kern_proc.c revision 1.189 1 1.189 martin /* $NetBSD: kern_proc.c,v 1.189 2013/10/25 15:52:57 martin Exp $ */
2 1.33 thorpej
3 1.33 thorpej /*-
4 1.131 ad * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.33 thorpej * All rights reserved.
6 1.33 thorpej *
7 1.33 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.33 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.100 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.33 thorpej *
11 1.33 thorpej * Redistribution and use in source and binary forms, with or without
12 1.33 thorpej * modification, are permitted provided that the following conditions
13 1.33 thorpej * are met:
14 1.33 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.33 thorpej * notice, this list of conditions and the following disclaimer.
16 1.33 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.33 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.33 thorpej * documentation and/or other materials provided with the distribution.
19 1.33 thorpej *
20 1.33 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.33 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.33 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.33 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.33 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.33 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.33 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.33 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.33 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.33 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.33 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.33 thorpej */
32 1.9 cgd
33 1.1 cgd /*
34 1.7 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 1.7 cgd * The Regents of the University of California. All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Redistribution and use in source and binary forms, with or without
38 1.1 cgd * modification, are permitted provided that the following conditions
39 1.1 cgd * are met:
40 1.1 cgd * 1. Redistributions of source code must retain the above copyright
41 1.1 cgd * notice, this list of conditions and the following disclaimer.
42 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 cgd * notice, this list of conditions and the following disclaimer in the
44 1.1 cgd * documentation and/or other materials provided with the distribution.
45 1.65 agc * 3. Neither the name of the University nor the names of its contributors
46 1.1 cgd * may be used to endorse or promote products derived from this software
47 1.1 cgd * without specific prior written permission.
48 1.1 cgd *
49 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.1 cgd * SUCH DAMAGE.
60 1.1 cgd *
61 1.23 fvdl * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 1.1 cgd */
63 1.45 lukem
64 1.45 lukem #include <sys/cdefs.h>
65 1.189 martin __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.189 2013/10/25 15:52:57 martin Exp $");
66 1.48 yamt
67 1.165 pooka #ifdef _KERNEL_OPT
68 1.48 yamt #include "opt_kstack.h"
69 1.88 onoe #include "opt_maxuprc.h"
70 1.161 darran #include "opt_dtrace.h"
71 1.171 pooka #include "opt_compat_netbsd32.h"
72 1.165 pooka #endif
73 1.1 cgd
74 1.5 mycroft #include <sys/param.h>
75 1.5 mycroft #include <sys/systm.h>
76 1.5 mycroft #include <sys/kernel.h>
77 1.5 mycroft #include <sys/proc.h>
78 1.28 thorpej #include <sys/resourcevar.h>
79 1.5 mycroft #include <sys/buf.h>
80 1.5 mycroft #include <sys/acct.h>
81 1.5 mycroft #include <sys/wait.h>
82 1.5 mycroft #include <sys/file.h>
83 1.8 mycroft #include <ufs/ufs/quota.h>
84 1.5 mycroft #include <sys/uio.h>
85 1.24 thorpej #include <sys/pool.h>
86 1.147 rmind #include <sys/pset.h>
87 1.5 mycroft #include <sys/mbuf.h>
88 1.5 mycroft #include <sys/ioctl.h>
89 1.5 mycroft #include <sys/tty.h>
90 1.11 cgd #include <sys/signalvar.h>
91 1.51 gmcgarry #include <sys/ras.h>
92 1.81 junyoung #include <sys/filedesc.h>
93 1.185 martin #include <sys/syscall_stats.h>
94 1.89 elad #include <sys/kauth.h>
95 1.100 ad #include <sys/sleepq.h>
96 1.126 ad #include <sys/atomic.h>
97 1.131 ad #include <sys/kmem.h>
98 1.160 darran #include <sys/dtrace_bsd.h>
99 1.170 pooka #include <sys/sysctl.h>
100 1.170 pooka #include <sys/exec.h>
101 1.170 pooka #include <sys/cpu.h>
102 1.160 darran
103 1.169 uebayasi #include <uvm/uvm_extern.h>
104 1.5 mycroft
105 1.171 pooka #ifdef COMPAT_NETBSD32
106 1.171 pooka #include <compat/netbsd32/netbsd32.h>
107 1.171 pooka #endif
108 1.171 pooka
109 1.7 cgd /*
110 1.180 rmind * Process lists.
111 1.7 cgd */
112 1.31 thorpej
113 1.180 rmind struct proclist allproc __cacheline_aligned;
114 1.180 rmind struct proclist zombproc __cacheline_aligned;
115 1.32 thorpej
116 1.180 rmind kmutex_t * proc_lock __cacheline_aligned;
117 1.33 thorpej
118 1.33 thorpej /*
119 1.72 junyoung * pid to proc lookup is done by indexing the pid_table array.
120 1.61 dsl * Since pid numbers are only allocated when an empty slot
121 1.61 dsl * has been found, there is no need to search any lists ever.
122 1.61 dsl * (an orphaned pgrp will lock the slot, a session will lock
123 1.61 dsl * the pgrp with the same number.)
124 1.61 dsl * If the table is too small it is reallocated with twice the
125 1.61 dsl * previous size and the entries 'unzipped' into the two halves.
126 1.61 dsl * A linked list of free entries is passed through the pt_proc
127 1.61 dsl * field of 'free' items - set odd to be an invalid ptr.
128 1.61 dsl */
129 1.61 dsl
130 1.61 dsl struct pid_table {
131 1.61 dsl struct proc *pt_proc;
132 1.61 dsl struct pgrp *pt_pgrp;
133 1.168 chs pid_t pt_pid;
134 1.72 junyoung };
135 1.61 dsl #if 1 /* strongly typed cast - should be a noop */
136 1.84 perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
137 1.61 dsl #else
138 1.61 dsl #define p2u(p) ((uint)p)
139 1.72 junyoung #endif
140 1.61 dsl #define P_VALID(p) (!(p2u(p) & 1))
141 1.61 dsl #define P_NEXT(p) (p2u(p) >> 1)
142 1.61 dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
143 1.61 dsl
144 1.180 rmind /*
145 1.180 rmind * Table of process IDs (PIDs).
146 1.180 rmind */
147 1.180 rmind static struct pid_table *pid_table __read_mostly;
148 1.180 rmind
149 1.180 rmind #define INITIAL_PID_TABLE_SIZE (1 << 5)
150 1.180 rmind
151 1.180 rmind /* Table mask, threshold for growing and number of allocated PIDs. */
152 1.180 rmind static u_int pid_tbl_mask __read_mostly;
153 1.180 rmind static u_int pid_alloc_lim __read_mostly;
154 1.180 rmind static u_int pid_alloc_cnt __cacheline_aligned;
155 1.180 rmind
156 1.180 rmind /* Next free, last free and maximum PIDs. */
157 1.180 rmind static u_int next_free_pt __cacheline_aligned;
158 1.180 rmind static u_int last_free_pt __cacheline_aligned;
159 1.180 rmind static pid_t pid_max __read_mostly;
160 1.31 thorpej
161 1.81 junyoung /* Components of the first process -- never freed. */
162 1.123 matt
163 1.145 ad extern struct emul emul_netbsd; /* defined in kern_exec.c */
164 1.123 matt
165 1.123 matt struct session session0 = {
166 1.123 matt .s_count = 1,
167 1.123 matt .s_sid = 0,
168 1.123 matt };
169 1.123 matt struct pgrp pgrp0 = {
170 1.123 matt .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
171 1.123 matt .pg_session = &session0,
172 1.123 matt };
173 1.132 ad filedesc_t filedesc0;
174 1.123 matt struct cwdinfo cwdi0 = {
175 1.187 pooka .cwdi_cmask = CMASK,
176 1.123 matt .cwdi_refcnt = 1,
177 1.123 matt };
178 1.143 gmcgarry struct plimit limit0;
179 1.81 junyoung struct pstats pstat0;
180 1.81 junyoung struct vmspace vmspace0;
181 1.81 junyoung struct sigacts sigacts0;
182 1.123 matt struct proc proc0 = {
183 1.123 matt .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
184 1.123 matt .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
185 1.123 matt .p_nlwps = 1,
186 1.123 matt .p_nrlwps = 1,
187 1.123 matt .p_nlwpid = 1, /* must match lwp0.l_lid */
188 1.123 matt .p_pgrp = &pgrp0,
189 1.123 matt .p_comm = "system",
190 1.123 matt /*
191 1.123 matt * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
192 1.123 matt * when they exit. init(8) can easily wait them out for us.
193 1.123 matt */
194 1.123 matt .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
195 1.123 matt .p_stat = SACTIVE,
196 1.123 matt .p_nice = NZERO,
197 1.123 matt .p_emul = &emul_netbsd,
198 1.123 matt .p_cwdi = &cwdi0,
199 1.123 matt .p_limit = &limit0,
200 1.132 ad .p_fd = &filedesc0,
201 1.123 matt .p_vmspace = &vmspace0,
202 1.123 matt .p_stats = &pstat0,
203 1.123 matt .p_sigacts = &sigacts0,
204 1.188 matt #ifdef PROC0_MD_INITIALIZERS
205 1.188 matt PROC0_MD_INITIALIZERS
206 1.188 matt #endif
207 1.123 matt };
208 1.123 matt kauth_cred_t cred0;
209 1.81 junyoung
210 1.180 rmind static const int nofile = NOFILE;
211 1.180 rmind static const int maxuprc = MAXUPRC;
212 1.81 junyoung
213 1.170 pooka static int sysctl_doeproc(SYSCTLFN_PROTO);
214 1.170 pooka static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
215 1.170 pooka static void fill_kproc2(struct proc *, struct kinfo_proc2 *, bool);
216 1.170 pooka
217 1.31 thorpej /*
218 1.31 thorpej * The process list descriptors, used during pid allocation and
219 1.31 thorpej * by sysctl. No locking on this data structure is needed since
220 1.31 thorpej * it is completely static.
221 1.31 thorpej */
222 1.31 thorpej const struct proclist_desc proclists[] = {
223 1.31 thorpej { &allproc },
224 1.31 thorpej { &zombproc },
225 1.31 thorpej { NULL },
226 1.31 thorpej };
227 1.31 thorpej
228 1.151 rmind static struct pgrp * pg_remove(pid_t);
229 1.151 rmind static void pg_delete(pid_t);
230 1.151 rmind static void orphanpg(struct pgrp *);
231 1.13 christos
232 1.95 thorpej static specificdata_domain_t proc_specificdata_domain;
233 1.95 thorpej
234 1.128 ad static pool_cache_t proc_cache;
235 1.128 ad
236 1.153 elad static kauth_listener_t proc_listener;
237 1.153 elad
238 1.153 elad static int
239 1.153 elad proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
240 1.153 elad void *arg0, void *arg1, void *arg2, void *arg3)
241 1.153 elad {
242 1.153 elad struct proc *p;
243 1.153 elad int result;
244 1.153 elad
245 1.153 elad result = KAUTH_RESULT_DEFER;
246 1.153 elad p = arg0;
247 1.153 elad
248 1.153 elad switch (action) {
249 1.153 elad case KAUTH_PROCESS_CANSEE: {
250 1.153 elad enum kauth_process_req req;
251 1.153 elad
252 1.153 elad req = (enum kauth_process_req)arg1;
253 1.153 elad
254 1.153 elad switch (req) {
255 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_ARGS:
256 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
257 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
258 1.153 elad result = KAUTH_RESULT_ALLOW;
259 1.153 elad
260 1.153 elad break;
261 1.153 elad
262 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_ENV:
263 1.153 elad if (kauth_cred_getuid(cred) !=
264 1.153 elad kauth_cred_getuid(p->p_cred) ||
265 1.153 elad kauth_cred_getuid(cred) !=
266 1.153 elad kauth_cred_getsvuid(p->p_cred))
267 1.153 elad break;
268 1.153 elad
269 1.153 elad result = KAUTH_RESULT_ALLOW;
270 1.153 elad
271 1.153 elad break;
272 1.153 elad
273 1.153 elad default:
274 1.153 elad break;
275 1.153 elad }
276 1.153 elad
277 1.153 elad break;
278 1.153 elad }
279 1.153 elad
280 1.153 elad case KAUTH_PROCESS_FORK: {
281 1.153 elad int lnprocs = (int)(unsigned long)arg2;
282 1.153 elad
283 1.153 elad /*
284 1.153 elad * Don't allow a nonprivileged user to use the last few
285 1.153 elad * processes. The variable lnprocs is the current number of
286 1.153 elad * processes, maxproc is the limit.
287 1.153 elad */
288 1.153 elad if (__predict_false((lnprocs >= maxproc - 5)))
289 1.153 elad break;
290 1.153 elad
291 1.153 elad result = KAUTH_RESULT_ALLOW;
292 1.153 elad
293 1.153 elad break;
294 1.153 elad }
295 1.153 elad
296 1.153 elad case KAUTH_PROCESS_CORENAME:
297 1.153 elad case KAUTH_PROCESS_STOPFLAG:
298 1.153 elad if (proc_uidmatch(cred, p->p_cred) == 0)
299 1.153 elad result = KAUTH_RESULT_ALLOW;
300 1.153 elad
301 1.153 elad break;
302 1.153 elad
303 1.153 elad default:
304 1.153 elad break;
305 1.153 elad }
306 1.153 elad
307 1.153 elad return result;
308 1.153 elad }
309 1.153 elad
310 1.10 mycroft /*
311 1.10 mycroft * Initialize global process hashing structures.
312 1.10 mycroft */
313 1.11 cgd void
314 1.59 dsl procinit(void)
315 1.7 cgd {
316 1.31 thorpej const struct proclist_desc *pd;
317 1.150 rmind u_int i;
318 1.61 dsl #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
319 1.31 thorpej
320 1.31 thorpej for (pd = proclists; pd->pd_list != NULL; pd++)
321 1.31 thorpej LIST_INIT(pd->pd_list);
322 1.7 cgd
323 1.136 ad proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
324 1.150 rmind pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
325 1.150 rmind * sizeof(struct pid_table), KM_SLEEP);
326 1.180 rmind pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
327 1.180 rmind pid_max = PID_MAX;
328 1.33 thorpej
329 1.61 dsl /* Set free list running through table...
330 1.61 dsl Preset 'use count' above PID_MAX so we allocate pid 1 next. */
331 1.61 dsl for (i = 0; i <= pid_tbl_mask; i++) {
332 1.61 dsl pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
333 1.61 dsl pid_table[i].pt_pgrp = 0;
334 1.168 chs pid_table[i].pt_pid = 0;
335 1.61 dsl }
336 1.61 dsl /* slot 0 is just grabbed */
337 1.61 dsl next_free_pt = 1;
338 1.61 dsl /* Need to fix last entry. */
339 1.61 dsl last_free_pt = pid_tbl_mask;
340 1.61 dsl pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
341 1.61 dsl /* point at which we grow table - to avoid reusing pids too often */
342 1.61 dsl pid_alloc_lim = pid_tbl_mask - 1;
343 1.61 dsl #undef LINK_EMPTY
344 1.61 dsl
345 1.95 thorpej proc_specificdata_domain = specificdata_domain_create();
346 1.95 thorpej KASSERT(proc_specificdata_domain != NULL);
347 1.128 ad
348 1.128 ad proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
349 1.128 ad "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
350 1.153 elad
351 1.153 elad proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
352 1.153 elad proc_listener_cb, NULL);
353 1.7 cgd }
354 1.1 cgd
355 1.170 pooka void
356 1.170 pooka procinit_sysctl(void)
357 1.170 pooka {
358 1.170 pooka static struct sysctllog *clog;
359 1.170 pooka
360 1.170 pooka sysctl_createv(&clog, 0, NULL, NULL,
361 1.170 pooka CTLFLAG_PERMANENT,
362 1.170 pooka CTLTYPE_NODE, "kern", NULL,
363 1.170 pooka NULL, 0, NULL, 0,
364 1.170 pooka CTL_KERN, CTL_EOL);
365 1.170 pooka
366 1.170 pooka sysctl_createv(&clog, 0, NULL, NULL,
367 1.170 pooka CTLFLAG_PERMANENT,
368 1.170 pooka CTLTYPE_NODE, "proc",
369 1.170 pooka SYSCTL_DESCR("System-wide process information"),
370 1.170 pooka sysctl_doeproc, 0, NULL, 0,
371 1.170 pooka CTL_KERN, KERN_PROC, CTL_EOL);
372 1.170 pooka sysctl_createv(&clog, 0, NULL, NULL,
373 1.170 pooka CTLFLAG_PERMANENT,
374 1.170 pooka CTLTYPE_NODE, "proc2",
375 1.170 pooka SYSCTL_DESCR("Machine-independent process information"),
376 1.170 pooka sysctl_doeproc, 0, NULL, 0,
377 1.170 pooka CTL_KERN, KERN_PROC2, CTL_EOL);
378 1.170 pooka sysctl_createv(&clog, 0, NULL, NULL,
379 1.170 pooka CTLFLAG_PERMANENT,
380 1.170 pooka CTLTYPE_NODE, "proc_args",
381 1.170 pooka SYSCTL_DESCR("Process argument information"),
382 1.170 pooka sysctl_kern_proc_args, 0, NULL, 0,
383 1.170 pooka CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
384 1.170 pooka
385 1.170 pooka /*
386 1.170 pooka "nodes" under these:
387 1.170 pooka
388 1.170 pooka KERN_PROC_ALL
389 1.170 pooka KERN_PROC_PID pid
390 1.170 pooka KERN_PROC_PGRP pgrp
391 1.170 pooka KERN_PROC_SESSION sess
392 1.170 pooka KERN_PROC_TTY tty
393 1.170 pooka KERN_PROC_UID uid
394 1.170 pooka KERN_PROC_RUID uid
395 1.170 pooka KERN_PROC_GID gid
396 1.170 pooka KERN_PROC_RGID gid
397 1.170 pooka
398 1.170 pooka all in all, probably not worth the effort...
399 1.170 pooka */
400 1.170 pooka }
401 1.170 pooka
402 1.7 cgd /*
403 1.81 junyoung * Initialize process 0.
404 1.81 junyoung */
405 1.81 junyoung void
406 1.81 junyoung proc0_init(void)
407 1.81 junyoung {
408 1.81 junyoung struct proc *p;
409 1.81 junyoung struct pgrp *pg;
410 1.177 rmind struct rlimit *rlim;
411 1.81 junyoung rlim_t lim;
412 1.143 gmcgarry int i;
413 1.81 junyoung
414 1.81 junyoung p = &proc0;
415 1.81 junyoung pg = &pgrp0;
416 1.123 matt
417 1.127 ad mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
418 1.129 ad mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
419 1.137 ad p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
420 1.107 ad
421 1.122 ad rw_init(&p->p_reflock);
422 1.100 ad cv_init(&p->p_waitcv, "wait");
423 1.100 ad cv_init(&p->p_lwpcv, "lwpwait");
424 1.100 ad
425 1.166 pooka LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
426 1.100 ad
427 1.81 junyoung pid_table[0].pt_proc = p;
428 1.81 junyoung LIST_INSERT_HEAD(&allproc, p, p_list);
429 1.81 junyoung
430 1.81 junyoung pid_table[0].pt_pgrp = pg;
431 1.81 junyoung LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
432 1.81 junyoung
433 1.81 junyoung #ifdef __HAVE_SYSCALL_INTERN
434 1.81 junyoung (*p->p_emul->e_syscall_intern)(p);
435 1.81 junyoung #endif
436 1.81 junyoung
437 1.81 junyoung /* Create credentials. */
438 1.89 elad cred0 = kauth_cred_alloc();
439 1.89 elad p->p_cred = cred0;
440 1.81 junyoung
441 1.81 junyoung /* Create the CWD info. */
442 1.113 ad rw_init(&cwdi0.cwdi_lock);
443 1.81 junyoung
444 1.81 junyoung /* Create the limits structures. */
445 1.116 dsl mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
446 1.177 rmind
447 1.177 rmind rlim = limit0.pl_rlimit;
448 1.177 rmind for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
449 1.177 rmind rlim[i].rlim_cur = RLIM_INFINITY;
450 1.177 rmind rlim[i].rlim_max = RLIM_INFINITY;
451 1.177 rmind }
452 1.177 rmind
453 1.177 rmind rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
454 1.177 rmind rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
455 1.177 rmind
456 1.177 rmind rlim[RLIMIT_NPROC].rlim_max = maxproc;
457 1.177 rmind rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
458 1.81 junyoung
459 1.163 jym lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
460 1.177 rmind rlim[RLIMIT_RSS].rlim_max = lim;
461 1.177 rmind rlim[RLIMIT_MEMLOCK].rlim_max = lim;
462 1.177 rmind rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
463 1.177 rmind
464 1.186 christos rlim[RLIMIT_NTHR].rlim_max = maxlwp;
465 1.186 christos rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
466 1.186 christos
467 1.179 rmind /* Note that default core name has zero length. */
468 1.177 rmind limit0.pl_corename = defcorename;
469 1.179 rmind limit0.pl_cnlen = 0;
470 1.177 rmind limit0.pl_refcnt = 1;
471 1.179 rmind limit0.pl_writeable = false;
472 1.143 gmcgarry limit0.pl_sv_limit = NULL;
473 1.81 junyoung
474 1.81 junyoung /* Configure virtual memory system, set vm rlimits. */
475 1.81 junyoung uvm_init_limits(p);
476 1.81 junyoung
477 1.81 junyoung /* Initialize file descriptor table for proc0. */
478 1.132 ad fd_init(&filedesc0);
479 1.81 junyoung
480 1.81 junyoung /*
481 1.81 junyoung * Initialize proc0's vmspace, which uses the kernel pmap.
482 1.81 junyoung * All kernel processes (which never have user space mappings)
483 1.81 junyoung * share proc0's vmspace, and thus, the kernel pmap.
484 1.81 junyoung */
485 1.81 junyoung uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
486 1.81 junyoung trunc_page(VM_MAX_ADDRESS));
487 1.81 junyoung
488 1.127 ad /* Initialize signal state for proc0. XXX IPL_SCHED */
489 1.127 ad mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
490 1.81 junyoung siginit(p);
491 1.96 christos
492 1.164 rmind proc_initspecific(p);
493 1.160 darran kdtrace_proc_ctor(NULL, p);
494 1.81 junyoung }
495 1.81 junyoung
496 1.81 junyoung /*
497 1.151 rmind * Session reference counting.
498 1.151 rmind */
499 1.151 rmind
500 1.151 rmind void
501 1.151 rmind proc_sesshold(struct session *ss)
502 1.151 rmind {
503 1.151 rmind
504 1.151 rmind KASSERT(mutex_owned(proc_lock));
505 1.151 rmind ss->s_count++;
506 1.151 rmind }
507 1.151 rmind
508 1.151 rmind void
509 1.151 rmind proc_sessrele(struct session *ss)
510 1.151 rmind {
511 1.151 rmind
512 1.151 rmind KASSERT(mutex_owned(proc_lock));
513 1.151 rmind /*
514 1.151 rmind * We keep the pgrp with the same id as the session in order to
515 1.151 rmind * stop a process being given the same pid. Since the pgrp holds
516 1.151 rmind * a reference to the session, it must be a 'zombie' pgrp by now.
517 1.151 rmind */
518 1.151 rmind if (--ss->s_count == 0) {
519 1.151 rmind struct pgrp *pg;
520 1.151 rmind
521 1.151 rmind pg = pg_remove(ss->s_sid);
522 1.151 rmind mutex_exit(proc_lock);
523 1.151 rmind
524 1.151 rmind kmem_free(pg, sizeof(struct pgrp));
525 1.151 rmind kmem_free(ss, sizeof(struct session));
526 1.151 rmind } else {
527 1.151 rmind mutex_exit(proc_lock);
528 1.151 rmind }
529 1.151 rmind }
530 1.151 rmind
531 1.151 rmind /*
532 1.74 junyoung * Check that the specified process group is in the session of the
533 1.60 dsl * specified process.
534 1.60 dsl * Treats -ve ids as process ids.
535 1.60 dsl * Used to validate TIOCSPGRP requests.
536 1.60 dsl */
537 1.60 dsl int
538 1.60 dsl pgid_in_session(struct proc *p, pid_t pg_id)
539 1.60 dsl {
540 1.60 dsl struct pgrp *pgrp;
541 1.101 dsl struct session *session;
542 1.107 ad int error;
543 1.101 dsl
544 1.136 ad mutex_enter(proc_lock);
545 1.60 dsl if (pg_id < 0) {
546 1.167 rmind struct proc *p1 = proc_find(-pg_id);
547 1.167 rmind if (p1 == NULL) {
548 1.167 rmind error = EINVAL;
549 1.167 rmind goto fail;
550 1.167 rmind }
551 1.60 dsl pgrp = p1->p_pgrp;
552 1.60 dsl } else {
553 1.167 rmind pgrp = pgrp_find(pg_id);
554 1.167 rmind if (pgrp == NULL) {
555 1.167 rmind error = EINVAL;
556 1.167 rmind goto fail;
557 1.167 rmind }
558 1.60 dsl }
559 1.101 dsl session = pgrp->pg_session;
560 1.167 rmind error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
561 1.167 rmind fail:
562 1.136 ad mutex_exit(proc_lock);
563 1.107 ad return error;
564 1.7 cgd }
565 1.4 andrew
566 1.1 cgd /*
567 1.148 rmind * p_inferior: is p an inferior of q?
568 1.1 cgd */
569 1.148 rmind static inline bool
570 1.148 rmind p_inferior(struct proc *p, struct proc *q)
571 1.1 cgd {
572 1.1 cgd
573 1.148 rmind KASSERT(mutex_owned(proc_lock));
574 1.148 rmind
575 1.41 sommerfe for (; p != q; p = p->p_pptr)
576 1.1 cgd if (p->p_pid == 0)
577 1.148 rmind return false;
578 1.148 rmind return true;
579 1.1 cgd }
580 1.1 cgd
581 1.1 cgd /*
582 1.167 rmind * proc_find: locate a process by the ID.
583 1.167 rmind *
584 1.167 rmind * => Must be called with proc_lock held.
585 1.1 cgd */
586 1.167 rmind proc_t *
587 1.167 rmind proc_find_raw(pid_t pid)
588 1.1 cgd {
589 1.168 chs struct pid_table *pt;
590 1.168 chs proc_t *p;
591 1.167 rmind
592 1.168 chs KASSERT(mutex_owned(proc_lock));
593 1.168 chs pt = &pid_table[pid & pid_tbl_mask];
594 1.168 chs p = pt->pt_proc;
595 1.168 chs if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
596 1.167 rmind return NULL;
597 1.167 rmind }
598 1.167 rmind return p;
599 1.167 rmind }
600 1.1 cgd
601 1.167 rmind proc_t *
602 1.167 rmind proc_find(pid_t pid)
603 1.167 rmind {
604 1.167 rmind proc_t *p;
605 1.100 ad
606 1.167 rmind p = proc_find_raw(pid);
607 1.167 rmind if (__predict_false(p == NULL)) {
608 1.167 rmind return NULL;
609 1.167 rmind }
610 1.168 chs
611 1.167 rmind /*
612 1.167 rmind * Only allow live processes to be found by PID.
613 1.167 rmind * XXX: p_stat might change, since unlocked.
614 1.167 rmind */
615 1.167 rmind if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
616 1.68 dsl return p;
617 1.68 dsl }
618 1.68 dsl return NULL;
619 1.1 cgd }
620 1.1 cgd
621 1.1 cgd /*
622 1.167 rmind * pgrp_find: locate a process group by the ID.
623 1.167 rmind *
624 1.167 rmind * => Must be called with proc_lock held.
625 1.1 cgd */
626 1.1 cgd struct pgrp *
627 1.167 rmind pgrp_find(pid_t pgid)
628 1.1 cgd {
629 1.68 dsl struct pgrp *pg;
630 1.1 cgd
631 1.167 rmind KASSERT(mutex_owned(proc_lock));
632 1.167 rmind
633 1.68 dsl pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
634 1.168 chs
635 1.61 dsl /*
636 1.167 rmind * Cannot look up a process group that only exists because the
637 1.167 rmind * session has not died yet (traditional).
638 1.61 dsl */
639 1.68 dsl if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
640 1.68 dsl return NULL;
641 1.68 dsl }
642 1.68 dsl return pg;
643 1.1 cgd }
644 1.1 cgd
645 1.61 dsl static void
646 1.61 dsl expand_pid_table(void)
647 1.1 cgd {
648 1.150 rmind size_t pt_size, tsz;
649 1.61 dsl struct pid_table *n_pt, *new_pt;
650 1.61 dsl struct proc *proc;
651 1.61 dsl struct pgrp *pgrp;
652 1.168 chs pid_t pid, rpid;
653 1.150 rmind u_int i;
654 1.168 chs uint new_pt_mask;
655 1.1 cgd
656 1.150 rmind pt_size = pid_tbl_mask + 1;
657 1.150 rmind tsz = pt_size * 2 * sizeof(struct pid_table);
658 1.150 rmind new_pt = kmem_alloc(tsz, KM_SLEEP);
659 1.168 chs new_pt_mask = pt_size * 2 - 1;
660 1.61 dsl
661 1.136 ad mutex_enter(proc_lock);
662 1.61 dsl if (pt_size != pid_tbl_mask + 1) {
663 1.61 dsl /* Another process beat us to it... */
664 1.136 ad mutex_exit(proc_lock);
665 1.150 rmind kmem_free(new_pt, tsz);
666 1.61 dsl return;
667 1.61 dsl }
668 1.72 junyoung
669 1.61 dsl /*
670 1.61 dsl * Copy entries from old table into new one.
671 1.61 dsl * If 'pid' is 'odd' we need to place in the upper half,
672 1.61 dsl * even pid's to the lower half.
673 1.61 dsl * Free items stay in the low half so we don't have to
674 1.61 dsl * fixup the reference to them.
675 1.61 dsl * We stuff free items on the front of the freelist
676 1.61 dsl * because we can't write to unmodified entries.
677 1.74 junyoung * Processing the table backwards maintains a semblance
678 1.168 chs * of issuing pid numbers that increase with time.
679 1.61 dsl */
680 1.61 dsl i = pt_size - 1;
681 1.61 dsl n_pt = new_pt + i;
682 1.61 dsl for (; ; i--, n_pt--) {
683 1.61 dsl proc = pid_table[i].pt_proc;
684 1.61 dsl pgrp = pid_table[i].pt_pgrp;
685 1.61 dsl if (!P_VALID(proc)) {
686 1.61 dsl /* Up 'use count' so that link is valid */
687 1.61 dsl pid = (P_NEXT(proc) + pt_size) & ~pt_size;
688 1.168 chs rpid = 0;
689 1.61 dsl proc = P_FREE(pid);
690 1.61 dsl if (pgrp)
691 1.61 dsl pid = pgrp->pg_id;
692 1.168 chs } else {
693 1.168 chs pid = pid_table[i].pt_pid;
694 1.168 chs rpid = pid;
695 1.168 chs }
696 1.72 junyoung
697 1.61 dsl /* Save entry in appropriate half of table */
698 1.61 dsl n_pt[pid & pt_size].pt_proc = proc;
699 1.61 dsl n_pt[pid & pt_size].pt_pgrp = pgrp;
700 1.168 chs n_pt[pid & pt_size].pt_pid = rpid;
701 1.61 dsl
702 1.61 dsl /* Put other piece on start of free list */
703 1.61 dsl pid = (pid ^ pt_size) & ~pid_tbl_mask;
704 1.61 dsl n_pt[pid & pt_size].pt_proc =
705 1.168 chs P_FREE((pid & ~pt_size) | next_free_pt);
706 1.61 dsl n_pt[pid & pt_size].pt_pgrp = 0;
707 1.168 chs n_pt[pid & pt_size].pt_pid = 0;
708 1.168 chs
709 1.61 dsl next_free_pt = i | (pid & pt_size);
710 1.61 dsl if (i == 0)
711 1.61 dsl break;
712 1.61 dsl }
713 1.61 dsl
714 1.150 rmind /* Save old table size and switch tables */
715 1.150 rmind tsz = pt_size * sizeof(struct pid_table);
716 1.61 dsl n_pt = pid_table;
717 1.61 dsl pid_table = new_pt;
718 1.168 chs pid_tbl_mask = new_pt_mask;
719 1.61 dsl
720 1.61 dsl /*
721 1.61 dsl * pid_max starts as PID_MAX (= 30000), once we have 16384
722 1.61 dsl * allocated pids we need it to be larger!
723 1.61 dsl */
724 1.61 dsl if (pid_tbl_mask > PID_MAX) {
725 1.61 dsl pid_max = pid_tbl_mask * 2 + 1;
726 1.61 dsl pid_alloc_lim |= pid_alloc_lim << 1;
727 1.61 dsl } else
728 1.61 dsl pid_alloc_lim <<= 1; /* doubles number of free slots... */
729 1.61 dsl
730 1.136 ad mutex_exit(proc_lock);
731 1.150 rmind kmem_free(n_pt, tsz);
732 1.61 dsl }
733 1.61 dsl
734 1.61 dsl struct proc *
735 1.61 dsl proc_alloc(void)
736 1.61 dsl {
737 1.61 dsl struct proc *p;
738 1.61 dsl
739 1.128 ad p = pool_cache_get(proc_cache, PR_WAITOK);
740 1.61 dsl p->p_stat = SIDL; /* protect against others */
741 1.96 christos proc_initspecific(p);
742 1.164 rmind kdtrace_proc_ctor(NULL, p);
743 1.168 chs p->p_pid = -1;
744 1.168 chs proc_alloc_pid(p);
745 1.168 chs return p;
746 1.168 chs }
747 1.168 chs
748 1.183 yamt /*
749 1.183 yamt * proc_alloc_pid: allocate PID and record the given proc 'p' so that
750 1.183 yamt * proc_find_raw() can find it by the PID.
751 1.183 yamt */
752 1.183 yamt
753 1.168 chs pid_t
754 1.168 chs proc_alloc_pid(struct proc *p)
755 1.168 chs {
756 1.168 chs struct pid_table *pt;
757 1.168 chs pid_t pid;
758 1.168 chs int nxt;
759 1.61 dsl
760 1.61 dsl for (;;expand_pid_table()) {
761 1.61 dsl if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
762 1.61 dsl /* ensure pids cycle through 2000+ values */
763 1.61 dsl continue;
764 1.136 ad mutex_enter(proc_lock);
765 1.61 dsl pt = &pid_table[next_free_pt];
766 1.1 cgd #ifdef DIAGNOSTIC
767 1.63 christos if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
768 1.61 dsl panic("proc_alloc: slot busy");
769 1.1 cgd #endif
770 1.61 dsl nxt = P_NEXT(pt->pt_proc);
771 1.61 dsl if (nxt & pid_tbl_mask)
772 1.61 dsl break;
773 1.61 dsl /* Table full - expand (NB last entry not used....) */
774 1.136 ad mutex_exit(proc_lock);
775 1.61 dsl }
776 1.61 dsl
777 1.61 dsl /* pid is 'saved use count' + 'size' + entry */
778 1.61 dsl pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
779 1.61 dsl if ((uint)pid > (uint)pid_max)
780 1.61 dsl pid &= pid_tbl_mask;
781 1.61 dsl next_free_pt = nxt & pid_tbl_mask;
782 1.61 dsl
783 1.61 dsl /* Grab table slot */
784 1.61 dsl pt->pt_proc = p;
785 1.168 chs
786 1.168 chs KASSERT(pt->pt_pid == 0);
787 1.168 chs pt->pt_pid = pid;
788 1.168 chs if (p->p_pid == -1) {
789 1.168 chs p->p_pid = pid;
790 1.168 chs }
791 1.61 dsl pid_alloc_cnt++;
792 1.136 ad mutex_exit(proc_lock);
793 1.61 dsl
794 1.168 chs return pid;
795 1.61 dsl }
796 1.61 dsl
797 1.61 dsl /*
798 1.118 ad * Free a process id - called from proc_free (in kern_exit.c)
799 1.100 ad *
800 1.136 ad * Called with the proc_lock held.
801 1.61 dsl */
802 1.61 dsl void
803 1.168 chs proc_free_pid(pid_t pid)
804 1.61 dsl {
805 1.61 dsl struct pid_table *pt;
806 1.61 dsl
807 1.136 ad KASSERT(mutex_owned(proc_lock));
808 1.61 dsl
809 1.61 dsl pt = &pid_table[pid & pid_tbl_mask];
810 1.168 chs
811 1.61 dsl /* save pid use count in slot */
812 1.61 dsl pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
813 1.168 chs KASSERT(pt->pt_pid == pid);
814 1.168 chs pt->pt_pid = 0;
815 1.61 dsl
816 1.61 dsl if (pt->pt_pgrp == NULL) {
817 1.61 dsl /* link last freed entry onto ours */
818 1.61 dsl pid &= pid_tbl_mask;
819 1.61 dsl pt = &pid_table[last_free_pt];
820 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
821 1.168 chs pt->pt_pid = 0;
822 1.61 dsl last_free_pt = pid;
823 1.61 dsl pid_alloc_cnt--;
824 1.61 dsl }
825 1.61 dsl
826 1.126 ad atomic_dec_uint(&nprocs);
827 1.61 dsl }
828 1.61 dsl
829 1.128 ad void
830 1.128 ad proc_free_mem(struct proc *p)
831 1.128 ad {
832 1.128 ad
833 1.160 darran kdtrace_proc_dtor(NULL, p);
834 1.128 ad pool_cache_put(proc_cache, p);
835 1.128 ad }
836 1.128 ad
837 1.61 dsl /*
838 1.151 rmind * proc_enterpgrp: move p to a new or existing process group (and session).
839 1.61 dsl *
840 1.61 dsl * If we are creating a new pgrp, the pgid should equal
841 1.72 junyoung * the calling process' pid.
842 1.61 dsl * If is only valid to enter a process group that is in the session
843 1.61 dsl * of the process.
844 1.61 dsl * Also mksess should only be set if we are creating a process group
845 1.61 dsl *
846 1.181 martin * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
847 1.61 dsl */
848 1.61 dsl int
849 1.151 rmind proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
850 1.61 dsl {
851 1.61 dsl struct pgrp *new_pgrp, *pgrp;
852 1.61 dsl struct session *sess;
853 1.100 ad struct proc *p;
854 1.61 dsl int rval;
855 1.61 dsl pid_t pg_id = NO_PGID;
856 1.61 dsl
857 1.151 rmind sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
858 1.61 dsl
859 1.107 ad /* Allocate data areas we might need before doing any validity checks */
860 1.136 ad mutex_enter(proc_lock); /* Because pid_table might change */
861 1.107 ad if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
862 1.136 ad mutex_exit(proc_lock);
863 1.131 ad new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
864 1.136 ad mutex_enter(proc_lock);
865 1.107 ad } else
866 1.107 ad new_pgrp = NULL;
867 1.61 dsl rval = EPERM; /* most common error (to save typing) */
868 1.61 dsl
869 1.61 dsl /* Check pgrp exists or can be created */
870 1.61 dsl pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
871 1.61 dsl if (pgrp != NULL && pgrp->pg_id != pgid)
872 1.61 dsl goto done;
873 1.61 dsl
874 1.61 dsl /* Can only set another process under restricted circumstances. */
875 1.100 ad if (pid != curp->p_pid) {
876 1.167 rmind /* Must exist and be one of our children... */
877 1.167 rmind p = proc_find(pid);
878 1.167 rmind if (p == NULL || !p_inferior(p, curp)) {
879 1.61 dsl rval = ESRCH;
880 1.61 dsl goto done;
881 1.61 dsl }
882 1.61 dsl /* ... in the same session... */
883 1.61 dsl if (sess != NULL || p->p_session != curp->p_session)
884 1.61 dsl goto done;
885 1.61 dsl /* ... existing pgid must be in same session ... */
886 1.61 dsl if (pgrp != NULL && pgrp->pg_session != p->p_session)
887 1.61 dsl goto done;
888 1.61 dsl /* ... and not done an exec. */
889 1.102 pavel if (p->p_flag & PK_EXEC) {
890 1.61 dsl rval = EACCES;
891 1.61 dsl goto done;
892 1.49 enami }
893 1.100 ad } else {
894 1.100 ad /* ... setsid() cannot re-enter a pgrp */
895 1.100 ad if (mksess && (curp->p_pgid == curp->p_pid ||
896 1.167 rmind pgrp_find(curp->p_pid)))
897 1.100 ad goto done;
898 1.100 ad p = curp;
899 1.61 dsl }
900 1.1 cgd
901 1.61 dsl /* Changing the process group/session of a session
902 1.61 dsl leader is definitely off limits. */
903 1.61 dsl if (SESS_LEADER(p)) {
904 1.61 dsl if (sess == NULL && p->p_pgrp == pgrp)
905 1.61 dsl /* unless it's a definite noop */
906 1.61 dsl rval = 0;
907 1.61 dsl goto done;
908 1.61 dsl }
909 1.61 dsl
910 1.61 dsl /* Can only create a process group with id of process */
911 1.61 dsl if (pgrp == NULL && pgid != pid)
912 1.61 dsl goto done;
913 1.61 dsl
914 1.61 dsl /* Can only create a session if creating pgrp */
915 1.61 dsl if (sess != NULL && pgrp != NULL)
916 1.61 dsl goto done;
917 1.61 dsl
918 1.61 dsl /* Check we allocated memory for a pgrp... */
919 1.61 dsl if (pgrp == NULL && new_pgrp == NULL)
920 1.61 dsl goto done;
921 1.61 dsl
922 1.61 dsl /* Don't attach to 'zombie' pgrp */
923 1.61 dsl if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
924 1.61 dsl goto done;
925 1.61 dsl
926 1.61 dsl /* Expect to succeed now */
927 1.61 dsl rval = 0;
928 1.61 dsl
929 1.61 dsl if (pgrp == p->p_pgrp)
930 1.61 dsl /* nothing to do */
931 1.61 dsl goto done;
932 1.61 dsl
933 1.61 dsl /* Ok all setup, link up required structures */
934 1.100 ad
935 1.61 dsl if (pgrp == NULL) {
936 1.61 dsl pgrp = new_pgrp;
937 1.141 yamt new_pgrp = NULL;
938 1.61 dsl if (sess != NULL) {
939 1.21 thorpej sess->s_sid = p->p_pid;
940 1.1 cgd sess->s_leader = p;
941 1.1 cgd sess->s_count = 1;
942 1.1 cgd sess->s_ttyvp = NULL;
943 1.1 cgd sess->s_ttyp = NULL;
944 1.58 dsl sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
945 1.25 perry memcpy(sess->s_login, p->p_session->s_login,
946 1.1 cgd sizeof(sess->s_login));
947 1.100 ad p->p_lflag &= ~PL_CONTROLT;
948 1.1 cgd } else {
949 1.61 dsl sess = p->p_pgrp->pg_session;
950 1.151 rmind proc_sesshold(sess);
951 1.1 cgd }
952 1.61 dsl pgrp->pg_session = sess;
953 1.141 yamt sess = NULL;
954 1.61 dsl
955 1.1 cgd pgrp->pg_id = pgid;
956 1.10 mycroft LIST_INIT(&pgrp->pg_members);
957 1.61 dsl #ifdef DIAGNOSTIC
958 1.63 christos if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
959 1.61 dsl panic("enterpgrp: pgrp table slot in use");
960 1.63 christos if (__predict_false(mksess && p != curp))
961 1.63 christos panic("enterpgrp: mksession and p != curproc");
962 1.61 dsl #endif
963 1.61 dsl pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
964 1.1 cgd pgrp->pg_jobc = 0;
965 1.136 ad }
966 1.1 cgd
967 1.1 cgd /*
968 1.1 cgd * Adjust eligibility of affected pgrps to participate in job control.
969 1.1 cgd * Increment eligibility counts before decrementing, otherwise we
970 1.1 cgd * could reach 0 spuriously during the first call.
971 1.1 cgd */
972 1.1 cgd fixjobc(p, pgrp, 1);
973 1.1 cgd fixjobc(p, p->p_pgrp, 0);
974 1.1 cgd
975 1.139 ad /* Interlock with ttread(). */
976 1.139 ad mutex_spin_enter(&tty_lock);
977 1.139 ad
978 1.100 ad /* Move process to requested group. */
979 1.10 mycroft LIST_REMOVE(p, p_pglist);
980 1.52 matt if (LIST_EMPTY(&p->p_pgrp->pg_members))
981 1.61 dsl /* defer delete until we've dumped the lock */
982 1.61 dsl pg_id = p->p_pgrp->pg_id;
983 1.1 cgd p->p_pgrp = pgrp;
984 1.10 mycroft LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
985 1.100 ad
986 1.100 ad /* Done with the swap; we can release the tty mutex. */
987 1.128 ad mutex_spin_exit(&tty_lock);
988 1.128 ad
989 1.61 dsl done:
990 1.151 rmind if (pg_id != NO_PGID) {
991 1.151 rmind /* Releases proc_lock. */
992 1.100 ad pg_delete(pg_id);
993 1.151 rmind } else {
994 1.151 rmind mutex_exit(proc_lock);
995 1.151 rmind }
996 1.61 dsl if (sess != NULL)
997 1.131 ad kmem_free(sess, sizeof(*sess));
998 1.61 dsl if (new_pgrp != NULL)
999 1.131 ad kmem_free(new_pgrp, sizeof(*new_pgrp));
1000 1.63 christos #ifdef DEBUG_PGRP
1001 1.63 christos if (__predict_false(rval))
1002 1.61 dsl printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1003 1.61 dsl pid, pgid, mksess, curp->p_pid, rval);
1004 1.61 dsl #endif
1005 1.61 dsl return rval;
1006 1.1 cgd }
1007 1.1 cgd
1008 1.1 cgd /*
1009 1.151 rmind * proc_leavepgrp: remove a process from its process group.
1010 1.151 rmind * => must be called with the proc_lock held, which will be released;
1011 1.1 cgd */
1012 1.100 ad void
1013 1.151 rmind proc_leavepgrp(struct proc *p)
1014 1.1 cgd {
1015 1.61 dsl struct pgrp *pgrp;
1016 1.1 cgd
1017 1.136 ad KASSERT(mutex_owned(proc_lock));
1018 1.100 ad
1019 1.139 ad /* Interlock with ttread() */
1020 1.128 ad mutex_spin_enter(&tty_lock);
1021 1.61 dsl pgrp = p->p_pgrp;
1022 1.10 mycroft LIST_REMOVE(p, p_pglist);
1023 1.94 ad p->p_pgrp = NULL;
1024 1.128 ad mutex_spin_exit(&tty_lock);
1025 1.100 ad
1026 1.151 rmind if (LIST_EMPTY(&pgrp->pg_members)) {
1027 1.151 rmind /* Releases proc_lock. */
1028 1.100 ad pg_delete(pgrp->pg_id);
1029 1.151 rmind } else {
1030 1.151 rmind mutex_exit(proc_lock);
1031 1.151 rmind }
1032 1.61 dsl }
1033 1.61 dsl
1034 1.100 ad /*
1035 1.151 rmind * pg_remove: remove a process group from the table.
1036 1.151 rmind * => must be called with the proc_lock held;
1037 1.151 rmind * => returns process group to free;
1038 1.100 ad */
1039 1.151 rmind static struct pgrp *
1040 1.151 rmind pg_remove(pid_t pg_id)
1041 1.61 dsl {
1042 1.61 dsl struct pgrp *pgrp;
1043 1.61 dsl struct pid_table *pt;
1044 1.61 dsl
1045 1.136 ad KASSERT(mutex_owned(proc_lock));
1046 1.100 ad
1047 1.61 dsl pt = &pid_table[pg_id & pid_tbl_mask];
1048 1.61 dsl pgrp = pt->pt_pgrp;
1049 1.151 rmind
1050 1.151 rmind KASSERT(pgrp != NULL);
1051 1.151 rmind KASSERT(pgrp->pg_id == pg_id);
1052 1.151 rmind KASSERT(LIST_EMPTY(&pgrp->pg_members));
1053 1.151 rmind
1054 1.151 rmind pt->pt_pgrp = NULL;
1055 1.61 dsl
1056 1.61 dsl if (!P_VALID(pt->pt_proc)) {
1057 1.151 rmind /* Orphaned pgrp, put slot onto free list. */
1058 1.151 rmind KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
1059 1.61 dsl pg_id &= pid_tbl_mask;
1060 1.61 dsl pt = &pid_table[last_free_pt];
1061 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
1062 1.168 chs KASSERT(pt->pt_pid == 0);
1063 1.61 dsl last_free_pt = pg_id;
1064 1.61 dsl pid_alloc_cnt--;
1065 1.61 dsl }
1066 1.151 rmind return pgrp;
1067 1.1 cgd }
1068 1.1 cgd
1069 1.1 cgd /*
1070 1.151 rmind * pg_delete: delete and free a process group.
1071 1.151 rmind * => must be called with the proc_lock held, which will be released.
1072 1.1 cgd */
1073 1.61 dsl static void
1074 1.61 dsl pg_delete(pid_t pg_id)
1075 1.61 dsl {
1076 1.151 rmind struct pgrp *pg;
1077 1.61 dsl struct tty *ttyp;
1078 1.61 dsl struct session *ss;
1079 1.100 ad
1080 1.136 ad KASSERT(mutex_owned(proc_lock));
1081 1.61 dsl
1082 1.151 rmind pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1083 1.151 rmind if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1084 1.151 rmind mutex_exit(proc_lock);
1085 1.61 dsl return;
1086 1.151 rmind }
1087 1.61 dsl
1088 1.151 rmind ss = pg->pg_session;
1089 1.71 pk
1090 1.61 dsl /* Remove reference (if any) from tty to this process group */
1091 1.128 ad mutex_spin_enter(&tty_lock);
1092 1.71 pk ttyp = ss->s_ttyp;
1093 1.151 rmind if (ttyp != NULL && ttyp->t_pgrp == pg) {
1094 1.61 dsl ttyp->t_pgrp = NULL;
1095 1.151 rmind KASSERT(ttyp->t_session == ss);
1096 1.71 pk }
1097 1.128 ad mutex_spin_exit(&tty_lock);
1098 1.61 dsl
1099 1.71 pk /*
1100 1.151 rmind * The leading process group in a session is freed by proc_sessrele(),
1101 1.151 rmind * if last reference. Note: proc_sessrele() releases proc_lock.
1102 1.71 pk */
1103 1.151 rmind pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1104 1.151 rmind proc_sessrele(ss);
1105 1.61 dsl
1106 1.151 rmind if (pg != NULL) {
1107 1.151 rmind /* Free it, if was not done by proc_sessrele(). */
1108 1.151 rmind kmem_free(pg, sizeof(struct pgrp));
1109 1.151 rmind }
1110 1.1 cgd }
1111 1.1 cgd
1112 1.1 cgd /*
1113 1.1 cgd * Adjust pgrp jobc counters when specified process changes process group.
1114 1.1 cgd * We count the number of processes in each process group that "qualify"
1115 1.1 cgd * the group for terminal job control (those with a parent in a different
1116 1.1 cgd * process group of the same session). If that count reaches zero, the
1117 1.1 cgd * process group becomes orphaned. Check both the specified process'
1118 1.1 cgd * process group and that of its children.
1119 1.1 cgd * entering == 0 => p is leaving specified group.
1120 1.1 cgd * entering == 1 => p is entering specified group.
1121 1.68 dsl *
1122 1.136 ad * Call with proc_lock held.
1123 1.1 cgd */
1124 1.4 andrew void
1125 1.59 dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1126 1.1 cgd {
1127 1.39 augustss struct pgrp *hispgrp;
1128 1.39 augustss struct session *mysession = pgrp->pg_session;
1129 1.68 dsl struct proc *child;
1130 1.1 cgd
1131 1.136 ad KASSERT(mutex_owned(proc_lock));
1132 1.100 ad
1133 1.1 cgd /*
1134 1.1 cgd * Check p's parent to see whether p qualifies its own process
1135 1.1 cgd * group; if so, adjust count for p's process group.
1136 1.1 cgd */
1137 1.68 dsl hispgrp = p->p_pptr->p_pgrp;
1138 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1139 1.100 ad if (entering) {
1140 1.1 cgd pgrp->pg_jobc++;
1141 1.136 ad p->p_lflag &= ~PL_ORPHANPG;
1142 1.100 ad } else if (--pgrp->pg_jobc == 0)
1143 1.1 cgd orphanpg(pgrp);
1144 1.26 thorpej }
1145 1.1 cgd
1146 1.1 cgd /*
1147 1.1 cgd * Check this process' children to see whether they qualify
1148 1.1 cgd * their process groups; if so, adjust counts for children's
1149 1.1 cgd * process groups.
1150 1.1 cgd */
1151 1.68 dsl LIST_FOREACH(child, &p->p_children, p_sibling) {
1152 1.68 dsl hispgrp = child->p_pgrp;
1153 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1154 1.68 dsl !P_ZOMBIE(child)) {
1155 1.100 ad if (entering) {
1156 1.136 ad child->p_lflag &= ~PL_ORPHANPG;
1157 1.1 cgd hispgrp->pg_jobc++;
1158 1.100 ad } else if (--hispgrp->pg_jobc == 0)
1159 1.1 cgd orphanpg(hispgrp);
1160 1.26 thorpej }
1161 1.26 thorpej }
1162 1.1 cgd }
1163 1.1 cgd
1164 1.72 junyoung /*
1165 1.1 cgd * A process group has become orphaned;
1166 1.1 cgd * if there are any stopped processes in the group,
1167 1.1 cgd * hang-up all process in that group.
1168 1.68 dsl *
1169 1.136 ad * Call with proc_lock held.
1170 1.1 cgd */
1171 1.4 andrew static void
1172 1.59 dsl orphanpg(struct pgrp *pg)
1173 1.1 cgd {
1174 1.39 augustss struct proc *p;
1175 1.100 ad
1176 1.136 ad KASSERT(mutex_owned(proc_lock));
1177 1.100 ad
1178 1.52 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1179 1.1 cgd if (p->p_stat == SSTOP) {
1180 1.136 ad p->p_lflag |= PL_ORPHANPG;
1181 1.100 ad psignal(p, SIGHUP);
1182 1.100 ad psignal(p, SIGCONT);
1183 1.35 bouyer }
1184 1.35 bouyer }
1185 1.35 bouyer }
1186 1.1 cgd
1187 1.61 dsl #ifdef DDB
1188 1.61 dsl #include <ddb/db_output.h>
1189 1.61 dsl void pidtbl_dump(void);
1190 1.14 christos void
1191 1.61 dsl pidtbl_dump(void)
1192 1.1 cgd {
1193 1.61 dsl struct pid_table *pt;
1194 1.61 dsl struct proc *p;
1195 1.39 augustss struct pgrp *pgrp;
1196 1.61 dsl int id;
1197 1.1 cgd
1198 1.61 dsl db_printf("pid table %p size %x, next %x, last %x\n",
1199 1.61 dsl pid_table, pid_tbl_mask+1,
1200 1.61 dsl next_free_pt, last_free_pt);
1201 1.61 dsl for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1202 1.61 dsl p = pt->pt_proc;
1203 1.61 dsl if (!P_VALID(p) && !pt->pt_pgrp)
1204 1.61 dsl continue;
1205 1.61 dsl db_printf(" id %x: ", id);
1206 1.61 dsl if (P_VALID(p))
1207 1.168 chs db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1208 1.168 chs pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1209 1.61 dsl else
1210 1.61 dsl db_printf("next %x use %x\n",
1211 1.61 dsl P_NEXT(p) & pid_tbl_mask,
1212 1.61 dsl P_NEXT(p) & ~pid_tbl_mask);
1213 1.61 dsl if ((pgrp = pt->pt_pgrp)) {
1214 1.61 dsl db_printf("\tsession %p, sid %d, count %d, login %s\n",
1215 1.61 dsl pgrp->pg_session, pgrp->pg_session->s_sid,
1216 1.61 dsl pgrp->pg_session->s_count,
1217 1.61 dsl pgrp->pg_session->s_login);
1218 1.61 dsl db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1219 1.61 dsl pgrp, pgrp->pg_id, pgrp->pg_jobc,
1220 1.135 yamt LIST_FIRST(&pgrp->pg_members));
1221 1.135 yamt LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1222 1.72 junyoung db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1223 1.61 dsl p->p_pid, p, p->p_pgrp, p->p_comm);
1224 1.10 mycroft }
1225 1.1 cgd }
1226 1.1 cgd }
1227 1.1 cgd }
1228 1.61 dsl #endif /* DDB */
1229 1.48 yamt
1230 1.48 yamt #ifdef KSTACK_CHECK_MAGIC
1231 1.48 yamt
1232 1.48 yamt #define KSTACK_MAGIC 0xdeadbeaf
1233 1.48 yamt
1234 1.48 yamt /* XXX should be per process basis? */
1235 1.149 rmind static int kstackleftmin = KSTACK_SIZE;
1236 1.149 rmind static int kstackleftthres = KSTACK_SIZE / 8;
1237 1.48 yamt
1238 1.48 yamt void
1239 1.56 yamt kstack_setup_magic(const struct lwp *l)
1240 1.48 yamt {
1241 1.85 perry uint32_t *ip;
1242 1.85 perry uint32_t const *end;
1243 1.48 yamt
1244 1.56 yamt KASSERT(l != NULL);
1245 1.56 yamt KASSERT(l != &lwp0);
1246 1.48 yamt
1247 1.48 yamt /*
1248 1.48 yamt * fill all the stack with magic number
1249 1.48 yamt * so that later modification on it can be detected.
1250 1.48 yamt */
1251 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1252 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1253 1.48 yamt for (; ip < end; ip++) {
1254 1.48 yamt *ip = KSTACK_MAGIC;
1255 1.48 yamt }
1256 1.48 yamt }
1257 1.48 yamt
1258 1.48 yamt void
1259 1.56 yamt kstack_check_magic(const struct lwp *l)
1260 1.48 yamt {
1261 1.85 perry uint32_t const *ip, *end;
1262 1.48 yamt int stackleft;
1263 1.48 yamt
1264 1.56 yamt KASSERT(l != NULL);
1265 1.48 yamt
1266 1.48 yamt /* don't check proc0 */ /*XXX*/
1267 1.56 yamt if (l == &lwp0)
1268 1.48 yamt return;
1269 1.48 yamt
1270 1.48 yamt #ifdef __MACHINE_STACK_GROWS_UP
1271 1.48 yamt /* stack grows upwards (eg. hppa) */
1272 1.106 christos ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1273 1.85 perry end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1274 1.48 yamt for (ip--; ip >= end; ip--)
1275 1.48 yamt if (*ip != KSTACK_MAGIC)
1276 1.48 yamt break;
1277 1.72 junyoung
1278 1.106 christos stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1279 1.48 yamt #else /* __MACHINE_STACK_GROWS_UP */
1280 1.48 yamt /* stack grows downwards (eg. i386) */
1281 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1282 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1283 1.48 yamt for (; ip < end; ip++)
1284 1.48 yamt if (*ip != KSTACK_MAGIC)
1285 1.48 yamt break;
1286 1.48 yamt
1287 1.93 christos stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1288 1.48 yamt #endif /* __MACHINE_STACK_GROWS_UP */
1289 1.48 yamt
1290 1.48 yamt if (kstackleftmin > stackleft) {
1291 1.48 yamt kstackleftmin = stackleft;
1292 1.48 yamt if (stackleft < kstackleftthres)
1293 1.56 yamt printf("warning: kernel stack left %d bytes"
1294 1.56 yamt "(pid %u:lid %u)\n", stackleft,
1295 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1296 1.48 yamt }
1297 1.48 yamt
1298 1.48 yamt if (stackleft <= 0) {
1299 1.56 yamt panic("magic on the top of kernel stack changed for "
1300 1.56 yamt "pid %u, lid %u: maybe kernel stack overflow",
1301 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1302 1.48 yamt }
1303 1.48 yamt }
1304 1.50 enami #endif /* KSTACK_CHECK_MAGIC */
1305 1.79 yamt
1306 1.79 yamt int
1307 1.79 yamt proclist_foreach_call(struct proclist *list,
1308 1.79 yamt int (*callback)(struct proc *, void *arg), void *arg)
1309 1.79 yamt {
1310 1.79 yamt struct proc marker;
1311 1.79 yamt struct proc *p;
1312 1.79 yamt int ret = 0;
1313 1.79 yamt
1314 1.102 pavel marker.p_flag = PK_MARKER;
1315 1.136 ad mutex_enter(proc_lock);
1316 1.79 yamt for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1317 1.102 pavel if (p->p_flag & PK_MARKER) {
1318 1.79 yamt p = LIST_NEXT(p, p_list);
1319 1.79 yamt continue;
1320 1.79 yamt }
1321 1.79 yamt LIST_INSERT_AFTER(p, &marker, p_list);
1322 1.79 yamt ret = (*callback)(p, arg);
1323 1.136 ad KASSERT(mutex_owned(proc_lock));
1324 1.79 yamt p = LIST_NEXT(&marker, p_list);
1325 1.79 yamt LIST_REMOVE(&marker, p_list);
1326 1.79 yamt }
1327 1.136 ad mutex_exit(proc_lock);
1328 1.79 yamt
1329 1.79 yamt return ret;
1330 1.79 yamt }
1331 1.86 yamt
1332 1.86 yamt int
1333 1.86 yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1334 1.86 yamt {
1335 1.86 yamt
1336 1.86 yamt /* XXXCDC: how should locking work here? */
1337 1.86 yamt
1338 1.87 yamt /* curproc exception is for coredump. */
1339 1.87 yamt
1340 1.100 ad if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1341 1.86 yamt (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1342 1.86 yamt return EFAULT;
1343 1.86 yamt }
1344 1.86 yamt
1345 1.86 yamt uvmspace_addref(p->p_vmspace);
1346 1.86 yamt *vm = p->p_vmspace;
1347 1.86 yamt
1348 1.86 yamt return 0;
1349 1.86 yamt }
1350 1.94 ad
1351 1.94 ad /*
1352 1.94 ad * Acquire a write lock on the process credential.
1353 1.94 ad */
1354 1.94 ad void
1355 1.100 ad proc_crmod_enter(void)
1356 1.94 ad {
1357 1.100 ad struct lwp *l = curlwp;
1358 1.100 ad struct proc *p = l->l_proc;
1359 1.100 ad kauth_cred_t oc;
1360 1.94 ad
1361 1.117 dsl /* Reset what needs to be reset in plimit. */
1362 1.117 dsl if (p->p_limit->pl_corename != defcorename) {
1363 1.178 rmind lim_setcorename(p, defcorename, 0);
1364 1.117 dsl }
1365 1.117 dsl
1366 1.137 ad mutex_enter(p->p_lock);
1367 1.100 ad
1368 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1369 1.100 ad if ((oc = l->l_cred) != p->p_cred) {
1370 1.100 ad kauth_cred_hold(p->p_cred);
1371 1.100 ad l->l_cred = p->p_cred;
1372 1.100 ad kauth_cred_free(oc);
1373 1.100 ad }
1374 1.94 ad }
1375 1.94 ad
1376 1.94 ad /*
1377 1.100 ad * Set in a new process credential, and drop the write lock. The credential
1378 1.100 ad * must have a reference already. Optionally, free a no-longer required
1379 1.100 ad * credential. The scheduler also needs to inspect p_cred, so we also
1380 1.100 ad * briefly acquire the sched state mutex.
1381 1.94 ad */
1382 1.94 ad void
1383 1.104 thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1384 1.94 ad {
1385 1.133 ad struct lwp *l = curlwp, *l2;
1386 1.100 ad struct proc *p = l->l_proc;
1387 1.100 ad kauth_cred_t oc;
1388 1.100 ad
1389 1.137 ad KASSERT(mutex_owned(p->p_lock));
1390 1.137 ad
1391 1.100 ad /* Is there a new credential to set in? */
1392 1.100 ad if (scred != NULL) {
1393 1.100 ad p->p_cred = scred;
1394 1.133 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1395 1.133 ad if (l2 != l)
1396 1.133 ad l2->l_prflag |= LPR_CRMOD;
1397 1.133 ad }
1398 1.100 ad
1399 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1400 1.100 ad if ((oc = l->l_cred) != scred) {
1401 1.100 ad kauth_cred_hold(scred);
1402 1.100 ad l->l_cred = scred;
1403 1.100 ad }
1404 1.100 ad } else
1405 1.100 ad oc = NULL; /* XXXgcc */
1406 1.100 ad
1407 1.100 ad if (sugid) {
1408 1.100 ad /*
1409 1.100 ad * Mark process as having changed credentials, stops
1410 1.100 ad * tracing etc.
1411 1.100 ad */
1412 1.102 pavel p->p_flag |= PK_SUGID;
1413 1.100 ad }
1414 1.94 ad
1415 1.137 ad mutex_exit(p->p_lock);
1416 1.100 ad
1417 1.100 ad /* If there is a credential to be released, free it now. */
1418 1.100 ad if (fcred != NULL) {
1419 1.100 ad KASSERT(scred != NULL);
1420 1.94 ad kauth_cred_free(fcred);
1421 1.100 ad if (oc != scred)
1422 1.100 ad kauth_cred_free(oc);
1423 1.100 ad }
1424 1.100 ad }
1425 1.100 ad
1426 1.100 ad /*
1427 1.95 thorpej * proc_specific_key_create --
1428 1.95 thorpej * Create a key for subsystem proc-specific data.
1429 1.95 thorpej */
1430 1.95 thorpej int
1431 1.95 thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1432 1.95 thorpej {
1433 1.95 thorpej
1434 1.98 thorpej return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1435 1.95 thorpej }
1436 1.95 thorpej
1437 1.95 thorpej /*
1438 1.95 thorpej * proc_specific_key_delete --
1439 1.95 thorpej * Delete a key for subsystem proc-specific data.
1440 1.95 thorpej */
1441 1.95 thorpej void
1442 1.95 thorpej proc_specific_key_delete(specificdata_key_t key)
1443 1.95 thorpej {
1444 1.95 thorpej
1445 1.95 thorpej specificdata_key_delete(proc_specificdata_domain, key);
1446 1.95 thorpej }
1447 1.95 thorpej
1448 1.98 thorpej /*
1449 1.98 thorpej * proc_initspecific --
1450 1.98 thorpej * Initialize a proc's specificdata container.
1451 1.98 thorpej */
1452 1.96 christos void
1453 1.96 christos proc_initspecific(struct proc *p)
1454 1.96 christos {
1455 1.189 martin int error __diagused;
1456 1.98 thorpej
1457 1.96 christos error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1458 1.96 christos KASSERT(error == 0);
1459 1.96 christos }
1460 1.96 christos
1461 1.95 thorpej /*
1462 1.98 thorpej * proc_finispecific --
1463 1.98 thorpej * Finalize a proc's specificdata container.
1464 1.98 thorpej */
1465 1.98 thorpej void
1466 1.98 thorpej proc_finispecific(struct proc *p)
1467 1.98 thorpej {
1468 1.98 thorpej
1469 1.98 thorpej specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1470 1.98 thorpej }
1471 1.98 thorpej
1472 1.98 thorpej /*
1473 1.95 thorpej * proc_getspecific --
1474 1.95 thorpej * Return proc-specific data corresponding to the specified key.
1475 1.95 thorpej */
1476 1.95 thorpej void *
1477 1.95 thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
1478 1.95 thorpej {
1479 1.95 thorpej
1480 1.95 thorpej return (specificdata_getspecific(proc_specificdata_domain,
1481 1.95 thorpej &p->p_specdataref, key));
1482 1.95 thorpej }
1483 1.95 thorpej
1484 1.95 thorpej /*
1485 1.95 thorpej * proc_setspecific --
1486 1.95 thorpej * Set proc-specific data corresponding to the specified key.
1487 1.95 thorpej */
1488 1.95 thorpej void
1489 1.95 thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1490 1.95 thorpej {
1491 1.95 thorpej
1492 1.95 thorpej specificdata_setspecific(proc_specificdata_domain,
1493 1.95 thorpej &p->p_specdataref, key, data);
1494 1.95 thorpej }
1495 1.154 elad
1496 1.154 elad int
1497 1.154 elad proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1498 1.154 elad {
1499 1.154 elad int r = 0;
1500 1.154 elad
1501 1.154 elad if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1502 1.154 elad kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1503 1.154 elad /*
1504 1.154 elad * suid proc of ours or proc not ours
1505 1.154 elad */
1506 1.154 elad r = EPERM;
1507 1.154 elad } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1508 1.154 elad /*
1509 1.154 elad * sgid proc has sgid back to us temporarily
1510 1.154 elad */
1511 1.154 elad r = EPERM;
1512 1.154 elad } else {
1513 1.154 elad /*
1514 1.154 elad * our rgid must be in target's group list (ie,
1515 1.154 elad * sub-processes started by a sgid process)
1516 1.154 elad */
1517 1.154 elad int ismember = 0;
1518 1.154 elad
1519 1.154 elad if (kauth_cred_ismember_gid(cred,
1520 1.154 elad kauth_cred_getgid(target), &ismember) != 0 ||
1521 1.154 elad !ismember)
1522 1.154 elad r = EPERM;
1523 1.154 elad }
1524 1.154 elad
1525 1.154 elad return (r);
1526 1.154 elad }
1527 1.170 pooka
1528 1.170 pooka /*
1529 1.170 pooka * sysctl stuff
1530 1.170 pooka */
1531 1.170 pooka
1532 1.170 pooka #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1533 1.170 pooka
1534 1.170 pooka static const u_int sysctl_flagmap[] = {
1535 1.170 pooka PK_ADVLOCK, P_ADVLOCK,
1536 1.170 pooka PK_EXEC, P_EXEC,
1537 1.170 pooka PK_NOCLDWAIT, P_NOCLDWAIT,
1538 1.170 pooka PK_32, P_32,
1539 1.170 pooka PK_CLDSIGIGN, P_CLDSIGIGN,
1540 1.170 pooka PK_SUGID, P_SUGID,
1541 1.170 pooka 0
1542 1.170 pooka };
1543 1.170 pooka
1544 1.170 pooka static const u_int sysctl_sflagmap[] = {
1545 1.170 pooka PS_NOCLDSTOP, P_NOCLDSTOP,
1546 1.170 pooka PS_WEXIT, P_WEXIT,
1547 1.170 pooka PS_STOPFORK, P_STOPFORK,
1548 1.170 pooka PS_STOPEXEC, P_STOPEXEC,
1549 1.170 pooka PS_STOPEXIT, P_STOPEXIT,
1550 1.170 pooka 0
1551 1.170 pooka };
1552 1.170 pooka
1553 1.170 pooka static const u_int sysctl_slflagmap[] = {
1554 1.170 pooka PSL_TRACED, P_TRACED,
1555 1.170 pooka PSL_FSTRACE, P_FSTRACE,
1556 1.170 pooka PSL_CHTRACED, P_CHTRACED,
1557 1.170 pooka PSL_SYSCALL, P_SYSCALL,
1558 1.170 pooka 0
1559 1.170 pooka };
1560 1.170 pooka
1561 1.170 pooka static const u_int sysctl_lflagmap[] = {
1562 1.170 pooka PL_CONTROLT, P_CONTROLT,
1563 1.170 pooka PL_PPWAIT, P_PPWAIT,
1564 1.170 pooka 0
1565 1.170 pooka };
1566 1.170 pooka
1567 1.170 pooka static const u_int sysctl_stflagmap[] = {
1568 1.170 pooka PST_PROFIL, P_PROFIL,
1569 1.170 pooka 0
1570 1.170 pooka
1571 1.170 pooka };
1572 1.170 pooka
1573 1.170 pooka /* used by kern_lwp also */
1574 1.170 pooka const u_int sysctl_lwpflagmap[] = {
1575 1.170 pooka LW_SINTR, L_SINTR,
1576 1.170 pooka LW_SYSTEM, L_SYSTEM,
1577 1.170 pooka 0
1578 1.170 pooka };
1579 1.170 pooka
1580 1.170 pooka /*
1581 1.170 pooka * Find the most ``active'' lwp of a process and return it for ps display
1582 1.170 pooka * purposes
1583 1.170 pooka */
1584 1.170 pooka static struct lwp *
1585 1.170 pooka proc_active_lwp(struct proc *p)
1586 1.170 pooka {
1587 1.170 pooka static const int ostat[] = {
1588 1.170 pooka 0,
1589 1.170 pooka 2, /* LSIDL */
1590 1.170 pooka 6, /* LSRUN */
1591 1.170 pooka 5, /* LSSLEEP */
1592 1.170 pooka 4, /* LSSTOP */
1593 1.170 pooka 0, /* LSZOMB */
1594 1.170 pooka 1, /* LSDEAD */
1595 1.170 pooka 7, /* LSONPROC */
1596 1.170 pooka 3 /* LSSUSPENDED */
1597 1.170 pooka };
1598 1.170 pooka
1599 1.170 pooka struct lwp *l, *lp = NULL;
1600 1.170 pooka LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1601 1.170 pooka KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
1602 1.170 pooka if (lp == NULL ||
1603 1.170 pooka ostat[l->l_stat] > ostat[lp->l_stat] ||
1604 1.170 pooka (ostat[l->l_stat] == ostat[lp->l_stat] &&
1605 1.170 pooka l->l_cpticks > lp->l_cpticks)) {
1606 1.170 pooka lp = l;
1607 1.170 pooka continue;
1608 1.170 pooka }
1609 1.170 pooka }
1610 1.170 pooka return lp;
1611 1.170 pooka }
1612 1.170 pooka
1613 1.170 pooka static int
1614 1.170 pooka sysctl_doeproc(SYSCTLFN_ARGS)
1615 1.170 pooka {
1616 1.170 pooka union {
1617 1.170 pooka struct kinfo_proc kproc;
1618 1.170 pooka struct kinfo_proc2 kproc2;
1619 1.170 pooka } *kbuf;
1620 1.170 pooka struct proc *p, *next, *marker;
1621 1.170 pooka char *where, *dp;
1622 1.170 pooka int type, op, arg, error;
1623 1.170 pooka u_int elem_size, kelem_size, elem_count;
1624 1.170 pooka size_t buflen, needed;
1625 1.170 pooka bool match, zombie, mmmbrains;
1626 1.170 pooka
1627 1.170 pooka if (namelen == 1 && name[0] == CTL_QUERY)
1628 1.170 pooka return (sysctl_query(SYSCTLFN_CALL(rnode)));
1629 1.170 pooka
1630 1.170 pooka dp = where = oldp;
1631 1.170 pooka buflen = where != NULL ? *oldlenp : 0;
1632 1.170 pooka error = 0;
1633 1.170 pooka needed = 0;
1634 1.170 pooka type = rnode->sysctl_num;
1635 1.170 pooka
1636 1.170 pooka if (type == KERN_PROC) {
1637 1.170 pooka if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1638 1.170 pooka return (EINVAL);
1639 1.170 pooka op = name[0];
1640 1.170 pooka if (op != KERN_PROC_ALL)
1641 1.170 pooka arg = name[1];
1642 1.170 pooka else
1643 1.170 pooka arg = 0; /* Quell compiler warning */
1644 1.170 pooka elem_count = 0; /* Ditto */
1645 1.170 pooka kelem_size = elem_size = sizeof(kbuf->kproc);
1646 1.170 pooka } else {
1647 1.170 pooka if (namelen != 4)
1648 1.170 pooka return (EINVAL);
1649 1.170 pooka op = name[0];
1650 1.170 pooka arg = name[1];
1651 1.170 pooka elem_size = name[2];
1652 1.170 pooka elem_count = name[3];
1653 1.170 pooka kelem_size = sizeof(kbuf->kproc2);
1654 1.170 pooka }
1655 1.170 pooka
1656 1.170 pooka sysctl_unlock();
1657 1.170 pooka
1658 1.170 pooka kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
1659 1.170 pooka marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
1660 1.170 pooka marker->p_flag = PK_MARKER;
1661 1.170 pooka
1662 1.170 pooka mutex_enter(proc_lock);
1663 1.170 pooka mmmbrains = false;
1664 1.170 pooka for (p = LIST_FIRST(&allproc);; p = next) {
1665 1.170 pooka if (p == NULL) {
1666 1.170 pooka if (!mmmbrains) {
1667 1.170 pooka p = LIST_FIRST(&zombproc);
1668 1.170 pooka mmmbrains = true;
1669 1.170 pooka }
1670 1.170 pooka if (p == NULL)
1671 1.170 pooka break;
1672 1.170 pooka }
1673 1.170 pooka next = LIST_NEXT(p, p_list);
1674 1.170 pooka if ((p->p_flag & PK_MARKER) != 0)
1675 1.170 pooka continue;
1676 1.170 pooka
1677 1.170 pooka /*
1678 1.170 pooka * Skip embryonic processes.
1679 1.170 pooka */
1680 1.170 pooka if (p->p_stat == SIDL)
1681 1.170 pooka continue;
1682 1.170 pooka
1683 1.170 pooka mutex_enter(p->p_lock);
1684 1.170 pooka error = kauth_authorize_process(l->l_cred,
1685 1.170 pooka KAUTH_PROCESS_CANSEE, p,
1686 1.170 pooka KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1687 1.170 pooka if (error != 0) {
1688 1.170 pooka mutex_exit(p->p_lock);
1689 1.170 pooka continue;
1690 1.170 pooka }
1691 1.170 pooka
1692 1.170 pooka /*
1693 1.170 pooka * TODO - make more efficient (see notes below).
1694 1.170 pooka * do by session.
1695 1.170 pooka */
1696 1.170 pooka switch (op) {
1697 1.170 pooka case KERN_PROC_PID:
1698 1.170 pooka /* could do this with just a lookup */
1699 1.170 pooka match = (p->p_pid == (pid_t)arg);
1700 1.170 pooka break;
1701 1.170 pooka
1702 1.170 pooka case KERN_PROC_PGRP:
1703 1.170 pooka /* could do this by traversing pgrp */
1704 1.170 pooka match = (p->p_pgrp->pg_id == (pid_t)arg);
1705 1.170 pooka break;
1706 1.170 pooka
1707 1.170 pooka case KERN_PROC_SESSION:
1708 1.170 pooka match = (p->p_session->s_sid == (pid_t)arg);
1709 1.170 pooka break;
1710 1.170 pooka
1711 1.170 pooka case KERN_PROC_TTY:
1712 1.170 pooka match = true;
1713 1.170 pooka if (arg == (int) KERN_PROC_TTY_REVOKE) {
1714 1.170 pooka if ((p->p_lflag & PL_CONTROLT) == 0 ||
1715 1.170 pooka p->p_session->s_ttyp == NULL ||
1716 1.170 pooka p->p_session->s_ttyvp != NULL) {
1717 1.170 pooka match = false;
1718 1.170 pooka }
1719 1.170 pooka } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
1720 1.170 pooka p->p_session->s_ttyp == NULL) {
1721 1.170 pooka if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
1722 1.170 pooka match = false;
1723 1.170 pooka }
1724 1.170 pooka } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
1725 1.170 pooka match = false;
1726 1.170 pooka }
1727 1.170 pooka break;
1728 1.170 pooka
1729 1.170 pooka case KERN_PROC_UID:
1730 1.170 pooka match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
1731 1.170 pooka break;
1732 1.170 pooka
1733 1.170 pooka case KERN_PROC_RUID:
1734 1.170 pooka match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
1735 1.170 pooka break;
1736 1.170 pooka
1737 1.170 pooka case KERN_PROC_GID:
1738 1.170 pooka match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
1739 1.170 pooka break;
1740 1.170 pooka
1741 1.170 pooka case KERN_PROC_RGID:
1742 1.170 pooka match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
1743 1.170 pooka break;
1744 1.170 pooka
1745 1.170 pooka case KERN_PROC_ALL:
1746 1.170 pooka match = true;
1747 1.170 pooka /* allow everything */
1748 1.170 pooka break;
1749 1.170 pooka
1750 1.170 pooka default:
1751 1.170 pooka error = EINVAL;
1752 1.170 pooka mutex_exit(p->p_lock);
1753 1.170 pooka goto cleanup;
1754 1.170 pooka }
1755 1.170 pooka if (!match) {
1756 1.170 pooka mutex_exit(p->p_lock);
1757 1.170 pooka continue;
1758 1.170 pooka }
1759 1.170 pooka
1760 1.170 pooka /*
1761 1.170 pooka * Grab a hold on the process.
1762 1.170 pooka */
1763 1.170 pooka if (mmmbrains) {
1764 1.170 pooka zombie = true;
1765 1.170 pooka } else {
1766 1.170 pooka zombie = !rw_tryenter(&p->p_reflock, RW_READER);
1767 1.170 pooka }
1768 1.170 pooka if (zombie) {
1769 1.170 pooka LIST_INSERT_AFTER(p, marker, p_list);
1770 1.170 pooka }
1771 1.170 pooka
1772 1.170 pooka if (buflen >= elem_size &&
1773 1.170 pooka (type == KERN_PROC || elem_count > 0)) {
1774 1.170 pooka if (type == KERN_PROC) {
1775 1.170 pooka kbuf->kproc.kp_proc = *p;
1776 1.170 pooka fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
1777 1.170 pooka } else {
1778 1.170 pooka fill_kproc2(p, &kbuf->kproc2, zombie);
1779 1.170 pooka elem_count--;
1780 1.170 pooka }
1781 1.170 pooka mutex_exit(p->p_lock);
1782 1.170 pooka mutex_exit(proc_lock);
1783 1.170 pooka /*
1784 1.170 pooka * Copy out elem_size, but not larger than kelem_size
1785 1.170 pooka */
1786 1.170 pooka error = sysctl_copyout(l, kbuf, dp,
1787 1.170 pooka min(kelem_size, elem_size));
1788 1.170 pooka mutex_enter(proc_lock);
1789 1.170 pooka if (error) {
1790 1.170 pooka goto bah;
1791 1.170 pooka }
1792 1.170 pooka dp += elem_size;
1793 1.170 pooka buflen -= elem_size;
1794 1.170 pooka } else {
1795 1.170 pooka mutex_exit(p->p_lock);
1796 1.170 pooka }
1797 1.170 pooka needed += elem_size;
1798 1.170 pooka
1799 1.170 pooka /*
1800 1.170 pooka * Release reference to process.
1801 1.170 pooka */
1802 1.170 pooka if (zombie) {
1803 1.170 pooka next = LIST_NEXT(marker, p_list);
1804 1.170 pooka LIST_REMOVE(marker, p_list);
1805 1.170 pooka } else {
1806 1.170 pooka rw_exit(&p->p_reflock);
1807 1.170 pooka next = LIST_NEXT(p, p_list);
1808 1.170 pooka }
1809 1.170 pooka }
1810 1.170 pooka mutex_exit(proc_lock);
1811 1.170 pooka
1812 1.170 pooka if (where != NULL) {
1813 1.170 pooka *oldlenp = dp - where;
1814 1.170 pooka if (needed > *oldlenp) {
1815 1.170 pooka error = ENOMEM;
1816 1.170 pooka goto out;
1817 1.170 pooka }
1818 1.170 pooka } else {
1819 1.170 pooka needed += KERN_PROCSLOP;
1820 1.170 pooka *oldlenp = needed;
1821 1.170 pooka }
1822 1.170 pooka if (kbuf)
1823 1.170 pooka kmem_free(kbuf, sizeof(*kbuf));
1824 1.170 pooka if (marker)
1825 1.170 pooka kmem_free(marker, sizeof(*marker));
1826 1.170 pooka sysctl_relock();
1827 1.170 pooka return 0;
1828 1.170 pooka bah:
1829 1.170 pooka if (zombie)
1830 1.170 pooka LIST_REMOVE(marker, p_list);
1831 1.170 pooka else
1832 1.170 pooka rw_exit(&p->p_reflock);
1833 1.170 pooka cleanup:
1834 1.170 pooka mutex_exit(proc_lock);
1835 1.170 pooka out:
1836 1.170 pooka if (kbuf)
1837 1.170 pooka kmem_free(kbuf, sizeof(*kbuf));
1838 1.170 pooka if (marker)
1839 1.170 pooka kmem_free(marker, sizeof(*marker));
1840 1.170 pooka sysctl_relock();
1841 1.170 pooka return error;
1842 1.170 pooka }
1843 1.170 pooka
1844 1.172 joerg int
1845 1.172 joerg copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
1846 1.172 joerg {
1847 1.172 joerg
1848 1.172 joerg #ifdef COMPAT_NETBSD32
1849 1.172 joerg if (p->p_flag & PK_32) {
1850 1.172 joerg struct ps_strings32 arginfo32;
1851 1.172 joerg
1852 1.173 matt int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
1853 1.172 joerg sizeof(arginfo32));
1854 1.172 joerg if (error)
1855 1.172 joerg return error;
1856 1.172 joerg arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
1857 1.172 joerg arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
1858 1.172 joerg arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
1859 1.172 joerg arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
1860 1.173 matt return 0;
1861 1.173 matt }
1862 1.172 joerg #endif
1863 1.173 matt return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
1864 1.172 joerg }
1865 1.172 joerg
1866 1.172 joerg static int
1867 1.172 joerg copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
1868 1.172 joerg {
1869 1.172 joerg void **cookie = cookie_;
1870 1.172 joerg struct lwp *l = cookie[0];
1871 1.172 joerg char *dst = cookie[1];
1872 1.172 joerg
1873 1.172 joerg return sysctl_copyout(l, src, dst + off, len);
1874 1.172 joerg }
1875 1.172 joerg
1876 1.170 pooka /*
1877 1.170 pooka * sysctl helper routine for kern.proc_args pseudo-subtree.
1878 1.170 pooka */
1879 1.170 pooka static int
1880 1.170 pooka sysctl_kern_proc_args(SYSCTLFN_ARGS)
1881 1.170 pooka {
1882 1.170 pooka struct ps_strings pss;
1883 1.170 pooka struct proc *p;
1884 1.170 pooka pid_t pid;
1885 1.172 joerg int type, error;
1886 1.172 joerg void *cookie[2];
1887 1.170 pooka
1888 1.170 pooka if (namelen == 1 && name[0] == CTL_QUERY)
1889 1.170 pooka return (sysctl_query(SYSCTLFN_CALL(rnode)));
1890 1.170 pooka
1891 1.170 pooka if (newp != NULL || namelen != 2)
1892 1.170 pooka return (EINVAL);
1893 1.170 pooka pid = name[0];
1894 1.170 pooka type = name[1];
1895 1.170 pooka
1896 1.170 pooka switch (type) {
1897 1.170 pooka case KERN_PROC_ARGV:
1898 1.170 pooka case KERN_PROC_NARGV:
1899 1.170 pooka case KERN_PROC_ENV:
1900 1.170 pooka case KERN_PROC_NENV:
1901 1.170 pooka /* ok */
1902 1.170 pooka break;
1903 1.170 pooka default:
1904 1.170 pooka return (EINVAL);
1905 1.170 pooka }
1906 1.170 pooka
1907 1.170 pooka sysctl_unlock();
1908 1.170 pooka
1909 1.170 pooka /* check pid */
1910 1.170 pooka mutex_enter(proc_lock);
1911 1.170 pooka if ((p = proc_find(pid)) == NULL) {
1912 1.170 pooka error = EINVAL;
1913 1.170 pooka goto out_locked;
1914 1.170 pooka }
1915 1.170 pooka mutex_enter(p->p_lock);
1916 1.170 pooka
1917 1.170 pooka /* Check permission. */
1918 1.170 pooka if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1919 1.170 pooka error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1920 1.170 pooka p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
1921 1.170 pooka else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
1922 1.170 pooka error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1923 1.170 pooka p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
1924 1.170 pooka else
1925 1.170 pooka error = EINVAL; /* XXXGCC */
1926 1.170 pooka if (error) {
1927 1.170 pooka mutex_exit(p->p_lock);
1928 1.170 pooka goto out_locked;
1929 1.170 pooka }
1930 1.170 pooka
1931 1.170 pooka if (oldp == NULL) {
1932 1.170 pooka if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1933 1.170 pooka *oldlenp = sizeof (int);
1934 1.170 pooka else
1935 1.170 pooka *oldlenp = ARG_MAX; /* XXX XXX XXX */
1936 1.170 pooka error = 0;
1937 1.170 pooka mutex_exit(p->p_lock);
1938 1.170 pooka goto out_locked;
1939 1.170 pooka }
1940 1.170 pooka
1941 1.170 pooka /*
1942 1.170 pooka * Zombies don't have a stack, so we can't read their psstrings.
1943 1.170 pooka * System processes also don't have a user stack.
1944 1.170 pooka */
1945 1.170 pooka if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
1946 1.170 pooka error = EINVAL;
1947 1.170 pooka mutex_exit(p->p_lock);
1948 1.170 pooka goto out_locked;
1949 1.170 pooka }
1950 1.170 pooka
1951 1.174 rmind error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
1952 1.172 joerg mutex_exit(p->p_lock);
1953 1.174 rmind if (error) {
1954 1.174 rmind goto out_locked;
1955 1.174 rmind }
1956 1.172 joerg mutex_exit(proc_lock);
1957 1.172 joerg
1958 1.172 joerg if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1959 1.172 joerg int value;
1960 1.172 joerg if ((error = copyin_psstrings(p, &pss)) == 0) {
1961 1.172 joerg if (type == KERN_PROC_NARGV)
1962 1.172 joerg value = pss.ps_nargvstr;
1963 1.172 joerg else
1964 1.172 joerg value = pss.ps_nenvstr;
1965 1.172 joerg error = sysctl_copyout(l, &value, oldp, sizeof(value));
1966 1.172 joerg *oldlenp = sizeof(value);
1967 1.172 joerg }
1968 1.170 pooka } else {
1969 1.172 joerg cookie[0] = l;
1970 1.172 joerg cookie[1] = oldp;
1971 1.172 joerg error = copy_procargs(p, type, oldlenp,
1972 1.172 joerg copy_procargs_sysctl_cb, cookie);
1973 1.170 pooka }
1974 1.172 joerg rw_exit(&p->p_reflock);
1975 1.172 joerg sysctl_relock();
1976 1.172 joerg return error;
1977 1.172 joerg
1978 1.172 joerg out_locked:
1979 1.170 pooka mutex_exit(proc_lock);
1980 1.172 joerg sysctl_relock();
1981 1.172 joerg return error;
1982 1.172 joerg }
1983 1.172 joerg
1984 1.172 joerg int
1985 1.172 joerg copy_procargs(struct proc *p, int oid, size_t *limit,
1986 1.172 joerg int (*cb)(void *, const void *, size_t, size_t), void *cookie)
1987 1.172 joerg {
1988 1.172 joerg struct ps_strings pss;
1989 1.172 joerg size_t len, i, loaded, entry_len;
1990 1.172 joerg struct uio auio;
1991 1.172 joerg struct iovec aiov;
1992 1.172 joerg int error, argvlen;
1993 1.172 joerg char *arg;
1994 1.172 joerg char **argv;
1995 1.172 joerg vaddr_t user_argv;
1996 1.172 joerg struct vmspace *vmspace;
1997 1.170 pooka
1998 1.170 pooka /*
1999 1.172 joerg * Allocate a temporary buffer to hold the argument vector and
2000 1.172 joerg * the arguments themselve.
2001 1.170 pooka */
2002 1.170 pooka arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2003 1.172 joerg argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2004 1.172 joerg
2005 1.172 joerg /*
2006 1.172 joerg * Lock the process down in memory.
2007 1.172 joerg */
2008 1.172 joerg vmspace = p->p_vmspace;
2009 1.172 joerg uvmspace_addref(vmspace);
2010 1.170 pooka
2011 1.170 pooka /*
2012 1.170 pooka * Read in the ps_strings structure.
2013 1.170 pooka */
2014 1.172 joerg if ((error = copyin_psstrings(p, &pss)) != 0)
2015 1.170 pooka goto done;
2016 1.170 pooka
2017 1.170 pooka /*
2018 1.170 pooka * Now read the address of the argument vector.
2019 1.170 pooka */
2020 1.172 joerg switch (oid) {
2021 1.170 pooka case KERN_PROC_ARGV:
2022 1.172 joerg user_argv = (uintptr_t)pss.ps_argvstr;
2023 1.172 joerg argvlen = pss.ps_nargvstr;
2024 1.172 joerg break;
2025 1.170 pooka case KERN_PROC_ENV:
2026 1.172 joerg user_argv = (uintptr_t)pss.ps_envstr;
2027 1.172 joerg argvlen = pss.ps_nenvstr;
2028 1.170 pooka break;
2029 1.170 pooka default:
2030 1.170 pooka error = EINVAL;
2031 1.170 pooka goto done;
2032 1.170 pooka }
2033 1.170 pooka
2034 1.172 joerg if (argvlen < 0) {
2035 1.172 joerg error = EIO;
2036 1.172 joerg goto done;
2037 1.172 joerg }
2038 1.172 joerg
2039 1.170 pooka #ifdef COMPAT_NETBSD32
2040 1.170 pooka if (p->p_flag & PK_32)
2041 1.172 joerg entry_len = sizeof(netbsd32_charp);
2042 1.170 pooka else
2043 1.170 pooka #endif
2044 1.172 joerg entry_len = sizeof(char *);
2045 1.170 pooka
2046 1.170 pooka /*
2047 1.170 pooka * Now copy each string.
2048 1.170 pooka */
2049 1.170 pooka len = 0; /* bytes written to user buffer */
2050 1.172 joerg loaded = 0; /* bytes from argv already processed */
2051 1.172 joerg i = 0; /* To make compiler happy */
2052 1.172 joerg
2053 1.172 joerg for (; argvlen; --argvlen) {
2054 1.170 pooka int finished = 0;
2055 1.170 pooka vaddr_t base;
2056 1.170 pooka size_t xlen;
2057 1.170 pooka int j;
2058 1.170 pooka
2059 1.172 joerg if (loaded == 0) {
2060 1.172 joerg size_t rem = entry_len * argvlen;
2061 1.172 joerg loaded = MIN(rem, PAGE_SIZE);
2062 1.172 joerg error = copyin_vmspace(vmspace,
2063 1.172 joerg (const void *)user_argv, argv, loaded);
2064 1.172 joerg if (error)
2065 1.172 joerg break;
2066 1.172 joerg user_argv += loaded;
2067 1.172 joerg i = 0;
2068 1.172 joerg }
2069 1.172 joerg
2070 1.170 pooka #ifdef COMPAT_NETBSD32
2071 1.170 pooka if (p->p_flag & PK_32) {
2072 1.170 pooka netbsd32_charp *argv32;
2073 1.170 pooka
2074 1.170 pooka argv32 = (netbsd32_charp *)argv;
2075 1.172 joerg base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
2076 1.170 pooka } else
2077 1.170 pooka #endif
2078 1.172 joerg base = (vaddr_t)argv[i++];
2079 1.172 joerg loaded -= entry_len;
2080 1.170 pooka
2081 1.170 pooka /*
2082 1.170 pooka * The program has messed around with its arguments,
2083 1.170 pooka * possibly deleting some, and replacing them with
2084 1.170 pooka * NULL's. Treat this as the last argument and not
2085 1.170 pooka * a failure.
2086 1.170 pooka */
2087 1.170 pooka if (base == 0)
2088 1.170 pooka break;
2089 1.170 pooka
2090 1.170 pooka while (!finished) {
2091 1.170 pooka xlen = PAGE_SIZE - (base & PAGE_MASK);
2092 1.170 pooka
2093 1.170 pooka aiov.iov_base = arg;
2094 1.170 pooka aiov.iov_len = PAGE_SIZE;
2095 1.170 pooka auio.uio_iov = &aiov;
2096 1.170 pooka auio.uio_iovcnt = 1;
2097 1.170 pooka auio.uio_offset = base;
2098 1.170 pooka auio.uio_resid = xlen;
2099 1.170 pooka auio.uio_rw = UIO_READ;
2100 1.170 pooka UIO_SETUP_SYSSPACE(&auio);
2101 1.170 pooka error = uvm_io(&vmspace->vm_map, &auio);
2102 1.170 pooka if (error)
2103 1.170 pooka goto done;
2104 1.170 pooka
2105 1.170 pooka /* Look for the end of the string */
2106 1.170 pooka for (j = 0; j < xlen; j++) {
2107 1.170 pooka if (arg[j] == '\0') {
2108 1.170 pooka xlen = j + 1;
2109 1.170 pooka finished = 1;
2110 1.170 pooka break;
2111 1.170 pooka }
2112 1.170 pooka }
2113 1.170 pooka
2114 1.170 pooka /* Check for user buffer overflow */
2115 1.172 joerg if (len + xlen > *limit) {
2116 1.170 pooka finished = 1;
2117 1.172 joerg if (len > *limit)
2118 1.170 pooka xlen = 0;
2119 1.170 pooka else
2120 1.172 joerg xlen = *limit - len;
2121 1.170 pooka }
2122 1.170 pooka
2123 1.170 pooka /* Copyout the page */
2124 1.172 joerg error = (*cb)(cookie, arg, len, xlen);
2125 1.170 pooka if (error)
2126 1.170 pooka goto done;
2127 1.170 pooka
2128 1.170 pooka len += xlen;
2129 1.170 pooka base += xlen;
2130 1.170 pooka }
2131 1.170 pooka }
2132 1.172 joerg *limit = len;
2133 1.170 pooka
2134 1.170 pooka done:
2135 1.172 joerg kmem_free(argv, PAGE_SIZE);
2136 1.172 joerg kmem_free(arg, PAGE_SIZE);
2137 1.170 pooka uvmspace_free(vmspace);
2138 1.170 pooka return error;
2139 1.170 pooka }
2140 1.170 pooka
2141 1.170 pooka /*
2142 1.170 pooka * Fill in an eproc structure for the specified process.
2143 1.170 pooka */
2144 1.170 pooka void
2145 1.170 pooka fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
2146 1.170 pooka {
2147 1.170 pooka struct tty *tp;
2148 1.170 pooka struct lwp *l;
2149 1.170 pooka
2150 1.170 pooka KASSERT(mutex_owned(proc_lock));
2151 1.170 pooka KASSERT(mutex_owned(p->p_lock));
2152 1.170 pooka
2153 1.170 pooka memset(ep, 0, sizeof(*ep));
2154 1.170 pooka
2155 1.170 pooka ep->e_paddr = p;
2156 1.170 pooka ep->e_sess = p->p_session;
2157 1.170 pooka if (p->p_cred) {
2158 1.170 pooka kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2159 1.170 pooka kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2160 1.170 pooka }
2161 1.170 pooka if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2162 1.170 pooka struct vmspace *vm = p->p_vmspace;
2163 1.170 pooka
2164 1.170 pooka ep->e_vm.vm_rssize = vm_resident_count(vm);
2165 1.170 pooka ep->e_vm.vm_tsize = vm->vm_tsize;
2166 1.170 pooka ep->e_vm.vm_dsize = vm->vm_dsize;
2167 1.170 pooka ep->e_vm.vm_ssize = vm->vm_ssize;
2168 1.170 pooka ep->e_vm.vm_map.size = vm->vm_map.size;
2169 1.170 pooka
2170 1.170 pooka /* Pick the primary (first) LWP */
2171 1.170 pooka l = proc_active_lwp(p);
2172 1.170 pooka KASSERT(l != NULL);
2173 1.170 pooka lwp_lock(l);
2174 1.170 pooka if (l->l_wchan)
2175 1.170 pooka strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2176 1.170 pooka lwp_unlock(l);
2177 1.170 pooka }
2178 1.170 pooka if (p->p_pptr)
2179 1.170 pooka ep->e_ppid = p->p_pptr->p_pid;
2180 1.170 pooka if (p->p_pgrp && p->p_session) {
2181 1.170 pooka ep->e_pgid = p->p_pgrp->pg_id;
2182 1.170 pooka ep->e_jobc = p->p_pgrp->pg_jobc;
2183 1.170 pooka ep->e_sid = p->p_session->s_sid;
2184 1.170 pooka if ((p->p_lflag & PL_CONTROLT) &&
2185 1.170 pooka (tp = ep->e_sess->s_ttyp)) {
2186 1.170 pooka ep->e_tdev = tp->t_dev;
2187 1.170 pooka ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2188 1.170 pooka ep->e_tsess = tp->t_session;
2189 1.170 pooka } else
2190 1.170 pooka ep->e_tdev = (uint32_t)NODEV;
2191 1.170 pooka ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2192 1.170 pooka if (SESS_LEADER(p))
2193 1.170 pooka ep->e_flag |= EPROC_SLEADER;
2194 1.170 pooka strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2195 1.170 pooka }
2196 1.170 pooka ep->e_xsize = ep->e_xrssize = 0;
2197 1.170 pooka ep->e_xccount = ep->e_xswrss = 0;
2198 1.170 pooka }
2199 1.170 pooka
2200 1.170 pooka /*
2201 1.170 pooka * Fill in a kinfo_proc2 structure for the specified process.
2202 1.170 pooka */
2203 1.170 pooka static void
2204 1.170 pooka fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
2205 1.170 pooka {
2206 1.170 pooka struct tty *tp;
2207 1.170 pooka struct lwp *l, *l2;
2208 1.170 pooka struct timeval ut, st, rt;
2209 1.170 pooka sigset_t ss1, ss2;
2210 1.170 pooka struct rusage ru;
2211 1.170 pooka struct vmspace *vm;
2212 1.170 pooka
2213 1.170 pooka KASSERT(mutex_owned(proc_lock));
2214 1.170 pooka KASSERT(mutex_owned(p->p_lock));
2215 1.170 pooka
2216 1.170 pooka sigemptyset(&ss1);
2217 1.170 pooka sigemptyset(&ss2);
2218 1.170 pooka memset(ki, 0, sizeof(*ki));
2219 1.170 pooka
2220 1.170 pooka ki->p_paddr = PTRTOUINT64(p);
2221 1.170 pooka ki->p_fd = PTRTOUINT64(p->p_fd);
2222 1.170 pooka ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2223 1.170 pooka ki->p_stats = PTRTOUINT64(p->p_stats);
2224 1.170 pooka ki->p_limit = PTRTOUINT64(p->p_limit);
2225 1.170 pooka ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2226 1.170 pooka ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2227 1.170 pooka ki->p_sess = PTRTOUINT64(p->p_session);
2228 1.170 pooka ki->p_tsess = 0; /* may be changed if controlling tty below */
2229 1.170 pooka ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
2230 1.170 pooka ki->p_eflag = 0;
2231 1.170 pooka ki->p_exitsig = p->p_exitsig;
2232 1.170 pooka ki->p_flag = L_INMEM; /* Process never swapped out */
2233 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2234 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2235 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2236 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2237 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2238 1.170 pooka ki->p_pid = p->p_pid;
2239 1.170 pooka if (p->p_pptr)
2240 1.170 pooka ki->p_ppid = p->p_pptr->p_pid;
2241 1.170 pooka else
2242 1.170 pooka ki->p_ppid = 0;
2243 1.170 pooka ki->p_uid = kauth_cred_geteuid(p->p_cred);
2244 1.170 pooka ki->p_ruid = kauth_cred_getuid(p->p_cred);
2245 1.170 pooka ki->p_gid = kauth_cred_getegid(p->p_cred);
2246 1.170 pooka ki->p_rgid = kauth_cred_getgid(p->p_cred);
2247 1.170 pooka ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2248 1.170 pooka ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2249 1.170 pooka ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2250 1.170 pooka kauth_cred_getgroups(p->p_cred, ki->p_groups,
2251 1.170 pooka min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2252 1.170 pooka UIO_SYSSPACE);
2253 1.170 pooka
2254 1.170 pooka ki->p_uticks = p->p_uticks;
2255 1.170 pooka ki->p_sticks = p->p_sticks;
2256 1.170 pooka ki->p_iticks = p->p_iticks;
2257 1.170 pooka ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2258 1.170 pooka ki->p_tracep = PTRTOUINT64(p->p_tracep);
2259 1.170 pooka ki->p_traceflag = p->p_traceflag;
2260 1.170 pooka
2261 1.170 pooka memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2262 1.170 pooka memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2263 1.170 pooka
2264 1.170 pooka ki->p_cpticks = 0;
2265 1.170 pooka ki->p_pctcpu = p->p_pctcpu;
2266 1.170 pooka ki->p_estcpu = 0;
2267 1.170 pooka ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2268 1.170 pooka ki->p_realstat = p->p_stat;
2269 1.170 pooka ki->p_nice = p->p_nice;
2270 1.170 pooka ki->p_xstat = p->p_xstat;
2271 1.170 pooka ki->p_acflag = p->p_acflag;
2272 1.170 pooka
2273 1.170 pooka strncpy(ki->p_comm, p->p_comm,
2274 1.170 pooka min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2275 1.170 pooka strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2276 1.170 pooka
2277 1.170 pooka ki->p_nlwps = p->p_nlwps;
2278 1.170 pooka ki->p_realflag = ki->p_flag;
2279 1.170 pooka
2280 1.170 pooka if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2281 1.170 pooka vm = p->p_vmspace;
2282 1.170 pooka ki->p_vm_rssize = vm_resident_count(vm);
2283 1.170 pooka ki->p_vm_tsize = vm->vm_tsize;
2284 1.170 pooka ki->p_vm_dsize = vm->vm_dsize;
2285 1.170 pooka ki->p_vm_ssize = vm->vm_ssize;
2286 1.184 martin ki->p_vm_vsize = atop(vm->vm_map.size);
2287 1.170 pooka /*
2288 1.170 pooka * Since the stack is initially mapped mostly with
2289 1.170 pooka * PROT_NONE and grown as needed, adjust the "mapped size"
2290 1.170 pooka * to skip the unused stack portion.
2291 1.170 pooka */
2292 1.170 pooka ki->p_vm_msize =
2293 1.170 pooka atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2294 1.170 pooka
2295 1.170 pooka /* Pick the primary (first) LWP */
2296 1.170 pooka l = proc_active_lwp(p);
2297 1.170 pooka KASSERT(l != NULL);
2298 1.170 pooka lwp_lock(l);
2299 1.170 pooka ki->p_nrlwps = p->p_nrlwps;
2300 1.170 pooka ki->p_forw = 0;
2301 1.170 pooka ki->p_back = 0;
2302 1.170 pooka ki->p_addr = PTRTOUINT64(l->l_addr);
2303 1.170 pooka ki->p_stat = l->l_stat;
2304 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2305 1.170 pooka ki->p_swtime = l->l_swtime;
2306 1.170 pooka ki->p_slptime = l->l_slptime;
2307 1.170 pooka if (l->l_stat == LSONPROC)
2308 1.170 pooka ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2309 1.170 pooka else
2310 1.170 pooka ki->p_schedflags = 0;
2311 1.170 pooka ki->p_priority = lwp_eprio(l);
2312 1.170 pooka ki->p_usrpri = l->l_priority;
2313 1.170 pooka if (l->l_wchan)
2314 1.170 pooka strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2315 1.170 pooka ki->p_wchan = PTRTOUINT64(l->l_wchan);
2316 1.170 pooka ki->p_cpuid = cpu_index(l->l_cpu);
2317 1.170 pooka lwp_unlock(l);
2318 1.170 pooka LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2319 1.170 pooka /* This is hardly correct, but... */
2320 1.170 pooka sigplusset(&l->l_sigpend.sp_set, &ss1);
2321 1.170 pooka sigplusset(&l->l_sigmask, &ss2);
2322 1.170 pooka ki->p_cpticks += l->l_cpticks;
2323 1.170 pooka ki->p_pctcpu += l->l_pctcpu;
2324 1.170 pooka ki->p_estcpu += l->l_estcpu;
2325 1.170 pooka }
2326 1.170 pooka }
2327 1.170 pooka sigplusset(&p->p_sigpend.sp_set, &ss2);
2328 1.170 pooka memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2329 1.170 pooka memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2330 1.170 pooka
2331 1.170 pooka if (p->p_session != NULL) {
2332 1.170 pooka ki->p_sid = p->p_session->s_sid;
2333 1.170 pooka ki->p__pgid = p->p_pgrp->pg_id;
2334 1.170 pooka if (p->p_session->s_ttyvp)
2335 1.170 pooka ki->p_eflag |= EPROC_CTTY;
2336 1.170 pooka if (SESS_LEADER(p))
2337 1.170 pooka ki->p_eflag |= EPROC_SLEADER;
2338 1.170 pooka strncpy(ki->p_login, p->p_session->s_login,
2339 1.170 pooka min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2340 1.170 pooka ki->p_jobc = p->p_pgrp->pg_jobc;
2341 1.170 pooka if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2342 1.170 pooka ki->p_tdev = tp->t_dev;
2343 1.170 pooka ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2344 1.170 pooka ki->p_tsess = PTRTOUINT64(tp->t_session);
2345 1.170 pooka } else {
2346 1.170 pooka ki->p_tdev = (int32_t)NODEV;
2347 1.170 pooka }
2348 1.170 pooka }
2349 1.170 pooka
2350 1.170 pooka if (!P_ZOMBIE(p) && !zombie) {
2351 1.170 pooka ki->p_uvalid = 1;
2352 1.170 pooka ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2353 1.170 pooka ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2354 1.170 pooka
2355 1.170 pooka calcru(p, &ut, &st, NULL, &rt);
2356 1.170 pooka ki->p_rtime_sec = rt.tv_sec;
2357 1.170 pooka ki->p_rtime_usec = rt.tv_usec;
2358 1.170 pooka ki->p_uutime_sec = ut.tv_sec;
2359 1.170 pooka ki->p_uutime_usec = ut.tv_usec;
2360 1.170 pooka ki->p_ustime_sec = st.tv_sec;
2361 1.170 pooka ki->p_ustime_usec = st.tv_usec;
2362 1.170 pooka
2363 1.170 pooka memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2364 1.170 pooka ki->p_uru_nvcsw = 0;
2365 1.170 pooka ki->p_uru_nivcsw = 0;
2366 1.170 pooka LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2367 1.170 pooka ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2368 1.170 pooka ki->p_uru_nivcsw += l2->l_nivcsw;
2369 1.170 pooka ruadd(&ru, &l2->l_ru);
2370 1.170 pooka }
2371 1.170 pooka ki->p_uru_maxrss = ru.ru_maxrss;
2372 1.170 pooka ki->p_uru_ixrss = ru.ru_ixrss;
2373 1.170 pooka ki->p_uru_idrss = ru.ru_idrss;
2374 1.170 pooka ki->p_uru_isrss = ru.ru_isrss;
2375 1.170 pooka ki->p_uru_minflt = ru.ru_minflt;
2376 1.170 pooka ki->p_uru_majflt = ru.ru_majflt;
2377 1.170 pooka ki->p_uru_nswap = ru.ru_nswap;
2378 1.170 pooka ki->p_uru_inblock = ru.ru_inblock;
2379 1.170 pooka ki->p_uru_oublock = ru.ru_oublock;
2380 1.170 pooka ki->p_uru_msgsnd = ru.ru_msgsnd;
2381 1.170 pooka ki->p_uru_msgrcv = ru.ru_msgrcv;
2382 1.170 pooka ki->p_uru_nsignals = ru.ru_nsignals;
2383 1.170 pooka
2384 1.170 pooka timeradd(&p->p_stats->p_cru.ru_utime,
2385 1.170 pooka &p->p_stats->p_cru.ru_stime, &ut);
2386 1.170 pooka ki->p_uctime_sec = ut.tv_sec;
2387 1.170 pooka ki->p_uctime_usec = ut.tv_usec;
2388 1.170 pooka }
2389 1.170 pooka }
2390