Put other piece on start of free list */
    618       1.61       dsl 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    619       1.61       dsl 		n_pt[pid & pt_size].pt_proc =
    620       1.61       dsl 				    P_FREE((pid & ~pt_size) | next_free_pt);
    621       1.61       dsl 		n_pt[pid & pt_size].pt_pgrp = 0;
    622       1.61       dsl 		next_free_pt = i | (pid & pt_size);
    623       1.61       dsl 		if (i == 0)
    624       1.61       dsl 			break;
    625       1.61       dsl 	}
    626       1.61       dsl 
    627      1.150     rmind 	/* Save old table size and switch tables */
    628      1.150     rmind 	tsz = pt_size * sizeof(struct pid_table);
    629       1.61       dsl 	n_pt = pid_table;
    630       1.61       dsl 	pid_table = new_pt;
    631       1.61       dsl 	pid_tbl_mask = pt_size * 2 - 1;
    632       1.61       dsl 
    633       1.61       dsl 	/*
    634       1.61       dsl 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    635       1.61       dsl 	 * allocated pids we need it to be larger!
    636       1.61       dsl 	 */
    637       1.61       dsl 	if (pid_tbl_mask > PID_MAX) {
    638       1.61       dsl 		pid_max = pid_tbl_mask * 2 + 1;
    639       1.61       dsl 		pid_alloc_lim |= pid_alloc_lim << 1;
    640       1.61       dsl 	} else
    641       1.61       dsl 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    642       1.61       dsl 
    643      1.136        ad 	mutex_exit(proc_lock);
    644      1.150     rmind 	kmem_free(n_pt, tsz);
    645       1.61       dsl }
    646       1.61       dsl 
    647       1.61       dsl struct proc *
    648       1.61       dsl proc_alloc(void)
    649       1.61       dsl {
    650       1.61       dsl 	struct proc *p;
    651      1.100        ad 	int nxt;
    652       1.61       dsl 	pid_t pid;
    653       1.61       dsl 	struct pid_table *pt;
    654       1.61       dsl 
    655      1.128        ad 	p = pool_cache_get(proc_cache, PR_WAITOK);
    656       1.61       dsl 	p->p_stat = SIDL;			/* protect against others */
    657       1.61       dsl 
    658       1.96  christos 	proc_initspecific(p);
    659  1.163.2.1     rmind 	kdtrace_proc_ctor(NULL, p);
    660       1.61       dsl 
    661       1.61       dsl 	for (;;expand_pid_table()) {
    662       1.61       dsl 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    663       1.61       dsl 			/* ensure pids cycle through 2000+ values */
    664       1.61       dsl 			continue;
    665      1.136        ad 		mutex_enter(proc_lock);
    666       1.61       dsl 		pt = &pid_table[next_free_pt];
    667        1.1       cgd #ifdef DIAGNOSTIC
    668       1.63  christos 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    669       1.61       dsl 			panic("proc_alloc: slot busy");
    670        1.1       cgd #endif
    671       1.61       dsl 		nxt = P_NEXT(pt->pt_proc);
    672       1.61       dsl 		if (nxt & pid_tbl_mask)
    673       1.61       dsl 			break;
    674       1.61       dsl 		/* Table full - expand (NB last entry not used....) */
    675      1.136        ad 		mutex_exit(proc_lock);
    676       1.61       dsl 	}
    677       1.61       dsl 
    678       1.61       dsl 	/* pid is 'saved use count' + 'size' + entry */
    679       1.61       dsl 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    680       1.61       dsl 	if ((uint)pid > (uint)pid_max)
    681       1.61       dsl 		pid &= pid_tbl_mask;
    682       1.61       dsl 	p->p_pid = pid;
    683       1.61       dsl 	next_free_pt = nxt & pid_tbl_mask;
    684       1.61       dsl 
    685       1.61       dsl 	/* Grab table slot */
    686       1.61       dsl 	pt->pt_proc = p;
    687       1.61       dsl 	pid_alloc_cnt++;
    688      1.136        ad 	mutex_exit(proc_lock);
    689       1.61       dsl 
    690       1.61       dsl 	return p;
    691       1.61       dsl }
    692       1.61       dsl 
    693       1.61       dsl /*
    694      1.118        ad  * Free a process id - called from proc_free (in kern_exit.c)
    695      1.100        ad  *
    696      1.136        ad  * Called with the proc_lock held.
    697       1.61       dsl  */
    698       1.61       dsl void
    699      1.118        ad proc_free_pid(struct proc *p)
    700       1.61       dsl {
    701       1.61       dsl 	pid_t pid = p->p_pid;
    702       1.61       dsl 	struct pid_table *pt;
    703       1.61       dsl 
    704      1.136        ad 	KASSERT(mutex_owned(proc_lock));
    705       1.61       dsl 
    706       1.61       dsl 	pt = &pid_table[pid & pid_tbl_mask];
    707        1.1       cgd #ifdef DIAGNOSTIC
    708       1.63  christos 	if (__predict_false(pt->pt_proc != p))
    709       1.61       dsl 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    710       1.61       dsl 			pid, p);
    711        1.1       cgd #endif
    712       1.61       dsl 	/* save pid use count in slot */
    713       1.61       dsl 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    714       1.61       dsl 
    715       1.61       dsl 	if (pt->pt_pgrp == NULL) {
    716       1.61       dsl 		/* link last freed entry onto ours */
    717       1.61       dsl 		pid &= pid_tbl_mask;
    718       1.61       dsl 		pt = &pid_table[last_free_pt];
    719       1.61       dsl 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    720       1.61       dsl 		last_free_pt = pid;
    721       1.61       dsl 		pid_alloc_cnt--;
    722       1.61       dsl 	}
    723       1.61       dsl 
    724      1.126        ad 	atomic_dec_uint(&nprocs);
    725       1.61       dsl }
    726       1.61       dsl 
    727      1.128        ad void
    728      1.128        ad proc_free_mem(struct proc *p)
    729      1.128        ad {
    730      1.128        ad 
    731      1.160    darran 	kdtrace_proc_dtor(NULL, p);
    732      1.128        ad 	pool_cache_put(proc_cache, p);
    733      1.128        ad }
    734      1.128        ad 
    735       1.61       dsl /*
    736      1.151     rmind  * proc_enterpgrp: move p to a new or existing process group (and session).
    737       1.61       dsl  *
    738       1.61       dsl  * If we are creating a new pgrp, the pgid should equal
    739       1.72  junyoung  * the calling process' pid.
    740       1.61       dsl  * If is only valid to enter a process group that is in the session
    741       1.61       dsl  * of the process.
    742       1.61       dsl  * Also mksess should only be set if we are creating a process group
    743       1.61       dsl  *
    744      1.134      yamt  * Only called from sys_setsid and sys_setpgid.
    745       1.61       dsl  */
    746       1.61       dsl int
    747      1.151     rmind proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    748       1.61       dsl {
    749       1.61       dsl 	struct pgrp *new_pgrp, *pgrp;
    750       1.61       dsl 	struct session *sess;
    751      1.100        ad 	struct proc *p;
    752       1.61       dsl 	int rval;
    753       1.61       dsl 	pid_t pg_id = NO_PGID;
    754       1.61       dsl 
    755      1.151     rmind 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    756       1.61       dsl 
    757      1.107        ad 	/* Allocate data areas we might need before doing any validity checks */
    758      1.136        ad 	mutex_enter(proc_lock);		/* Because pid_table might change */
    759      1.107        ad 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    760      1.136        ad 		mutex_exit(proc_lock);
    761      1.131        ad 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    762      1.136        ad 		mutex_enter(proc_lock);
    763      1.107        ad 	} else
    764      1.107        ad 		new_pgrp = NULL;
    765       1.61       dsl 	rval = EPERM;	/* most common error (to save typing) */
    766       1.61       dsl 
    767       1.61       dsl 	/* Check pgrp exists or can be created */
    768       1.61       dsl 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    769       1.61       dsl 	if (pgrp != NULL && pgrp->pg_id != pgid)
    770       1.61       dsl 		goto done;
    771       1.61       dsl 
    772       1.61       dsl 	/* Can only set another process under restricted circumstances. */
    773      1.100        ad 	if (pid != curp->p_pid) {
    774  1.163.2.1     rmind 		/* Must exist and be one of our children... */
    775  1.163.2.1     rmind 		p = proc_find(pid);
    776  1.163.2.1     rmind 		if (p == NULL || !p_inferior(p, curp)) {
    777       1.61       dsl 			rval = ESRCH;
    778       1.61       dsl 			goto done;
    779       1.61       dsl 		}
    780       1.61       dsl 		/* ... in the same session... */
    781       1.61       dsl 		if (sess != NULL || p->p_session != curp->p_session)
    782       1.61       dsl 			goto done;
    783       1.61       dsl 		/* ... existing pgid must be in same session ... */
    784       1.61       dsl 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    785       1.61       dsl 			goto done;
    786       1.61       dsl 		/* ... and not done an exec. */
    787      1.102     pavel 		if (p->p_flag & PK_EXEC) {
    788       1.61       dsl 			rval = EACCES;
    789       1.61       dsl 			goto done;
    790       1.49     enami 		}
    791      1.100        ad 	} else {
    792      1.100        ad 		/* ... setsid() cannot re-enter a pgrp */
    793      1.100        ad 		if (mksess && (curp->p_pgid == curp->p_pid ||
    794  1.163.2.1     rmind 		    pgrp_find(curp->p_pid)))
    795      1.100        ad 			goto done;
    796      1.100        ad 		p = curp;
    797       1.61       dsl 	}
    798        1.1       cgd 
    799       1.61       dsl 	/* Changing the process group/session of a session
    800       1.61       dsl 	   leader is definitely off limits. */
    801       1.61       dsl 	if (SESS_LEADER(p)) {
    802       1.61       dsl 		if (sess == NULL && p->p_pgrp == pgrp)
    803       1.61       dsl 			/* unless it's a definite noop */
    804       1.61       dsl 			rval = 0;
    805       1.61       dsl 		goto done;
    806       1.61       dsl 	}
    807       1.61       dsl 
    808       1.61       dsl 	/* Can only create a process group with id of process */
    809       1.61       dsl 	if (pgrp == NULL && pgid != pid)
    810       1.61       dsl 		goto done;
    811       1.61       dsl 
    812       1.61       dsl 	/* Can only create a session if creating pgrp */
    813       1.61       dsl 	if (sess != NULL && pgrp != NULL)
    814       1.61       dsl 		goto done;
    815       1.61       dsl 
    816       1.61       dsl 	/* Check we allocated memory for a pgrp... */
    817       1.61       dsl 	if (pgrp == NULL && new_pgrp == NULL)
    818       1.61       dsl 		goto done;
    819       1.61       dsl 
    820       1.61       dsl 	/* Don't attach to 'zombie' pgrp */
    821       1.61       dsl 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    822       1.61       dsl 		goto done;
    823       1.61       dsl 
    824       1.61       dsl 	/* Expect to succeed now */
    825       1.61       dsl 	rval = 0;
    826       1.61       dsl 
    827       1.61       dsl 	if (pgrp == p->p_pgrp)
    828       1.61       dsl 		/* nothing to do */
    829       1.61       dsl 		goto done;
    830       1.61       dsl 
    831       1.61       dsl 	/* Ok all setup, link up required structures */
    832      1.100        ad 
    833       1.61       dsl 	if (pgrp == NULL) {
    834       1.61       dsl 		pgrp = new_pgrp;
    835      1.141      yamt 		new_pgrp = NULL;
    836       1.61       dsl 		if (sess != NULL) {
    837       1.21   thorpej 			sess->s_sid = p->p_pid;
    838        1.1       cgd 			sess->s_leader = p;
    839        1.1       cgd 			sess->s_count = 1;
    840        1.1       cgd 			sess->s_ttyvp = NULL;
    841        1.1       cgd 			sess->s_ttyp = NULL;
    842       1.58       dsl 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    843       1.25     perry 			memcpy(sess->s_login, p->p_session->s_login,
    844        1.1       cgd 			    sizeof(sess->s_login));
    845      1.100        ad 			p->p_lflag &= ~PL_CONTROLT;
    846        1.1       cgd 		} else {
    847       1.61       dsl 			sess = p->p_pgrp->pg_session;
    848      1.151     rmind 			proc_sesshold(sess);
    849        1.1       cgd 		}
    850       1.61       dsl 		pgrp->pg_session = sess;
    851      1.141      yamt 		sess = NULL;
    852       1.61       dsl 
    853        1.1       cgd 		pgrp->pg_id = pgid;
    854       1.10   mycroft 		LIST_INIT(&pgrp->pg_members);
    855       1.61       dsl #ifdef DIAGNOSTIC
    856       1.63  christos 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    857       1.61       dsl 			panic("enterpgrp: pgrp table slot in use");
    858       1.63  christos 		if (__predict_false(mksess && p != curp))
    859       1.63  christos 			panic("enterpgrp: mksession and p != curproc");
    860       1.61       dsl #endif
    861       1.61       dsl 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    862        1.1       cgd 		pgrp->pg_jobc = 0;
    863      1.136        ad 	}
    864        1.1       cgd 
    865        1.1       cgd 	/*
    866        1.1       cgd 	 * Adjust eligibility of affected pgrps to participate in job control.
    867        1.1       cgd 	 * Increment eligibility counts before decrementing, otherwise we
    868        1.1       cgd 	 * could reach 0 spuriously during the first call.
    869        1.1       cgd 	 */
    870        1.1       cgd 	fixjobc(p, pgrp, 1);
    871        1.1       cgd 	fixjobc(p, p->p_pgrp, 0);
    872        1.1       cgd 
    873      1.139        ad 	/* Interlock with ttread(). */
    874      1.139        ad 	mutex_spin_enter(&tty_lock);
    875      1.139        ad 
    876      1.100        ad 	/* Move process to requested group. */
    877       1.10   mycroft 	LIST_REMOVE(p, p_pglist);
    878       1.52      matt 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    879       1.61       dsl 		/* defer delete until we've dumped the lock */
    880       1.61       dsl 		pg_id = p->p_pgrp->pg_id;
    881        1.1       cgd 	p->p_pgrp = pgrp;
    882       1.10   mycroft 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    883      1.100        ad 
    884      1.100        ad 	/* Done with the swap; we can release the tty mutex. */
    885      1.128        ad 	mutex_spin_exit(&tty_lock);
    886      1.128        ad 
    887       1.61       dsl     done:
    888      1.151     rmind 	if (pg_id != NO_PGID) {
    889      1.151     rmind 		/* Releases proc_lock. */
    890      1.100        ad 		pg_delete(pg_id);
    891      1.151     rmind 	} else {
    892      1.151     rmind 		mutex_exit(proc_lock);
    893      1.151     rmind 	}
    894       1.61       dsl 	if (sess != NULL)
    895      1.131        ad 		kmem_free(sess, sizeof(*sess));
    896       1.61       dsl 	if (new_pgrp != NULL)
    897      1.131        ad 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    898       1.63  christos #ifdef DEBUG_PGRP
    899       1.63  christos 	if (__predict_false(rval))
    900       1.61       dsl 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    901       1.61       dsl 			pid, pgid, mksess, curp->p_pid, rval);
    902       1.61       dsl #endif
    903       1.61       dsl 	return rval;
    904        1.1       cgd }
    905        1.1       cgd 
    906        1.1       cgd /*
    907      1.151     rmind  * proc_leavepgrp: remove a process from its process group.
    908      1.151     rmind  *  => must be called with the proc_lock held, which will be released;
    909        1.1       cgd  */
    910      1.100        ad void
    911      1.151     rmind proc_leavepgrp(struct proc *p)
    912        1.1       cgd {
    913       1.61       dsl 	struct pgrp *pgrp;
    914        1.1       cgd 
    915      1.136        ad 	KASSERT(mutex_owned(proc_lock));
    916      1.100        ad 
    917      1.139        ad 	/* Interlock with ttread() */
    918      1.128        ad 	mutex_spin_enter(&tty_lock);
    919       1.61       dsl 	pgrp = p->p_pgrp;
    920       1.10   mycroft 	LIST_REMOVE(p, p_pglist);
    921       1.94        ad 	p->p_pgrp = NULL;
    922      1.128        ad 	mutex_spin_exit(&tty_lock);
    923      1.100        ad 
    924      1.151     rmind 	if (LIST_EMPTY(&pgrp->pg_members)) {
    925      1.151     rmind 		/* Releases proc_lock. */
    926      1.100        ad 		pg_delete(pgrp->pg_id);
    927      1.151     rmind 	} else {
    928      1.151     rmind 		mutex_exit(proc_lock);
    929      1.151     rmind 	}
    930       1.61       dsl }
    931       1.61       dsl 
    932      1.100        ad /*
    933      1.151     rmind  * pg_remove: remove a process group from the table.
    934      1.151     rmind  *  => must be called with the proc_lock held;
    935      1.151     rmind  *  => returns process group to free;
    936      1.100        ad  */
    937      1.151     rmind static struct pgrp *
    938      1.151     rmind pg_remove(pid_t pg_id)
    939       1.61       dsl {
    940       1.61       dsl 	struct pgrp *pgrp;
    941       1.61       dsl 	struct pid_table *pt;
    942       1.61       dsl 
    943      1.136        ad 	KASSERT(mutex_owned(proc_lock));
    944      1.100        ad 
    945       1.61       dsl 	pt = &pid_table[pg_id & pid_tbl_mask];
    946       1.61       dsl 	pgrp = pt->pt_pgrp;
    947      1.151     rmind 
    948      1.151     rmind 	KASSERT(pgrp != NULL);
    949      1.151     rmind 	KASSERT(pgrp->pg_id == pg_id);
    950      1.151     rmind 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
    951      1.151     rmind 
    952      1.151     rmind 	pt->pt_pgrp = NULL;
    953       1.61       dsl 
    954       1.61       dsl 	if (!P_VALID(pt->pt_proc)) {
    955      1.151     rmind 		/* Orphaned pgrp, put slot onto free list. */
    956      1.151     rmind 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
    957       1.61       dsl 		pg_id &= pid_tbl_mask;
    958       1.61       dsl 		pt = &pid_table[last_free_pt];
    959       1.61       dsl 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    960       1.61       dsl 		last_free_pt = pg_id;
    961       1.61       dsl 		pid_alloc_cnt--;
    962       1.61       dsl 	}
    963      1.151     rmind 	return pgrp;
    964        1.1       cgd }
    965        1.1       cgd 
    966        1.1       cgd /*
    967      1.151     rmind  * pg_delete: delete and free a process group.
    968      1.151     rmind  *  => must be called with the proc_lock held, which will be released.
    969        1.1       cgd  */
    970       1.61       dsl static void
    971       1.61       dsl pg_delete(pid_t pg_id)
    972       1.61       dsl {
    973      1.151     rmind 	struct pgrp *pg;
    974       1.61       dsl 	struct tty *ttyp;
    975       1.61       dsl 	struct session *ss;
    976      1.100        ad 
    977      1.136        ad 	KASSERT(mutex_owned(proc_lock));
    978       1.61       dsl 
    979      1.151     rmind 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    980      1.151     rmind 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
    981      1.151     rmind 		mutex_exit(proc_lock);
    982       1.61       dsl 		return;
    983      1.151     rmind 	}
    984       1.61       dsl 
    985      1.151     rmind 	ss = pg->pg_session;
    986       1.71        pk 
    987       1.61       dsl 	/* Remove reference (if any) from tty to this process group */
    988      1.128        ad 	mutex_spin_enter(&tty_lock);
    989       1.71        pk 	ttyp = ss->s_ttyp;
    990      1.151     rmind 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
    991       1.61       dsl 		ttyp->t_pgrp = NULL;
    992      1.151     rmind 		KASSERT(ttyp->t_session == ss);
    993       1.71        pk 	}
    994      1.128        ad 	mutex_spin_exit(&tty_lock);
    995       1.61       dsl 
    996       1.71        pk 	/*
    997      1.151     rmind 	 * The leading process group in a session is freed by proc_sessrele(),
    998      1.151     rmind 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
    999       1.71        pk 	 */
   1000      1.151     rmind 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1001      1.151     rmind 	proc_sessrele(ss);
   1002       1.61       dsl 
   1003      1.151     rmind 	if (pg != NULL) {
   1004      1.151     rmind 		/* Free it, if was not done by proc_sessrele(). */
   1005      1.151     rmind 		kmem_free(pg, sizeof(struct pgrp));
   1006      1.151     rmind 	}
   1007        1.1       cgd }
   1008        1.1       cgd 
   1009        1.1       cgd /*
   1010        1.1       cgd  * Adjust pgrp jobc counters when specified process changes process group.
   1011        1.1       cgd  * We count the number of processes in each process group that "qualify"
   1012        1.1       cgd  * the group for terminal job control (those with a parent in a different
   1013        1.1       cgd  * process group of the same session).  If that count reaches zero, the
   1014        1.1       cgd  * process group becomes orphaned.  Check both the specified process'
   1015        1.1       cgd  * process group and that of its children.
   1016        1.1       cgd  * entering == 0 => p is leaving specified group.
   1017        1.1       cgd  * entering == 1 => p is entering specified group.
   1018       1.68       dsl  *
   1019      1.136        ad  * Call with proc_lock held.
   1020        1.1       cgd  */
   1021        1.4    andrew void
   1022       1.59       dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1023        1.1       cgd {
   1024       1.39  augustss 	struct pgrp *hispgrp;
   1025       1.39  augustss 	struct session *mysession = pgrp->pg_session;
   1026       1.68       dsl 	struct proc *child;
   1027        1.1       cgd 
   1028      1.136        ad 	KASSERT(mutex_owned(proc_lock));
   1029      1.100        ad 
   1030        1.1       cgd 	/*
   1031        1.1       cgd 	 * Check p's parent to see whether p qualifies its own process
   1032        1.1       cgd 	 * group; if so, adjust count for p's process group.
   1033        1.1       cgd 	 */
   1034       1.68       dsl 	hispgrp = p->p_pptr->p_pgrp;
   1035       1.68       dsl 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1036      1.100        ad 		if (entering) {
   1037        1.1       cgd 			pgrp->pg_jobc++;
   1038      1.136        ad 			p->p_lflag &= ~PL_ORPHANPG;
   1039      1.100        ad 		} else if (--pgrp->pg_jobc == 0)
   1040        1.1       cgd 			orphanpg(pgrp);
   1041       1.26   thorpej 	}
   1042        1.1       cgd 
   1043        1.1       cgd 	/*
   1044        1.1       cgd 	 * Check this process' children to see whether they qualify
   1045        1.1       cgd 	 * their process groups; if so, adjust counts for children's
   1046        1.1       cgd 	 * process groups.
   1047        1.1       cgd 	 */
   1048       1.68       dsl 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1049       1.68       dsl 		hispgrp = child->p_pgrp;
   1050       1.68       dsl 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1051       1.68       dsl 		    !P_ZOMBIE(child)) {
   1052      1.100        ad 			if (entering) {
   1053      1.136        ad 				child->p_lflag &= ~PL_ORPHANPG;
   1054        1.1       cgd 				hispgrp->pg_jobc++;
   1055      1.100        ad 			} else if (--hispgrp->pg_jobc == 0)
   1056        1.1       cgd 				orphanpg(hispgrp);
   1057       1.26   thorpej 		}
   1058       1.26   thorpej 	}
   1059        1.1       cgd }
   1060        1.1       cgd 
   1061       1.72  junyoung /*
   1062        1.1       cgd  * A process group has become orphaned;
   1063        1.1       cgd  * if there are any stopped processes in the group,
   1064        1.1       cgd  * hang-up all process in that group.
   1065       1.68       dsl  *
   1066      1.136        ad  * Call with proc_lock held.
   1067        1.1       cgd  */
   1068        1.4    andrew static void
   1069       1.59       dsl orphanpg(struct pgrp *pg)
   1070        1.1       cgd {
   1071       1.39  augustss 	struct proc *p;
   1072      1.100        ad 
   1073      1.136        ad 	KASSERT(mutex_owned(proc_lock));
   1074      1.100        ad 
   1075       1.52      matt 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1076        1.1       cgd 		if (p->p_stat == SSTOP) {
   1077      1.136        ad 			p->p_lflag |= PL_ORPHANPG;
   1078      1.100        ad 			psignal(p, SIGHUP);
   1079      1.100        ad 			psignal(p, SIGCONT);
   1080       1.35    bouyer 		}
   1081       1.35    bouyer 	}
   1082       1.35    bouyer }
   1083        1.1       cgd 
   1084       1.61       dsl #ifdef DDB
   1085       1.61       dsl #include <ddb/db_output.h>
   1086       1.61       dsl void pidtbl_dump(void);
   1087       1.14  christos void
   1088       1.61       dsl pidtbl_dump(void)
   1089        1.1       cgd {
   1090       1.61       dsl 	struct pid_table *pt;
   1091       1.61       dsl 	struct proc *p;
   1092       1.39  augustss 	struct pgrp *pgrp;
   1093       1.61       dsl 	int id;
   1094        1.1       cgd 
   1095       1.61       dsl 	db_printf("pid table %p size %x, next %x, last %x\n",
   1096       1.61       dsl 		pid_table, pid_tbl_mask+1,
   1097       1.61       dsl 		next_free_pt, last_free_pt);
   1098       1.61       dsl 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1099       1.61       dsl 		p = pt->pt_proc;
   1100       1.61       dsl 		if (!P_VALID(p) && !pt->pt_pgrp)
   1101       1.61       dsl 			continue;
   1102       1.61       dsl 		db_printf("  id %x: ", id);
   1103       1.61       dsl 		if (P_VALID(p))
   1104       1.61       dsl 			db_printf("proc %p id %d (0x%x) %s\n",
   1105       1.61       dsl 				p, p->p_pid, p->p_pid, p->p_comm);
   1106       1.61       dsl 		else
   1107       1.61       dsl 			db_printf("next %x use %x\n",
   1108       1.61       dsl 				P_NEXT(p) & pid_tbl_mask,
   1109       1.61       dsl 				P_NEXT(p) & ~pid_tbl_mask);
   1110       1.61       dsl 		if ((pgrp = pt->pt_pgrp)) {
   1111       1.61       dsl 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1112       1.61       dsl 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1113       1.61       dsl 			    pgrp->pg_session->s_count,
   1114       1.61       dsl 			    pgrp->pg_session->s_login);
   1115       1.61       dsl 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1116       1.61       dsl 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1117      1.135      yamt 			    LIST_FIRST(&pgrp->pg_members));
   1118      1.135      yamt 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1119       1.72  junyoung 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1120       1.61       dsl 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1121       1.10   mycroft 			}
   1122        1.1       cgd 		}
   1123        1.1       cgd 	}
   1124        1.1       cgd }
   1125       1.61       dsl #endif /* DDB */
   1126       1.48      yamt 
   1127       1.48      yamt #ifdef KSTACK_CHECK_MAGIC
   1128       1.48      yamt 
   1129       1.48      yamt #define	KSTACK_MAGIC	0xdeadbeaf
   1130       1.48      yamt 
   1131       1.48      yamt /* XXX should be per process basis? */
   1132      1.149     rmind static int	kstackleftmin = KSTACK_SIZE;
   1133      1.149     rmind static int	kstackleftthres = KSTACK_SIZE / 8;
   1134       1.48      yamt 
   1135       1.48      yamt void
   1136       1.56      yamt kstack_setup_magic(const struct lwp *l)
   1137       1.48      yamt {
   1138       1.85     perry 	uint32_t *ip;
   1139       1.85     perry 	uint32_t const *end;
   1140       1.48      yamt 
   1141       1.56      yamt 	KASSERT(l != NULL);
   1142       1.56      yamt 	KASSERT(l != &lwp0);
   1143       1.48      yamt 
   1144       1.48      yamt 	/*
   1145       1.48      yamt 	 * fill all the stack with magic number
   1146       1.48      yamt 	 * so that later modification on it can be detected.
   1147       1.48      yamt 	 */
   1148       1.85     perry 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1149      1.114    dyoung 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1150       1.48      yamt 	for (; ip < end; ip++) {
   1151       1.48      yamt 		*ip = KSTACK_MAGIC;
   1152       1.48      yamt 	}
   1153       1.48      yamt }
   1154       1.48      yamt 
   1155       1.48      yamt void
   1156       1.56      yamt kstack_check_magic(const struct lwp *l)
   1157       1.48      yamt {
   1158       1.85     perry 	uint32_t const *ip, *end;
   1159       1.48      yamt 	int stackleft;
   1160       1.48      yamt 
   1161       1.56      yamt 	KASSERT(l != NULL);
   1162       1.48      yamt 
   1163       1.48      yamt 	/* don't check proc0 */ /*XXX*/
   1164       1.56      yamt 	if (l == &lwp0)
   1165       1.48      yamt 		return;
   1166       1.48      yamt 
   1167       1.48      yamt #ifdef __MACHINE_STACK_GROWS_UP
   1168       1.48      yamt 	/* stack grows upwards (eg. hppa) */
   1169      1.106  christos 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1170       1.85     perry 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1171       1.48      yamt 	for (ip--; ip >= end; ip--)
   1172       1.48      yamt 		if (*ip != KSTACK_MAGIC)
   1173       1.48      yamt 			break;
   1174       1.72  junyoung 
   1175      1.106  christos 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1176       1.48      yamt #else /* __MACHINE_STACK_GROWS_UP */
   1177       1.48      yamt 	/* stack grows downwards (eg. i386) */
   1178       1.85     perry 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1179      1.114    dyoung 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1180       1.48      yamt 	for (; ip < end; ip++)
   1181       1.48      yamt 		if (*ip != KSTACK_MAGIC)
   1182       1.48      yamt 			break;
   1183       1.48      yamt 
   1184       1.93  christos 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1185       1.48      yamt #endif /* __MACHINE_STACK_GROWS_UP */
   1186       1.48      yamt 
   1187       1.48      yamt 	if (kstackleftmin > stackleft) {
   1188       1.48      yamt 		kstackleftmin = stackleft;
   1189       1.48      yamt 		if (stackleft < kstackleftthres)
   1190       1.56      yamt 			printf("warning: kernel stack left %d bytes"
   1191       1.56      yamt 			    "(pid %u:lid %u)\n", stackleft,
   1192       1.56      yamt 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1193       1.48      yamt 	}
   1194       1.48      yamt 
   1195       1.48      yamt 	if (stackleft <= 0) {
   1196       1.56      yamt 		panic("magic on the top of kernel stack changed for "
   1197       1.56      yamt 		    "pid %u, lid %u: maybe kernel stack overflow",
   1198       1.56      yamt 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1199       1.48      yamt 	}
   1200       1.48      yamt }
   1201       1.50     enami #endif /* KSTACK_CHECK_MAGIC */
   1202       1.79      yamt 
   1203       1.79      yamt int
   1204       1.79      yamt proclist_foreach_call(struct proclist *list,
   1205       1.79      yamt     int (*callback)(struct proc *, void *arg), void *arg)
   1206       1.79      yamt {
   1207       1.79      yamt 	struct proc marker;
   1208       1.79      yamt 	struct proc *p;
   1209       1.79      yamt 	int ret = 0;
   1210       1.79      yamt 
   1211      1.102     pavel 	marker.p_flag = PK_MARKER;
   1212      1.136        ad 	mutex_enter(proc_lock);
   1213       1.79      yamt 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1214      1.102     pavel 		if (p->p_flag & PK_MARKER) {
   1215       1.79      yamt 			p = LIST_NEXT(p, p_list);
   1216       1.79      yamt 			continue;
   1217       1.79      yamt 		}
   1218       1.79      yamt 		LIST_INSERT_AFTER(p, &marker, p_list);
   1219       1.79      yamt 		ret = (*callback)(p, arg);
   1220      1.136        ad 		KASSERT(mutex_owned(proc_lock));
   1221       1.79      yamt 		p = LIST_NEXT(&marker, p_list);
   1222       1.79      yamt 		LIST_REMOVE(&marker, p_list);
   1223       1.79      yamt 	}
   1224      1.136        ad 	mutex_exit(proc_lock);
   1225       1.79      yamt 
   1226       1.79      yamt 	return ret;
   1227       1.79      yamt }
   1228       1.86      yamt 
   1229       1.86      yamt int
   1230       1.86      yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1231       1.86      yamt {
   1232       1.86      yamt 
   1233       1.86      yamt 	/* XXXCDC: how should locking work here? */
   1234       1.86      yamt 
   1235       1.87      yamt 	/* curproc exception is for coredump. */
   1236       1.87      yamt 
   1237      1.100        ad 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1238       1.86      yamt 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1239       1.86      yamt 		return EFAULT;
   1240       1.86      yamt 	}
   1241       1.86      yamt 
   1242       1.86      yamt 	uvmspace_addref(p->p_vmspace);
   1243       1.86      yamt 	*vm = p->p_vmspace;
   1244       1.86      yamt 
   1245       1.86      yamt 	return 0;
   1246       1.86      yamt }
   1247       1.94        ad 
   1248       1.94        ad /*
   1249       1.94        ad  * Acquire a write lock on the process credential.
   1250       1.94        ad  */
   1251       1.94        ad void
   1252      1.100        ad proc_crmod_enter(void)
   1253       1.94        ad {
   1254      1.100        ad 	struct lwp *l = curlwp;
   1255      1.100        ad 	struct proc *p = l->l_proc;
   1256      1.100        ad 	struct plimit *lim;
   1257      1.100        ad 	kauth_cred_t oc;
   1258      1.100        ad 	char *cn;
   1259       1.94        ad 
   1260      1.117       dsl 	/* Reset what needs to be reset in plimit. */
   1261      1.117       dsl 	if (p->p_limit->pl_corename != defcorename) {
   1262      1.117       dsl 		lim_privatise(p, false);
   1263      1.117       dsl 		lim = p->p_limit;
   1264      1.117       dsl 		mutex_enter(&lim->pl_lock);
   1265      1.117       dsl 		cn = lim->pl_corename;
   1266      1.117       dsl 		lim->pl_corename = defcorename;
   1267      1.117       dsl 		mutex_exit(&lim->pl_lock);
   1268      1.117       dsl 		if (cn != defcorename)
   1269      1.117       dsl 			free(cn, M_TEMP);
   1270      1.117       dsl 	}
   1271      1.117       dsl 
   1272      1.137        ad 	mutex_enter(p->p_lock);
   1273      1.100        ad 
   1274      1.100        ad 	/* Ensure the LWP cached credentials are up to date. */
   1275      1.100        ad 	if ((oc = l->l_cred) != p->p_cred) {
   1276      1.100        ad 		kauth_cred_hold(p->p_cred);
   1277      1.100        ad 		l->l_cred = p->p_cred;
   1278      1.100        ad 		kauth_cred_free(oc);
   1279      1.100        ad 	}
   1280      1.100        ad 
   1281       1.94        ad }
   1282       1.94        ad 
   1283       1.94        ad /*
   1284      1.100        ad  * Set in a new process credential, and drop the write lock.  The credential
   1285      1.100        ad  * must have a reference already.  Optionally, free a no-longer required
   1286      1.100        ad  * credential.  The scheduler also needs to inspect p_cred, so we also
   1287      1.100        ad  * briefly acquire the sched state mutex.
   1288       1.94        ad  */
   1289       1.94        ad void
   1290      1.104   thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1291       1.94        ad {
   1292      1.133        ad 	struct lwp *l = curlwp, *l2;
   1293      1.100        ad 	struct proc *p = l->l_proc;
   1294      1.100        ad 	kauth_cred_t oc;
   1295      1.100        ad 
   1296      1.137        ad 	KASSERT(mutex_owned(p->p_lock));
   1297      1.137        ad 
   1298      1.100        ad 	/* Is there a new credential to set in? */
   1299      1.100        ad 	if (scred != NULL) {
   1300      1.100        ad 		p->p_cred = scred;
   1301      1.133        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1302      1.133        ad 			if (l2 != l)
   1303      1.133        ad 				l2->l_prflag |= LPR_CRMOD;
   1304      1.133        ad 		}
   1305      1.100        ad 
   1306      1.100        ad 		/* Ensure the LWP cached credentials are up to date. */
   1307      1.100        ad 		if ((oc = l->l_cred) != scred) {
   1308      1.100        ad 			kauth_cred_hold(scred);
   1309      1.100        ad 			l->l_cred = scred;
   1310      1.100        ad 		}
   1311      1.100        ad 	} else
   1312      1.100        ad 		oc = NULL;	/* XXXgcc */
   1313      1.100        ad 
   1314      1.100        ad 	if (sugid) {
   1315      1.100        ad 		/*
   1316      1.100        ad 		 * Mark process as having changed credentials, stops
   1317      1.100        ad 		 * tracing etc.
   1318      1.100        ad 		 */
   1319      1.102     pavel 		p->p_flag |= PK_SUGID;
   1320      1.100        ad 	}
   1321       1.94        ad 
   1322      1.137        ad 	mutex_exit(p->p_lock);
   1323      1.100        ad 
   1324      1.100        ad 	/* If there is a credential to be released, free it now. */
   1325      1.100        ad 	if (fcred != NULL) {
   1326      1.100        ad 		KASSERT(scred != NULL);
   1327       1.94        ad 		kauth_cred_free(fcred);
   1328      1.100        ad 		if (oc != scred)
   1329      1.100        ad 			kauth_cred_free(oc);
   1330      1.100        ad 	}
   1331      1.100        ad }
   1332      1.100        ad 
   1333      1.100        ad /*
   1334       1.95   thorpej  * proc_specific_key_create --
   1335       1.95   thorpej  *	Create a key for subsystem proc-specific data.
   1336       1.95   thorpej  */
   1337       1.95   thorpej int
   1338       1.95   thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1339       1.95   thorpej {
   1340       1.95   thorpej 
   1341       1.98   thorpej 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1342       1.95   thorpej }
   1343       1.95   thorpej 
   1344       1.95   thorpej /*
   1345       1.95   thorpej  * proc_specific_key_delete --
   1346       1.95   thorpej  *	Delete a key for subsystem proc-specific data.
   1347       1.95   thorpej  */
   1348       1.95   thorpej void
   1349       1.95   thorpej proc_specific_key_delete(specificdata_key_t key)
   1350       1.95   thorpej {
   1351       1.95   thorpej 
   1352       1.95   thorpej 	specificdata_key_delete(proc_specificdata_domain, key);
   1353       1.95   thorpej }
   1354       1.95   thorpej 
   1355       1.98   thorpej /*
   1356       1.98   thorpej  * proc_initspecific --
   1357       1.98   thorpej  *	Initialize a proc's specificdata container.
   1358       1.98   thorpej  */
   1359       1.96  christos void
   1360       1.96  christos proc_initspecific(struct proc *p)
   1361       1.96  christos {
   1362       1.96  christos 	int error;
   1363       1.98   thorpej 
   1364       1.96  christos 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1365       1.96  christos 	KASSERT(error == 0);
   1366       1.96  christos }
   1367       1.96  christos 
   1368       1.95   thorpej /*
   1369       1.98   thorpej  * proc_finispecific --
   1370       1.98   thorpej  *	Finalize a proc's specificdata container.
   1371       1.98   thorpej  */
   1372       1.98   thorpej void
   1373       1.98   thorpej proc_finispecific(struct proc *p)
   1374       1.98   thorpej {
   1375       1.98   thorpej 
   1376       1.98   thorpej 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1377       1.98   thorpej }
   1378       1.98   thorpej 
   1379       1.98   thorpej /*
   1380       1.95   thorpej  * proc_getspecific --
   1381       1.95   thorpej  *	Return proc-specific data corresponding to the specified key.
   1382       1.95   thorpej  */
   1383       1.95   thorpej void *
   1384       1.95   thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
   1385       1.95   thorpej {
   1386       1.95   thorpej 
   1387       1.95   thorpej 	return (specificdata_getspecific(proc_specificdata_domain,
   1388       1.95   thorpej 					 &p->p_specdataref, key));
   1389       1.95   thorpej }
   1390       1.95   thorpej 
   1391       1.95   thorpej /*
   1392       1.95   thorpej  * proc_setspecific --
   1393       1.95   thorpej  *	Set proc-specific data corresponding to the specified key.
   1394       1.95   thorpej  */
   1395       1.95   thorpej void
   1396       1.95   thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1397       1.95   thorpej {
   1398       1.95   thorpej 
   1399       1.95   thorpej 	specificdata_setspecific(proc_specificdata_domain,
   1400       1.95   thorpej 				 &p->p_specdataref, key, data);
   1401       1.95   thorpej }
   1402      1.154      elad 
   1403      1.154      elad int
   1404      1.154      elad proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1405      1.154      elad {
   1406      1.154      elad 	int r = 0;
   1407      1.154      elad 
   1408      1.154      elad 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1409      1.154      elad 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1410      1.154      elad 		/*
   1411      1.154      elad 		 * suid proc of ours or proc not ours
   1412      1.154      elad 		 */
   1413      1.154      elad 		r = EPERM;
   1414      1.154      elad 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1415      1.154      elad 		/*
   1416      1.154      elad 		 * sgid proc has sgid back to us temporarily
   1417      1.154      elad 		 */
   1418      1.154      elad 		r = EPERM;
   1419      1.154      elad 	} else {
   1420      1.154      elad 		/*
   1421      1.154      elad 		 * our rgid must be in target's group list (ie,
   1422      1.154      elad 		 * sub-processes started by a sgid process)
   1423      1.154      elad 		 */
   1424      1.154      elad 		int ismember = 0;
   1425      1.154      elad 
   1426      1.154      elad 		if (kauth_cred_ismember_gid(cred,
   1427      1.154      elad 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1428      1.154      elad 		    !ismember)
   1429      1.154      elad 			r = EPERM;
   1430      1.154      elad 	}
   1431      1.154      elad 
   1432      1.154      elad 	return (r);
   1433      1.154      elad }
   1434      1.154      elad 
   1435