kern_proc.c revision 1.209.2.14 1 1.209.2.14 pgoyette /* $NetBSD: kern_proc.c,v 1.209.2.14 2019/01/21 06:49:28 pgoyette Exp $ */
2 1.33 thorpej
3 1.33 thorpej /*-
4 1.131 ad * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.33 thorpej * All rights reserved.
6 1.33 thorpej *
7 1.33 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.33 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.100 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.33 thorpej *
11 1.33 thorpej * Redistribution and use in source and binary forms, with or without
12 1.33 thorpej * modification, are permitted provided that the following conditions
13 1.33 thorpej * are met:
14 1.33 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.33 thorpej * notice, this list of conditions and the following disclaimer.
16 1.33 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.33 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.33 thorpej * documentation and/or other materials provided with the distribution.
19 1.33 thorpej *
20 1.33 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.33 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.33 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.33 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.33 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.33 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.33 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.33 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.33 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.33 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.33 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.33 thorpej */
32 1.9 cgd
33 1.1 cgd /*
34 1.7 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 1.7 cgd * The Regents of the University of California. All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Redistribution and use in source and binary forms, with or without
38 1.1 cgd * modification, are permitted provided that the following conditions
39 1.1 cgd * are met:
40 1.1 cgd * 1. Redistributions of source code must retain the above copyright
41 1.1 cgd * notice, this list of conditions and the following disclaimer.
42 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 cgd * notice, this list of conditions and the following disclaimer in the
44 1.1 cgd * documentation and/or other materials provided with the distribution.
45 1.65 agc * 3. Neither the name of the University nor the names of its contributors
46 1.1 cgd * may be used to endorse or promote products derived from this software
47 1.1 cgd * without specific prior written permission.
48 1.1 cgd *
49 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.1 cgd * SUCH DAMAGE.
60 1.1 cgd *
61 1.23 fvdl * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 1.1 cgd */
63 1.45 lukem
64 1.45 lukem #include <sys/cdefs.h>
65 1.209.2.14 pgoyette __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.209.2.14 2019/01/21 06:49:28 pgoyette Exp $");
66 1.48 yamt
67 1.165 pooka #ifdef _KERNEL_OPT
68 1.48 yamt #include "opt_kstack.h"
69 1.88 onoe #include "opt_maxuprc.h"
70 1.161 darran #include "opt_dtrace.h"
71 1.209.2.10 pgoyette #include "opt_compat_netbsd32.h"
72 1.209.2.10 pgoyette #include "opt_kaslr.h"
73 1.209.2.10 pgoyette #endif
74 1.209.2.10 pgoyette
75 1.209.2.10 pgoyette #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
76 1.209.2.10 pgoyette && !defined(_RUMPKERNEL)
77 1.209.2.10 pgoyette #define COMPAT_NETBSD32
78 1.205 christos #endif
79 1.205 christos
80 1.5 mycroft #include <sys/param.h>
81 1.5 mycroft #include <sys/systm.h>
82 1.5 mycroft #include <sys/kernel.h>
83 1.5 mycroft #include <sys/proc.h>
84 1.28 thorpej #include <sys/resourcevar.h>
85 1.5 mycroft #include <sys/buf.h>
86 1.5 mycroft #include <sys/acct.h>
87 1.5 mycroft #include <sys/wait.h>
88 1.5 mycroft #include <sys/file.h>
89 1.8 mycroft #include <ufs/ufs/quota.h>
90 1.5 mycroft #include <sys/uio.h>
91 1.24 thorpej #include <sys/pool.h>
92 1.147 rmind #include <sys/pset.h>
93 1.5 mycroft #include <sys/ioctl.h>
94 1.5 mycroft #include <sys/tty.h>
95 1.11 cgd #include <sys/signalvar.h>
96 1.51 gmcgarry #include <sys/ras.h>
97 1.81 junyoung #include <sys/filedesc.h>
98 1.185 martin #include <sys/syscall_stats.h>
99 1.89 elad #include <sys/kauth.h>
100 1.100 ad #include <sys/sleepq.h>
101 1.126 ad #include <sys/atomic.h>
102 1.131 ad #include <sys/kmem.h>
103 1.194 christos #include <sys/namei.h>
104 1.160 darran #include <sys/dtrace_bsd.h>
105 1.170 pooka #include <sys/sysctl.h>
106 1.170 pooka #include <sys/exec.h>
107 1.170 pooka #include <sys/cpu.h>
108 1.209.2.4 pgoyette #include <sys/compat_stub.h>
109 1.160 darran
110 1.169 uebayasi #include <uvm/uvm_extern.h>
111 1.194 christos #include <uvm/uvm.h>
112 1.5 mycroft
113 1.7 cgd /*
114 1.180 rmind * Process lists.
115 1.7 cgd */
116 1.31 thorpej
117 1.180 rmind struct proclist allproc __cacheline_aligned;
118 1.180 rmind struct proclist zombproc __cacheline_aligned;
119 1.32 thorpej
120 1.180 rmind kmutex_t * proc_lock __cacheline_aligned;
121 1.33 thorpej
122 1.33 thorpej /*
123 1.72 junyoung * pid to proc lookup is done by indexing the pid_table array.
124 1.61 dsl * Since pid numbers are only allocated when an empty slot
125 1.61 dsl * has been found, there is no need to search any lists ever.
126 1.61 dsl * (an orphaned pgrp will lock the slot, a session will lock
127 1.61 dsl * the pgrp with the same number.)
128 1.61 dsl * If the table is too small it is reallocated with twice the
129 1.61 dsl * previous size and the entries 'unzipped' into the two halves.
130 1.61 dsl * A linked list of free entries is passed through the pt_proc
131 1.61 dsl * field of 'free' items - set odd to be an invalid ptr.
132 1.61 dsl */
133 1.61 dsl
134 1.61 dsl struct pid_table {
135 1.61 dsl struct proc *pt_proc;
136 1.61 dsl struct pgrp *pt_pgrp;
137 1.168 chs pid_t pt_pid;
138 1.72 junyoung };
139 1.61 dsl #if 1 /* strongly typed cast - should be a noop */
140 1.84 perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
141 1.61 dsl #else
142 1.61 dsl #define p2u(p) ((uint)p)
143 1.72 junyoung #endif
144 1.61 dsl #define P_VALID(p) (!(p2u(p) & 1))
145 1.61 dsl #define P_NEXT(p) (p2u(p) >> 1)
146 1.61 dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
147 1.61 dsl
148 1.180 rmind /*
149 1.180 rmind * Table of process IDs (PIDs).
150 1.180 rmind */
151 1.180 rmind static struct pid_table *pid_table __read_mostly;
152 1.180 rmind
153 1.180 rmind #define INITIAL_PID_TABLE_SIZE (1 << 5)
154 1.180 rmind
155 1.180 rmind /* Table mask, threshold for growing and number of allocated PIDs. */
156 1.180 rmind static u_int pid_tbl_mask __read_mostly;
157 1.180 rmind static u_int pid_alloc_lim __read_mostly;
158 1.180 rmind static u_int pid_alloc_cnt __cacheline_aligned;
159 1.180 rmind
160 1.180 rmind /* Next free, last free and maximum PIDs. */
161 1.180 rmind static u_int next_free_pt __cacheline_aligned;
162 1.180 rmind static u_int last_free_pt __cacheline_aligned;
163 1.180 rmind static pid_t pid_max __read_mostly;
164 1.31 thorpej
165 1.81 junyoung /* Components of the first process -- never freed. */
166 1.123 matt
167 1.145 ad extern struct emul emul_netbsd; /* defined in kern_exec.c */
168 1.123 matt
169 1.123 matt struct session session0 = {
170 1.123 matt .s_count = 1,
171 1.123 matt .s_sid = 0,
172 1.123 matt };
173 1.123 matt struct pgrp pgrp0 = {
174 1.123 matt .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
175 1.123 matt .pg_session = &session0,
176 1.123 matt };
177 1.132 ad filedesc_t filedesc0;
178 1.123 matt struct cwdinfo cwdi0 = {
179 1.187 pooka .cwdi_cmask = CMASK,
180 1.123 matt .cwdi_refcnt = 1,
181 1.123 matt };
182 1.143 gmcgarry struct plimit limit0;
183 1.81 junyoung struct pstats pstat0;
184 1.81 junyoung struct vmspace vmspace0;
185 1.81 junyoung struct sigacts sigacts0;
186 1.123 matt struct proc proc0 = {
187 1.123 matt .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
188 1.123 matt .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
189 1.123 matt .p_nlwps = 1,
190 1.123 matt .p_nrlwps = 1,
191 1.123 matt .p_nlwpid = 1, /* must match lwp0.l_lid */
192 1.123 matt .p_pgrp = &pgrp0,
193 1.123 matt .p_comm = "system",
194 1.123 matt /*
195 1.123 matt * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
196 1.123 matt * when they exit. init(8) can easily wait them out for us.
197 1.123 matt */
198 1.123 matt .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
199 1.123 matt .p_stat = SACTIVE,
200 1.123 matt .p_nice = NZERO,
201 1.123 matt .p_emul = &emul_netbsd,
202 1.123 matt .p_cwdi = &cwdi0,
203 1.123 matt .p_limit = &limit0,
204 1.132 ad .p_fd = &filedesc0,
205 1.123 matt .p_vmspace = &vmspace0,
206 1.123 matt .p_stats = &pstat0,
207 1.123 matt .p_sigacts = &sigacts0,
208 1.188 matt #ifdef PROC0_MD_INITIALIZERS
209 1.188 matt PROC0_MD_INITIALIZERS
210 1.188 matt #endif
211 1.123 matt };
212 1.123 matt kauth_cred_t cred0;
213 1.81 junyoung
214 1.180 rmind static const int nofile = NOFILE;
215 1.180 rmind static const int maxuprc = MAXUPRC;
216 1.81 junyoung
217 1.170 pooka static int sysctl_doeproc(SYSCTLFN_PROTO);
218 1.170 pooka static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
219 1.209.2.10 pgoyette static int sysctl_security_expose_address(SYSCTLFN_PROTO);
220 1.170 pooka
221 1.209.2.10 pgoyette #ifdef KASLR
222 1.209.2.10 pgoyette static int kern_expose_address = 0;
223 1.209.2.10 pgoyette #else
224 1.209.2.10 pgoyette static int kern_expose_address = 1;
225 1.209.2.10 pgoyette #endif
226 1.31 thorpej /*
227 1.31 thorpej * The process list descriptors, used during pid allocation and
228 1.31 thorpej * by sysctl. No locking on this data structure is needed since
229 1.31 thorpej * it is completely static.
230 1.31 thorpej */
231 1.31 thorpej const struct proclist_desc proclists[] = {
232 1.31 thorpej { &allproc },
233 1.31 thorpej { &zombproc },
234 1.31 thorpej { NULL },
235 1.31 thorpej };
236 1.31 thorpej
237 1.151 rmind static struct pgrp * pg_remove(pid_t);
238 1.151 rmind static void pg_delete(pid_t);
239 1.151 rmind static void orphanpg(struct pgrp *);
240 1.13 christos
241 1.95 thorpej static specificdata_domain_t proc_specificdata_domain;
242 1.95 thorpej
243 1.128 ad static pool_cache_t proc_cache;
244 1.128 ad
245 1.153 elad static kauth_listener_t proc_listener;
246 1.153 elad
247 1.209.2.10 pgoyette static void fill_proc(const struct proc *, struct proc *, bool);
248 1.194 christos static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
249 1.194 christos
250 1.153 elad static int
251 1.153 elad proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
252 1.153 elad void *arg0, void *arg1, void *arg2, void *arg3)
253 1.153 elad {
254 1.153 elad struct proc *p;
255 1.153 elad int result;
256 1.153 elad
257 1.153 elad result = KAUTH_RESULT_DEFER;
258 1.153 elad p = arg0;
259 1.153 elad
260 1.153 elad switch (action) {
261 1.153 elad case KAUTH_PROCESS_CANSEE: {
262 1.153 elad enum kauth_process_req req;
263 1.153 elad
264 1.153 elad req = (enum kauth_process_req)arg1;
265 1.153 elad
266 1.153 elad switch (req) {
267 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_ARGS:
268 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
269 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
270 1.209.2.3 pgoyette case KAUTH_REQ_PROCESS_CANSEE_EPROC:
271 1.153 elad result = KAUTH_RESULT_ALLOW;
272 1.153 elad break;
273 1.153 elad
274 1.153 elad case KAUTH_REQ_PROCESS_CANSEE_ENV:
275 1.153 elad if (kauth_cred_getuid(cred) !=
276 1.153 elad kauth_cred_getuid(p->p_cred) ||
277 1.153 elad kauth_cred_getuid(cred) !=
278 1.153 elad kauth_cred_getsvuid(p->p_cred))
279 1.153 elad break;
280 1.153 elad
281 1.153 elad result = KAUTH_RESULT_ALLOW;
282 1.153 elad
283 1.153 elad break;
284 1.153 elad
285 1.209.2.3 pgoyette case KAUTH_REQ_PROCESS_CANSEE_KPTR:
286 1.209.2.10 pgoyette if (!kern_expose_address)
287 1.209.2.10 pgoyette break;
288 1.209.2.10 pgoyette
289 1.209.2.10 pgoyette if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
290 1.209.2.10 pgoyette break;
291 1.209.2.10 pgoyette
292 1.209.2.10 pgoyette result = KAUTH_RESULT_ALLOW;
293 1.209.2.10 pgoyette
294 1.209.2.10 pgoyette break;
295 1.209.2.10 pgoyette
296 1.153 elad default:
297 1.153 elad break;
298 1.153 elad }
299 1.153 elad
300 1.153 elad break;
301 1.153 elad }
302 1.153 elad
303 1.153 elad case KAUTH_PROCESS_FORK: {
304 1.153 elad int lnprocs = (int)(unsigned long)arg2;
305 1.153 elad
306 1.153 elad /*
307 1.153 elad * Don't allow a nonprivileged user to use the last few
308 1.153 elad * processes. The variable lnprocs is the current number of
309 1.153 elad * processes, maxproc is the limit.
310 1.153 elad */
311 1.153 elad if (__predict_false((lnprocs >= maxproc - 5)))
312 1.153 elad break;
313 1.153 elad
314 1.153 elad result = KAUTH_RESULT_ALLOW;
315 1.153 elad
316 1.153 elad break;
317 1.153 elad }
318 1.153 elad
319 1.153 elad case KAUTH_PROCESS_CORENAME:
320 1.153 elad case KAUTH_PROCESS_STOPFLAG:
321 1.153 elad if (proc_uidmatch(cred, p->p_cred) == 0)
322 1.153 elad result = KAUTH_RESULT_ALLOW;
323 1.153 elad
324 1.153 elad break;
325 1.153 elad
326 1.153 elad default:
327 1.153 elad break;
328 1.153 elad }
329 1.153 elad
330 1.153 elad return result;
331 1.153 elad }
332 1.153 elad
333 1.209.2.9 pgoyette static int
334 1.209.2.9 pgoyette proc_ctor(void *arg __unused, void *obj, int flags __unused)
335 1.209.2.9 pgoyette {
336 1.209.2.9 pgoyette memset(obj, 0, sizeof(struct proc));
337 1.209.2.9 pgoyette return 0;
338 1.209.2.9 pgoyette }
339 1.209.2.9 pgoyette
340 1.10 mycroft /*
341 1.10 mycroft * Initialize global process hashing structures.
342 1.10 mycroft */
343 1.11 cgd void
344 1.59 dsl procinit(void)
345 1.7 cgd {
346 1.31 thorpej const struct proclist_desc *pd;
347 1.150 rmind u_int i;
348 1.61 dsl #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
349 1.31 thorpej
350 1.31 thorpej for (pd = proclists; pd->pd_list != NULL; pd++)
351 1.31 thorpej LIST_INIT(pd->pd_list);
352 1.7 cgd
353 1.136 ad proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
354 1.150 rmind pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
355 1.150 rmind * sizeof(struct pid_table), KM_SLEEP);
356 1.180 rmind pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
357 1.180 rmind pid_max = PID_MAX;
358 1.33 thorpej
359 1.61 dsl /* Set free list running through table...
360 1.61 dsl Preset 'use count' above PID_MAX so we allocate pid 1 next. */
361 1.61 dsl for (i = 0; i <= pid_tbl_mask; i++) {
362 1.61 dsl pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
363 1.61 dsl pid_table[i].pt_pgrp = 0;
364 1.168 chs pid_table[i].pt_pid = 0;
365 1.61 dsl }
366 1.61 dsl /* slot 0 is just grabbed */
367 1.61 dsl next_free_pt = 1;
368 1.61 dsl /* Need to fix last entry. */
369 1.61 dsl last_free_pt = pid_tbl_mask;
370 1.61 dsl pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
371 1.61 dsl /* point at which we grow table - to avoid reusing pids too often */
372 1.61 dsl pid_alloc_lim = pid_tbl_mask - 1;
373 1.61 dsl #undef LINK_EMPTY
374 1.61 dsl
375 1.95 thorpej proc_specificdata_domain = specificdata_domain_create();
376 1.95 thorpej KASSERT(proc_specificdata_domain != NULL);
377 1.128 ad
378 1.128 ad proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
379 1.209.2.9 pgoyette "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
380 1.153 elad
381 1.153 elad proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
382 1.153 elad proc_listener_cb, NULL);
383 1.7 cgd }
384 1.1 cgd
385 1.170 pooka void
386 1.170 pooka procinit_sysctl(void)
387 1.170 pooka {
388 1.170 pooka static struct sysctllog *clog;
389 1.170 pooka
390 1.170 pooka sysctl_createv(&clog, 0, NULL, NULL,
391 1.209.2.10 pgoyette CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
392 1.209.2.10 pgoyette CTLTYPE_INT, "expose_address",
393 1.209.2.10 pgoyette SYSCTL_DESCR("Enable exposing kernel addresses"),
394 1.209.2.10 pgoyette sysctl_security_expose_address, 0,
395 1.209.2.10 pgoyette &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
396 1.209.2.10 pgoyette sysctl_createv(&clog, 0, NULL, NULL,
397 1.170 pooka CTLFLAG_PERMANENT,
398 1.170 pooka CTLTYPE_NODE, "proc",
399 1.170 pooka SYSCTL_DESCR("System-wide process information"),
400 1.170 pooka sysctl_doeproc, 0, NULL, 0,
401 1.170 pooka CTL_KERN, KERN_PROC, CTL_EOL);
402 1.170 pooka sysctl_createv(&clog, 0, NULL, NULL,
403 1.170 pooka CTLFLAG_PERMANENT,
404 1.170 pooka CTLTYPE_NODE, "proc2",
405 1.170 pooka SYSCTL_DESCR("Machine-independent process information"),
406 1.170 pooka sysctl_doeproc, 0, NULL, 0,
407 1.170 pooka CTL_KERN, KERN_PROC2, CTL_EOL);
408 1.170 pooka sysctl_createv(&clog, 0, NULL, NULL,
409 1.170 pooka CTLFLAG_PERMANENT,
410 1.170 pooka CTLTYPE_NODE, "proc_args",
411 1.170 pooka SYSCTL_DESCR("Process argument information"),
412 1.170 pooka sysctl_kern_proc_args, 0, NULL, 0,
413 1.170 pooka CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
414 1.170 pooka
415 1.170 pooka /*
416 1.170 pooka "nodes" under these:
417 1.170 pooka
418 1.170 pooka KERN_PROC_ALL
419 1.170 pooka KERN_PROC_PID pid
420 1.170 pooka KERN_PROC_PGRP pgrp
421 1.170 pooka KERN_PROC_SESSION sess
422 1.170 pooka KERN_PROC_TTY tty
423 1.170 pooka KERN_PROC_UID uid
424 1.170 pooka KERN_PROC_RUID uid
425 1.170 pooka KERN_PROC_GID gid
426 1.170 pooka KERN_PROC_RGID gid
427 1.170 pooka
428 1.170 pooka all in all, probably not worth the effort...
429 1.170 pooka */
430 1.170 pooka }
431 1.170 pooka
432 1.7 cgd /*
433 1.81 junyoung * Initialize process 0.
434 1.81 junyoung */
435 1.81 junyoung void
436 1.81 junyoung proc0_init(void)
437 1.81 junyoung {
438 1.81 junyoung struct proc *p;
439 1.81 junyoung struct pgrp *pg;
440 1.177 rmind struct rlimit *rlim;
441 1.81 junyoung rlim_t lim;
442 1.143 gmcgarry int i;
443 1.81 junyoung
444 1.81 junyoung p = &proc0;
445 1.81 junyoung pg = &pgrp0;
446 1.123 matt
447 1.127 ad mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
448 1.129 ad mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
449 1.137 ad p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
450 1.107 ad
451 1.122 ad rw_init(&p->p_reflock);
452 1.100 ad cv_init(&p->p_waitcv, "wait");
453 1.100 ad cv_init(&p->p_lwpcv, "lwpwait");
454 1.100 ad
455 1.166 pooka LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
456 1.100 ad
457 1.81 junyoung pid_table[0].pt_proc = p;
458 1.81 junyoung LIST_INSERT_HEAD(&allproc, p, p_list);
459 1.81 junyoung
460 1.81 junyoung pid_table[0].pt_pgrp = pg;
461 1.81 junyoung LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
462 1.81 junyoung
463 1.81 junyoung #ifdef __HAVE_SYSCALL_INTERN
464 1.81 junyoung (*p->p_emul->e_syscall_intern)(p);
465 1.81 junyoung #endif
466 1.81 junyoung
467 1.81 junyoung /* Create credentials. */
468 1.89 elad cred0 = kauth_cred_alloc();
469 1.89 elad p->p_cred = cred0;
470 1.81 junyoung
471 1.81 junyoung /* Create the CWD info. */
472 1.113 ad rw_init(&cwdi0.cwdi_lock);
473 1.81 junyoung
474 1.81 junyoung /* Create the limits structures. */
475 1.116 dsl mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
476 1.177 rmind
477 1.177 rmind rlim = limit0.pl_rlimit;
478 1.177 rmind for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
479 1.177 rmind rlim[i].rlim_cur = RLIM_INFINITY;
480 1.177 rmind rlim[i].rlim_max = RLIM_INFINITY;
481 1.177 rmind }
482 1.177 rmind
483 1.177 rmind rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
484 1.177 rmind rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
485 1.177 rmind
486 1.177 rmind rlim[RLIMIT_NPROC].rlim_max = maxproc;
487 1.177 rmind rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
488 1.81 junyoung
489 1.163 jym lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
490 1.177 rmind rlim[RLIMIT_RSS].rlim_max = lim;
491 1.177 rmind rlim[RLIMIT_MEMLOCK].rlim_max = lim;
492 1.177 rmind rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
493 1.177 rmind
494 1.186 christos rlim[RLIMIT_NTHR].rlim_max = maxlwp;
495 1.186 christos rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
496 1.186 christos
497 1.179 rmind /* Note that default core name has zero length. */
498 1.177 rmind limit0.pl_corename = defcorename;
499 1.179 rmind limit0.pl_cnlen = 0;
500 1.177 rmind limit0.pl_refcnt = 1;
501 1.179 rmind limit0.pl_writeable = false;
502 1.143 gmcgarry limit0.pl_sv_limit = NULL;
503 1.81 junyoung
504 1.81 junyoung /* Configure virtual memory system, set vm rlimits. */
505 1.81 junyoung uvm_init_limits(p);
506 1.81 junyoung
507 1.81 junyoung /* Initialize file descriptor table for proc0. */
508 1.132 ad fd_init(&filedesc0);
509 1.81 junyoung
510 1.81 junyoung /*
511 1.81 junyoung * Initialize proc0's vmspace, which uses the kernel pmap.
512 1.81 junyoung * All kernel processes (which never have user space mappings)
513 1.81 junyoung * share proc0's vmspace, and thus, the kernel pmap.
514 1.81 junyoung */
515 1.81 junyoung uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
516 1.197 maxv trunc_page(VM_MAXUSER_ADDRESS),
517 1.191 christos #ifdef __USE_TOPDOWN_VM
518 1.190 martin true
519 1.190 martin #else
520 1.190 martin false
521 1.190 martin #endif
522 1.190 martin );
523 1.81 junyoung
524 1.127 ad /* Initialize signal state for proc0. XXX IPL_SCHED */
525 1.127 ad mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
526 1.81 junyoung siginit(p);
527 1.96 christos
528 1.164 rmind proc_initspecific(p);
529 1.160 darran kdtrace_proc_ctor(NULL, p);
530 1.81 junyoung }
531 1.81 junyoung
532 1.81 junyoung /*
533 1.151 rmind * Session reference counting.
534 1.151 rmind */
535 1.151 rmind
536 1.151 rmind void
537 1.151 rmind proc_sesshold(struct session *ss)
538 1.151 rmind {
539 1.151 rmind
540 1.151 rmind KASSERT(mutex_owned(proc_lock));
541 1.151 rmind ss->s_count++;
542 1.151 rmind }
543 1.151 rmind
544 1.151 rmind void
545 1.151 rmind proc_sessrele(struct session *ss)
546 1.151 rmind {
547 1.151 rmind
548 1.151 rmind KASSERT(mutex_owned(proc_lock));
549 1.151 rmind /*
550 1.151 rmind * We keep the pgrp with the same id as the session in order to
551 1.151 rmind * stop a process being given the same pid. Since the pgrp holds
552 1.151 rmind * a reference to the session, it must be a 'zombie' pgrp by now.
553 1.151 rmind */
554 1.151 rmind if (--ss->s_count == 0) {
555 1.151 rmind struct pgrp *pg;
556 1.151 rmind
557 1.151 rmind pg = pg_remove(ss->s_sid);
558 1.151 rmind mutex_exit(proc_lock);
559 1.151 rmind
560 1.151 rmind kmem_free(pg, sizeof(struct pgrp));
561 1.151 rmind kmem_free(ss, sizeof(struct session));
562 1.151 rmind } else {
563 1.151 rmind mutex_exit(proc_lock);
564 1.151 rmind }
565 1.151 rmind }
566 1.151 rmind
567 1.151 rmind /*
568 1.74 junyoung * Check that the specified process group is in the session of the
569 1.60 dsl * specified process.
570 1.60 dsl * Treats -ve ids as process ids.
571 1.60 dsl * Used to validate TIOCSPGRP requests.
572 1.60 dsl */
573 1.60 dsl int
574 1.60 dsl pgid_in_session(struct proc *p, pid_t pg_id)
575 1.60 dsl {
576 1.60 dsl struct pgrp *pgrp;
577 1.101 dsl struct session *session;
578 1.107 ad int error;
579 1.101 dsl
580 1.136 ad mutex_enter(proc_lock);
581 1.60 dsl if (pg_id < 0) {
582 1.167 rmind struct proc *p1 = proc_find(-pg_id);
583 1.167 rmind if (p1 == NULL) {
584 1.167 rmind error = EINVAL;
585 1.167 rmind goto fail;
586 1.167 rmind }
587 1.60 dsl pgrp = p1->p_pgrp;
588 1.60 dsl } else {
589 1.167 rmind pgrp = pgrp_find(pg_id);
590 1.167 rmind if (pgrp == NULL) {
591 1.167 rmind error = EINVAL;
592 1.167 rmind goto fail;
593 1.167 rmind }
594 1.60 dsl }
595 1.101 dsl session = pgrp->pg_session;
596 1.167 rmind error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
597 1.167 rmind fail:
598 1.136 ad mutex_exit(proc_lock);
599 1.107 ad return error;
600 1.7 cgd }
601 1.4 andrew
602 1.1 cgd /*
603 1.148 rmind * p_inferior: is p an inferior of q?
604 1.1 cgd */
605 1.148 rmind static inline bool
606 1.148 rmind p_inferior(struct proc *p, struct proc *q)
607 1.1 cgd {
608 1.1 cgd
609 1.148 rmind KASSERT(mutex_owned(proc_lock));
610 1.148 rmind
611 1.41 sommerfe for (; p != q; p = p->p_pptr)
612 1.1 cgd if (p->p_pid == 0)
613 1.148 rmind return false;
614 1.148 rmind return true;
615 1.1 cgd }
616 1.1 cgd
617 1.1 cgd /*
618 1.167 rmind * proc_find: locate a process by the ID.
619 1.167 rmind *
620 1.167 rmind * => Must be called with proc_lock held.
621 1.1 cgd */
622 1.167 rmind proc_t *
623 1.167 rmind proc_find_raw(pid_t pid)
624 1.1 cgd {
625 1.168 chs struct pid_table *pt;
626 1.168 chs proc_t *p;
627 1.167 rmind
628 1.168 chs KASSERT(mutex_owned(proc_lock));
629 1.168 chs pt = &pid_table[pid & pid_tbl_mask];
630 1.168 chs p = pt->pt_proc;
631 1.168 chs if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
632 1.167 rmind return NULL;
633 1.167 rmind }
634 1.167 rmind return p;
635 1.167 rmind }
636 1.1 cgd
637 1.167 rmind proc_t *
638 1.167 rmind proc_find(pid_t pid)
639 1.167 rmind {
640 1.167 rmind proc_t *p;
641 1.100 ad
642 1.167 rmind p = proc_find_raw(pid);
643 1.167 rmind if (__predict_false(p == NULL)) {
644 1.167 rmind return NULL;
645 1.167 rmind }
646 1.168 chs
647 1.167 rmind /*
648 1.167 rmind * Only allow live processes to be found by PID.
649 1.167 rmind * XXX: p_stat might change, since unlocked.
650 1.167 rmind */
651 1.167 rmind if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
652 1.68 dsl return p;
653 1.68 dsl }
654 1.68 dsl return NULL;
655 1.1 cgd }
656 1.1 cgd
657 1.1 cgd /*
658 1.167 rmind * pgrp_find: locate a process group by the ID.
659 1.167 rmind *
660 1.167 rmind * => Must be called with proc_lock held.
661 1.1 cgd */
662 1.1 cgd struct pgrp *
663 1.167 rmind pgrp_find(pid_t pgid)
664 1.1 cgd {
665 1.68 dsl struct pgrp *pg;
666 1.1 cgd
667 1.167 rmind KASSERT(mutex_owned(proc_lock));
668 1.167 rmind
669 1.68 dsl pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
670 1.168 chs
671 1.61 dsl /*
672 1.167 rmind * Cannot look up a process group that only exists because the
673 1.167 rmind * session has not died yet (traditional).
674 1.61 dsl */
675 1.68 dsl if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
676 1.68 dsl return NULL;
677 1.68 dsl }
678 1.68 dsl return pg;
679 1.1 cgd }
680 1.1 cgd
681 1.61 dsl static void
682 1.61 dsl expand_pid_table(void)
683 1.1 cgd {
684 1.150 rmind size_t pt_size, tsz;
685 1.61 dsl struct pid_table *n_pt, *new_pt;
686 1.61 dsl struct proc *proc;
687 1.61 dsl struct pgrp *pgrp;
688 1.168 chs pid_t pid, rpid;
689 1.150 rmind u_int i;
690 1.168 chs uint new_pt_mask;
691 1.1 cgd
692 1.150 rmind pt_size = pid_tbl_mask + 1;
693 1.150 rmind tsz = pt_size * 2 * sizeof(struct pid_table);
694 1.150 rmind new_pt = kmem_alloc(tsz, KM_SLEEP);
695 1.168 chs new_pt_mask = pt_size * 2 - 1;
696 1.61 dsl
697 1.136 ad mutex_enter(proc_lock);
698 1.61 dsl if (pt_size != pid_tbl_mask + 1) {
699 1.61 dsl /* Another process beat us to it... */
700 1.136 ad mutex_exit(proc_lock);
701 1.150 rmind kmem_free(new_pt, tsz);
702 1.61 dsl return;
703 1.61 dsl }
704 1.72 junyoung
705 1.61 dsl /*
706 1.61 dsl * Copy entries from old table into new one.
707 1.61 dsl * If 'pid' is 'odd' we need to place in the upper half,
708 1.61 dsl * even pid's to the lower half.
709 1.61 dsl * Free items stay in the low half so we don't have to
710 1.61 dsl * fixup the reference to them.
711 1.61 dsl * We stuff free items on the front of the freelist
712 1.61 dsl * because we can't write to unmodified entries.
713 1.74 junyoung * Processing the table backwards maintains a semblance
714 1.168 chs * of issuing pid numbers that increase with time.
715 1.61 dsl */
716 1.61 dsl i = pt_size - 1;
717 1.61 dsl n_pt = new_pt + i;
718 1.61 dsl for (; ; i--, n_pt--) {
719 1.61 dsl proc = pid_table[i].pt_proc;
720 1.61 dsl pgrp = pid_table[i].pt_pgrp;
721 1.61 dsl if (!P_VALID(proc)) {
722 1.61 dsl /* Up 'use count' so that link is valid */
723 1.61 dsl pid = (P_NEXT(proc) + pt_size) & ~pt_size;
724 1.168 chs rpid = 0;
725 1.61 dsl proc = P_FREE(pid);
726 1.61 dsl if (pgrp)
727 1.61 dsl pid = pgrp->pg_id;
728 1.168 chs } else {
729 1.168 chs pid = pid_table[i].pt_pid;
730 1.168 chs rpid = pid;
731 1.168 chs }
732 1.72 junyoung
733 1.61 dsl /* Save entry in appropriate half of table */
734 1.61 dsl n_pt[pid & pt_size].pt_proc = proc;
735 1.61 dsl n_pt[pid & pt_size].pt_pgrp = pgrp;
736 1.168 chs n_pt[pid & pt_size].pt_pid = rpid;
737 1.61 dsl
738 1.61 dsl /* Put other piece on start of free list */
739 1.61 dsl pid = (pid ^ pt_size) & ~pid_tbl_mask;
740 1.61 dsl n_pt[pid & pt_size].pt_proc =
741 1.168 chs P_FREE((pid & ~pt_size) | next_free_pt);
742 1.61 dsl n_pt[pid & pt_size].pt_pgrp = 0;
743 1.168 chs n_pt[pid & pt_size].pt_pid = 0;
744 1.168 chs
745 1.61 dsl next_free_pt = i | (pid & pt_size);
746 1.61 dsl if (i == 0)
747 1.61 dsl break;
748 1.61 dsl }
749 1.61 dsl
750 1.150 rmind /* Save old table size and switch tables */
751 1.150 rmind tsz = pt_size * sizeof(struct pid_table);
752 1.61 dsl n_pt = pid_table;
753 1.61 dsl pid_table = new_pt;
754 1.168 chs pid_tbl_mask = new_pt_mask;
755 1.61 dsl
756 1.61 dsl /*
757 1.61 dsl * pid_max starts as PID_MAX (= 30000), once we have 16384
758 1.61 dsl * allocated pids we need it to be larger!
759 1.61 dsl */
760 1.61 dsl if (pid_tbl_mask > PID_MAX) {
761 1.61 dsl pid_max = pid_tbl_mask * 2 + 1;
762 1.61 dsl pid_alloc_lim |= pid_alloc_lim << 1;
763 1.61 dsl } else
764 1.61 dsl pid_alloc_lim <<= 1; /* doubles number of free slots... */
765 1.61 dsl
766 1.136 ad mutex_exit(proc_lock);
767 1.150 rmind kmem_free(n_pt, tsz);
768 1.61 dsl }
769 1.61 dsl
770 1.61 dsl struct proc *
771 1.61 dsl proc_alloc(void)
772 1.61 dsl {
773 1.61 dsl struct proc *p;
774 1.61 dsl
775 1.128 ad p = pool_cache_get(proc_cache, PR_WAITOK);
776 1.61 dsl p->p_stat = SIDL; /* protect against others */
777 1.96 christos proc_initspecific(p);
778 1.164 rmind kdtrace_proc_ctor(NULL, p);
779 1.168 chs p->p_pid = -1;
780 1.168 chs proc_alloc_pid(p);
781 1.168 chs return p;
782 1.168 chs }
783 1.168 chs
784 1.183 yamt /*
785 1.183 yamt * proc_alloc_pid: allocate PID and record the given proc 'p' so that
786 1.183 yamt * proc_find_raw() can find it by the PID.
787 1.183 yamt */
788 1.183 yamt
789 1.168 chs pid_t
790 1.168 chs proc_alloc_pid(struct proc *p)
791 1.168 chs {
792 1.168 chs struct pid_table *pt;
793 1.168 chs pid_t pid;
794 1.168 chs int nxt;
795 1.61 dsl
796 1.61 dsl for (;;expand_pid_table()) {
797 1.61 dsl if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
798 1.61 dsl /* ensure pids cycle through 2000+ values */
799 1.61 dsl continue;
800 1.136 ad mutex_enter(proc_lock);
801 1.61 dsl pt = &pid_table[next_free_pt];
802 1.1 cgd #ifdef DIAGNOSTIC
803 1.63 christos if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
804 1.61 dsl panic("proc_alloc: slot busy");
805 1.1 cgd #endif
806 1.61 dsl nxt = P_NEXT(pt->pt_proc);
807 1.61 dsl if (nxt & pid_tbl_mask)
808 1.61 dsl break;
809 1.61 dsl /* Table full - expand (NB last entry not used....) */
810 1.136 ad mutex_exit(proc_lock);
811 1.61 dsl }
812 1.61 dsl
813 1.61 dsl /* pid is 'saved use count' + 'size' + entry */
814 1.61 dsl pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
815 1.61 dsl if ((uint)pid > (uint)pid_max)
816 1.61 dsl pid &= pid_tbl_mask;
817 1.61 dsl next_free_pt = nxt & pid_tbl_mask;
818 1.61 dsl
819 1.61 dsl /* Grab table slot */
820 1.61 dsl pt->pt_proc = p;
821 1.168 chs
822 1.168 chs KASSERT(pt->pt_pid == 0);
823 1.168 chs pt->pt_pid = pid;
824 1.168 chs if (p->p_pid == -1) {
825 1.168 chs p->p_pid = pid;
826 1.168 chs }
827 1.61 dsl pid_alloc_cnt++;
828 1.136 ad mutex_exit(proc_lock);
829 1.61 dsl
830 1.168 chs return pid;
831 1.61 dsl }
832 1.61 dsl
833 1.61 dsl /*
834 1.118 ad * Free a process id - called from proc_free (in kern_exit.c)
835 1.100 ad *
836 1.136 ad * Called with the proc_lock held.
837 1.61 dsl */
838 1.61 dsl void
839 1.168 chs proc_free_pid(pid_t pid)
840 1.61 dsl {
841 1.61 dsl struct pid_table *pt;
842 1.61 dsl
843 1.136 ad KASSERT(mutex_owned(proc_lock));
844 1.61 dsl
845 1.61 dsl pt = &pid_table[pid & pid_tbl_mask];
846 1.168 chs
847 1.61 dsl /* save pid use count in slot */
848 1.61 dsl pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
849 1.168 chs KASSERT(pt->pt_pid == pid);
850 1.168 chs pt->pt_pid = 0;
851 1.61 dsl
852 1.61 dsl if (pt->pt_pgrp == NULL) {
853 1.61 dsl /* link last freed entry onto ours */
854 1.61 dsl pid &= pid_tbl_mask;
855 1.61 dsl pt = &pid_table[last_free_pt];
856 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
857 1.168 chs pt->pt_pid = 0;
858 1.61 dsl last_free_pt = pid;
859 1.61 dsl pid_alloc_cnt--;
860 1.61 dsl }
861 1.61 dsl
862 1.126 ad atomic_dec_uint(&nprocs);
863 1.61 dsl }
864 1.61 dsl
865 1.128 ad void
866 1.128 ad proc_free_mem(struct proc *p)
867 1.128 ad {
868 1.128 ad
869 1.160 darran kdtrace_proc_dtor(NULL, p);
870 1.128 ad pool_cache_put(proc_cache, p);
871 1.128 ad }
872 1.128 ad
873 1.61 dsl /*
874 1.151 rmind * proc_enterpgrp: move p to a new or existing process group (and session).
875 1.61 dsl *
876 1.61 dsl * If we are creating a new pgrp, the pgid should equal
877 1.72 junyoung * the calling process' pid.
878 1.61 dsl * If is only valid to enter a process group that is in the session
879 1.61 dsl * of the process.
880 1.61 dsl * Also mksess should only be set if we are creating a process group
881 1.61 dsl *
882 1.181 martin * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
883 1.61 dsl */
884 1.61 dsl int
885 1.151 rmind proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
886 1.61 dsl {
887 1.61 dsl struct pgrp *new_pgrp, *pgrp;
888 1.61 dsl struct session *sess;
889 1.100 ad struct proc *p;
890 1.61 dsl int rval;
891 1.61 dsl pid_t pg_id = NO_PGID;
892 1.61 dsl
893 1.151 rmind sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
894 1.61 dsl
895 1.107 ad /* Allocate data areas we might need before doing any validity checks */
896 1.136 ad mutex_enter(proc_lock); /* Because pid_table might change */
897 1.107 ad if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
898 1.136 ad mutex_exit(proc_lock);
899 1.131 ad new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
900 1.136 ad mutex_enter(proc_lock);
901 1.107 ad } else
902 1.107 ad new_pgrp = NULL;
903 1.61 dsl rval = EPERM; /* most common error (to save typing) */
904 1.61 dsl
905 1.61 dsl /* Check pgrp exists or can be created */
906 1.61 dsl pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
907 1.61 dsl if (pgrp != NULL && pgrp->pg_id != pgid)
908 1.61 dsl goto done;
909 1.61 dsl
910 1.61 dsl /* Can only set another process under restricted circumstances. */
911 1.100 ad if (pid != curp->p_pid) {
912 1.167 rmind /* Must exist and be one of our children... */
913 1.167 rmind p = proc_find(pid);
914 1.167 rmind if (p == NULL || !p_inferior(p, curp)) {
915 1.61 dsl rval = ESRCH;
916 1.61 dsl goto done;
917 1.61 dsl }
918 1.61 dsl /* ... in the same session... */
919 1.61 dsl if (sess != NULL || p->p_session != curp->p_session)
920 1.61 dsl goto done;
921 1.61 dsl /* ... existing pgid must be in same session ... */
922 1.61 dsl if (pgrp != NULL && pgrp->pg_session != p->p_session)
923 1.61 dsl goto done;
924 1.61 dsl /* ... and not done an exec. */
925 1.102 pavel if (p->p_flag & PK_EXEC) {
926 1.61 dsl rval = EACCES;
927 1.61 dsl goto done;
928 1.49 enami }
929 1.100 ad } else {
930 1.100 ad /* ... setsid() cannot re-enter a pgrp */
931 1.100 ad if (mksess && (curp->p_pgid == curp->p_pid ||
932 1.167 rmind pgrp_find(curp->p_pid)))
933 1.100 ad goto done;
934 1.100 ad p = curp;
935 1.61 dsl }
936 1.1 cgd
937 1.61 dsl /* Changing the process group/session of a session
938 1.61 dsl leader is definitely off limits. */
939 1.61 dsl if (SESS_LEADER(p)) {
940 1.61 dsl if (sess == NULL && p->p_pgrp == pgrp)
941 1.61 dsl /* unless it's a definite noop */
942 1.61 dsl rval = 0;
943 1.61 dsl goto done;
944 1.61 dsl }
945 1.61 dsl
946 1.61 dsl /* Can only create a process group with id of process */
947 1.61 dsl if (pgrp == NULL && pgid != pid)
948 1.61 dsl goto done;
949 1.61 dsl
950 1.61 dsl /* Can only create a session if creating pgrp */
951 1.61 dsl if (sess != NULL && pgrp != NULL)
952 1.61 dsl goto done;
953 1.61 dsl
954 1.61 dsl /* Check we allocated memory for a pgrp... */
955 1.61 dsl if (pgrp == NULL && new_pgrp == NULL)
956 1.61 dsl goto done;
957 1.61 dsl
958 1.61 dsl /* Don't attach to 'zombie' pgrp */
959 1.61 dsl if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
960 1.61 dsl goto done;
961 1.61 dsl
962 1.61 dsl /* Expect to succeed now */
963 1.61 dsl rval = 0;
964 1.61 dsl
965 1.61 dsl if (pgrp == p->p_pgrp)
966 1.61 dsl /* nothing to do */
967 1.61 dsl goto done;
968 1.61 dsl
969 1.61 dsl /* Ok all setup, link up required structures */
970 1.100 ad
971 1.61 dsl if (pgrp == NULL) {
972 1.61 dsl pgrp = new_pgrp;
973 1.141 yamt new_pgrp = NULL;
974 1.61 dsl if (sess != NULL) {
975 1.21 thorpej sess->s_sid = p->p_pid;
976 1.1 cgd sess->s_leader = p;
977 1.1 cgd sess->s_count = 1;
978 1.1 cgd sess->s_ttyvp = NULL;
979 1.1 cgd sess->s_ttyp = NULL;
980 1.58 dsl sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
981 1.25 perry memcpy(sess->s_login, p->p_session->s_login,
982 1.1 cgd sizeof(sess->s_login));
983 1.100 ad p->p_lflag &= ~PL_CONTROLT;
984 1.1 cgd } else {
985 1.61 dsl sess = p->p_pgrp->pg_session;
986 1.151 rmind proc_sesshold(sess);
987 1.1 cgd }
988 1.61 dsl pgrp->pg_session = sess;
989 1.141 yamt sess = NULL;
990 1.61 dsl
991 1.1 cgd pgrp->pg_id = pgid;
992 1.10 mycroft LIST_INIT(&pgrp->pg_members);
993 1.61 dsl #ifdef DIAGNOSTIC
994 1.63 christos if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
995 1.61 dsl panic("enterpgrp: pgrp table slot in use");
996 1.63 christos if (__predict_false(mksess && p != curp))
997 1.63 christos panic("enterpgrp: mksession and p != curproc");
998 1.61 dsl #endif
999 1.61 dsl pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
1000 1.1 cgd pgrp->pg_jobc = 0;
1001 1.136 ad }
1002 1.1 cgd
1003 1.1 cgd /*
1004 1.1 cgd * Adjust eligibility of affected pgrps to participate in job control.
1005 1.1 cgd * Increment eligibility counts before decrementing, otherwise we
1006 1.1 cgd * could reach 0 spuriously during the first call.
1007 1.1 cgd */
1008 1.1 cgd fixjobc(p, pgrp, 1);
1009 1.1 cgd fixjobc(p, p->p_pgrp, 0);
1010 1.1 cgd
1011 1.139 ad /* Interlock with ttread(). */
1012 1.139 ad mutex_spin_enter(&tty_lock);
1013 1.139 ad
1014 1.100 ad /* Move process to requested group. */
1015 1.10 mycroft LIST_REMOVE(p, p_pglist);
1016 1.52 matt if (LIST_EMPTY(&p->p_pgrp->pg_members))
1017 1.61 dsl /* defer delete until we've dumped the lock */
1018 1.61 dsl pg_id = p->p_pgrp->pg_id;
1019 1.1 cgd p->p_pgrp = pgrp;
1020 1.10 mycroft LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
1021 1.100 ad
1022 1.100 ad /* Done with the swap; we can release the tty mutex. */
1023 1.128 ad mutex_spin_exit(&tty_lock);
1024 1.128 ad
1025 1.61 dsl done:
1026 1.151 rmind if (pg_id != NO_PGID) {
1027 1.151 rmind /* Releases proc_lock. */
1028 1.100 ad pg_delete(pg_id);
1029 1.151 rmind } else {
1030 1.151 rmind mutex_exit(proc_lock);
1031 1.151 rmind }
1032 1.61 dsl if (sess != NULL)
1033 1.131 ad kmem_free(sess, sizeof(*sess));
1034 1.61 dsl if (new_pgrp != NULL)
1035 1.131 ad kmem_free(new_pgrp, sizeof(*new_pgrp));
1036 1.63 christos #ifdef DEBUG_PGRP
1037 1.63 christos if (__predict_false(rval))
1038 1.61 dsl printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1039 1.61 dsl pid, pgid, mksess, curp->p_pid, rval);
1040 1.61 dsl #endif
1041 1.61 dsl return rval;
1042 1.1 cgd }
1043 1.1 cgd
1044 1.1 cgd /*
1045 1.151 rmind * proc_leavepgrp: remove a process from its process group.
1046 1.151 rmind * => must be called with the proc_lock held, which will be released;
1047 1.1 cgd */
1048 1.100 ad void
1049 1.151 rmind proc_leavepgrp(struct proc *p)
1050 1.1 cgd {
1051 1.61 dsl struct pgrp *pgrp;
1052 1.1 cgd
1053 1.136 ad KASSERT(mutex_owned(proc_lock));
1054 1.100 ad
1055 1.139 ad /* Interlock with ttread() */
1056 1.128 ad mutex_spin_enter(&tty_lock);
1057 1.61 dsl pgrp = p->p_pgrp;
1058 1.10 mycroft LIST_REMOVE(p, p_pglist);
1059 1.94 ad p->p_pgrp = NULL;
1060 1.128 ad mutex_spin_exit(&tty_lock);
1061 1.100 ad
1062 1.151 rmind if (LIST_EMPTY(&pgrp->pg_members)) {
1063 1.151 rmind /* Releases proc_lock. */
1064 1.100 ad pg_delete(pgrp->pg_id);
1065 1.151 rmind } else {
1066 1.151 rmind mutex_exit(proc_lock);
1067 1.151 rmind }
1068 1.61 dsl }
1069 1.61 dsl
1070 1.100 ad /*
1071 1.151 rmind * pg_remove: remove a process group from the table.
1072 1.151 rmind * => must be called with the proc_lock held;
1073 1.151 rmind * => returns process group to free;
1074 1.100 ad */
1075 1.151 rmind static struct pgrp *
1076 1.151 rmind pg_remove(pid_t pg_id)
1077 1.61 dsl {
1078 1.61 dsl struct pgrp *pgrp;
1079 1.61 dsl struct pid_table *pt;
1080 1.61 dsl
1081 1.136 ad KASSERT(mutex_owned(proc_lock));
1082 1.100 ad
1083 1.61 dsl pt = &pid_table[pg_id & pid_tbl_mask];
1084 1.61 dsl pgrp = pt->pt_pgrp;
1085 1.151 rmind
1086 1.151 rmind KASSERT(pgrp != NULL);
1087 1.151 rmind KASSERT(pgrp->pg_id == pg_id);
1088 1.151 rmind KASSERT(LIST_EMPTY(&pgrp->pg_members));
1089 1.151 rmind
1090 1.151 rmind pt->pt_pgrp = NULL;
1091 1.61 dsl
1092 1.61 dsl if (!P_VALID(pt->pt_proc)) {
1093 1.151 rmind /* Orphaned pgrp, put slot onto free list. */
1094 1.151 rmind KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
1095 1.61 dsl pg_id &= pid_tbl_mask;
1096 1.61 dsl pt = &pid_table[last_free_pt];
1097 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
1098 1.168 chs KASSERT(pt->pt_pid == 0);
1099 1.61 dsl last_free_pt = pg_id;
1100 1.61 dsl pid_alloc_cnt--;
1101 1.61 dsl }
1102 1.151 rmind return pgrp;
1103 1.1 cgd }
1104 1.1 cgd
1105 1.1 cgd /*
1106 1.151 rmind * pg_delete: delete and free a process group.
1107 1.151 rmind * => must be called with the proc_lock held, which will be released.
1108 1.1 cgd */
1109 1.61 dsl static void
1110 1.61 dsl pg_delete(pid_t pg_id)
1111 1.61 dsl {
1112 1.151 rmind struct pgrp *pg;
1113 1.61 dsl struct tty *ttyp;
1114 1.61 dsl struct session *ss;
1115 1.100 ad
1116 1.136 ad KASSERT(mutex_owned(proc_lock));
1117 1.61 dsl
1118 1.151 rmind pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1119 1.151 rmind if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1120 1.151 rmind mutex_exit(proc_lock);
1121 1.61 dsl return;
1122 1.151 rmind }
1123 1.61 dsl
1124 1.151 rmind ss = pg->pg_session;
1125 1.71 pk
1126 1.61 dsl /* Remove reference (if any) from tty to this process group */
1127 1.128 ad mutex_spin_enter(&tty_lock);
1128 1.71 pk ttyp = ss->s_ttyp;
1129 1.151 rmind if (ttyp != NULL && ttyp->t_pgrp == pg) {
1130 1.61 dsl ttyp->t_pgrp = NULL;
1131 1.151 rmind KASSERT(ttyp->t_session == ss);
1132 1.71 pk }
1133 1.128 ad mutex_spin_exit(&tty_lock);
1134 1.61 dsl
1135 1.71 pk /*
1136 1.151 rmind * The leading process group in a session is freed by proc_sessrele(),
1137 1.151 rmind * if last reference. Note: proc_sessrele() releases proc_lock.
1138 1.71 pk */
1139 1.151 rmind pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1140 1.151 rmind proc_sessrele(ss);
1141 1.61 dsl
1142 1.151 rmind if (pg != NULL) {
1143 1.151 rmind /* Free it, if was not done by proc_sessrele(). */
1144 1.151 rmind kmem_free(pg, sizeof(struct pgrp));
1145 1.151 rmind }
1146 1.1 cgd }
1147 1.1 cgd
1148 1.1 cgd /*
1149 1.1 cgd * Adjust pgrp jobc counters when specified process changes process group.
1150 1.1 cgd * We count the number of processes in each process group that "qualify"
1151 1.1 cgd * the group for terminal job control (those with a parent in a different
1152 1.1 cgd * process group of the same session). If that count reaches zero, the
1153 1.1 cgd * process group becomes orphaned. Check both the specified process'
1154 1.1 cgd * process group and that of its children.
1155 1.1 cgd * entering == 0 => p is leaving specified group.
1156 1.1 cgd * entering == 1 => p is entering specified group.
1157 1.68 dsl *
1158 1.136 ad * Call with proc_lock held.
1159 1.1 cgd */
1160 1.4 andrew void
1161 1.59 dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1162 1.1 cgd {
1163 1.39 augustss struct pgrp *hispgrp;
1164 1.39 augustss struct session *mysession = pgrp->pg_session;
1165 1.68 dsl struct proc *child;
1166 1.1 cgd
1167 1.136 ad KASSERT(mutex_owned(proc_lock));
1168 1.100 ad
1169 1.1 cgd /*
1170 1.1 cgd * Check p's parent to see whether p qualifies its own process
1171 1.1 cgd * group; if so, adjust count for p's process group.
1172 1.1 cgd */
1173 1.68 dsl hispgrp = p->p_pptr->p_pgrp;
1174 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1175 1.100 ad if (entering) {
1176 1.1 cgd pgrp->pg_jobc++;
1177 1.136 ad p->p_lflag &= ~PL_ORPHANPG;
1178 1.100 ad } else if (--pgrp->pg_jobc == 0)
1179 1.1 cgd orphanpg(pgrp);
1180 1.26 thorpej }
1181 1.1 cgd
1182 1.1 cgd /*
1183 1.1 cgd * Check this process' children to see whether they qualify
1184 1.1 cgd * their process groups; if so, adjust counts for children's
1185 1.1 cgd * process groups.
1186 1.1 cgd */
1187 1.68 dsl LIST_FOREACH(child, &p->p_children, p_sibling) {
1188 1.68 dsl hispgrp = child->p_pgrp;
1189 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1190 1.68 dsl !P_ZOMBIE(child)) {
1191 1.100 ad if (entering) {
1192 1.136 ad child->p_lflag &= ~PL_ORPHANPG;
1193 1.1 cgd hispgrp->pg_jobc++;
1194 1.100 ad } else if (--hispgrp->pg_jobc == 0)
1195 1.1 cgd orphanpg(hispgrp);
1196 1.26 thorpej }
1197 1.26 thorpej }
1198 1.1 cgd }
1199 1.1 cgd
1200 1.72 junyoung /*
1201 1.1 cgd * A process group has become orphaned;
1202 1.1 cgd * if there are any stopped processes in the group,
1203 1.1 cgd * hang-up all process in that group.
1204 1.68 dsl *
1205 1.136 ad * Call with proc_lock held.
1206 1.1 cgd */
1207 1.4 andrew static void
1208 1.59 dsl orphanpg(struct pgrp *pg)
1209 1.1 cgd {
1210 1.39 augustss struct proc *p;
1211 1.100 ad
1212 1.136 ad KASSERT(mutex_owned(proc_lock));
1213 1.100 ad
1214 1.52 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1215 1.1 cgd if (p->p_stat == SSTOP) {
1216 1.136 ad p->p_lflag |= PL_ORPHANPG;
1217 1.100 ad psignal(p, SIGHUP);
1218 1.100 ad psignal(p, SIGCONT);
1219 1.35 bouyer }
1220 1.35 bouyer }
1221 1.35 bouyer }
1222 1.1 cgd
1223 1.61 dsl #ifdef DDB
1224 1.61 dsl #include <ddb/db_output.h>
1225 1.61 dsl void pidtbl_dump(void);
1226 1.14 christos void
1227 1.61 dsl pidtbl_dump(void)
1228 1.1 cgd {
1229 1.61 dsl struct pid_table *pt;
1230 1.61 dsl struct proc *p;
1231 1.39 augustss struct pgrp *pgrp;
1232 1.61 dsl int id;
1233 1.1 cgd
1234 1.61 dsl db_printf("pid table %p size %x, next %x, last %x\n",
1235 1.61 dsl pid_table, pid_tbl_mask+1,
1236 1.61 dsl next_free_pt, last_free_pt);
1237 1.61 dsl for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1238 1.61 dsl p = pt->pt_proc;
1239 1.61 dsl if (!P_VALID(p) && !pt->pt_pgrp)
1240 1.61 dsl continue;
1241 1.61 dsl db_printf(" id %x: ", id);
1242 1.61 dsl if (P_VALID(p))
1243 1.168 chs db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1244 1.168 chs pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1245 1.61 dsl else
1246 1.61 dsl db_printf("next %x use %x\n",
1247 1.61 dsl P_NEXT(p) & pid_tbl_mask,
1248 1.61 dsl P_NEXT(p) & ~pid_tbl_mask);
1249 1.61 dsl if ((pgrp = pt->pt_pgrp)) {
1250 1.61 dsl db_printf("\tsession %p, sid %d, count %d, login %s\n",
1251 1.61 dsl pgrp->pg_session, pgrp->pg_session->s_sid,
1252 1.61 dsl pgrp->pg_session->s_count,
1253 1.61 dsl pgrp->pg_session->s_login);
1254 1.61 dsl db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1255 1.61 dsl pgrp, pgrp->pg_id, pgrp->pg_jobc,
1256 1.135 yamt LIST_FIRST(&pgrp->pg_members));
1257 1.135 yamt LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1258 1.72 junyoung db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1259 1.61 dsl p->p_pid, p, p->p_pgrp, p->p_comm);
1260 1.10 mycroft }
1261 1.1 cgd }
1262 1.1 cgd }
1263 1.1 cgd }
1264 1.61 dsl #endif /* DDB */
1265 1.48 yamt
1266 1.48 yamt #ifdef KSTACK_CHECK_MAGIC
1267 1.48 yamt
1268 1.48 yamt #define KSTACK_MAGIC 0xdeadbeaf
1269 1.48 yamt
1270 1.48 yamt /* XXX should be per process basis? */
1271 1.149 rmind static int kstackleftmin = KSTACK_SIZE;
1272 1.149 rmind static int kstackleftthres = KSTACK_SIZE / 8;
1273 1.48 yamt
1274 1.48 yamt void
1275 1.56 yamt kstack_setup_magic(const struct lwp *l)
1276 1.48 yamt {
1277 1.85 perry uint32_t *ip;
1278 1.85 perry uint32_t const *end;
1279 1.48 yamt
1280 1.56 yamt KASSERT(l != NULL);
1281 1.56 yamt KASSERT(l != &lwp0);
1282 1.48 yamt
1283 1.48 yamt /*
1284 1.48 yamt * fill all the stack with magic number
1285 1.48 yamt * so that later modification on it can be detected.
1286 1.48 yamt */
1287 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1288 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1289 1.48 yamt for (; ip < end; ip++) {
1290 1.48 yamt *ip = KSTACK_MAGIC;
1291 1.48 yamt }
1292 1.48 yamt }
1293 1.48 yamt
1294 1.48 yamt void
1295 1.56 yamt kstack_check_magic(const struct lwp *l)
1296 1.48 yamt {
1297 1.85 perry uint32_t const *ip, *end;
1298 1.48 yamt int stackleft;
1299 1.48 yamt
1300 1.56 yamt KASSERT(l != NULL);
1301 1.48 yamt
1302 1.48 yamt /* don't check proc0 */ /*XXX*/
1303 1.56 yamt if (l == &lwp0)
1304 1.48 yamt return;
1305 1.48 yamt
1306 1.48 yamt #ifdef __MACHINE_STACK_GROWS_UP
1307 1.48 yamt /* stack grows upwards (eg. hppa) */
1308 1.106 christos ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1309 1.85 perry end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1310 1.48 yamt for (ip--; ip >= end; ip--)
1311 1.48 yamt if (*ip != KSTACK_MAGIC)
1312 1.48 yamt break;
1313 1.72 junyoung
1314 1.106 christos stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1315 1.48 yamt #else /* __MACHINE_STACK_GROWS_UP */
1316 1.48 yamt /* stack grows downwards (eg. i386) */
1317 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1318 1.114 dyoung end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1319 1.48 yamt for (; ip < end; ip++)
1320 1.48 yamt if (*ip != KSTACK_MAGIC)
1321 1.48 yamt break;
1322 1.48 yamt
1323 1.93 christos stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1324 1.48 yamt #endif /* __MACHINE_STACK_GROWS_UP */
1325 1.48 yamt
1326 1.48 yamt if (kstackleftmin > stackleft) {
1327 1.48 yamt kstackleftmin = stackleft;
1328 1.48 yamt if (stackleft < kstackleftthres)
1329 1.56 yamt printf("warning: kernel stack left %d bytes"
1330 1.56 yamt "(pid %u:lid %u)\n", stackleft,
1331 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1332 1.48 yamt }
1333 1.48 yamt
1334 1.48 yamt if (stackleft <= 0) {
1335 1.56 yamt panic("magic on the top of kernel stack changed for "
1336 1.56 yamt "pid %u, lid %u: maybe kernel stack overflow",
1337 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1338 1.48 yamt }
1339 1.48 yamt }
1340 1.50 enami #endif /* KSTACK_CHECK_MAGIC */
1341 1.79 yamt
1342 1.79 yamt int
1343 1.79 yamt proclist_foreach_call(struct proclist *list,
1344 1.79 yamt int (*callback)(struct proc *, void *arg), void *arg)
1345 1.79 yamt {
1346 1.79 yamt struct proc marker;
1347 1.79 yamt struct proc *p;
1348 1.79 yamt int ret = 0;
1349 1.79 yamt
1350 1.102 pavel marker.p_flag = PK_MARKER;
1351 1.136 ad mutex_enter(proc_lock);
1352 1.79 yamt for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1353 1.102 pavel if (p->p_flag & PK_MARKER) {
1354 1.79 yamt p = LIST_NEXT(p, p_list);
1355 1.79 yamt continue;
1356 1.79 yamt }
1357 1.79 yamt LIST_INSERT_AFTER(p, &marker, p_list);
1358 1.79 yamt ret = (*callback)(p, arg);
1359 1.136 ad KASSERT(mutex_owned(proc_lock));
1360 1.79 yamt p = LIST_NEXT(&marker, p_list);
1361 1.79 yamt LIST_REMOVE(&marker, p_list);
1362 1.79 yamt }
1363 1.136 ad mutex_exit(proc_lock);
1364 1.79 yamt
1365 1.79 yamt return ret;
1366 1.79 yamt }
1367 1.86 yamt
1368 1.86 yamt int
1369 1.86 yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1370 1.86 yamt {
1371 1.86 yamt
1372 1.86 yamt /* XXXCDC: how should locking work here? */
1373 1.86 yamt
1374 1.87 yamt /* curproc exception is for coredump. */
1375 1.87 yamt
1376 1.100 ad if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1377 1.86 yamt (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1378 1.86 yamt return EFAULT;
1379 1.86 yamt }
1380 1.86 yamt
1381 1.86 yamt uvmspace_addref(p->p_vmspace);
1382 1.86 yamt *vm = p->p_vmspace;
1383 1.86 yamt
1384 1.86 yamt return 0;
1385 1.86 yamt }
1386 1.94 ad
1387 1.94 ad /*
1388 1.94 ad * Acquire a write lock on the process credential.
1389 1.94 ad */
1390 1.94 ad void
1391 1.100 ad proc_crmod_enter(void)
1392 1.94 ad {
1393 1.100 ad struct lwp *l = curlwp;
1394 1.100 ad struct proc *p = l->l_proc;
1395 1.100 ad kauth_cred_t oc;
1396 1.94 ad
1397 1.117 dsl /* Reset what needs to be reset in plimit. */
1398 1.117 dsl if (p->p_limit->pl_corename != defcorename) {
1399 1.178 rmind lim_setcorename(p, defcorename, 0);
1400 1.117 dsl }
1401 1.117 dsl
1402 1.137 ad mutex_enter(p->p_lock);
1403 1.100 ad
1404 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1405 1.100 ad if ((oc = l->l_cred) != p->p_cred) {
1406 1.100 ad kauth_cred_hold(p->p_cred);
1407 1.100 ad l->l_cred = p->p_cred;
1408 1.100 ad kauth_cred_free(oc);
1409 1.100 ad }
1410 1.94 ad }
1411 1.94 ad
1412 1.94 ad /*
1413 1.100 ad * Set in a new process credential, and drop the write lock. The credential
1414 1.100 ad * must have a reference already. Optionally, free a no-longer required
1415 1.100 ad * credential. The scheduler also needs to inspect p_cred, so we also
1416 1.100 ad * briefly acquire the sched state mutex.
1417 1.94 ad */
1418 1.94 ad void
1419 1.104 thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1420 1.94 ad {
1421 1.133 ad struct lwp *l = curlwp, *l2;
1422 1.100 ad struct proc *p = l->l_proc;
1423 1.100 ad kauth_cred_t oc;
1424 1.100 ad
1425 1.137 ad KASSERT(mutex_owned(p->p_lock));
1426 1.137 ad
1427 1.100 ad /* Is there a new credential to set in? */
1428 1.100 ad if (scred != NULL) {
1429 1.100 ad p->p_cred = scred;
1430 1.133 ad LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1431 1.133 ad if (l2 != l)
1432 1.133 ad l2->l_prflag |= LPR_CRMOD;
1433 1.133 ad }
1434 1.100 ad
1435 1.100 ad /* Ensure the LWP cached credentials are up to date. */
1436 1.100 ad if ((oc = l->l_cred) != scred) {
1437 1.100 ad kauth_cred_hold(scred);
1438 1.100 ad l->l_cred = scred;
1439 1.100 ad }
1440 1.100 ad } else
1441 1.100 ad oc = NULL; /* XXXgcc */
1442 1.100 ad
1443 1.100 ad if (sugid) {
1444 1.100 ad /*
1445 1.100 ad * Mark process as having changed credentials, stops
1446 1.100 ad * tracing etc.
1447 1.100 ad */
1448 1.102 pavel p->p_flag |= PK_SUGID;
1449 1.100 ad }
1450 1.94 ad
1451 1.137 ad mutex_exit(p->p_lock);
1452 1.100 ad
1453 1.100 ad /* If there is a credential to be released, free it now. */
1454 1.100 ad if (fcred != NULL) {
1455 1.100 ad KASSERT(scred != NULL);
1456 1.94 ad kauth_cred_free(fcred);
1457 1.100 ad if (oc != scred)
1458 1.100 ad kauth_cred_free(oc);
1459 1.100 ad }
1460 1.100 ad }
1461 1.100 ad
1462 1.100 ad /*
1463 1.95 thorpej * proc_specific_key_create --
1464 1.95 thorpej * Create a key for subsystem proc-specific data.
1465 1.95 thorpej */
1466 1.95 thorpej int
1467 1.95 thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1468 1.95 thorpej {
1469 1.95 thorpej
1470 1.98 thorpej return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1471 1.95 thorpej }
1472 1.95 thorpej
1473 1.95 thorpej /*
1474 1.95 thorpej * proc_specific_key_delete --
1475 1.95 thorpej * Delete a key for subsystem proc-specific data.
1476 1.95 thorpej */
1477 1.95 thorpej void
1478 1.95 thorpej proc_specific_key_delete(specificdata_key_t key)
1479 1.95 thorpej {
1480 1.95 thorpej
1481 1.95 thorpej specificdata_key_delete(proc_specificdata_domain, key);
1482 1.95 thorpej }
1483 1.95 thorpej
1484 1.98 thorpej /*
1485 1.98 thorpej * proc_initspecific --
1486 1.98 thorpej * Initialize a proc's specificdata container.
1487 1.98 thorpej */
1488 1.96 christos void
1489 1.96 christos proc_initspecific(struct proc *p)
1490 1.96 christos {
1491 1.189 martin int error __diagused;
1492 1.98 thorpej
1493 1.96 christos error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1494 1.96 christos KASSERT(error == 0);
1495 1.96 christos }
1496 1.96 christos
1497 1.95 thorpej /*
1498 1.98 thorpej * proc_finispecific --
1499 1.98 thorpej * Finalize a proc's specificdata container.
1500 1.98 thorpej */
1501 1.98 thorpej void
1502 1.98 thorpej proc_finispecific(struct proc *p)
1503 1.98 thorpej {
1504 1.98 thorpej
1505 1.98 thorpej specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1506 1.98 thorpej }
1507 1.98 thorpej
1508 1.98 thorpej /*
1509 1.95 thorpej * proc_getspecific --
1510 1.95 thorpej * Return proc-specific data corresponding to the specified key.
1511 1.95 thorpej */
1512 1.95 thorpej void *
1513 1.95 thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
1514 1.95 thorpej {
1515 1.95 thorpej
1516 1.95 thorpej return (specificdata_getspecific(proc_specificdata_domain,
1517 1.95 thorpej &p->p_specdataref, key));
1518 1.95 thorpej }
1519 1.95 thorpej
1520 1.95 thorpej /*
1521 1.95 thorpej * proc_setspecific --
1522 1.95 thorpej * Set proc-specific data corresponding to the specified key.
1523 1.95 thorpej */
1524 1.95 thorpej void
1525 1.95 thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1526 1.95 thorpej {
1527 1.95 thorpej
1528 1.95 thorpej specificdata_setspecific(proc_specificdata_domain,
1529 1.95 thorpej &p->p_specdataref, key, data);
1530 1.95 thorpej }
1531 1.154 elad
1532 1.154 elad int
1533 1.154 elad proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1534 1.154 elad {
1535 1.154 elad int r = 0;
1536 1.154 elad
1537 1.154 elad if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1538 1.154 elad kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1539 1.154 elad /*
1540 1.154 elad * suid proc of ours or proc not ours
1541 1.154 elad */
1542 1.154 elad r = EPERM;
1543 1.154 elad } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1544 1.154 elad /*
1545 1.154 elad * sgid proc has sgid back to us temporarily
1546 1.154 elad */
1547 1.154 elad r = EPERM;
1548 1.154 elad } else {
1549 1.154 elad /*
1550 1.154 elad * our rgid must be in target's group list (ie,
1551 1.154 elad * sub-processes started by a sgid process)
1552 1.154 elad */
1553 1.154 elad int ismember = 0;
1554 1.154 elad
1555 1.154 elad if (kauth_cred_ismember_gid(cred,
1556 1.154 elad kauth_cred_getgid(target), &ismember) != 0 ||
1557 1.154 elad !ismember)
1558 1.154 elad r = EPERM;
1559 1.154 elad }
1560 1.154 elad
1561 1.154 elad return (r);
1562 1.154 elad }
1563 1.170 pooka
1564 1.170 pooka /*
1565 1.170 pooka * sysctl stuff
1566 1.170 pooka */
1567 1.170 pooka
1568 1.170 pooka #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1569 1.170 pooka
1570 1.170 pooka static const u_int sysctl_flagmap[] = {
1571 1.170 pooka PK_ADVLOCK, P_ADVLOCK,
1572 1.170 pooka PK_EXEC, P_EXEC,
1573 1.170 pooka PK_NOCLDWAIT, P_NOCLDWAIT,
1574 1.170 pooka PK_32, P_32,
1575 1.170 pooka PK_CLDSIGIGN, P_CLDSIGIGN,
1576 1.170 pooka PK_SUGID, P_SUGID,
1577 1.170 pooka 0
1578 1.170 pooka };
1579 1.170 pooka
1580 1.170 pooka static const u_int sysctl_sflagmap[] = {
1581 1.170 pooka PS_NOCLDSTOP, P_NOCLDSTOP,
1582 1.170 pooka PS_WEXIT, P_WEXIT,
1583 1.170 pooka PS_STOPFORK, P_STOPFORK,
1584 1.170 pooka PS_STOPEXEC, P_STOPEXEC,
1585 1.170 pooka PS_STOPEXIT, P_STOPEXIT,
1586 1.170 pooka 0
1587 1.170 pooka };
1588 1.170 pooka
1589 1.170 pooka static const u_int sysctl_slflagmap[] = {
1590 1.170 pooka PSL_TRACED, P_TRACED,
1591 1.170 pooka PSL_CHTRACED, P_CHTRACED,
1592 1.170 pooka PSL_SYSCALL, P_SYSCALL,
1593 1.170 pooka 0
1594 1.170 pooka };
1595 1.170 pooka
1596 1.170 pooka static const u_int sysctl_lflagmap[] = {
1597 1.170 pooka PL_CONTROLT, P_CONTROLT,
1598 1.170 pooka PL_PPWAIT, P_PPWAIT,
1599 1.170 pooka 0
1600 1.170 pooka };
1601 1.170 pooka
1602 1.170 pooka static const u_int sysctl_stflagmap[] = {
1603 1.170 pooka PST_PROFIL, P_PROFIL,
1604 1.170 pooka 0
1605 1.170 pooka
1606 1.170 pooka };
1607 1.170 pooka
1608 1.170 pooka /* used by kern_lwp also */
1609 1.170 pooka const u_int sysctl_lwpflagmap[] = {
1610 1.170 pooka LW_SINTR, L_SINTR,
1611 1.170 pooka LW_SYSTEM, L_SYSTEM,
1612 1.170 pooka 0
1613 1.170 pooka };
1614 1.170 pooka
1615 1.170 pooka /*
1616 1.170 pooka * Find the most ``active'' lwp of a process and return it for ps display
1617 1.170 pooka * purposes
1618 1.170 pooka */
1619 1.170 pooka static struct lwp *
1620 1.170 pooka proc_active_lwp(struct proc *p)
1621 1.170 pooka {
1622 1.170 pooka static const int ostat[] = {
1623 1.170 pooka 0,
1624 1.170 pooka 2, /* LSIDL */
1625 1.170 pooka 6, /* LSRUN */
1626 1.170 pooka 5, /* LSSLEEP */
1627 1.170 pooka 4, /* LSSTOP */
1628 1.170 pooka 0, /* LSZOMB */
1629 1.170 pooka 1, /* LSDEAD */
1630 1.170 pooka 7, /* LSONPROC */
1631 1.170 pooka 3 /* LSSUSPENDED */
1632 1.170 pooka };
1633 1.170 pooka
1634 1.170 pooka struct lwp *l, *lp = NULL;
1635 1.170 pooka LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1636 1.170 pooka KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
1637 1.170 pooka if (lp == NULL ||
1638 1.170 pooka ostat[l->l_stat] > ostat[lp->l_stat] ||
1639 1.170 pooka (ostat[l->l_stat] == ostat[lp->l_stat] &&
1640 1.170 pooka l->l_cpticks > lp->l_cpticks)) {
1641 1.170 pooka lp = l;
1642 1.170 pooka continue;
1643 1.170 pooka }
1644 1.170 pooka }
1645 1.170 pooka return lp;
1646 1.170 pooka }
1647 1.170 pooka
1648 1.170 pooka static int
1649 1.170 pooka sysctl_doeproc(SYSCTLFN_ARGS)
1650 1.170 pooka {
1651 1.170 pooka union {
1652 1.170 pooka struct kinfo_proc kproc;
1653 1.170 pooka struct kinfo_proc2 kproc2;
1654 1.170 pooka } *kbuf;
1655 1.170 pooka struct proc *p, *next, *marker;
1656 1.170 pooka char *where, *dp;
1657 1.170 pooka int type, op, arg, error;
1658 1.170 pooka u_int elem_size, kelem_size, elem_count;
1659 1.170 pooka size_t buflen, needed;
1660 1.170 pooka bool match, zombie, mmmbrains;
1661 1.209.2.10 pgoyette const bool allowaddr = get_expose_address(curproc);
1662 1.170 pooka
1663 1.170 pooka if (namelen == 1 && name[0] == CTL_QUERY)
1664 1.170 pooka return (sysctl_query(SYSCTLFN_CALL(rnode)));
1665 1.170 pooka
1666 1.170 pooka dp = where = oldp;
1667 1.170 pooka buflen = where != NULL ? *oldlenp : 0;
1668 1.170 pooka error = 0;
1669 1.170 pooka needed = 0;
1670 1.170 pooka type = rnode->sysctl_num;
1671 1.170 pooka
1672 1.170 pooka if (type == KERN_PROC) {
1673 1.194 christos if (namelen == 0)
1674 1.194 christos return EINVAL;
1675 1.194 christos switch (op = name[0]) {
1676 1.194 christos case KERN_PROC_ALL:
1677 1.194 christos if (namelen != 1)
1678 1.194 christos return EINVAL;
1679 1.194 christos arg = 0;
1680 1.194 christos break;
1681 1.194 christos default:
1682 1.194 christos if (namelen != 2)
1683 1.194 christos return EINVAL;
1684 1.170 pooka arg = name[1];
1685 1.194 christos break;
1686 1.194 christos }
1687 1.209.2.1 pgoyette elem_count = 0; /* Hush little compiler, don't you cry */
1688 1.170 pooka kelem_size = elem_size = sizeof(kbuf->kproc);
1689 1.170 pooka } else {
1690 1.170 pooka if (namelen != 4)
1691 1.194 christos return EINVAL;
1692 1.170 pooka op = name[0];
1693 1.170 pooka arg = name[1];
1694 1.170 pooka elem_size = name[2];
1695 1.170 pooka elem_count = name[3];
1696 1.170 pooka kelem_size = sizeof(kbuf->kproc2);
1697 1.170 pooka }
1698 1.170 pooka
1699 1.170 pooka sysctl_unlock();
1700 1.170 pooka
1701 1.209.2.9 pgoyette kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
1702 1.170 pooka marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
1703 1.170 pooka marker->p_flag = PK_MARKER;
1704 1.170 pooka
1705 1.170 pooka mutex_enter(proc_lock);
1706 1.209.2.1 pgoyette /*
1707 1.209.2.1 pgoyette * Start with zombies to prevent reporting processes twice, in case they
1708 1.209.2.1 pgoyette * are dying and being moved from the list of alive processes to zombies.
1709 1.209.2.1 pgoyette */
1710 1.209.2.1 pgoyette mmmbrains = true;
1711 1.209.2.1 pgoyette for (p = LIST_FIRST(&zombproc);; p = next) {
1712 1.170 pooka if (p == NULL) {
1713 1.209.2.1 pgoyette if (mmmbrains) {
1714 1.209.2.1 pgoyette p = LIST_FIRST(&allproc);
1715 1.209.2.1 pgoyette mmmbrains = false;
1716 1.170 pooka }
1717 1.170 pooka if (p == NULL)
1718 1.170 pooka break;
1719 1.170 pooka }
1720 1.170 pooka next = LIST_NEXT(p, p_list);
1721 1.170 pooka if ((p->p_flag & PK_MARKER) != 0)
1722 1.170 pooka continue;
1723 1.170 pooka
1724 1.170 pooka /*
1725 1.170 pooka * Skip embryonic processes.
1726 1.170 pooka */
1727 1.170 pooka if (p->p_stat == SIDL)
1728 1.170 pooka continue;
1729 1.170 pooka
1730 1.170 pooka mutex_enter(p->p_lock);
1731 1.170 pooka error = kauth_authorize_process(l->l_cred,
1732 1.170 pooka KAUTH_PROCESS_CANSEE, p,
1733 1.209.2.3 pgoyette KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
1734 1.170 pooka if (error != 0) {
1735 1.170 pooka mutex_exit(p->p_lock);
1736 1.170 pooka continue;
1737 1.170 pooka }
1738 1.170 pooka
1739 1.170 pooka /*
1740 1.209.2.1 pgoyette * Hande all the operations in one switch on the cost of
1741 1.209.2.1 pgoyette * algorithm complexity is on purpose. The win splitting this
1742 1.209.2.1 pgoyette * function into several similar copies makes maintenance burden
1743 1.209.2.1 pgoyette * burden, code grow and boost is neglible in practical systems.
1744 1.170 pooka */
1745 1.170 pooka switch (op) {
1746 1.170 pooka case KERN_PROC_PID:
1747 1.170 pooka match = (p->p_pid == (pid_t)arg);
1748 1.170 pooka break;
1749 1.170 pooka
1750 1.170 pooka case KERN_PROC_PGRP:
1751 1.170 pooka match = (p->p_pgrp->pg_id == (pid_t)arg);
1752 1.170 pooka break;
1753 1.170 pooka
1754 1.170 pooka case KERN_PROC_SESSION:
1755 1.170 pooka match = (p->p_session->s_sid == (pid_t)arg);
1756 1.170 pooka break;
1757 1.170 pooka
1758 1.170 pooka case KERN_PROC_TTY:
1759 1.170 pooka match = true;
1760 1.170 pooka if (arg == (int) KERN_PROC_TTY_REVOKE) {
1761 1.170 pooka if ((p->p_lflag & PL_CONTROLT) == 0 ||
1762 1.170 pooka p->p_session->s_ttyp == NULL ||
1763 1.170 pooka p->p_session->s_ttyvp != NULL) {
1764 1.170 pooka match = false;
1765 1.170 pooka }
1766 1.170 pooka } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
1767 1.170 pooka p->p_session->s_ttyp == NULL) {
1768 1.170 pooka if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
1769 1.170 pooka match = false;
1770 1.170 pooka }
1771 1.170 pooka } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
1772 1.170 pooka match = false;
1773 1.170 pooka }
1774 1.170 pooka break;
1775 1.170 pooka
1776 1.170 pooka case KERN_PROC_UID:
1777 1.170 pooka match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
1778 1.170 pooka break;
1779 1.170 pooka
1780 1.170 pooka case KERN_PROC_RUID:
1781 1.170 pooka match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
1782 1.170 pooka break;
1783 1.170 pooka
1784 1.170 pooka case KERN_PROC_GID:
1785 1.170 pooka match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
1786 1.170 pooka break;
1787 1.170 pooka
1788 1.170 pooka case KERN_PROC_RGID:
1789 1.170 pooka match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
1790 1.170 pooka break;
1791 1.170 pooka
1792 1.170 pooka case KERN_PROC_ALL:
1793 1.170 pooka match = true;
1794 1.170 pooka /* allow everything */
1795 1.170 pooka break;
1796 1.170 pooka
1797 1.170 pooka default:
1798 1.170 pooka error = EINVAL;
1799 1.170 pooka mutex_exit(p->p_lock);
1800 1.170 pooka goto cleanup;
1801 1.170 pooka }
1802 1.170 pooka if (!match) {
1803 1.170 pooka mutex_exit(p->p_lock);
1804 1.170 pooka continue;
1805 1.170 pooka }
1806 1.170 pooka
1807 1.170 pooka /*
1808 1.170 pooka * Grab a hold on the process.
1809 1.170 pooka */
1810 1.170 pooka if (mmmbrains) {
1811 1.170 pooka zombie = true;
1812 1.170 pooka } else {
1813 1.170 pooka zombie = !rw_tryenter(&p->p_reflock, RW_READER);
1814 1.170 pooka }
1815 1.170 pooka if (zombie) {
1816 1.170 pooka LIST_INSERT_AFTER(p, marker, p_list);
1817 1.170 pooka }
1818 1.170 pooka
1819 1.170 pooka if (buflen >= elem_size &&
1820 1.170 pooka (type == KERN_PROC || elem_count > 0)) {
1821 1.170 pooka if (type == KERN_PROC) {
1822 1.209.2.10 pgoyette fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
1823 1.209.2.10 pgoyette fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
1824 1.209.2.10 pgoyette allowaddr);
1825 1.170 pooka } else {
1826 1.209.2.10 pgoyette fill_kproc2(p, &kbuf->kproc2, zombie,
1827 1.209.2.10 pgoyette allowaddr);
1828 1.170 pooka elem_count--;
1829 1.170 pooka }
1830 1.170 pooka mutex_exit(p->p_lock);
1831 1.170 pooka mutex_exit(proc_lock);
1832 1.170 pooka /*
1833 1.170 pooka * Copy out elem_size, but not larger than kelem_size
1834 1.170 pooka */
1835 1.170 pooka error = sysctl_copyout(l, kbuf, dp,
1836 1.209.2.3 pgoyette uimin(kelem_size, elem_size));
1837 1.170 pooka mutex_enter(proc_lock);
1838 1.170 pooka if (error) {
1839 1.170 pooka goto bah;
1840 1.170 pooka }
1841 1.170 pooka dp += elem_size;
1842 1.170 pooka buflen -= elem_size;
1843 1.170 pooka } else {
1844 1.170 pooka mutex_exit(p->p_lock);
1845 1.170 pooka }
1846 1.170 pooka needed += elem_size;
1847 1.170 pooka
1848 1.170 pooka /*
1849 1.170 pooka * Release reference to process.
1850 1.170 pooka */
1851 1.170 pooka if (zombie) {
1852 1.170 pooka next = LIST_NEXT(marker, p_list);
1853 1.170 pooka LIST_REMOVE(marker, p_list);
1854 1.170 pooka } else {
1855 1.170 pooka rw_exit(&p->p_reflock);
1856 1.170 pooka next = LIST_NEXT(p, p_list);
1857 1.170 pooka }
1858 1.209.2.1 pgoyette
1859 1.209.2.1 pgoyette /*
1860 1.209.2.1 pgoyette * Short-circuit break quickly!
1861 1.209.2.1 pgoyette */
1862 1.209.2.1 pgoyette if (op == KERN_PROC_PID)
1863 1.209.2.1 pgoyette break;
1864 1.170 pooka }
1865 1.170 pooka mutex_exit(proc_lock);
1866 1.170 pooka
1867 1.170 pooka if (where != NULL) {
1868 1.170 pooka *oldlenp = dp - where;
1869 1.170 pooka if (needed > *oldlenp) {
1870 1.170 pooka error = ENOMEM;
1871 1.170 pooka goto out;
1872 1.170 pooka }
1873 1.170 pooka } else {
1874 1.170 pooka needed += KERN_PROCSLOP;
1875 1.170 pooka *oldlenp = needed;
1876 1.170 pooka }
1877 1.209.2.1 pgoyette kmem_free(kbuf, sizeof(*kbuf));
1878 1.209.2.1 pgoyette kmem_free(marker, sizeof(*marker));
1879 1.170 pooka sysctl_relock();
1880 1.170 pooka return 0;
1881 1.170 pooka bah:
1882 1.170 pooka if (zombie)
1883 1.170 pooka LIST_REMOVE(marker, p_list);
1884 1.170 pooka else
1885 1.170 pooka rw_exit(&p->p_reflock);
1886 1.170 pooka cleanup:
1887 1.170 pooka mutex_exit(proc_lock);
1888 1.170 pooka out:
1889 1.209.2.1 pgoyette kmem_free(kbuf, sizeof(*kbuf));
1890 1.209.2.1 pgoyette kmem_free(marker, sizeof(*marker));
1891 1.170 pooka sysctl_relock();
1892 1.170 pooka return error;
1893 1.170 pooka }
1894 1.170 pooka
1895 1.209.2.4 pgoyette /*
1896 1.209.2.4 pgoyette * compat_netbsd32 hooks
1897 1.209.2.4 pgoyette */
1898 1.209.2.6 pgoyette #if !defined(_RUMPKERNEL)
1899 1.209.2.13 pgoyette MODULE_CALL_HOOK_DECL(kern_proc_32_copyin_hook, int,
1900 1.209.2.7 pgoyette (struct proc *p, struct ps_strings *s));
1901 1.209.2.13 pgoyette MODULE_CALL_HOOK(kern_proc_32_copyin_hook, int,
1902 1.209.2.4 pgoyette (struct proc *p, struct ps_strings *s), (p, s), enosys());
1903 1.209.2.4 pgoyette
1904 1.209.2.14 pgoyette MODULE_CALL_HOOK_DECL(kern_proc_32_base_hook, void,
1905 1.209.2.7 pgoyette (char **argv, size_t i, vaddr_t *base));
1906 1.209.2.12 pgoyette MODULE_CALL_VOID_HOOK(kern_proc_32_base_hook,
1907 1.209.2.12 pgoyette (char **argv, size_t i, vaddr_t *base), (argv, i, base), __nothing);
1908 1.209.2.5 pgoyette #endif /* !defined(_RUMPKERNEL) */
1909 1.209.2.4 pgoyette
1910 1.172 joerg int
1911 1.172 joerg copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
1912 1.172 joerg {
1913 1.172 joerg
1914 1.209.2.6 pgoyette #if !defined(_RUMPKERNEL)
1915 1.209.2.4 pgoyette if (p->p_flag & PK_32)
1916 1.209.2.11 pgoyette return kern_proc_32_copyin_hook_call(p, arginfo);
1917 1.209.2.5 pgoyette #endif /* !defined(_RUMPKERNEL) */
1918 1.209.2.4 pgoyette
1919 1.173 matt return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
1920 1.172 joerg }
1921 1.172 joerg
1922 1.172 joerg static int
1923 1.172 joerg copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
1924 1.172 joerg {
1925 1.172 joerg void **cookie = cookie_;
1926 1.172 joerg struct lwp *l = cookie[0];
1927 1.172 joerg char *dst = cookie[1];
1928 1.172 joerg
1929 1.172 joerg return sysctl_copyout(l, src, dst + off, len);
1930 1.172 joerg }
1931 1.172 joerg
1932 1.170 pooka /*
1933 1.170 pooka * sysctl helper routine for kern.proc_args pseudo-subtree.
1934 1.170 pooka */
1935 1.170 pooka static int
1936 1.170 pooka sysctl_kern_proc_args(SYSCTLFN_ARGS)
1937 1.170 pooka {
1938 1.170 pooka struct ps_strings pss;
1939 1.170 pooka struct proc *p;
1940 1.170 pooka pid_t pid;
1941 1.172 joerg int type, error;
1942 1.172 joerg void *cookie[2];
1943 1.170 pooka
1944 1.170 pooka if (namelen == 1 && name[0] == CTL_QUERY)
1945 1.170 pooka return (sysctl_query(SYSCTLFN_CALL(rnode)));
1946 1.170 pooka
1947 1.170 pooka if (newp != NULL || namelen != 2)
1948 1.170 pooka return (EINVAL);
1949 1.170 pooka pid = name[0];
1950 1.170 pooka type = name[1];
1951 1.170 pooka
1952 1.170 pooka switch (type) {
1953 1.194 christos case KERN_PROC_PATHNAME:
1954 1.194 christos sysctl_unlock();
1955 1.194 christos error = fill_pathname(l, pid, oldp, oldlenp);
1956 1.194 christos sysctl_relock();
1957 1.194 christos return error;
1958 1.194 christos
1959 1.170 pooka case KERN_PROC_ARGV:
1960 1.170 pooka case KERN_PROC_NARGV:
1961 1.170 pooka case KERN_PROC_ENV:
1962 1.170 pooka case KERN_PROC_NENV:
1963 1.170 pooka /* ok */
1964 1.170 pooka break;
1965 1.170 pooka default:
1966 1.170 pooka return (EINVAL);
1967 1.170 pooka }
1968 1.170 pooka
1969 1.170 pooka sysctl_unlock();
1970 1.170 pooka
1971 1.170 pooka /* check pid */
1972 1.170 pooka mutex_enter(proc_lock);
1973 1.170 pooka if ((p = proc_find(pid)) == NULL) {
1974 1.170 pooka error = EINVAL;
1975 1.170 pooka goto out_locked;
1976 1.170 pooka }
1977 1.170 pooka mutex_enter(p->p_lock);
1978 1.170 pooka
1979 1.170 pooka /* Check permission. */
1980 1.170 pooka if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1981 1.170 pooka error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1982 1.170 pooka p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
1983 1.170 pooka else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
1984 1.170 pooka error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1985 1.170 pooka p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
1986 1.170 pooka else
1987 1.170 pooka error = EINVAL; /* XXXGCC */
1988 1.170 pooka if (error) {
1989 1.170 pooka mutex_exit(p->p_lock);
1990 1.170 pooka goto out_locked;
1991 1.170 pooka }
1992 1.170 pooka
1993 1.170 pooka if (oldp == NULL) {
1994 1.170 pooka if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1995 1.170 pooka *oldlenp = sizeof (int);
1996 1.170 pooka else
1997 1.170 pooka *oldlenp = ARG_MAX; /* XXX XXX XXX */
1998 1.170 pooka error = 0;
1999 1.170 pooka mutex_exit(p->p_lock);
2000 1.170 pooka goto out_locked;
2001 1.170 pooka }
2002 1.170 pooka
2003 1.170 pooka /*
2004 1.170 pooka * Zombies don't have a stack, so we can't read their psstrings.
2005 1.170 pooka * System processes also don't have a user stack.
2006 1.170 pooka */
2007 1.170 pooka if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2008 1.170 pooka error = EINVAL;
2009 1.170 pooka mutex_exit(p->p_lock);
2010 1.170 pooka goto out_locked;
2011 1.170 pooka }
2012 1.170 pooka
2013 1.174 rmind error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
2014 1.172 joerg mutex_exit(p->p_lock);
2015 1.174 rmind if (error) {
2016 1.174 rmind goto out_locked;
2017 1.174 rmind }
2018 1.172 joerg mutex_exit(proc_lock);
2019 1.172 joerg
2020 1.172 joerg if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2021 1.172 joerg int value;
2022 1.172 joerg if ((error = copyin_psstrings(p, &pss)) == 0) {
2023 1.172 joerg if (type == KERN_PROC_NARGV)
2024 1.172 joerg value = pss.ps_nargvstr;
2025 1.172 joerg else
2026 1.172 joerg value = pss.ps_nenvstr;
2027 1.172 joerg error = sysctl_copyout(l, &value, oldp, sizeof(value));
2028 1.172 joerg *oldlenp = sizeof(value);
2029 1.172 joerg }
2030 1.170 pooka } else {
2031 1.172 joerg cookie[0] = l;
2032 1.172 joerg cookie[1] = oldp;
2033 1.172 joerg error = copy_procargs(p, type, oldlenp,
2034 1.172 joerg copy_procargs_sysctl_cb, cookie);
2035 1.170 pooka }
2036 1.172 joerg rw_exit(&p->p_reflock);
2037 1.172 joerg sysctl_relock();
2038 1.172 joerg return error;
2039 1.172 joerg
2040 1.172 joerg out_locked:
2041 1.170 pooka mutex_exit(proc_lock);
2042 1.172 joerg sysctl_relock();
2043 1.172 joerg return error;
2044 1.172 joerg }
2045 1.172 joerg
2046 1.172 joerg int
2047 1.172 joerg copy_procargs(struct proc *p, int oid, size_t *limit,
2048 1.172 joerg int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2049 1.172 joerg {
2050 1.172 joerg struct ps_strings pss;
2051 1.172 joerg size_t len, i, loaded, entry_len;
2052 1.172 joerg struct uio auio;
2053 1.172 joerg struct iovec aiov;
2054 1.172 joerg int error, argvlen;
2055 1.172 joerg char *arg;
2056 1.172 joerg char **argv;
2057 1.172 joerg vaddr_t user_argv;
2058 1.172 joerg struct vmspace *vmspace;
2059 1.170 pooka
2060 1.170 pooka /*
2061 1.172 joerg * Allocate a temporary buffer to hold the argument vector and
2062 1.172 joerg * the arguments themselve.
2063 1.170 pooka */
2064 1.170 pooka arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2065 1.172 joerg argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2066 1.172 joerg
2067 1.172 joerg /*
2068 1.172 joerg * Lock the process down in memory.
2069 1.172 joerg */
2070 1.172 joerg vmspace = p->p_vmspace;
2071 1.172 joerg uvmspace_addref(vmspace);
2072 1.170 pooka
2073 1.170 pooka /*
2074 1.170 pooka * Read in the ps_strings structure.
2075 1.170 pooka */
2076 1.172 joerg if ((error = copyin_psstrings(p, &pss)) != 0)
2077 1.170 pooka goto done;
2078 1.170 pooka
2079 1.170 pooka /*
2080 1.170 pooka * Now read the address of the argument vector.
2081 1.170 pooka */
2082 1.172 joerg switch (oid) {
2083 1.170 pooka case KERN_PROC_ARGV:
2084 1.172 joerg user_argv = (uintptr_t)pss.ps_argvstr;
2085 1.172 joerg argvlen = pss.ps_nargvstr;
2086 1.172 joerg break;
2087 1.170 pooka case KERN_PROC_ENV:
2088 1.172 joerg user_argv = (uintptr_t)pss.ps_envstr;
2089 1.172 joerg argvlen = pss.ps_nenvstr;
2090 1.170 pooka break;
2091 1.170 pooka default:
2092 1.170 pooka error = EINVAL;
2093 1.170 pooka goto done;
2094 1.170 pooka }
2095 1.170 pooka
2096 1.172 joerg if (argvlen < 0) {
2097 1.172 joerg error = EIO;
2098 1.172 joerg goto done;
2099 1.172 joerg }
2100 1.172 joerg
2101 1.170 pooka
2102 1.170 pooka /*
2103 1.170 pooka * Now copy each string.
2104 1.170 pooka */
2105 1.170 pooka len = 0; /* bytes written to user buffer */
2106 1.172 joerg loaded = 0; /* bytes from argv already processed */
2107 1.172 joerg i = 0; /* To make compiler happy */
2108 1.198 christos entry_len = PROC_PTRSZ(p);
2109 1.172 joerg
2110 1.172 joerg for (; argvlen; --argvlen) {
2111 1.170 pooka int finished = 0;
2112 1.170 pooka vaddr_t base;
2113 1.170 pooka size_t xlen;
2114 1.170 pooka int j;
2115 1.170 pooka
2116 1.172 joerg if (loaded == 0) {
2117 1.172 joerg size_t rem = entry_len * argvlen;
2118 1.172 joerg loaded = MIN(rem, PAGE_SIZE);
2119 1.172 joerg error = copyin_vmspace(vmspace,
2120 1.172 joerg (const void *)user_argv, argv, loaded);
2121 1.172 joerg if (error)
2122 1.172 joerg break;
2123 1.172 joerg user_argv += loaded;
2124 1.172 joerg i = 0;
2125 1.172 joerg }
2126 1.172 joerg
2127 1.209.2.6 pgoyette #if !defined(_RUMPKERNEL)
2128 1.209.2.4 pgoyette if (p->p_flag & PK_32)
2129 1.209.2.12 pgoyette kern_proc_32_base_hook_call(argv, i++, &base);
2130 1.209.2.4 pgoyette else
2131 1.209.2.5 pgoyette #endif /* !defined(_RUMPKERNEL) */
2132 1.172 joerg base = (vaddr_t)argv[i++];
2133 1.172 joerg loaded -= entry_len;
2134 1.170 pooka
2135 1.170 pooka /*
2136 1.170 pooka * The program has messed around with its arguments,
2137 1.170 pooka * possibly deleting some, and replacing them with
2138 1.170 pooka * NULL's. Treat this as the last argument and not
2139 1.170 pooka * a failure.
2140 1.170 pooka */
2141 1.170 pooka if (base == 0)
2142 1.170 pooka break;
2143 1.170 pooka
2144 1.170 pooka while (!finished) {
2145 1.170 pooka xlen = PAGE_SIZE - (base & PAGE_MASK);
2146 1.170 pooka
2147 1.170 pooka aiov.iov_base = arg;
2148 1.170 pooka aiov.iov_len = PAGE_SIZE;
2149 1.170 pooka auio.uio_iov = &aiov;
2150 1.170 pooka auio.uio_iovcnt = 1;
2151 1.170 pooka auio.uio_offset = base;
2152 1.170 pooka auio.uio_resid = xlen;
2153 1.170 pooka auio.uio_rw = UIO_READ;
2154 1.170 pooka UIO_SETUP_SYSSPACE(&auio);
2155 1.196 christos error = uvm_io(&vmspace->vm_map, &auio, 0);
2156 1.170 pooka if (error)
2157 1.170 pooka goto done;
2158 1.170 pooka
2159 1.170 pooka /* Look for the end of the string */
2160 1.170 pooka for (j = 0; j < xlen; j++) {
2161 1.170 pooka if (arg[j] == '\0') {
2162 1.170 pooka xlen = j + 1;
2163 1.170 pooka finished = 1;
2164 1.170 pooka break;
2165 1.170 pooka }
2166 1.170 pooka }
2167 1.170 pooka
2168 1.170 pooka /* Check for user buffer overflow */
2169 1.172 joerg if (len + xlen > *limit) {
2170 1.170 pooka finished = 1;
2171 1.172 joerg if (len > *limit)
2172 1.170 pooka xlen = 0;
2173 1.170 pooka else
2174 1.172 joerg xlen = *limit - len;
2175 1.170 pooka }
2176 1.170 pooka
2177 1.170 pooka /* Copyout the page */
2178 1.172 joerg error = (*cb)(cookie, arg, len, xlen);
2179 1.170 pooka if (error)
2180 1.170 pooka goto done;
2181 1.170 pooka
2182 1.170 pooka len += xlen;
2183 1.170 pooka base += xlen;
2184 1.170 pooka }
2185 1.170 pooka }
2186 1.172 joerg *limit = len;
2187 1.170 pooka
2188 1.170 pooka done:
2189 1.172 joerg kmem_free(argv, PAGE_SIZE);
2190 1.172 joerg kmem_free(arg, PAGE_SIZE);
2191 1.170 pooka uvmspace_free(vmspace);
2192 1.170 pooka return error;
2193 1.170 pooka }
2194 1.170 pooka
2195 1.170 pooka /*
2196 1.209.2.9 pgoyette * Fill in a proc structure for the specified process.
2197 1.209.2.9 pgoyette */
2198 1.209.2.9 pgoyette static void
2199 1.209.2.10 pgoyette fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2200 1.209.2.9 pgoyette {
2201 1.209.2.9 pgoyette COND_SET_VALUE(p->p_list, psrc->p_list, allowaddr);
2202 1.209.2.9 pgoyette COND_SET_VALUE(p->p_auxlock, psrc->p_auxlock, allowaddr);
2203 1.209.2.9 pgoyette COND_SET_VALUE(p->p_lock, psrc->p_lock, allowaddr);
2204 1.209.2.9 pgoyette COND_SET_VALUE(p->p_stmutex, psrc->p_stmutex, allowaddr);
2205 1.209.2.9 pgoyette COND_SET_VALUE(p->p_reflock, psrc->p_reflock, allowaddr);
2206 1.209.2.9 pgoyette COND_SET_VALUE(p->p_waitcv, psrc->p_waitcv, allowaddr);
2207 1.209.2.9 pgoyette COND_SET_VALUE(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2208 1.209.2.9 pgoyette COND_SET_VALUE(p->p_cred, psrc->p_cred, allowaddr);
2209 1.209.2.9 pgoyette COND_SET_VALUE(p->p_fd, psrc->p_fd, allowaddr);
2210 1.209.2.9 pgoyette COND_SET_VALUE(p->p_cwdi, psrc->p_cwdi, allowaddr);
2211 1.209.2.9 pgoyette COND_SET_VALUE(p->p_stats, psrc->p_stats, allowaddr);
2212 1.209.2.9 pgoyette COND_SET_VALUE(p->p_limit, psrc->p_limit, allowaddr);
2213 1.209.2.9 pgoyette COND_SET_VALUE(p->p_vmspace, psrc->p_vmspace, allowaddr);
2214 1.209.2.9 pgoyette COND_SET_VALUE(p->p_sigacts, psrc->p_sigacts, allowaddr);
2215 1.209.2.9 pgoyette COND_SET_VALUE(p->p_aio, psrc->p_aio, allowaddr);
2216 1.209.2.9 pgoyette p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2217 1.209.2.9 pgoyette COND_SET_VALUE(p->p_specdataref, psrc->p_specdataref, allowaddr);
2218 1.209.2.9 pgoyette p->p_exitsig = psrc->p_exitsig;
2219 1.209.2.9 pgoyette p->p_flag = psrc->p_flag;
2220 1.209.2.9 pgoyette p->p_sflag = psrc->p_sflag;
2221 1.209.2.9 pgoyette p->p_slflag = psrc->p_slflag;
2222 1.209.2.9 pgoyette p->p_lflag = psrc->p_lflag;
2223 1.209.2.9 pgoyette p->p_stflag = psrc->p_stflag;
2224 1.209.2.9 pgoyette p->p_stat = psrc->p_stat;
2225 1.209.2.9 pgoyette p->p_trace_enabled = psrc->p_trace_enabled;
2226 1.209.2.9 pgoyette p->p_pid = psrc->p_pid;
2227 1.209.2.9 pgoyette COND_SET_VALUE(p->p_pglist, psrc->p_pglist, allowaddr);
2228 1.209.2.9 pgoyette COND_SET_VALUE(p->p_pptr, psrc->p_pptr, allowaddr);
2229 1.209.2.9 pgoyette COND_SET_VALUE(p->p_sibling, psrc->p_sibling, allowaddr);
2230 1.209.2.9 pgoyette COND_SET_VALUE(p->p_children, psrc->p_children, allowaddr);
2231 1.209.2.9 pgoyette COND_SET_VALUE(p->p_lwps, psrc->p_lwps, allowaddr);
2232 1.209.2.9 pgoyette COND_SET_VALUE(p->p_raslist, psrc->p_raslist, allowaddr);
2233 1.209.2.9 pgoyette p->p_nlwps = psrc->p_nlwps;
2234 1.209.2.9 pgoyette p->p_nzlwps = psrc->p_nzlwps;
2235 1.209.2.9 pgoyette p->p_nrlwps = psrc->p_nrlwps;
2236 1.209.2.9 pgoyette p->p_nlwpwait = psrc->p_nlwpwait;
2237 1.209.2.9 pgoyette p->p_ndlwps = psrc->p_ndlwps;
2238 1.209.2.9 pgoyette p->p_nlwpid = psrc->p_nlwpid;
2239 1.209.2.9 pgoyette p->p_nstopchild = psrc->p_nstopchild;
2240 1.209.2.9 pgoyette p->p_waited = psrc->p_waited;
2241 1.209.2.9 pgoyette COND_SET_VALUE(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2242 1.209.2.9 pgoyette COND_SET_VALUE(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2243 1.209.2.9 pgoyette COND_SET_VALUE(p->p_sched_info, psrc->p_sched_info, allowaddr);
2244 1.209.2.9 pgoyette p->p_estcpu = psrc->p_estcpu;
2245 1.209.2.9 pgoyette p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2246 1.209.2.9 pgoyette p->p_forktime = psrc->p_forktime;
2247 1.209.2.9 pgoyette p->p_pctcpu = psrc->p_pctcpu;
2248 1.209.2.9 pgoyette COND_SET_VALUE(p->p_opptr, psrc->p_opptr, allowaddr);
2249 1.209.2.9 pgoyette COND_SET_VALUE(p->p_timers, psrc->p_timers, allowaddr);
2250 1.209.2.9 pgoyette p->p_rtime = psrc->p_rtime;
2251 1.209.2.9 pgoyette p->p_uticks = psrc->p_uticks;
2252 1.209.2.9 pgoyette p->p_sticks = psrc->p_sticks;
2253 1.209.2.9 pgoyette p->p_iticks = psrc->p_iticks;
2254 1.209.2.9 pgoyette p->p_xutime = psrc->p_xutime;
2255 1.209.2.9 pgoyette p->p_xstime = psrc->p_xstime;
2256 1.209.2.9 pgoyette p->p_traceflag = psrc->p_traceflag;
2257 1.209.2.9 pgoyette COND_SET_VALUE(p->p_tracep, psrc->p_tracep, allowaddr);
2258 1.209.2.9 pgoyette COND_SET_VALUE(p->p_textvp, psrc->p_textvp, allowaddr);
2259 1.209.2.9 pgoyette COND_SET_VALUE(p->p_emul, psrc->p_emul, allowaddr);
2260 1.209.2.9 pgoyette COND_SET_VALUE(p->p_emuldata, psrc->p_emuldata, allowaddr);
2261 1.209.2.9 pgoyette COND_SET_VALUE(p->p_execsw, psrc->p_execsw, allowaddr);
2262 1.209.2.9 pgoyette COND_SET_VALUE(p->p_klist, psrc->p_klist, allowaddr);
2263 1.209.2.9 pgoyette COND_SET_VALUE(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2264 1.209.2.9 pgoyette COND_SET_VALUE(p->p_sigpend, psrc->p_sigpend, allowaddr);
2265 1.209.2.9 pgoyette COND_SET_VALUE(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2266 1.209.2.9 pgoyette p->p_ppid = psrc->p_ppid;
2267 1.209.2.9 pgoyette p->p_fpid = psrc->p_fpid;
2268 1.209.2.9 pgoyette p->p_vfpid = psrc->p_vfpid;
2269 1.209.2.9 pgoyette p->p_vfpid_done = psrc->p_vfpid_done;
2270 1.209.2.9 pgoyette p->p_lwp_created = psrc->p_lwp_created;
2271 1.209.2.9 pgoyette p->p_lwp_exited = psrc->p_lwp_exited;
2272 1.209.2.9 pgoyette p->p_nsems = psrc->p_nsems;
2273 1.209.2.9 pgoyette COND_SET_VALUE(p->p_path, psrc->p_path, allowaddr);
2274 1.209.2.9 pgoyette COND_SET_VALUE(p->p_sigctx, psrc->p_sigctx, allowaddr);
2275 1.209.2.9 pgoyette p->p_nice = psrc->p_nice;
2276 1.209.2.9 pgoyette memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2277 1.209.2.9 pgoyette COND_SET_VALUE(p->p_pgrp, psrc->p_pgrp, allowaddr);
2278 1.209.2.9 pgoyette COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2279 1.209.2.9 pgoyette p->p_pax = psrc->p_pax;
2280 1.209.2.9 pgoyette p->p_xexit = psrc->p_xexit;
2281 1.209.2.9 pgoyette p->p_xsig = psrc->p_xsig;
2282 1.209.2.9 pgoyette p->p_acflag = psrc->p_acflag;
2283 1.209.2.9 pgoyette COND_SET_VALUE(p->p_md, psrc->p_md, allowaddr);
2284 1.209.2.9 pgoyette p->p_stackbase = psrc->p_stackbase;
2285 1.209.2.9 pgoyette COND_SET_VALUE(p->p_dtrace, psrc->p_dtrace, allowaddr);
2286 1.209.2.9 pgoyette }
2287 1.209.2.9 pgoyette
2288 1.209.2.9 pgoyette /*
2289 1.170 pooka * Fill in an eproc structure for the specified process.
2290 1.170 pooka */
2291 1.170 pooka void
2292 1.209.2.10 pgoyette fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2293 1.170 pooka {
2294 1.170 pooka struct tty *tp;
2295 1.170 pooka struct lwp *l;
2296 1.170 pooka
2297 1.170 pooka KASSERT(mutex_owned(proc_lock));
2298 1.170 pooka KASSERT(mutex_owned(p->p_lock));
2299 1.170 pooka
2300 1.209.2.8 pgoyette COND_SET_VALUE(ep->e_paddr, p, allowaddr);
2301 1.209.2.8 pgoyette COND_SET_VALUE(ep->e_sess, p->p_session, allowaddr);
2302 1.170 pooka if (p->p_cred) {
2303 1.170 pooka kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2304 1.170 pooka kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2305 1.170 pooka }
2306 1.170 pooka if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2307 1.170 pooka struct vmspace *vm = p->p_vmspace;
2308 1.170 pooka
2309 1.170 pooka ep->e_vm.vm_rssize = vm_resident_count(vm);
2310 1.170 pooka ep->e_vm.vm_tsize = vm->vm_tsize;
2311 1.170 pooka ep->e_vm.vm_dsize = vm->vm_dsize;
2312 1.170 pooka ep->e_vm.vm_ssize = vm->vm_ssize;
2313 1.170 pooka ep->e_vm.vm_map.size = vm->vm_map.size;
2314 1.170 pooka
2315 1.170 pooka /* Pick the primary (first) LWP */
2316 1.170 pooka l = proc_active_lwp(p);
2317 1.170 pooka KASSERT(l != NULL);
2318 1.170 pooka lwp_lock(l);
2319 1.170 pooka if (l->l_wchan)
2320 1.170 pooka strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2321 1.170 pooka lwp_unlock(l);
2322 1.170 pooka }
2323 1.199 kre ep->e_ppid = p->p_ppid;
2324 1.170 pooka if (p->p_pgrp && p->p_session) {
2325 1.170 pooka ep->e_pgid = p->p_pgrp->pg_id;
2326 1.170 pooka ep->e_jobc = p->p_pgrp->pg_jobc;
2327 1.170 pooka ep->e_sid = p->p_session->s_sid;
2328 1.170 pooka if ((p->p_lflag & PL_CONTROLT) &&
2329 1.209.2.3 pgoyette (tp = p->p_session->s_ttyp)) {
2330 1.170 pooka ep->e_tdev = tp->t_dev;
2331 1.170 pooka ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2332 1.209.2.8 pgoyette COND_SET_VALUE(ep->e_tsess, tp->t_session, allowaddr);
2333 1.170 pooka } else
2334 1.170 pooka ep->e_tdev = (uint32_t)NODEV;
2335 1.209.2.3 pgoyette ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2336 1.170 pooka if (SESS_LEADER(p))
2337 1.170 pooka ep->e_flag |= EPROC_SLEADER;
2338 1.209.2.3 pgoyette strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2339 1.170 pooka }
2340 1.170 pooka ep->e_xsize = ep->e_xrssize = 0;
2341 1.170 pooka ep->e_xccount = ep->e_xswrss = 0;
2342 1.170 pooka }
2343 1.170 pooka
2344 1.170 pooka /*
2345 1.170 pooka * Fill in a kinfo_proc2 structure for the specified process.
2346 1.170 pooka */
2347 1.193 njoly void
2348 1.209.2.10 pgoyette fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2349 1.170 pooka {
2350 1.170 pooka struct tty *tp;
2351 1.170 pooka struct lwp *l, *l2;
2352 1.170 pooka struct timeval ut, st, rt;
2353 1.170 pooka sigset_t ss1, ss2;
2354 1.170 pooka struct rusage ru;
2355 1.170 pooka struct vmspace *vm;
2356 1.170 pooka
2357 1.170 pooka KASSERT(mutex_owned(proc_lock));
2358 1.170 pooka KASSERT(mutex_owned(p->p_lock));
2359 1.170 pooka
2360 1.170 pooka sigemptyset(&ss1);
2361 1.170 pooka sigemptyset(&ss2);
2362 1.170 pooka
2363 1.209.2.8 pgoyette COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2364 1.209.2.8 pgoyette COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2365 1.209.2.8 pgoyette COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2366 1.209.2.8 pgoyette COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2367 1.209.2.8 pgoyette COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2368 1.209.2.8 pgoyette COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2369 1.209.2.8 pgoyette COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2370 1.209.2.8 pgoyette COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2371 1.170 pooka ki->p_tsess = 0; /* may be changed if controlling tty below */
2372 1.209.2.8 pgoyette COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2373 1.170 pooka ki->p_eflag = 0;
2374 1.170 pooka ki->p_exitsig = p->p_exitsig;
2375 1.170 pooka ki->p_flag = L_INMEM; /* Process never swapped out */
2376 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2377 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2378 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2379 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2380 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2381 1.170 pooka ki->p_pid = p->p_pid;
2382 1.199 kre ki->p_ppid = p->p_ppid;
2383 1.170 pooka ki->p_uid = kauth_cred_geteuid(p->p_cred);
2384 1.170 pooka ki->p_ruid = kauth_cred_getuid(p->p_cred);
2385 1.170 pooka ki->p_gid = kauth_cred_getegid(p->p_cred);
2386 1.170 pooka ki->p_rgid = kauth_cred_getgid(p->p_cred);
2387 1.170 pooka ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2388 1.170 pooka ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2389 1.170 pooka ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2390 1.170 pooka kauth_cred_getgroups(p->p_cred, ki->p_groups,
2391 1.209.2.3 pgoyette uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2392 1.170 pooka UIO_SYSSPACE);
2393 1.170 pooka
2394 1.170 pooka ki->p_uticks = p->p_uticks;
2395 1.170 pooka ki->p_sticks = p->p_sticks;
2396 1.170 pooka ki->p_iticks = p->p_iticks;
2397 1.170 pooka ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2398 1.209.2.8 pgoyette COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2399 1.170 pooka ki->p_traceflag = p->p_traceflag;
2400 1.170 pooka
2401 1.170 pooka memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2402 1.170 pooka memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2403 1.170 pooka
2404 1.170 pooka ki->p_cpticks = 0;
2405 1.170 pooka ki->p_pctcpu = p->p_pctcpu;
2406 1.170 pooka ki->p_estcpu = 0;
2407 1.170 pooka ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2408 1.170 pooka ki->p_realstat = p->p_stat;
2409 1.170 pooka ki->p_nice = p->p_nice;
2410 1.195 christos ki->p_xstat = P_WAITSTATUS(p);
2411 1.170 pooka ki->p_acflag = p->p_acflag;
2412 1.170 pooka
2413 1.170 pooka strncpy(ki->p_comm, p->p_comm,
2414 1.209.2.3 pgoyette uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2415 1.170 pooka strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2416 1.170 pooka
2417 1.170 pooka ki->p_nlwps = p->p_nlwps;
2418 1.170 pooka ki->p_realflag = ki->p_flag;
2419 1.170 pooka
2420 1.170 pooka if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2421 1.170 pooka vm = p->p_vmspace;
2422 1.170 pooka ki->p_vm_rssize = vm_resident_count(vm);
2423 1.170 pooka ki->p_vm_tsize = vm->vm_tsize;
2424 1.170 pooka ki->p_vm_dsize = vm->vm_dsize;
2425 1.170 pooka ki->p_vm_ssize = vm->vm_ssize;
2426 1.184 martin ki->p_vm_vsize = atop(vm->vm_map.size);
2427 1.170 pooka /*
2428 1.170 pooka * Since the stack is initially mapped mostly with
2429 1.170 pooka * PROT_NONE and grown as needed, adjust the "mapped size"
2430 1.170 pooka * to skip the unused stack portion.
2431 1.170 pooka */
2432 1.170 pooka ki->p_vm_msize =
2433 1.170 pooka atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2434 1.170 pooka
2435 1.170 pooka /* Pick the primary (first) LWP */
2436 1.170 pooka l = proc_active_lwp(p);
2437 1.170 pooka KASSERT(l != NULL);
2438 1.170 pooka lwp_lock(l);
2439 1.170 pooka ki->p_nrlwps = p->p_nrlwps;
2440 1.170 pooka ki->p_forw = 0;
2441 1.170 pooka ki->p_back = 0;
2442 1.209.2.8 pgoyette COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2443 1.170 pooka ki->p_stat = l->l_stat;
2444 1.170 pooka ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2445 1.170 pooka ki->p_swtime = l->l_swtime;
2446 1.170 pooka ki->p_slptime = l->l_slptime;
2447 1.170 pooka if (l->l_stat == LSONPROC)
2448 1.170 pooka ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2449 1.170 pooka else
2450 1.170 pooka ki->p_schedflags = 0;
2451 1.170 pooka ki->p_priority = lwp_eprio(l);
2452 1.170 pooka ki->p_usrpri = l->l_priority;
2453 1.170 pooka if (l->l_wchan)
2454 1.170 pooka strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2455 1.209.2.8 pgoyette COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2456 1.170 pooka ki->p_cpuid = cpu_index(l->l_cpu);
2457 1.170 pooka lwp_unlock(l);
2458 1.170 pooka LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2459 1.170 pooka /* This is hardly correct, but... */
2460 1.170 pooka sigplusset(&l->l_sigpend.sp_set, &ss1);
2461 1.170 pooka sigplusset(&l->l_sigmask, &ss2);
2462 1.170 pooka ki->p_cpticks += l->l_cpticks;
2463 1.170 pooka ki->p_pctcpu += l->l_pctcpu;
2464 1.170 pooka ki->p_estcpu += l->l_estcpu;
2465 1.170 pooka }
2466 1.170 pooka }
2467 1.170 pooka sigplusset(&p->p_sigpend.sp_set, &ss2);
2468 1.170 pooka memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2469 1.170 pooka memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2470 1.170 pooka
2471 1.170 pooka if (p->p_session != NULL) {
2472 1.170 pooka ki->p_sid = p->p_session->s_sid;
2473 1.170 pooka ki->p__pgid = p->p_pgrp->pg_id;
2474 1.170 pooka if (p->p_session->s_ttyvp)
2475 1.170 pooka ki->p_eflag |= EPROC_CTTY;
2476 1.170 pooka if (SESS_LEADER(p))
2477 1.170 pooka ki->p_eflag |= EPROC_SLEADER;
2478 1.170 pooka strncpy(ki->p_login, p->p_session->s_login,
2479 1.209.2.3 pgoyette uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2480 1.170 pooka ki->p_jobc = p->p_pgrp->pg_jobc;
2481 1.170 pooka if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2482 1.170 pooka ki->p_tdev = tp->t_dev;
2483 1.170 pooka ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2484 1.209.2.8 pgoyette COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2485 1.209.2.3 pgoyette allowaddr);
2486 1.170 pooka } else {
2487 1.170 pooka ki->p_tdev = (int32_t)NODEV;
2488 1.170 pooka }
2489 1.170 pooka }
2490 1.170 pooka
2491 1.170 pooka if (!P_ZOMBIE(p) && !zombie) {
2492 1.170 pooka ki->p_uvalid = 1;
2493 1.170 pooka ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2494 1.170 pooka ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2495 1.170 pooka
2496 1.170 pooka calcru(p, &ut, &st, NULL, &rt);
2497 1.170 pooka ki->p_rtime_sec = rt.tv_sec;
2498 1.170 pooka ki->p_rtime_usec = rt.tv_usec;
2499 1.170 pooka ki->p_uutime_sec = ut.tv_sec;
2500 1.170 pooka ki->p_uutime_usec = ut.tv_usec;
2501 1.170 pooka ki->p_ustime_sec = st.tv_sec;
2502 1.170 pooka ki->p_ustime_usec = st.tv_usec;
2503 1.170 pooka
2504 1.170 pooka memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2505 1.170 pooka ki->p_uru_nvcsw = 0;
2506 1.170 pooka ki->p_uru_nivcsw = 0;
2507 1.170 pooka LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2508 1.170 pooka ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2509 1.170 pooka ki->p_uru_nivcsw += l2->l_nivcsw;
2510 1.170 pooka ruadd(&ru, &l2->l_ru);
2511 1.170 pooka }
2512 1.170 pooka ki->p_uru_maxrss = ru.ru_maxrss;
2513 1.170 pooka ki->p_uru_ixrss = ru.ru_ixrss;
2514 1.170 pooka ki->p_uru_idrss = ru.ru_idrss;
2515 1.170 pooka ki->p_uru_isrss = ru.ru_isrss;
2516 1.170 pooka ki->p_uru_minflt = ru.ru_minflt;
2517 1.170 pooka ki->p_uru_majflt = ru.ru_majflt;
2518 1.170 pooka ki->p_uru_nswap = ru.ru_nswap;
2519 1.170 pooka ki->p_uru_inblock = ru.ru_inblock;
2520 1.170 pooka ki->p_uru_oublock = ru.ru_oublock;
2521 1.170 pooka ki->p_uru_msgsnd = ru.ru_msgsnd;
2522 1.170 pooka ki->p_uru_msgrcv = ru.ru_msgrcv;
2523 1.170 pooka ki->p_uru_nsignals = ru.ru_nsignals;
2524 1.170 pooka
2525 1.170 pooka timeradd(&p->p_stats->p_cru.ru_utime,
2526 1.170 pooka &p->p_stats->p_cru.ru_stime, &ut);
2527 1.170 pooka ki->p_uctime_sec = ut.tv_sec;
2528 1.170 pooka ki->p_uctime_usec = ut.tv_usec;
2529 1.170 pooka }
2530 1.170 pooka }
2531 1.194 christos
2532 1.194 christos
2533 1.194 christos int
2534 1.194 christos proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2535 1.194 christos {
2536 1.194 christos int error;
2537 1.194 christos
2538 1.194 christos mutex_enter(proc_lock);
2539 1.194 christos if (pid == -1)
2540 1.194 christos *p = l->l_proc;
2541 1.194 christos else
2542 1.194 christos *p = proc_find(pid);
2543 1.194 christos
2544 1.194 christos if (*p == NULL) {
2545 1.194 christos if (pid != -1)
2546 1.194 christos mutex_exit(proc_lock);
2547 1.194 christos return ESRCH;
2548 1.194 christos }
2549 1.194 christos if (pid != -1)
2550 1.194 christos mutex_enter((*p)->p_lock);
2551 1.194 christos mutex_exit(proc_lock);
2552 1.194 christos
2553 1.194 christos error = kauth_authorize_process(l->l_cred,
2554 1.194 christos KAUTH_PROCESS_CANSEE, *p,
2555 1.194 christos KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2556 1.194 christos if (error) {
2557 1.194 christos if (pid != -1)
2558 1.194 christos mutex_exit((*p)->p_lock);
2559 1.194 christos }
2560 1.194 christos return error;
2561 1.194 christos }
2562 1.194 christos
2563 1.194 christos static int
2564 1.194 christos fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2565 1.194 christos {
2566 1.194 christos int error;
2567 1.194 christos struct proc *p;
2568 1.194 christos
2569 1.194 christos if ((error = proc_find_locked(l, &p, pid)) != 0)
2570 1.194 christos return error;
2571 1.194 christos
2572 1.208 christos if (p->p_path == NULL) {
2573 1.194 christos if (pid != -1)
2574 1.194 christos mutex_exit(p->p_lock);
2575 1.194 christos return ENOENT;
2576 1.194 christos }
2577 1.194 christos
2578 1.208 christos size_t len = strlen(p->p_path) + 1;
2579 1.194 christos if (oldp != NULL) {
2580 1.209.2.9 pgoyette size_t copylen = uimin(len, *oldlenp);
2581 1.209.2.9 pgoyette error = sysctl_copyout(l, p->p_path, oldp, copylen);
2582 1.194 christos if (error == 0 && *oldlenp < len)
2583 1.194 christos error = ENOSPC;
2584 1.194 christos }
2585 1.194 christos *oldlenp = len;
2586 1.194 christos if (pid != -1)
2587 1.194 christos mutex_exit(p->p_lock);
2588 1.194 christos return error;
2589 1.194 christos }
2590 1.206 christos
2591 1.206 christos int
2592 1.206 christos proc_getauxv(struct proc *p, void **buf, size_t *len)
2593 1.206 christos {
2594 1.206 christos struct ps_strings pss;
2595 1.206 christos int error;
2596 1.206 christos void *uauxv, *kauxv;
2597 1.209 maxv size_t size;
2598 1.206 christos
2599 1.206 christos if ((error = copyin_psstrings(p, &pss)) != 0)
2600 1.206 christos return error;
2601 1.209 maxv if (pss.ps_envstr == NULL)
2602 1.209 maxv return EIO;
2603 1.206 christos
2604 1.209 maxv size = p->p_execsw->es_arglen;
2605 1.209 maxv if (size == 0)
2606 1.206 christos return EIO;
2607 1.206 christos
2608 1.206 christos size_t ptrsz = PROC_PTRSZ(p);
2609 1.206 christos uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
2610 1.206 christos
2611 1.206 christos kauxv = kmem_alloc(size, KM_SLEEP);
2612 1.206 christos
2613 1.206 christos error = copyin_proc(p, uauxv, kauxv, size);
2614 1.206 christos if (error) {
2615 1.206 christos kmem_free(kauxv, size);
2616 1.206 christos return error;
2617 1.206 christos }
2618 1.206 christos
2619 1.206 christos *buf = kauxv;
2620 1.206 christos *len = size;
2621 1.206 christos
2622 1.206 christos return 0;
2623 1.206 christos }
2624 1.209.2.10 pgoyette
2625 1.209.2.10 pgoyette
2626 1.209.2.10 pgoyette static int
2627 1.209.2.10 pgoyette sysctl_security_expose_address(SYSCTLFN_ARGS)
2628 1.209.2.10 pgoyette {
2629 1.209.2.10 pgoyette int expose_address, error;
2630 1.209.2.10 pgoyette struct sysctlnode node;
2631 1.209.2.10 pgoyette
2632 1.209.2.10 pgoyette node = *rnode;
2633 1.209.2.10 pgoyette node.sysctl_data = &expose_address;
2634 1.209.2.10 pgoyette expose_address = *(int *)rnode->sysctl_data;
2635 1.209.2.10 pgoyette error = sysctl_lookup(SYSCTLFN_CALL(&node));
2636 1.209.2.10 pgoyette if (error || newp == NULL)
2637 1.209.2.10 pgoyette return error;
2638 1.209.2.10 pgoyette
2639 1.209.2.10 pgoyette if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
2640 1.209.2.10 pgoyette 0, NULL, NULL, NULL))
2641 1.209.2.10 pgoyette return EPERM;
2642 1.209.2.10 pgoyette
2643 1.209.2.10 pgoyette switch (expose_address) {
2644 1.209.2.10 pgoyette case 0:
2645 1.209.2.10 pgoyette case 1:
2646 1.209.2.10 pgoyette case 2:
2647 1.209.2.10 pgoyette break;
2648 1.209.2.10 pgoyette default:
2649 1.209.2.10 pgoyette return EINVAL;
2650 1.209.2.10 pgoyette }
2651 1.209.2.10 pgoyette
2652 1.209.2.10 pgoyette *(int *)rnode->sysctl_data = expose_address;
2653 1.209.2.10 pgoyette
2654 1.209.2.10 pgoyette return 0;
2655 1.209.2.10 pgoyette }
2656 1.209.2.10 pgoyette
2657 1.209.2.10 pgoyette bool
2658 1.209.2.10 pgoyette get_expose_address(struct proc *p)
2659 1.209.2.10 pgoyette {
2660 1.209.2.10 pgoyette /* allow only if sysctl variable is set or privileged */
2661 1.209.2.10 pgoyette return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
2662 1.209.2.10 pgoyette p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
2663 1.209.2.10 pgoyette }
2664