Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.211
      1  1.211     kamil /*	$NetBSD: kern_proc.c,v 1.211 2018/03/13 02:24:26 kamil Exp $	*/
      2   1.33   thorpej 
      3   1.33   thorpej /*-
      4  1.131        ad  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.33   thorpej  * All rights reserved.
      6   1.33   thorpej  *
      7   1.33   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.33   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.100        ad  * NASA Ames Research Center, and by Andrew Doran.
     10   1.33   thorpej  *
     11   1.33   thorpej  * Redistribution and use in source and binary forms, with or without
     12   1.33   thorpej  * modification, are permitted provided that the following conditions
     13   1.33   thorpej  * are met:
     14   1.33   thorpej  * 1. Redistributions of source code must retain the above copyright
     15   1.33   thorpej  *    notice, this list of conditions and the following disclaimer.
     16   1.33   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.33   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18   1.33   thorpej  *    documentation and/or other materials provided with the distribution.
     19   1.33   thorpej  *
     20   1.33   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21   1.33   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22   1.33   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23   1.33   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24   1.33   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.33   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.33   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.33   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.33   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.33   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.33   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31   1.33   thorpej  */
     32    1.9       cgd 
     33    1.1       cgd /*
     34    1.7       cgd  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35    1.7       cgd  *	The Regents of the University of California.  All rights reserved.
     36    1.1       cgd  *
     37    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     38    1.1       cgd  * modification, are permitted provided that the following conditions
     39    1.1       cgd  * are met:
     40    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     41    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     42    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     43    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     44    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     45   1.65       agc  * 3. Neither the name of the University nor the names of its contributors
     46    1.1       cgd  *    may be used to endorse or promote products derived from this software
     47    1.1       cgd  *    without specific prior written permission.
     48    1.1       cgd  *
     49    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59    1.1       cgd  * SUCH DAMAGE.
     60    1.1       cgd  *
     61   1.23      fvdl  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62    1.1       cgd  */
     63   1.45     lukem 
     64   1.45     lukem #include <sys/cdefs.h>
     65  1.211     kamil __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.211 2018/03/13 02:24:26 kamil Exp $");
     66   1.48      yamt 
     67  1.165     pooka #ifdef _KERNEL_OPT
     68   1.48      yamt #include "opt_kstack.h"
     69   1.88      onoe #include "opt_maxuprc.h"
     70  1.161    darran #include "opt_dtrace.h"
     71  1.171     pooka #include "opt_compat_netbsd32.h"
     72  1.165     pooka #endif
     73    1.1       cgd 
     74  1.205  christos #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
     75  1.205  christos     && !defined(_RUMPKERNEL)
     76  1.205  christos #define COMPAT_NETBSD32
     77  1.205  christos #endif
     78  1.205  christos 
     79    1.5   mycroft #include <sys/param.h>
     80    1.5   mycroft #include <sys/systm.h>
     81    1.5   mycroft #include <sys/kernel.h>
     82    1.5   mycroft #include <sys/proc.h>
     83   1.28   thorpej #include <sys/resourcevar.h>
     84    1.5   mycroft #include <sys/buf.h>
     85    1.5   mycroft #include <sys/acct.h>
     86    1.5   mycroft #include <sys/wait.h>
     87    1.5   mycroft #include <sys/file.h>
     88    1.8   mycroft #include <ufs/ufs/quota.h>
     89    1.5   mycroft #include <sys/uio.h>
     90   1.24   thorpej #include <sys/pool.h>
     91  1.147     rmind #include <sys/pset.h>
     92    1.5   mycroft #include <sys/mbuf.h>
     93    1.5   mycroft #include <sys/ioctl.h>
     94    1.5   mycroft #include <sys/tty.h>
     95   1.11       cgd #include <sys/signalvar.h>
     96   1.51  gmcgarry #include <sys/ras.h>
     97   1.81  junyoung #include <sys/filedesc.h>
     98  1.185    martin #include <sys/syscall_stats.h>
     99   1.89      elad #include <sys/kauth.h>
    100  1.100        ad #include <sys/sleepq.h>
    101  1.126        ad #include <sys/atomic.h>
    102  1.131        ad #include <sys/kmem.h>
    103  1.194  christos #include <sys/namei.h>
    104  1.160    darran #include <sys/dtrace_bsd.h>
    105  1.170     pooka #include <sys/sysctl.h>
    106  1.170     pooka #include <sys/exec.h>
    107  1.170     pooka #include <sys/cpu.h>
    108  1.160    darran 
    109  1.169  uebayasi #include <uvm/uvm_extern.h>
    110  1.194  christos #include <uvm/uvm.h>
    111    1.5   mycroft 
    112  1.171     pooka #ifdef COMPAT_NETBSD32
    113  1.171     pooka #include <compat/netbsd32/netbsd32.h>
    114  1.171     pooka #endif
    115  1.171     pooka 
    116    1.7       cgd /*
    117  1.180     rmind  * Process lists.
    118    1.7       cgd  */
    119   1.31   thorpej 
    120  1.180     rmind struct proclist		allproc		__cacheline_aligned;
    121  1.180     rmind struct proclist		zombproc	__cacheline_aligned;
    122   1.32   thorpej 
    123  1.180     rmind kmutex_t *		proc_lock	__cacheline_aligned;
    124   1.33   thorpej 
    125   1.33   thorpej /*
    126   1.72  junyoung  * pid to proc lookup is done by indexing the pid_table array.
    127   1.61       dsl  * Since pid numbers are only allocated when an empty slot
    128   1.61       dsl  * has been found, there is no need to search any lists ever.
    129   1.61       dsl  * (an orphaned pgrp will lock the slot, a session will lock
    130   1.61       dsl  * the pgrp with the same number.)
    131   1.61       dsl  * If the table is too small it is reallocated with twice the
    132   1.61       dsl  * previous size and the entries 'unzipped' into the two halves.
    133   1.61       dsl  * A linked list of free entries is passed through the pt_proc
    134   1.61       dsl  * field of 'free' items - set odd to be an invalid ptr.
    135   1.61       dsl  */
    136   1.61       dsl 
    137   1.61       dsl struct pid_table {
    138   1.61       dsl 	struct proc	*pt_proc;
    139   1.61       dsl 	struct pgrp	*pt_pgrp;
    140  1.168       chs 	pid_t		pt_pid;
    141   1.72  junyoung };
    142   1.61       dsl #if 1	/* strongly typed cast - should be a noop */
    143   1.84     perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    144   1.61       dsl #else
    145   1.61       dsl #define p2u(p) ((uint)p)
    146   1.72  junyoung #endif
    147   1.61       dsl #define P_VALID(p) (!(p2u(p) & 1))
    148   1.61       dsl #define P_NEXT(p) (p2u(p) >> 1)
    149   1.61       dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    150   1.61       dsl 
    151  1.180     rmind /*
    152  1.180     rmind  * Table of process IDs (PIDs).
    153  1.180     rmind  */
    154  1.180     rmind static struct pid_table *pid_table	__read_mostly;
    155  1.180     rmind 
    156  1.180     rmind #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    157  1.180     rmind 
    158  1.180     rmind /* Table mask, threshold for growing and number of allocated PIDs. */
    159  1.180     rmind static u_int		pid_tbl_mask	__read_mostly;
    160  1.180     rmind static u_int		pid_alloc_lim	__read_mostly;
    161  1.180     rmind static u_int		pid_alloc_cnt	__cacheline_aligned;
    162  1.180     rmind 
    163  1.180     rmind /* Next free, last free and maximum PIDs. */
    164  1.180     rmind static u_int		next_free_pt	__cacheline_aligned;
    165  1.180     rmind static u_int		last_free_pt	__cacheline_aligned;
    166  1.180     rmind static pid_t		pid_max		__read_mostly;
    167   1.31   thorpej 
    168   1.81  junyoung /* Components of the first process -- never freed. */
    169  1.123      matt 
    170  1.145        ad extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    171  1.123      matt 
    172  1.123      matt struct session session0 = {
    173  1.123      matt 	.s_count = 1,
    174  1.123      matt 	.s_sid = 0,
    175  1.123      matt };
    176  1.123      matt struct pgrp pgrp0 = {
    177  1.123      matt 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    178  1.123      matt 	.pg_session = &session0,
    179  1.123      matt };
    180  1.132        ad filedesc_t filedesc0;
    181  1.123      matt struct cwdinfo cwdi0 = {
    182  1.187     pooka 	.cwdi_cmask = CMASK,
    183  1.123      matt 	.cwdi_refcnt = 1,
    184  1.123      matt };
    185  1.143  gmcgarry struct plimit limit0;
    186   1.81  junyoung struct pstats pstat0;
    187   1.81  junyoung struct vmspace vmspace0;
    188   1.81  junyoung struct sigacts sigacts0;
    189  1.123      matt struct proc proc0 = {
    190  1.123      matt 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    191  1.123      matt 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    192  1.123      matt 	.p_nlwps = 1,
    193  1.123      matt 	.p_nrlwps = 1,
    194  1.123      matt 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    195  1.123      matt 	.p_pgrp = &pgrp0,
    196  1.123      matt 	.p_comm = "system",
    197  1.123      matt 	/*
    198  1.123      matt 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    199  1.123      matt 	 * when they exit.  init(8) can easily wait them out for us.
    200  1.123      matt 	 */
    201  1.123      matt 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    202  1.123      matt 	.p_stat = SACTIVE,
    203  1.123      matt 	.p_nice = NZERO,
    204  1.123      matt 	.p_emul = &emul_netbsd,
    205  1.123      matt 	.p_cwdi = &cwdi0,
    206  1.123      matt 	.p_limit = &limit0,
    207  1.132        ad 	.p_fd = &filedesc0,
    208  1.123      matt 	.p_vmspace = &vmspace0,
    209  1.123      matt 	.p_stats = &pstat0,
    210  1.123      matt 	.p_sigacts = &sigacts0,
    211  1.188      matt #ifdef PROC0_MD_INITIALIZERS
    212  1.188      matt 	PROC0_MD_INITIALIZERS
    213  1.188      matt #endif
    214  1.123      matt };
    215  1.123      matt kauth_cred_t cred0;
    216   1.81  junyoung 
    217  1.180     rmind static const int	nofile	= NOFILE;
    218  1.180     rmind static const int	maxuprc	= MAXUPRC;
    219   1.81  junyoung 
    220  1.170     pooka static int sysctl_doeproc(SYSCTLFN_PROTO);
    221  1.170     pooka static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    222  1.170     pooka 
    223   1.31   thorpej /*
    224   1.31   thorpej  * The process list descriptors, used during pid allocation and
    225   1.31   thorpej  * by sysctl.  No locking on this data structure is needed since
    226   1.31   thorpej  * it is completely static.
    227   1.31   thorpej  */
    228   1.31   thorpej const struct proclist_desc proclists[] = {
    229   1.31   thorpej 	{ &allproc	},
    230   1.31   thorpej 	{ &zombproc	},
    231   1.31   thorpej 	{ NULL		},
    232   1.31   thorpej };
    233   1.31   thorpej 
    234  1.151     rmind static struct pgrp *	pg_remove(pid_t);
    235  1.151     rmind static void		pg_delete(pid_t);
    236  1.151     rmind static void		orphanpg(struct pgrp *);
    237   1.13  christos 
    238   1.95   thorpej static specificdata_domain_t proc_specificdata_domain;
    239   1.95   thorpej 
    240  1.128        ad static pool_cache_t proc_cache;
    241  1.128        ad 
    242  1.153      elad static kauth_listener_t proc_listener;
    243  1.153      elad 
    244  1.194  christos static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
    245  1.194  christos 
    246  1.153      elad static int
    247  1.153      elad proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    248  1.153      elad     void *arg0, void *arg1, void *arg2, void *arg3)
    249  1.153      elad {
    250  1.153      elad 	struct proc *p;
    251  1.153      elad 	int result;
    252  1.153      elad 
    253  1.153      elad 	result = KAUTH_RESULT_DEFER;
    254  1.153      elad 	p = arg0;
    255  1.153      elad 
    256  1.153      elad 	switch (action) {
    257  1.153      elad 	case KAUTH_PROCESS_CANSEE: {
    258  1.153      elad 		enum kauth_process_req req;
    259  1.153      elad 
    260  1.153      elad 		req = (enum kauth_process_req)arg1;
    261  1.153      elad 
    262  1.153      elad 		switch (req) {
    263  1.153      elad 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    264  1.153      elad 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    265  1.153      elad 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    266  1.153      elad 			result = KAUTH_RESULT_ALLOW;
    267  1.153      elad 
    268  1.153      elad 			break;
    269  1.153      elad 
    270  1.153      elad 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    271  1.153      elad 			if (kauth_cred_getuid(cred) !=
    272  1.153      elad 			    kauth_cred_getuid(p->p_cred) ||
    273  1.153      elad 			    kauth_cred_getuid(cred) !=
    274  1.153      elad 			    kauth_cred_getsvuid(p->p_cred))
    275  1.153      elad 				break;
    276  1.153      elad 
    277  1.153      elad 			result = KAUTH_RESULT_ALLOW;
    278  1.153      elad 
    279  1.153      elad 			break;
    280  1.153      elad 
    281  1.153      elad 		default:
    282  1.153      elad 			break;
    283  1.153      elad 		}
    284  1.153      elad 
    285  1.153      elad 		break;
    286  1.153      elad 		}
    287  1.153      elad 
    288  1.153      elad 	case KAUTH_PROCESS_FORK: {
    289  1.153      elad 		int lnprocs = (int)(unsigned long)arg2;
    290  1.153      elad 
    291  1.153      elad 		/*
    292  1.153      elad 		 * Don't allow a nonprivileged user to use the last few
    293  1.153      elad 		 * processes. The variable lnprocs is the current number of
    294  1.153      elad 		 * processes, maxproc is the limit.
    295  1.153      elad 		 */
    296  1.153      elad 		if (__predict_false((lnprocs >= maxproc - 5)))
    297  1.153      elad 			break;
    298  1.153      elad 
    299  1.153      elad 		result = KAUTH_RESULT_ALLOW;
    300  1.153      elad 
    301  1.153      elad 		break;
    302  1.153      elad 		}
    303  1.153      elad 
    304  1.153      elad 	case KAUTH_PROCESS_CORENAME:
    305  1.153      elad 	case KAUTH_PROCESS_STOPFLAG:
    306  1.153      elad 		if (proc_uidmatch(cred, p->p_cred) == 0)
    307  1.153      elad 			result = KAUTH_RESULT_ALLOW;
    308  1.153      elad 
    309  1.153      elad 		break;
    310  1.153      elad 
    311  1.153      elad 	default:
    312  1.153      elad 		break;
    313  1.153      elad 	}
    314  1.153      elad 
    315  1.153      elad 	return result;
    316  1.153      elad }
    317  1.153      elad 
    318   1.10   mycroft /*
    319   1.10   mycroft  * Initialize global process hashing structures.
    320   1.10   mycroft  */
    321   1.11       cgd void
    322   1.59       dsl procinit(void)
    323    1.7       cgd {
    324   1.31   thorpej 	const struct proclist_desc *pd;
    325  1.150     rmind 	u_int i;
    326   1.61       dsl #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    327   1.31   thorpej 
    328   1.31   thorpej 	for (pd = proclists; pd->pd_list != NULL; pd++)
    329   1.31   thorpej 		LIST_INIT(pd->pd_list);
    330    1.7       cgd 
    331  1.136        ad 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    332  1.150     rmind 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    333  1.150     rmind 	    * sizeof(struct pid_table), KM_SLEEP);
    334  1.180     rmind 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    335  1.180     rmind 	pid_max = PID_MAX;
    336   1.33   thorpej 
    337   1.61       dsl 	/* Set free list running through table...
    338   1.61       dsl 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    339   1.61       dsl 	for (i = 0; i <= pid_tbl_mask; i++) {
    340   1.61       dsl 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    341   1.61       dsl 		pid_table[i].pt_pgrp = 0;
    342  1.168       chs 		pid_table[i].pt_pid = 0;
    343   1.61       dsl 	}
    344   1.61       dsl 	/* slot 0 is just grabbed */
    345   1.61       dsl 	next_free_pt = 1;
    346   1.61       dsl 	/* Need to fix last entry. */
    347   1.61       dsl 	last_free_pt = pid_tbl_mask;
    348   1.61       dsl 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    349   1.61       dsl 	/* point at which we grow table - to avoid reusing pids too often */
    350   1.61       dsl 	pid_alloc_lim = pid_tbl_mask - 1;
    351   1.61       dsl #undef LINK_EMPTY
    352   1.61       dsl 
    353   1.95   thorpej 	proc_specificdata_domain = specificdata_domain_create();
    354   1.95   thorpej 	KASSERT(proc_specificdata_domain != NULL);
    355  1.128        ad 
    356  1.128        ad 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    357  1.128        ad 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    358  1.153      elad 
    359  1.153      elad 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    360  1.153      elad 	    proc_listener_cb, NULL);
    361    1.7       cgd }
    362    1.1       cgd 
    363  1.170     pooka void
    364  1.170     pooka procinit_sysctl(void)
    365  1.170     pooka {
    366  1.170     pooka 	static struct sysctllog *clog;
    367  1.170     pooka 
    368  1.170     pooka 	sysctl_createv(&clog, 0, NULL, NULL,
    369  1.170     pooka 		       CTLFLAG_PERMANENT,
    370  1.170     pooka 		       CTLTYPE_NODE, "proc",
    371  1.170     pooka 		       SYSCTL_DESCR("System-wide process information"),
    372  1.170     pooka 		       sysctl_doeproc, 0, NULL, 0,
    373  1.170     pooka 		       CTL_KERN, KERN_PROC, CTL_EOL);
    374  1.170     pooka 	sysctl_createv(&clog, 0, NULL, NULL,
    375  1.170     pooka 		       CTLFLAG_PERMANENT,
    376  1.170     pooka 		       CTLTYPE_NODE, "proc2",
    377  1.170     pooka 		       SYSCTL_DESCR("Machine-independent process information"),
    378  1.170     pooka 		       sysctl_doeproc, 0, NULL, 0,
    379  1.170     pooka 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    380  1.170     pooka 	sysctl_createv(&clog, 0, NULL, NULL,
    381  1.170     pooka 		       CTLFLAG_PERMANENT,
    382  1.170     pooka 		       CTLTYPE_NODE, "proc_args",
    383  1.170     pooka 		       SYSCTL_DESCR("Process argument information"),
    384  1.170     pooka 		       sysctl_kern_proc_args, 0, NULL, 0,
    385  1.170     pooka 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    386  1.170     pooka 
    387  1.170     pooka 	/*
    388  1.170     pooka 	  "nodes" under these:
    389  1.170     pooka 
    390  1.170     pooka 	  KERN_PROC_ALL
    391  1.170     pooka 	  KERN_PROC_PID pid
    392  1.170     pooka 	  KERN_PROC_PGRP pgrp
    393  1.170     pooka 	  KERN_PROC_SESSION sess
    394  1.170     pooka 	  KERN_PROC_TTY tty
    395  1.170     pooka 	  KERN_PROC_UID uid
    396  1.170     pooka 	  KERN_PROC_RUID uid
    397  1.170     pooka 	  KERN_PROC_GID gid
    398  1.170     pooka 	  KERN_PROC_RGID gid
    399  1.170     pooka 
    400  1.170     pooka 	  all in all, probably not worth the effort...
    401  1.170     pooka 	*/
    402  1.170     pooka }
    403  1.170     pooka 
    404    1.7       cgd /*
    405   1.81  junyoung  * Initialize process 0.
    406   1.81  junyoung  */
    407   1.81  junyoung void
    408   1.81  junyoung proc0_init(void)
    409   1.81  junyoung {
    410   1.81  junyoung 	struct proc *p;
    411   1.81  junyoung 	struct pgrp *pg;
    412  1.177     rmind 	struct rlimit *rlim;
    413   1.81  junyoung 	rlim_t lim;
    414  1.143  gmcgarry 	int i;
    415   1.81  junyoung 
    416   1.81  junyoung 	p = &proc0;
    417   1.81  junyoung 	pg = &pgrp0;
    418  1.123      matt 
    419  1.127        ad 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    420  1.129        ad 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    421  1.137        ad 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    422  1.107        ad 
    423  1.122        ad 	rw_init(&p->p_reflock);
    424  1.100        ad 	cv_init(&p->p_waitcv, "wait");
    425  1.100        ad 	cv_init(&p->p_lwpcv, "lwpwait");
    426  1.100        ad 
    427  1.166     pooka 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    428  1.100        ad 
    429   1.81  junyoung 	pid_table[0].pt_proc = p;
    430   1.81  junyoung 	LIST_INSERT_HEAD(&allproc, p, p_list);
    431   1.81  junyoung 
    432   1.81  junyoung 	pid_table[0].pt_pgrp = pg;
    433   1.81  junyoung 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    434   1.81  junyoung 
    435   1.81  junyoung #ifdef __HAVE_SYSCALL_INTERN
    436   1.81  junyoung 	(*p->p_emul->e_syscall_intern)(p);
    437   1.81  junyoung #endif
    438   1.81  junyoung 
    439   1.81  junyoung 	/* Create credentials. */
    440   1.89      elad 	cred0 = kauth_cred_alloc();
    441   1.89      elad 	p->p_cred = cred0;
    442   1.81  junyoung 
    443   1.81  junyoung 	/* Create the CWD info. */
    444  1.113        ad 	rw_init(&cwdi0.cwdi_lock);
    445   1.81  junyoung 
    446   1.81  junyoung 	/* Create the limits structures. */
    447  1.116       dsl 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    448  1.177     rmind 
    449  1.177     rmind 	rlim = limit0.pl_rlimit;
    450  1.177     rmind 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    451  1.177     rmind 		rlim[i].rlim_cur = RLIM_INFINITY;
    452  1.177     rmind 		rlim[i].rlim_max = RLIM_INFINITY;
    453  1.177     rmind 	}
    454  1.177     rmind 
    455  1.177     rmind 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    456  1.177     rmind 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    457  1.177     rmind 
    458  1.177     rmind 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    459  1.177     rmind 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    460   1.81  junyoung 
    461  1.163       jym 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    462  1.177     rmind 	rlim[RLIMIT_RSS].rlim_max = lim;
    463  1.177     rmind 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    464  1.177     rmind 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    465  1.177     rmind 
    466  1.186  christos 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
    467  1.186  christos 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
    468  1.186  christos 
    469  1.179     rmind 	/* Note that default core name has zero length. */
    470  1.177     rmind 	limit0.pl_corename = defcorename;
    471  1.179     rmind 	limit0.pl_cnlen = 0;
    472  1.177     rmind 	limit0.pl_refcnt = 1;
    473  1.179     rmind 	limit0.pl_writeable = false;
    474  1.143  gmcgarry 	limit0.pl_sv_limit = NULL;
    475   1.81  junyoung 
    476   1.81  junyoung 	/* Configure virtual memory system, set vm rlimits. */
    477   1.81  junyoung 	uvm_init_limits(p);
    478   1.81  junyoung 
    479   1.81  junyoung 	/* Initialize file descriptor table for proc0. */
    480  1.132        ad 	fd_init(&filedesc0);
    481   1.81  junyoung 
    482   1.81  junyoung 	/*
    483   1.81  junyoung 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    484   1.81  junyoung 	 * All kernel processes (which never have user space mappings)
    485   1.81  junyoung 	 * share proc0's vmspace, and thus, the kernel pmap.
    486   1.81  junyoung 	 */
    487   1.81  junyoung 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    488  1.197      maxv 	    trunc_page(VM_MAXUSER_ADDRESS),
    489  1.191  christos #ifdef __USE_TOPDOWN_VM
    490  1.190    martin 	    true
    491  1.190    martin #else
    492  1.190    martin 	    false
    493  1.190    martin #endif
    494  1.190    martin 	    );
    495   1.81  junyoung 
    496  1.127        ad 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    497  1.127        ad 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    498   1.81  junyoung 	siginit(p);
    499   1.96  christos 
    500  1.164     rmind 	proc_initspecific(p);
    501  1.160    darran 	kdtrace_proc_ctor(NULL, p);
    502   1.81  junyoung }
    503   1.81  junyoung 
    504   1.81  junyoung /*
    505  1.151     rmind  * Session reference counting.
    506  1.151     rmind  */
    507  1.151     rmind 
    508  1.151     rmind void
    509  1.151     rmind proc_sesshold(struct session *ss)
    510  1.151     rmind {
    511  1.151     rmind 
    512  1.151     rmind 	KASSERT(mutex_owned(proc_lock));
    513  1.151     rmind 	ss->s_count++;
    514  1.151     rmind }
    515  1.151     rmind 
    516  1.151     rmind void
    517  1.151     rmind proc_sessrele(struct session *ss)
    518  1.151     rmind {
    519  1.151     rmind 
    520  1.151     rmind 	KASSERT(mutex_owned(proc_lock));
    521  1.151     rmind 	/*
    522  1.151     rmind 	 * We keep the pgrp with the same id as the session in order to
    523  1.151     rmind 	 * stop a process being given the same pid.  Since the pgrp holds
    524  1.151     rmind 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    525  1.151     rmind 	 */
    526  1.151     rmind 	if (--ss->s_count == 0) {
    527  1.151     rmind 		struct pgrp *pg;
    528  1.151     rmind 
    529  1.151     rmind 		pg = pg_remove(ss->s_sid);
    530  1.151     rmind 		mutex_exit(proc_lock);
    531  1.151     rmind 
    532  1.151     rmind 		kmem_free(pg, sizeof(struct pgrp));
    533  1.151     rmind 		kmem_free(ss, sizeof(struct session));
    534  1.151     rmind 	} else {
    535  1.151     rmind 		mutex_exit(proc_lock);
    536  1.151     rmind 	}
    537  1.151     rmind }
    538  1.151     rmind 
    539  1.151     rmind /*
    540   1.74  junyoung  * Check that the specified process group is in the session of the
    541   1.60       dsl  * specified process.
    542   1.60       dsl  * Treats -ve ids as process ids.
    543   1.60       dsl  * Used to validate TIOCSPGRP requests.
    544   1.60       dsl  */
    545   1.60       dsl int
    546   1.60       dsl pgid_in_session(struct proc *p, pid_t pg_id)
    547   1.60       dsl {
    548   1.60       dsl 	struct pgrp *pgrp;
    549  1.101       dsl 	struct session *session;
    550  1.107        ad 	int error;
    551  1.101       dsl 
    552  1.136        ad 	mutex_enter(proc_lock);
    553   1.60       dsl 	if (pg_id < 0) {
    554  1.167     rmind 		struct proc *p1 = proc_find(-pg_id);
    555  1.167     rmind 		if (p1 == NULL) {
    556  1.167     rmind 			error = EINVAL;
    557  1.167     rmind 			goto fail;
    558  1.167     rmind 		}
    559   1.60       dsl 		pgrp = p1->p_pgrp;
    560   1.60       dsl 	} else {
    561  1.167     rmind 		pgrp = pgrp_find(pg_id);
    562  1.167     rmind 		if (pgrp == NULL) {
    563  1.167     rmind 			error = EINVAL;
    564  1.167     rmind 			goto fail;
    565  1.167     rmind 		}
    566   1.60       dsl 	}
    567  1.101       dsl 	session = pgrp->pg_session;
    568  1.167     rmind 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    569  1.167     rmind fail:
    570  1.136        ad 	mutex_exit(proc_lock);
    571  1.107        ad 	return error;
    572    1.7       cgd }
    573    1.4    andrew 
    574    1.1       cgd /*
    575  1.148     rmind  * p_inferior: is p an inferior of q?
    576    1.1       cgd  */
    577  1.148     rmind static inline bool
    578  1.148     rmind p_inferior(struct proc *p, struct proc *q)
    579    1.1       cgd {
    580    1.1       cgd 
    581  1.148     rmind 	KASSERT(mutex_owned(proc_lock));
    582  1.148     rmind 
    583   1.41  sommerfe 	for (; p != q; p = p->p_pptr)
    584    1.1       cgd 		if (p->p_pid == 0)
    585  1.148     rmind 			return false;
    586  1.148     rmind 	return true;
    587    1.1       cgd }
    588    1.1       cgd 
    589    1.1       cgd /*
    590  1.167     rmind  * proc_find: locate a process by the ID.
    591  1.167     rmind  *
    592  1.167     rmind  * => Must be called with proc_lock held.
    593    1.1       cgd  */
    594  1.167     rmind proc_t *
    595  1.167     rmind proc_find_raw(pid_t pid)
    596    1.1       cgd {
    597  1.168       chs 	struct pid_table *pt;
    598  1.168       chs 	proc_t *p;
    599  1.167     rmind 
    600  1.168       chs 	KASSERT(mutex_owned(proc_lock));
    601  1.168       chs 	pt = &pid_table[pid & pid_tbl_mask];
    602  1.168       chs 	p = pt->pt_proc;
    603  1.168       chs 	if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
    604  1.167     rmind 		return NULL;
    605  1.167     rmind 	}
    606  1.167     rmind 	return p;
    607  1.167     rmind }
    608    1.1       cgd 
    609  1.167     rmind proc_t *
    610  1.167     rmind proc_find(pid_t pid)
    611  1.167     rmind {
    612  1.167     rmind 	proc_t *p;
    613  1.100        ad 
    614  1.167     rmind 	p = proc_find_raw(pid);
    615  1.167     rmind 	if (__predict_false(p == NULL)) {
    616  1.167     rmind 		return NULL;
    617  1.167     rmind 	}
    618  1.168       chs 
    619  1.167     rmind 	/*
    620  1.167     rmind 	 * Only allow live processes to be found by PID.
    621  1.167     rmind 	 * XXX: p_stat might change, since unlocked.
    622  1.167     rmind 	 */
    623  1.167     rmind 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    624   1.68       dsl 		return p;
    625   1.68       dsl 	}
    626   1.68       dsl 	return NULL;
    627    1.1       cgd }
    628    1.1       cgd 
    629    1.1       cgd /*
    630  1.167     rmind  * pgrp_find: locate a process group by the ID.
    631  1.167     rmind  *
    632  1.167     rmind  * => Must be called with proc_lock held.
    633    1.1       cgd  */
    634    1.1       cgd struct pgrp *
    635  1.167     rmind pgrp_find(pid_t pgid)
    636    1.1       cgd {
    637   1.68       dsl 	struct pgrp *pg;
    638    1.1       cgd 
    639  1.167     rmind 	KASSERT(mutex_owned(proc_lock));
    640  1.167     rmind 
    641   1.68       dsl 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    642  1.168       chs 
    643   1.61       dsl 	/*
    644  1.167     rmind 	 * Cannot look up a process group that only exists because the
    645  1.167     rmind 	 * session has not died yet (traditional).
    646   1.61       dsl 	 */
    647   1.68       dsl 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    648   1.68       dsl 		return NULL;
    649   1.68       dsl 	}
    650   1.68       dsl 	return pg;
    651    1.1       cgd }
    652    1.1       cgd 
    653   1.61       dsl static void
    654   1.61       dsl expand_pid_table(void)
    655    1.1       cgd {
    656  1.150     rmind 	size_t pt_size, tsz;
    657   1.61       dsl 	struct pid_table *n_pt, *new_pt;
    658   1.61       dsl 	struct proc *proc;
    659   1.61       dsl 	struct pgrp *pgrp;
    660  1.168       chs 	pid_t pid, rpid;
    661  1.150     rmind 	u_int i;
    662  1.168       chs 	uint new_pt_mask;
    663    1.1       cgd 
    664  1.150     rmind 	pt_size = pid_tbl_mask + 1;
    665  1.150     rmind 	tsz = pt_size * 2 * sizeof(struct pid_table);
    666  1.150     rmind 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    667  1.168       chs 	new_pt_mask = pt_size * 2 - 1;
    668   1.61       dsl 
    669  1.136        ad 	mutex_enter(proc_lock);
    670   1.61       dsl 	if (pt_size != pid_tbl_mask + 1) {
    671   1.61       dsl 		/* Another process beat us to it... */
    672  1.136        ad 		mutex_exit(proc_lock);
    673  1.150     rmind 		kmem_free(new_pt, tsz);
    674   1.61       dsl 		return;
    675   1.61       dsl 	}
    676   1.72  junyoung 
    677   1.61       dsl 	/*
    678   1.61       dsl 	 * Copy entries from old table into new one.
    679   1.61       dsl 	 * If 'pid' is 'odd' we need to place in the upper half,
    680   1.61       dsl 	 * even pid's to the lower half.
    681   1.61       dsl 	 * Free items stay in the low half so we don't have to
    682   1.61       dsl 	 * fixup the reference to them.
    683   1.61       dsl 	 * We stuff free items on the front of the freelist
    684   1.61       dsl 	 * because we can't write to unmodified entries.
    685   1.74  junyoung 	 * Processing the table backwards maintains a semblance
    686  1.168       chs 	 * of issuing pid numbers that increase with time.
    687   1.61       dsl 	 */
    688   1.61       dsl 	i = pt_size - 1;
    689   1.61       dsl 	n_pt = new_pt + i;
    690   1.61       dsl 	for (; ; i--, n_pt--) {
    691   1.61       dsl 		proc = pid_table[i].pt_proc;
    692   1.61       dsl 		pgrp = pid_table[i].pt_pgrp;
    693   1.61       dsl 		if (!P_VALID(proc)) {
    694   1.61       dsl 			/* Up 'use count' so that link is valid */
    695   1.61       dsl 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    696  1.168       chs 			rpid = 0;
    697   1.61       dsl 			proc = P_FREE(pid);
    698   1.61       dsl 			if (pgrp)
    699   1.61       dsl 				pid = pgrp->pg_id;
    700  1.168       chs 		} else {
    701  1.168       chs 			pid = pid_table[i].pt_pid;
    702  1.168       chs 			rpid = pid;
    703  1.168       chs 		}
    704   1.72  junyoung 
    705   1.61       dsl 		/* Save entry in appropriate half of table */
    706   1.61       dsl 		n_pt[pid & pt_size].pt_proc = proc;
    707   1.61       dsl 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    708  1.168       chs 		n_pt[pid & pt_size].pt_pid = rpid;
    709   1.61       dsl 
    710   1.61       dsl 		/* Put other piece on start of free list */
    711   1.61       dsl 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    712   1.61       dsl 		n_pt[pid & pt_size].pt_proc =
    713  1.168       chs 			P_FREE((pid & ~pt_size) | next_free_pt);
    714   1.61       dsl 		n_pt[pid & pt_size].pt_pgrp = 0;
    715  1.168       chs 		n_pt[pid & pt_size].pt_pid = 0;
    716  1.168       chs 
    717   1.61       dsl 		next_free_pt = i | (pid & pt_size);
    718   1.61       dsl 		if (i == 0)
    719   1.61       dsl 			break;
    720   1.61       dsl 	}
    721   1.61       dsl 
    722  1.150     rmind 	/* Save old table size and switch tables */
    723  1.150     rmind 	tsz = pt_size * sizeof(struct pid_table);
    724   1.61       dsl 	n_pt = pid_table;
    725   1.61       dsl 	pid_table = new_pt;
    726  1.168       chs 	pid_tbl_mask = new_pt_mask;
    727   1.61       dsl 
    728   1.61       dsl 	/*
    729   1.61       dsl 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    730   1.61       dsl 	 * allocated pids we need it to be larger!
    731   1.61       dsl 	 */
    732   1.61       dsl 	if (pid_tbl_mask > PID_MAX) {
    733   1.61       dsl 		pid_max = pid_tbl_mask * 2 + 1;
    734   1.61       dsl 		pid_alloc_lim |= pid_alloc_lim << 1;
    735   1.61       dsl 	} else
    736   1.61       dsl 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    737   1.61       dsl 
    738  1.136        ad 	mutex_exit(proc_lock);
    739  1.150     rmind 	kmem_free(n_pt, tsz);
    740   1.61       dsl }
    741   1.61       dsl 
    742   1.61       dsl struct proc *
    743   1.61       dsl proc_alloc(void)
    744   1.61       dsl {
    745   1.61       dsl 	struct proc *p;
    746   1.61       dsl 
    747  1.128        ad 	p = pool_cache_get(proc_cache, PR_WAITOK);
    748   1.61       dsl 	p->p_stat = SIDL;			/* protect against others */
    749   1.96  christos 	proc_initspecific(p);
    750  1.164     rmind 	kdtrace_proc_ctor(NULL, p);
    751  1.168       chs 	p->p_pid = -1;
    752  1.168       chs 	proc_alloc_pid(p);
    753  1.168       chs 	return p;
    754  1.168       chs }
    755  1.168       chs 
    756  1.183      yamt /*
    757  1.183      yamt  * proc_alloc_pid: allocate PID and record the given proc 'p' so that
    758  1.183      yamt  * proc_find_raw() can find it by the PID.
    759  1.183      yamt  */
    760  1.183      yamt 
    761  1.168       chs pid_t
    762  1.168       chs proc_alloc_pid(struct proc *p)
    763  1.168       chs {
    764  1.168       chs 	struct pid_table *pt;
    765  1.168       chs 	pid_t pid;
    766  1.168       chs 	int nxt;
    767   1.61       dsl 
    768   1.61       dsl 	for (;;expand_pid_table()) {
    769   1.61       dsl 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    770   1.61       dsl 			/* ensure pids cycle through 2000+ values */
    771   1.61       dsl 			continue;
    772  1.136        ad 		mutex_enter(proc_lock);
    773   1.61       dsl 		pt = &pid_table[next_free_pt];
    774    1.1       cgd #ifdef DIAGNOSTIC
    775   1.63  christos 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    776   1.61       dsl 			panic("proc_alloc: slot busy");
    777    1.1       cgd #endif
    778   1.61       dsl 		nxt = P_NEXT(pt->pt_proc);
    779   1.61       dsl 		if (nxt & pid_tbl_mask)
    780   1.61       dsl 			break;
    781   1.61       dsl 		/* Table full - expand (NB last entry not used....) */
    782  1.136        ad 		mutex_exit(proc_lock);
    783   1.61       dsl 	}
    784   1.61       dsl 
    785   1.61       dsl 	/* pid is 'saved use count' + 'size' + entry */
    786   1.61       dsl 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    787   1.61       dsl 	if ((uint)pid > (uint)pid_max)
    788   1.61       dsl 		pid &= pid_tbl_mask;
    789   1.61       dsl 	next_free_pt = nxt & pid_tbl_mask;
    790   1.61       dsl 
    791   1.61       dsl 	/* Grab table slot */
    792   1.61       dsl 	pt->pt_proc = p;
    793  1.168       chs 
    794  1.168       chs 	KASSERT(pt->pt_pid == 0);
    795  1.168       chs 	pt->pt_pid = pid;
    796  1.168       chs 	if (p->p_pid == -1) {
    797  1.168       chs 		p->p_pid = pid;
    798  1.168       chs 	}
    799   1.61       dsl 	pid_alloc_cnt++;
    800  1.136        ad 	mutex_exit(proc_lock);
    801   1.61       dsl 
    802  1.168       chs 	return pid;
    803   1.61       dsl }
    804   1.61       dsl 
    805   1.61       dsl /*
    806  1.118        ad  * Free a process id - called from proc_free (in kern_exit.c)
    807  1.100        ad  *
    808  1.136        ad  * Called with the proc_lock held.
    809   1.61       dsl  */
    810   1.61       dsl void
    811  1.168       chs proc_free_pid(pid_t pid)
    812   1.61       dsl {
    813   1.61       dsl 	struct pid_table *pt;
    814   1.61       dsl 
    815  1.136        ad 	KASSERT(mutex_owned(proc_lock));
    816   1.61       dsl 
    817   1.61       dsl 	pt = &pid_table[pid & pid_tbl_mask];
    818  1.168       chs 
    819   1.61       dsl 	/* save pid use count in slot */
    820   1.61       dsl 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    821  1.168       chs 	KASSERT(pt->pt_pid == pid);
    822  1.168       chs 	pt->pt_pid = 0;
    823   1.61       dsl 
    824   1.61       dsl 	if (pt->pt_pgrp == NULL) {
    825   1.61       dsl 		/* link last freed entry onto ours */
    826   1.61       dsl 		pid &= pid_tbl_mask;
    827   1.61       dsl 		pt = &pid_table[last_free_pt];
    828   1.61       dsl 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    829  1.168       chs 		pt->pt_pid = 0;
    830   1.61       dsl 		last_free_pt = pid;
    831   1.61       dsl 		pid_alloc_cnt--;
    832   1.61       dsl 	}
    833   1.61       dsl 
    834  1.126        ad 	atomic_dec_uint(&nprocs);
    835   1.61       dsl }
    836   1.61       dsl 
    837  1.128        ad void
    838  1.128        ad proc_free_mem(struct proc *p)
    839  1.128        ad {
    840  1.128        ad 
    841  1.160    darran 	kdtrace_proc_dtor(NULL, p);
    842  1.128        ad 	pool_cache_put(proc_cache, p);
    843  1.128        ad }
    844  1.128        ad 
    845   1.61       dsl /*
    846  1.151     rmind  * proc_enterpgrp: move p to a new or existing process group (and session).
    847   1.61       dsl  *
    848   1.61       dsl  * If we are creating a new pgrp, the pgid should equal
    849   1.72  junyoung  * the calling process' pid.
    850   1.61       dsl  * If is only valid to enter a process group that is in the session
    851   1.61       dsl  * of the process.
    852   1.61       dsl  * Also mksess should only be set if we are creating a process group
    853   1.61       dsl  *
    854  1.181    martin  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
    855   1.61       dsl  */
    856   1.61       dsl int
    857  1.151     rmind proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    858   1.61       dsl {
    859   1.61       dsl 	struct pgrp *new_pgrp, *pgrp;
    860   1.61       dsl 	struct session *sess;
    861  1.100        ad 	struct proc *p;
    862   1.61       dsl 	int rval;
    863   1.61       dsl 	pid_t pg_id = NO_PGID;
    864   1.61       dsl 
    865  1.151     rmind 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    866   1.61       dsl 
    867  1.107        ad 	/* Allocate data areas we might need before doing any validity checks */
    868  1.136        ad 	mutex_enter(proc_lock);		/* Because pid_table might change */
    869  1.107        ad 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    870  1.136        ad 		mutex_exit(proc_lock);
    871  1.131        ad 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    872  1.136        ad 		mutex_enter(proc_lock);
    873  1.107        ad 	} else
    874  1.107        ad 		new_pgrp = NULL;
    875   1.61       dsl 	rval = EPERM;	/* most common error (to save typing) */
    876   1.61       dsl 
    877   1.61       dsl 	/* Check pgrp exists or can be created */
    878   1.61       dsl 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    879   1.61       dsl 	if (pgrp != NULL && pgrp->pg_id != pgid)
    880   1.61       dsl 		goto done;
    881   1.61       dsl 
    882   1.61       dsl 	/* Can only set another process under restricted circumstances. */
    883  1.100        ad 	if (pid != curp->p_pid) {
    884  1.167     rmind 		/* Must exist and be one of our children... */
    885  1.167     rmind 		p = proc_find(pid);
    886  1.167     rmind 		if (p == NULL || !p_inferior(p, curp)) {
    887   1.61       dsl 			rval = ESRCH;
    888   1.61       dsl 			goto done;
    889   1.61       dsl 		}
    890   1.61       dsl 		/* ... in the same session... */
    891   1.61       dsl 		if (sess != NULL || p->p_session != curp->p_session)
    892   1.61       dsl 			goto done;
    893   1.61       dsl 		/* ... existing pgid must be in same session ... */
    894   1.61       dsl 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    895   1.61       dsl 			goto done;
    896   1.61       dsl 		/* ... and not done an exec. */
    897  1.102     pavel 		if (p->p_flag & PK_EXEC) {
    898   1.61       dsl 			rval = EACCES;
    899   1.61       dsl 			goto done;
    900   1.49     enami 		}
    901  1.100        ad 	} else {
    902  1.100        ad 		/* ... setsid() cannot re-enter a pgrp */
    903  1.100        ad 		if (mksess && (curp->p_pgid == curp->p_pid ||
    904  1.167     rmind 		    pgrp_find(curp->p_pid)))
    905  1.100        ad 			goto done;
    906  1.100        ad 		p = curp;
    907   1.61       dsl 	}
    908    1.1       cgd 
    909   1.61       dsl 	/* Changing the process group/session of a session
    910   1.61       dsl 	   leader is definitely off limits. */
    911   1.61       dsl 	if (SESS_LEADER(p)) {
    912   1.61       dsl 		if (sess == NULL && p->p_pgrp == pgrp)
    913   1.61       dsl 			/* unless it's a definite noop */
    914   1.61       dsl 			rval = 0;
    915   1.61       dsl 		goto done;
    916   1.61       dsl 	}
    917   1.61       dsl 
    918   1.61       dsl 	/* Can only create a process group with id of process */
    919   1.61       dsl 	if (pgrp == NULL && pgid != pid)
    920   1.61       dsl 		goto done;
    921   1.61       dsl 
    922   1.61       dsl 	/* Can only create a session if creating pgrp */
    923   1.61       dsl 	if (sess != NULL && pgrp != NULL)
    924   1.61       dsl 		goto done;
    925   1.61       dsl 
    926   1.61       dsl 	/* Check we allocated memory for a pgrp... */
    927   1.61       dsl 	if (pgrp == NULL && new_pgrp == NULL)
    928   1.61       dsl 		goto done;
    929   1.61       dsl 
    930   1.61       dsl 	/* Don't attach to 'zombie' pgrp */
    931   1.61       dsl 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    932   1.61       dsl 		goto done;
    933   1.61       dsl 
    934   1.61       dsl 	/* Expect to succeed now */
    935   1.61       dsl 	rval = 0;
    936   1.61       dsl 
    937   1.61       dsl 	if (pgrp == p->p_pgrp)
    938   1.61       dsl 		/* nothing to do */
    939   1.61       dsl 		goto done;
    940   1.61       dsl 
    941   1.61       dsl 	/* Ok all setup, link up required structures */
    942  1.100        ad 
    943   1.61       dsl 	if (pgrp == NULL) {
    944   1.61       dsl 		pgrp = new_pgrp;
    945  1.141      yamt 		new_pgrp = NULL;
    946   1.61       dsl 		if (sess != NULL) {
    947   1.21   thorpej 			sess->s_sid = p->p_pid;
    948    1.1       cgd 			sess->s_leader = p;
    949    1.1       cgd 			sess->s_count = 1;
    950    1.1       cgd 			sess->s_ttyvp = NULL;
    951    1.1       cgd 			sess->s_ttyp = NULL;
    952   1.58       dsl 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    953   1.25     perry 			memcpy(sess->s_login, p->p_session->s_login,
    954    1.1       cgd 			    sizeof(sess->s_login));
    955  1.100        ad 			p->p_lflag &= ~PL_CONTROLT;
    956    1.1       cgd 		} else {
    957   1.61       dsl 			sess = p->p_pgrp->pg_session;
    958  1.151     rmind 			proc_sesshold(sess);
    959    1.1       cgd 		}
    960   1.61       dsl 		pgrp->pg_session = sess;
    961  1.141      yamt 		sess = NULL;
    962   1.61       dsl 
    963    1.1       cgd 		pgrp->pg_id = pgid;
    964   1.10   mycroft 		LIST_INIT(&pgrp->pg_members);
    965   1.61       dsl #ifdef DIAGNOSTIC
    966   1.63  christos 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    967   1.61       dsl 			panic("enterpgrp: pgrp table slot in use");
    968   1.63  christos 		if (__predict_false(mksess && p != curp))
    969   1.63  christos 			panic("enterpgrp: mksession and p != curproc");
    970   1.61       dsl #endif
    971   1.61       dsl 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    972    1.1       cgd 		pgrp->pg_jobc = 0;
    973  1.136        ad 	}
    974    1.1       cgd 
    975    1.1       cgd 	/*
    976    1.1       cgd 	 * Adjust eligibility of affected pgrps to participate in job control.
    977    1.1       cgd 	 * Increment eligibility counts before decrementing, otherwise we
    978    1.1       cgd 	 * could reach 0 spuriously during the first call.
    979    1.1       cgd 	 */
    980    1.1       cgd 	fixjobc(p, pgrp, 1);
    981    1.1       cgd 	fixjobc(p, p->p_pgrp, 0);
    982    1.1       cgd 
    983  1.139        ad 	/* Interlock with ttread(). */
    984  1.139        ad 	mutex_spin_enter(&tty_lock);
    985  1.139        ad 
    986  1.100        ad 	/* Move process to requested group. */
    987   1.10   mycroft 	LIST_REMOVE(p, p_pglist);
    988   1.52      matt 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    989   1.61       dsl 		/* defer delete until we've dumped the lock */
    990   1.61       dsl 		pg_id = p->p_pgrp->pg_id;
    991    1.1       cgd 	p->p_pgrp = pgrp;
    992   1.10   mycroft 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    993  1.100        ad 
    994  1.100        ad 	/* Done with the swap; we can release the tty mutex. */
    995  1.128        ad 	mutex_spin_exit(&tty_lock);
    996  1.128        ad 
    997   1.61       dsl     done:
    998  1.151     rmind 	if (pg_id != NO_PGID) {
    999  1.151     rmind 		/* Releases proc_lock. */
   1000  1.100        ad 		pg_delete(pg_id);
   1001  1.151     rmind 	} else {
   1002  1.151     rmind 		mutex_exit(proc_lock);
   1003  1.151     rmind 	}
   1004   1.61       dsl 	if (sess != NULL)
   1005  1.131        ad 		kmem_free(sess, sizeof(*sess));
   1006   1.61       dsl 	if (new_pgrp != NULL)
   1007  1.131        ad 		kmem_free(new_pgrp, sizeof(*new_pgrp));
   1008   1.63  christos #ifdef DEBUG_PGRP
   1009   1.63  christos 	if (__predict_false(rval))
   1010   1.61       dsl 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
   1011   1.61       dsl 			pid, pgid, mksess, curp->p_pid, rval);
   1012   1.61       dsl #endif
   1013   1.61       dsl 	return rval;
   1014    1.1       cgd }
   1015    1.1       cgd 
   1016    1.1       cgd /*
   1017  1.151     rmind  * proc_leavepgrp: remove a process from its process group.
   1018  1.151     rmind  *  => must be called with the proc_lock held, which will be released;
   1019    1.1       cgd  */
   1020  1.100        ad void
   1021  1.151     rmind proc_leavepgrp(struct proc *p)
   1022    1.1       cgd {
   1023   1.61       dsl 	struct pgrp *pgrp;
   1024    1.1       cgd 
   1025  1.136        ad 	KASSERT(mutex_owned(proc_lock));
   1026  1.100        ad 
   1027  1.139        ad 	/* Interlock with ttread() */
   1028  1.128        ad 	mutex_spin_enter(&tty_lock);
   1029   1.61       dsl 	pgrp = p->p_pgrp;
   1030   1.10   mycroft 	LIST_REMOVE(p, p_pglist);
   1031   1.94        ad 	p->p_pgrp = NULL;
   1032  1.128        ad 	mutex_spin_exit(&tty_lock);
   1033  1.100        ad 
   1034  1.151     rmind 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1035  1.151     rmind 		/* Releases proc_lock. */
   1036  1.100        ad 		pg_delete(pgrp->pg_id);
   1037  1.151     rmind 	} else {
   1038  1.151     rmind 		mutex_exit(proc_lock);
   1039  1.151     rmind 	}
   1040   1.61       dsl }
   1041   1.61       dsl 
   1042  1.100        ad /*
   1043  1.151     rmind  * pg_remove: remove a process group from the table.
   1044  1.151     rmind  *  => must be called with the proc_lock held;
   1045  1.151     rmind  *  => returns process group to free;
   1046  1.100        ad  */
   1047  1.151     rmind static struct pgrp *
   1048  1.151     rmind pg_remove(pid_t pg_id)
   1049   1.61       dsl {
   1050   1.61       dsl 	struct pgrp *pgrp;
   1051   1.61       dsl 	struct pid_table *pt;
   1052   1.61       dsl 
   1053  1.136        ad 	KASSERT(mutex_owned(proc_lock));
   1054  1.100        ad 
   1055   1.61       dsl 	pt = &pid_table[pg_id & pid_tbl_mask];
   1056   1.61       dsl 	pgrp = pt->pt_pgrp;
   1057  1.151     rmind 
   1058  1.151     rmind 	KASSERT(pgrp != NULL);
   1059  1.151     rmind 	KASSERT(pgrp->pg_id == pg_id);
   1060  1.151     rmind 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1061  1.151     rmind 
   1062  1.151     rmind 	pt->pt_pgrp = NULL;
   1063   1.61       dsl 
   1064   1.61       dsl 	if (!P_VALID(pt->pt_proc)) {
   1065  1.151     rmind 		/* Orphaned pgrp, put slot onto free list. */
   1066  1.151     rmind 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
   1067   1.61       dsl 		pg_id &= pid_tbl_mask;
   1068   1.61       dsl 		pt = &pid_table[last_free_pt];
   1069   1.61       dsl 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
   1070  1.168       chs 		KASSERT(pt->pt_pid == 0);
   1071   1.61       dsl 		last_free_pt = pg_id;
   1072   1.61       dsl 		pid_alloc_cnt--;
   1073   1.61       dsl 	}
   1074  1.151     rmind 	return pgrp;
   1075    1.1       cgd }
   1076    1.1       cgd 
   1077    1.1       cgd /*
   1078  1.151     rmind  * pg_delete: delete and free a process group.
   1079  1.151     rmind  *  => must be called with the proc_lock held, which will be released.
   1080    1.1       cgd  */
   1081   1.61       dsl static void
   1082   1.61       dsl pg_delete(pid_t pg_id)
   1083   1.61       dsl {
   1084  1.151     rmind 	struct pgrp *pg;
   1085   1.61       dsl 	struct tty *ttyp;
   1086   1.61       dsl 	struct session *ss;
   1087  1.100        ad 
   1088  1.136        ad 	KASSERT(mutex_owned(proc_lock));
   1089   1.61       dsl 
   1090  1.151     rmind 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1091  1.151     rmind 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1092  1.151     rmind 		mutex_exit(proc_lock);
   1093   1.61       dsl 		return;
   1094  1.151     rmind 	}
   1095   1.61       dsl 
   1096  1.151     rmind 	ss = pg->pg_session;
   1097   1.71        pk 
   1098   1.61       dsl 	/* Remove reference (if any) from tty to this process group */
   1099  1.128        ad 	mutex_spin_enter(&tty_lock);
   1100   1.71        pk 	ttyp = ss->s_ttyp;
   1101  1.151     rmind 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1102   1.61       dsl 		ttyp->t_pgrp = NULL;
   1103  1.151     rmind 		KASSERT(ttyp->t_session == ss);
   1104   1.71        pk 	}
   1105  1.128        ad 	mutex_spin_exit(&tty_lock);
   1106   1.61       dsl 
   1107   1.71        pk 	/*
   1108  1.151     rmind 	 * The leading process group in a session is freed by proc_sessrele(),
   1109  1.151     rmind 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
   1110   1.71        pk 	 */
   1111  1.151     rmind 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1112  1.151     rmind 	proc_sessrele(ss);
   1113   1.61       dsl 
   1114  1.151     rmind 	if (pg != NULL) {
   1115  1.151     rmind 		/* Free it, if was not done by proc_sessrele(). */
   1116  1.151     rmind 		kmem_free(pg, sizeof(struct pgrp));
   1117  1.151     rmind 	}
   1118    1.1       cgd }
   1119    1.1       cgd 
   1120    1.1       cgd /*
   1121    1.1       cgd  * Adjust pgrp jobc counters when specified process changes process group.
   1122    1.1       cgd  * We count the number of processes in each process group that "qualify"
   1123    1.1       cgd  * the group for terminal job control (those with a parent in a different
   1124    1.1       cgd  * process group of the same session).  If that count reaches zero, the
   1125    1.1       cgd  * process group becomes orphaned.  Check both the specified process'
   1126    1.1       cgd  * process group and that of its children.
   1127    1.1       cgd  * entering == 0 => p is leaving specified group.
   1128    1.1       cgd  * entering == 1 => p is entering specified group.
   1129   1.68       dsl  *
   1130  1.136        ad  * Call with proc_lock held.
   1131    1.1       cgd  */
   1132    1.4    andrew void
   1133   1.59       dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1134    1.1       cgd {
   1135   1.39  augustss 	struct pgrp *hispgrp;
   1136   1.39  augustss 	struct session *mysession = pgrp->pg_session;
   1137   1.68       dsl 	struct proc *child;
   1138    1.1       cgd 
   1139  1.136        ad 	KASSERT(mutex_owned(proc_lock));
   1140  1.100        ad 
   1141    1.1       cgd 	/*
   1142    1.1       cgd 	 * Check p's parent to see whether p qualifies its own process
   1143    1.1       cgd 	 * group; if so, adjust count for p's process group.
   1144    1.1       cgd 	 */
   1145   1.68       dsl 	hispgrp = p->p_pptr->p_pgrp;
   1146   1.68       dsl 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1147  1.100        ad 		if (entering) {
   1148    1.1       cgd 			pgrp->pg_jobc++;
   1149  1.136        ad 			p->p_lflag &= ~PL_ORPHANPG;
   1150  1.100        ad 		} else if (--pgrp->pg_jobc == 0)
   1151    1.1       cgd 			orphanpg(pgrp);
   1152   1.26   thorpej 	}
   1153    1.1       cgd 
   1154    1.1       cgd 	/*
   1155    1.1       cgd 	 * Check this process' children to see whether they qualify
   1156    1.1       cgd 	 * their process groups; if so, adjust counts for children's
   1157    1.1       cgd 	 * process groups.
   1158    1.1       cgd 	 */
   1159   1.68       dsl 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1160   1.68       dsl 		hispgrp = child->p_pgrp;
   1161   1.68       dsl 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1162   1.68       dsl 		    !P_ZOMBIE(child)) {
   1163  1.100        ad 			if (entering) {
   1164  1.136        ad 				child->p_lflag &= ~PL_ORPHANPG;
   1165    1.1       cgd 				hispgrp->pg_jobc++;
   1166  1.100        ad 			} else if (--hispgrp->pg_jobc == 0)
   1167    1.1       cgd 				orphanpg(hispgrp);
   1168   1.26   thorpej 		}
   1169   1.26   thorpej 	}
   1170    1.1       cgd }
   1171    1.1       cgd 
   1172   1.72  junyoung /*
   1173    1.1       cgd  * A process group has become orphaned;
   1174    1.1       cgd  * if there are any stopped processes in the group,
   1175    1.1       cgd  * hang-up all process in that group.
   1176   1.68       dsl  *
   1177  1.136        ad  * Call with proc_lock held.
   1178    1.1       cgd  */
   1179    1.4    andrew static void
   1180   1.59       dsl orphanpg(struct pgrp *pg)
   1181    1.1       cgd {
   1182   1.39  augustss 	struct proc *p;
   1183  1.100        ad 
   1184  1.136        ad 	KASSERT(mutex_owned(proc_lock));
   1185  1.100        ad 
   1186   1.52      matt 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1187    1.1       cgd 		if (p->p_stat == SSTOP) {
   1188  1.136        ad 			p->p_lflag |= PL_ORPHANPG;
   1189  1.100        ad 			psignal(p, SIGHUP);
   1190  1.100        ad 			psignal(p, SIGCONT);
   1191   1.35    bouyer 		}
   1192   1.35    bouyer 	}
   1193   1.35    bouyer }
   1194    1.1       cgd 
   1195   1.61       dsl #ifdef DDB
   1196   1.61       dsl #include <ddb/db_output.h>
   1197   1.61       dsl void pidtbl_dump(void);
   1198   1.14  christos void
   1199   1.61       dsl pidtbl_dump(void)
   1200    1.1       cgd {
   1201   1.61       dsl 	struct pid_table *pt;
   1202   1.61       dsl 	struct proc *p;
   1203   1.39  augustss 	struct pgrp *pgrp;
   1204   1.61       dsl 	int id;
   1205    1.1       cgd 
   1206   1.61       dsl 	db_printf("pid table %p size %x, next %x, last %x\n",
   1207   1.61       dsl 		pid_table, pid_tbl_mask+1,
   1208   1.61       dsl 		next_free_pt, last_free_pt);
   1209   1.61       dsl 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1210   1.61       dsl 		p = pt->pt_proc;
   1211   1.61       dsl 		if (!P_VALID(p) && !pt->pt_pgrp)
   1212   1.61       dsl 			continue;
   1213   1.61       dsl 		db_printf("  id %x: ", id);
   1214   1.61       dsl 		if (P_VALID(p))
   1215  1.168       chs 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1216  1.168       chs 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1217   1.61       dsl 		else
   1218   1.61       dsl 			db_printf("next %x use %x\n",
   1219   1.61       dsl 				P_NEXT(p) & pid_tbl_mask,
   1220   1.61       dsl 				P_NEXT(p) & ~pid_tbl_mask);
   1221   1.61       dsl 		if ((pgrp = pt->pt_pgrp)) {
   1222   1.61       dsl 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1223   1.61       dsl 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1224   1.61       dsl 			    pgrp->pg_session->s_count,
   1225   1.61       dsl 			    pgrp->pg_session->s_login);
   1226   1.61       dsl 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1227   1.61       dsl 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1228  1.135      yamt 			    LIST_FIRST(&pgrp->pg_members));
   1229  1.135      yamt 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1230   1.72  junyoung 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1231   1.61       dsl 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1232   1.10   mycroft 			}
   1233    1.1       cgd 		}
   1234    1.1       cgd 	}
   1235    1.1       cgd }
   1236   1.61       dsl #endif /* DDB */
   1237   1.48      yamt 
   1238   1.48      yamt #ifdef KSTACK_CHECK_MAGIC
   1239   1.48      yamt 
   1240   1.48      yamt #define	KSTACK_MAGIC	0xdeadbeaf
   1241   1.48      yamt 
   1242   1.48      yamt /* XXX should be per process basis? */
   1243  1.149     rmind static int	kstackleftmin = KSTACK_SIZE;
   1244  1.149     rmind static int	kstackleftthres = KSTACK_SIZE / 8;
   1245   1.48      yamt 
   1246   1.48      yamt void
   1247   1.56      yamt kstack_setup_magic(const struct lwp *l)
   1248   1.48      yamt {
   1249   1.85     perry 	uint32_t *ip;
   1250   1.85     perry 	uint32_t const *end;
   1251   1.48      yamt 
   1252   1.56      yamt 	KASSERT(l != NULL);
   1253   1.56      yamt 	KASSERT(l != &lwp0);
   1254   1.48      yamt 
   1255   1.48      yamt 	/*
   1256   1.48      yamt 	 * fill all the stack with magic number
   1257   1.48      yamt 	 * so that later modification on it can be detected.
   1258   1.48      yamt 	 */
   1259   1.85     perry 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1260  1.114    dyoung 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1261   1.48      yamt 	for (; ip < end; ip++) {
   1262   1.48      yamt 		*ip = KSTACK_MAGIC;
   1263   1.48      yamt 	}
   1264   1.48      yamt }
   1265   1.48      yamt 
   1266   1.48      yamt void
   1267   1.56      yamt kstack_check_magic(const struct lwp *l)
   1268   1.48      yamt {
   1269   1.85     perry 	uint32_t const *ip, *end;
   1270   1.48      yamt 	int stackleft;
   1271   1.48      yamt 
   1272   1.56      yamt 	KASSERT(l != NULL);
   1273   1.48      yamt 
   1274   1.48      yamt 	/* don't check proc0 */ /*XXX*/
   1275   1.56      yamt 	if (l == &lwp0)
   1276   1.48      yamt 		return;
   1277   1.48      yamt 
   1278   1.48      yamt #ifdef __MACHINE_STACK_GROWS_UP
   1279   1.48      yamt 	/* stack grows upwards (eg. hppa) */
   1280  1.106  christos 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1281   1.85     perry 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1282   1.48      yamt 	for (ip--; ip >= end; ip--)
   1283   1.48      yamt 		if (*ip != KSTACK_MAGIC)
   1284   1.48      yamt 			break;
   1285   1.72  junyoung 
   1286  1.106  christos 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1287   1.48      yamt #else /* __MACHINE_STACK_GROWS_UP */
   1288   1.48      yamt 	/* stack grows downwards (eg. i386) */
   1289   1.85     perry 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1290  1.114    dyoung 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1291   1.48      yamt 	for (; ip < end; ip++)
   1292   1.48      yamt 		if (*ip != KSTACK_MAGIC)
   1293   1.48      yamt 			break;
   1294   1.48      yamt 
   1295   1.93  christos 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1296   1.48      yamt #endif /* __MACHINE_STACK_GROWS_UP */
   1297   1.48      yamt 
   1298   1.48      yamt 	if (kstackleftmin > stackleft) {
   1299   1.48      yamt 		kstackleftmin = stackleft;
   1300   1.48      yamt 		if (stackleft < kstackleftthres)
   1301   1.56      yamt 			printf("warning: kernel stack left %d bytes"
   1302   1.56      yamt 			    "(pid %u:lid %u)\n", stackleft,
   1303   1.56      yamt 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1304   1.48      yamt 	}
   1305   1.48      yamt 
   1306   1.48      yamt 	if (stackleft <= 0) {
   1307   1.56      yamt 		panic("magic on the top of kernel stack changed for "
   1308   1.56      yamt 		    "pid %u, lid %u: maybe kernel stack overflow",
   1309   1.56      yamt 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1310   1.48      yamt 	}
   1311   1.48      yamt }
   1312   1.50     enami #endif /* KSTACK_CHECK_MAGIC */
   1313   1.79      yamt 
   1314   1.79      yamt int
   1315   1.79      yamt proclist_foreach_call(struct proclist *list,
   1316   1.79      yamt     int (*callback)(struct proc *, void *arg), void *arg)
   1317   1.79      yamt {
   1318   1.79      yamt 	struct proc marker;
   1319   1.79      yamt 	struct proc *p;
   1320   1.79      yamt 	int ret = 0;
   1321   1.79      yamt 
   1322  1.102     pavel 	marker.p_flag = PK_MARKER;
   1323  1.136        ad 	mutex_enter(proc_lock);
   1324   1.79      yamt 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1325  1.102     pavel 		if (p->p_flag & PK_MARKER) {
   1326   1.79      yamt 			p = LIST_NEXT(p, p_list);
   1327   1.79      yamt 			continue;
   1328   1.79      yamt 		}
   1329   1.79      yamt 		LIST_INSERT_AFTER(p, &marker, p_list);
   1330   1.79      yamt 		ret = (*callback)(p, arg);
   1331  1.136        ad 		KASSERT(mutex_owned(proc_lock));
   1332   1.79      yamt 		p = LIST_NEXT(&marker, p_list);
   1333   1.79      yamt 		LIST_REMOVE(&marker, p_list);
   1334   1.79      yamt 	}
   1335  1.136        ad 	mutex_exit(proc_lock);
   1336   1.79      yamt 
   1337   1.79      yamt 	return ret;
   1338   1.79      yamt }
   1339   1.86      yamt 
   1340   1.86      yamt int
   1341   1.86      yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1342   1.86      yamt {
   1343   1.86      yamt 
   1344   1.86      yamt 	/* XXXCDC: how should locking work here? */
   1345   1.86      yamt 
   1346   1.87      yamt 	/* curproc exception is for coredump. */
   1347   1.87      yamt 
   1348  1.100        ad 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1349   1.86      yamt 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1350   1.86      yamt 		return EFAULT;
   1351   1.86      yamt 	}
   1352   1.86      yamt 
   1353   1.86      yamt 	uvmspace_addref(p->p_vmspace);
   1354   1.86      yamt 	*vm = p->p_vmspace;
   1355   1.86      yamt 
   1356   1.86      yamt 	return 0;
   1357   1.86      yamt }
   1358   1.94        ad 
   1359   1.94        ad /*
   1360   1.94        ad  * Acquire a write lock on the process credential.
   1361   1.94        ad  */
   1362   1.94        ad void
   1363  1.100        ad proc_crmod_enter(void)
   1364   1.94        ad {
   1365  1.100        ad 	struct lwp *l = curlwp;
   1366  1.100        ad 	struct proc *p = l->l_proc;
   1367  1.100        ad 	kauth_cred_t oc;
   1368   1.94        ad 
   1369  1.117       dsl 	/* Reset what needs to be reset in plimit. */
   1370  1.117       dsl 	if (p->p_limit->pl_corename != defcorename) {
   1371  1.178     rmind 		lim_setcorename(p, defcorename, 0);
   1372  1.117       dsl 	}
   1373  1.117       dsl 
   1374  1.137        ad 	mutex_enter(p->p_lock);
   1375  1.100        ad 
   1376  1.100        ad 	/* Ensure the LWP cached credentials are up to date. */
   1377  1.100        ad 	if ((oc = l->l_cred) != p->p_cred) {
   1378  1.100        ad 		kauth_cred_hold(p->p_cred);
   1379  1.100        ad 		l->l_cred = p->p_cred;
   1380  1.100        ad 		kauth_cred_free(oc);
   1381  1.100        ad 	}
   1382   1.94        ad }
   1383   1.94        ad 
   1384   1.94        ad /*
   1385  1.100        ad  * Set in a new process credential, and drop the write lock.  The credential
   1386  1.100        ad  * must have a reference already.  Optionally, free a no-longer required
   1387  1.100        ad  * credential.  The scheduler also needs to inspect p_cred, so we also
   1388  1.100        ad  * briefly acquire the sched state mutex.
   1389   1.94        ad  */
   1390   1.94        ad void
   1391  1.104   thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1392   1.94        ad {
   1393  1.133        ad 	struct lwp *l = curlwp, *l2;
   1394  1.100        ad 	struct proc *p = l->l_proc;
   1395  1.100        ad 	kauth_cred_t oc;
   1396  1.100        ad 
   1397  1.137        ad 	KASSERT(mutex_owned(p->p_lock));
   1398  1.137        ad 
   1399  1.100        ad 	/* Is there a new credential to set in? */
   1400  1.100        ad 	if (scred != NULL) {
   1401  1.100        ad 		p->p_cred = scred;
   1402  1.133        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1403  1.133        ad 			if (l2 != l)
   1404  1.133        ad 				l2->l_prflag |= LPR_CRMOD;
   1405  1.133        ad 		}
   1406  1.100        ad 
   1407  1.100        ad 		/* Ensure the LWP cached credentials are up to date. */
   1408  1.100        ad 		if ((oc = l->l_cred) != scred) {
   1409  1.100        ad 			kauth_cred_hold(scred);
   1410  1.100        ad 			l->l_cred = scred;
   1411  1.100        ad 		}
   1412  1.100        ad 	} else
   1413  1.100        ad 		oc = NULL;	/* XXXgcc */
   1414  1.100        ad 
   1415  1.100        ad 	if (sugid) {
   1416  1.100        ad 		/*
   1417  1.100        ad 		 * Mark process as having changed credentials, stops
   1418  1.100        ad 		 * tracing etc.
   1419  1.100        ad 		 */
   1420  1.102     pavel 		p->p_flag |= PK_SUGID;
   1421  1.100        ad 	}
   1422   1.94        ad 
   1423  1.137        ad 	mutex_exit(p->p_lock);
   1424  1.100        ad 
   1425  1.100        ad 	/* If there is a credential to be released, free it now. */
   1426  1.100        ad 	if (fcred != NULL) {
   1427  1.100        ad 		KASSERT(scred != NULL);
   1428   1.94        ad 		kauth_cred_free(fcred);
   1429  1.100        ad 		if (oc != scred)
   1430  1.100        ad 			kauth_cred_free(oc);
   1431  1.100        ad 	}
   1432  1.100        ad }
   1433  1.100        ad 
   1434  1.100        ad /*
   1435   1.95   thorpej  * proc_specific_key_create --
   1436   1.95   thorpej  *	Create a key for subsystem proc-specific data.
   1437   1.95   thorpej  */
   1438   1.95   thorpej int
   1439   1.95   thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1440   1.95   thorpej {
   1441   1.95   thorpej 
   1442   1.98   thorpej 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1443   1.95   thorpej }
   1444   1.95   thorpej 
   1445   1.95   thorpej /*
   1446   1.95   thorpej  * proc_specific_key_delete --
   1447   1.95   thorpej  *	Delete a key for subsystem proc-specific data.
   1448   1.95   thorpej  */
   1449   1.95   thorpej void
   1450   1.95   thorpej proc_specific_key_delete(specificdata_key_t key)
   1451   1.95   thorpej {
   1452   1.95   thorpej 
   1453   1.95   thorpej 	specificdata_key_delete(proc_specificdata_domain, key);
   1454   1.95   thorpej }
   1455   1.95   thorpej 
   1456   1.98   thorpej /*
   1457   1.98   thorpej  * proc_initspecific --
   1458   1.98   thorpej  *	Initialize a proc's specificdata container.
   1459   1.98   thorpej  */
   1460   1.96  christos void
   1461   1.96  christos proc_initspecific(struct proc *p)
   1462   1.96  christos {
   1463  1.189    martin 	int error __diagused;
   1464   1.98   thorpej 
   1465   1.96  christos 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1466   1.96  christos 	KASSERT(error == 0);
   1467   1.96  christos }
   1468   1.96  christos 
   1469   1.95   thorpej /*
   1470   1.98   thorpej  * proc_finispecific --
   1471   1.98   thorpej  *	Finalize a proc's specificdata container.
   1472   1.98   thorpej  */
   1473   1.98   thorpej void
   1474   1.98   thorpej proc_finispecific(struct proc *p)
   1475   1.98   thorpej {
   1476   1.98   thorpej 
   1477   1.98   thorpej 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1478   1.98   thorpej }
   1479   1.98   thorpej 
   1480   1.98   thorpej /*
   1481   1.95   thorpej  * proc_getspecific --
   1482   1.95   thorpej  *	Return proc-specific data corresponding to the specified key.
   1483   1.95   thorpej  */
   1484   1.95   thorpej void *
   1485   1.95   thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
   1486   1.95   thorpej {
   1487   1.95   thorpej 
   1488   1.95   thorpej 	return (specificdata_getspecific(proc_specificdata_domain,
   1489   1.95   thorpej 					 &p->p_specdataref, key));
   1490   1.95   thorpej }
   1491   1.95   thorpej 
   1492   1.95   thorpej /*
   1493   1.95   thorpej  * proc_setspecific --
   1494   1.95   thorpej  *	Set proc-specific data corresponding to the specified key.
   1495   1.95   thorpej  */
   1496   1.95   thorpej void
   1497   1.95   thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1498   1.95   thorpej {
   1499   1.95   thorpej 
   1500   1.95   thorpej 	specificdata_setspecific(proc_specificdata_domain,
   1501   1.95   thorpej 				 &p->p_specdataref, key, data);
   1502   1.95   thorpej }
   1503  1.154      elad 
   1504  1.154      elad int
   1505  1.154      elad proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1506  1.154      elad {
   1507  1.154      elad 	int r = 0;
   1508  1.154      elad 
   1509  1.154      elad 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1510  1.154      elad 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1511  1.154      elad 		/*
   1512  1.154      elad 		 * suid proc of ours or proc not ours
   1513  1.154      elad 		 */
   1514  1.154      elad 		r = EPERM;
   1515  1.154      elad 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1516  1.154      elad 		/*
   1517  1.154      elad 		 * sgid proc has sgid back to us temporarily
   1518  1.154      elad 		 */
   1519  1.154      elad 		r = EPERM;
   1520  1.154      elad 	} else {
   1521  1.154      elad 		/*
   1522  1.154      elad 		 * our rgid must be in target's group list (ie,
   1523  1.154      elad 		 * sub-processes started by a sgid process)
   1524  1.154      elad 		 */
   1525  1.154      elad 		int ismember = 0;
   1526  1.154      elad 
   1527  1.154      elad 		if (kauth_cred_ismember_gid(cred,
   1528  1.154      elad 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1529  1.154      elad 		    !ismember)
   1530  1.154      elad 			r = EPERM;
   1531  1.154      elad 	}
   1532  1.154      elad 
   1533  1.154      elad 	return (r);
   1534  1.154      elad }
   1535  1.170     pooka 
   1536  1.170     pooka /*
   1537  1.170     pooka  * sysctl stuff
   1538  1.170     pooka  */
   1539  1.170     pooka 
   1540  1.170     pooka #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1541  1.170     pooka 
   1542  1.170     pooka static const u_int sysctl_flagmap[] = {
   1543  1.170     pooka 	PK_ADVLOCK, P_ADVLOCK,
   1544  1.170     pooka 	PK_EXEC, P_EXEC,
   1545  1.170     pooka 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1546  1.170     pooka 	PK_32, P_32,
   1547  1.170     pooka 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1548  1.170     pooka 	PK_SUGID, P_SUGID,
   1549  1.170     pooka 	0
   1550  1.170     pooka };
   1551  1.170     pooka 
   1552  1.170     pooka static const u_int sysctl_sflagmap[] = {
   1553  1.170     pooka 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1554  1.170     pooka 	PS_WEXIT, P_WEXIT,
   1555  1.170     pooka 	PS_STOPFORK, P_STOPFORK,
   1556  1.170     pooka 	PS_STOPEXEC, P_STOPEXEC,
   1557  1.170     pooka 	PS_STOPEXIT, P_STOPEXIT,
   1558  1.170     pooka 	0
   1559  1.170     pooka };
   1560  1.170     pooka 
   1561  1.170     pooka static const u_int sysctl_slflagmap[] = {
   1562  1.170     pooka 	PSL_TRACED, P_TRACED,
   1563  1.170     pooka 	PSL_CHTRACED, P_CHTRACED,
   1564  1.170     pooka 	PSL_SYSCALL, P_SYSCALL,
   1565  1.170     pooka 	0
   1566  1.170     pooka };
   1567  1.170     pooka 
   1568  1.170     pooka static const u_int sysctl_lflagmap[] = {
   1569  1.170     pooka 	PL_CONTROLT, P_CONTROLT,
   1570  1.170     pooka 	PL_PPWAIT, P_PPWAIT,
   1571  1.170     pooka 	0
   1572  1.170     pooka };
   1573  1.170     pooka 
   1574  1.170     pooka static const u_int sysctl_stflagmap[] = {
   1575  1.170     pooka 	PST_PROFIL, P_PROFIL,
   1576  1.170     pooka 	0
   1577  1.170     pooka 
   1578  1.170     pooka };
   1579  1.170     pooka 
   1580  1.170     pooka /* used by kern_lwp also */
   1581  1.170     pooka const u_int sysctl_lwpflagmap[] = {
   1582  1.170     pooka 	LW_SINTR, L_SINTR,
   1583  1.170     pooka 	LW_SYSTEM, L_SYSTEM,
   1584  1.170     pooka 	0
   1585  1.170     pooka };
   1586  1.170     pooka 
   1587  1.170     pooka /*
   1588  1.170     pooka  * Find the most ``active'' lwp of a process and return it for ps display
   1589  1.170     pooka  * purposes
   1590  1.170     pooka  */
   1591  1.170     pooka static struct lwp *
   1592  1.170     pooka proc_active_lwp(struct proc *p)
   1593  1.170     pooka {
   1594  1.170     pooka 	static const int ostat[] = {
   1595  1.170     pooka 		0,
   1596  1.170     pooka 		2,	/* LSIDL */
   1597  1.170     pooka 		6,	/* LSRUN */
   1598  1.170     pooka 		5,	/* LSSLEEP */
   1599  1.170     pooka 		4,	/* LSSTOP */
   1600  1.170     pooka 		0,	/* LSZOMB */
   1601  1.170     pooka 		1,	/* LSDEAD */
   1602  1.170     pooka 		7,	/* LSONPROC */
   1603  1.170     pooka 		3	/* LSSUSPENDED */
   1604  1.170     pooka 	};
   1605  1.170     pooka 
   1606  1.170     pooka 	struct lwp *l, *lp = NULL;
   1607  1.170     pooka 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1608  1.170     pooka 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   1609  1.170     pooka 		if (lp == NULL ||
   1610  1.170     pooka 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   1611  1.170     pooka 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   1612  1.170     pooka 		    l->l_cpticks > lp->l_cpticks)) {
   1613  1.170     pooka 			lp = l;
   1614  1.170     pooka 			continue;
   1615  1.170     pooka 		}
   1616  1.170     pooka 	}
   1617  1.170     pooka 	return lp;
   1618  1.170     pooka }
   1619  1.170     pooka 
   1620  1.170     pooka static int
   1621  1.170     pooka sysctl_doeproc(SYSCTLFN_ARGS)
   1622  1.170     pooka {
   1623  1.170     pooka 	union {
   1624  1.170     pooka 		struct kinfo_proc kproc;
   1625  1.170     pooka 		struct kinfo_proc2 kproc2;
   1626  1.170     pooka 	} *kbuf;
   1627  1.170     pooka 	struct proc *p, *next, *marker;
   1628  1.170     pooka 	char *where, *dp;
   1629  1.170     pooka 	int type, op, arg, error;
   1630  1.170     pooka 	u_int elem_size, kelem_size, elem_count;
   1631  1.170     pooka 	size_t buflen, needed;
   1632  1.170     pooka 	bool match, zombie, mmmbrains;
   1633  1.170     pooka 
   1634  1.170     pooka 	if (namelen == 1 && name[0] == CTL_QUERY)
   1635  1.170     pooka 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1636  1.170     pooka 
   1637  1.170     pooka 	dp = where = oldp;
   1638  1.170     pooka 	buflen = where != NULL ? *oldlenp : 0;
   1639  1.170     pooka 	error = 0;
   1640  1.170     pooka 	needed = 0;
   1641  1.170     pooka 	type = rnode->sysctl_num;
   1642  1.170     pooka 
   1643  1.170     pooka 	if (type == KERN_PROC) {
   1644  1.194  christos 		if (namelen == 0)
   1645  1.194  christos 			return EINVAL;
   1646  1.194  christos 		switch (op = name[0]) {
   1647  1.194  christos 		case KERN_PROC_ALL:
   1648  1.194  christos 			if (namelen != 1)
   1649  1.194  christos 				return EINVAL;
   1650  1.194  christos 			arg = 0;
   1651  1.194  christos 			break;
   1652  1.194  christos 		default:
   1653  1.194  christos 			if (namelen != 2)
   1654  1.194  christos 				return EINVAL;
   1655  1.170     pooka 			arg = name[1];
   1656  1.194  christos 			break;
   1657  1.194  christos 		}
   1658  1.210       kre 		elem_count = 0;	/* Hush little compiler, don't you cry */
   1659  1.170     pooka 		kelem_size = elem_size = sizeof(kbuf->kproc);
   1660  1.170     pooka 	} else {
   1661  1.170     pooka 		if (namelen != 4)
   1662  1.194  christos 			return EINVAL;
   1663  1.170     pooka 		op = name[0];
   1664  1.170     pooka 		arg = name[1];
   1665  1.170     pooka 		elem_size = name[2];
   1666  1.170     pooka 		elem_count = name[3];
   1667  1.170     pooka 		kelem_size = sizeof(kbuf->kproc2);
   1668  1.170     pooka 	}
   1669  1.170     pooka 
   1670  1.170     pooka 	sysctl_unlock();
   1671  1.170     pooka 
   1672  1.170     pooka 	kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
   1673  1.170     pooka 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   1674  1.170     pooka 	marker->p_flag = PK_MARKER;
   1675  1.170     pooka 
   1676  1.170     pooka 	mutex_enter(proc_lock);
   1677  1.211     kamil 	/*
   1678  1.211     kamil 	 * Start with zombies to prevent reporting processes twice, in case they
   1679  1.211     kamil 	 * are dying and being moved from the list of alive processes to zombies.
   1680  1.211     kamil 	 */
   1681  1.211     kamil 	mmmbrains = true;
   1682  1.211     kamil 	for (p = LIST_FIRST(&zombproc);; p = next) {
   1683  1.170     pooka 		if (p == NULL) {
   1684  1.211     kamil 			if (mmmbrains) {
   1685  1.211     kamil 				p = LIST_FIRST(&allproc);
   1686  1.211     kamil 				mmmbrains = false;
   1687  1.170     pooka 			}
   1688  1.170     pooka 			if (p == NULL)
   1689  1.170     pooka 				break;
   1690  1.170     pooka 		}
   1691  1.170     pooka 		next = LIST_NEXT(p, p_list);
   1692  1.170     pooka 		if ((p->p_flag & PK_MARKER) != 0)
   1693  1.170     pooka 			continue;
   1694  1.170     pooka 
   1695  1.170     pooka 		/*
   1696  1.170     pooka 		 * Skip embryonic processes.
   1697  1.170     pooka 		 */
   1698  1.170     pooka 		if (p->p_stat == SIDL)
   1699  1.170     pooka 			continue;
   1700  1.170     pooka 
   1701  1.170     pooka 		mutex_enter(p->p_lock);
   1702  1.170     pooka 		error = kauth_authorize_process(l->l_cred,
   1703  1.170     pooka 		    KAUTH_PROCESS_CANSEE, p,
   1704  1.170     pooka 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1705  1.170     pooka 		if (error != 0) {
   1706  1.170     pooka 			mutex_exit(p->p_lock);
   1707  1.170     pooka 			continue;
   1708  1.170     pooka 		}
   1709  1.170     pooka 
   1710  1.170     pooka 		/*
   1711  1.211     kamil 		 * Hande all the operations in one switch on the cost of
   1712  1.211     kamil 		 * algorithm complexity is on purpose. The win splitting this
   1713  1.211     kamil 		 * function into several similar copies makes maintenance burden
   1714  1.211     kamil 		 * burden, code grow and boost is neglible in practical systems.
   1715  1.170     pooka 		 */
   1716  1.170     pooka 		switch (op) {
   1717  1.170     pooka 		case KERN_PROC_PID:
   1718  1.170     pooka 			match = (p->p_pid == (pid_t)arg);
   1719  1.170     pooka 			break;
   1720  1.170     pooka 
   1721  1.170     pooka 		case KERN_PROC_PGRP:
   1722  1.170     pooka 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   1723  1.170     pooka 			break;
   1724  1.170     pooka 
   1725  1.170     pooka 		case KERN_PROC_SESSION:
   1726  1.170     pooka 			match = (p->p_session->s_sid == (pid_t)arg);
   1727  1.170     pooka 			break;
   1728  1.170     pooka 
   1729  1.170     pooka 		case KERN_PROC_TTY:
   1730  1.170     pooka 			match = true;
   1731  1.170     pooka 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   1732  1.170     pooka 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1733  1.170     pooka 				    p->p_session->s_ttyp == NULL ||
   1734  1.170     pooka 				    p->p_session->s_ttyvp != NULL) {
   1735  1.170     pooka 				    	match = false;
   1736  1.170     pooka 				}
   1737  1.170     pooka 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1738  1.170     pooka 			    p->p_session->s_ttyp == NULL) {
   1739  1.170     pooka 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   1740  1.170     pooka 					match = false;
   1741  1.170     pooka 				}
   1742  1.170     pooka 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   1743  1.170     pooka 				match = false;
   1744  1.170     pooka 			}
   1745  1.170     pooka 			break;
   1746  1.170     pooka 
   1747  1.170     pooka 		case KERN_PROC_UID:
   1748  1.170     pooka 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   1749  1.170     pooka 			break;
   1750  1.170     pooka 
   1751  1.170     pooka 		case KERN_PROC_RUID:
   1752  1.170     pooka 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   1753  1.170     pooka 			break;
   1754  1.170     pooka 
   1755  1.170     pooka 		case KERN_PROC_GID:
   1756  1.170     pooka 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   1757  1.170     pooka 			break;
   1758  1.170     pooka 
   1759  1.170     pooka 		case KERN_PROC_RGID:
   1760  1.170     pooka 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   1761  1.170     pooka 			break;
   1762  1.170     pooka 
   1763  1.170     pooka 		case KERN_PROC_ALL:
   1764  1.170     pooka 			match = true;
   1765  1.170     pooka 			/* allow everything */
   1766  1.170     pooka 			break;
   1767  1.170     pooka 
   1768  1.170     pooka 		default:
   1769  1.170     pooka 			error = EINVAL;
   1770  1.170     pooka 			mutex_exit(p->p_lock);
   1771  1.170     pooka 			goto cleanup;
   1772  1.170     pooka 		}
   1773  1.170     pooka 		if (!match) {
   1774  1.170     pooka 			mutex_exit(p->p_lock);
   1775  1.170     pooka 			continue;
   1776  1.170     pooka 		}
   1777  1.170     pooka 
   1778  1.170     pooka 		/*
   1779  1.170     pooka 		 * Grab a hold on the process.
   1780  1.170     pooka 		 */
   1781  1.170     pooka 		if (mmmbrains) {
   1782  1.170     pooka 			zombie = true;
   1783  1.170     pooka 		} else {
   1784  1.170     pooka 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   1785  1.170     pooka 		}
   1786  1.170     pooka 		if (zombie) {
   1787  1.170     pooka 			LIST_INSERT_AFTER(p, marker, p_list);
   1788  1.170     pooka 		}
   1789  1.170     pooka 
   1790  1.170     pooka 		if (buflen >= elem_size &&
   1791  1.170     pooka 		    (type == KERN_PROC || elem_count > 0)) {
   1792  1.170     pooka 			if (type == KERN_PROC) {
   1793  1.170     pooka 				kbuf->kproc.kp_proc = *p;
   1794  1.170     pooka 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
   1795  1.170     pooka 			} else {
   1796  1.170     pooka 				fill_kproc2(p, &kbuf->kproc2, zombie);
   1797  1.170     pooka 				elem_count--;
   1798  1.170     pooka 			}
   1799  1.170     pooka 			mutex_exit(p->p_lock);
   1800  1.170     pooka 			mutex_exit(proc_lock);
   1801  1.170     pooka 			/*
   1802  1.170     pooka 			 * Copy out elem_size, but not larger than kelem_size
   1803  1.170     pooka 			 */
   1804  1.170     pooka 			error = sysctl_copyout(l, kbuf, dp,
   1805  1.170     pooka 			    min(kelem_size, elem_size));
   1806  1.170     pooka 			mutex_enter(proc_lock);
   1807  1.170     pooka 			if (error) {
   1808  1.170     pooka 				goto bah;
   1809  1.170     pooka 			}
   1810  1.170     pooka 			dp += elem_size;
   1811  1.170     pooka 			buflen -= elem_size;
   1812  1.170     pooka 		} else {
   1813  1.170     pooka 			mutex_exit(p->p_lock);
   1814  1.170     pooka 		}
   1815  1.170     pooka 		needed += elem_size;
   1816  1.170     pooka 
   1817  1.170     pooka 		/*
   1818  1.170     pooka 		 * Release reference to process.
   1819  1.170     pooka 		 */
   1820  1.170     pooka 	 	if (zombie) {
   1821  1.170     pooka 			next = LIST_NEXT(marker, p_list);
   1822  1.170     pooka  			LIST_REMOVE(marker, p_list);
   1823  1.170     pooka 		} else {
   1824  1.170     pooka 			rw_exit(&p->p_reflock);
   1825  1.170     pooka 			next = LIST_NEXT(p, p_list);
   1826  1.170     pooka 		}
   1827  1.211     kamil 
   1828  1.211     kamil 		/*
   1829  1.211     kamil 		 * Short-circuit break quickly!
   1830  1.211     kamil 		 */
   1831  1.211     kamil 		if (op == KERN_PROC_PID)
   1832  1.211     kamil                 	break;
   1833  1.170     pooka 	}
   1834  1.170     pooka 	mutex_exit(proc_lock);
   1835  1.170     pooka 
   1836  1.170     pooka 	if (where != NULL) {
   1837  1.211     kamil 		if (needed == 0) {
   1838  1.211     kamil 			error = ESRCH;
   1839  1.211     kamil 			goto out;
   1840  1.211     kamil 		}
   1841  1.170     pooka 		*oldlenp = dp - where;
   1842  1.170     pooka 		if (needed > *oldlenp) {
   1843  1.170     pooka 			error = ENOMEM;
   1844  1.170     pooka 			goto out;
   1845  1.170     pooka 		}
   1846  1.170     pooka 	} else {
   1847  1.170     pooka 		needed += KERN_PROCSLOP;
   1848  1.170     pooka 		*oldlenp = needed;
   1849  1.170     pooka 	}
   1850  1.211     kamil 	kmem_free(kbuf, sizeof(*kbuf));
   1851  1.211     kamil 	kmem_free(marker, sizeof(*marker));
   1852  1.170     pooka 	sysctl_relock();
   1853  1.170     pooka 	return 0;
   1854  1.170     pooka  bah:
   1855  1.170     pooka  	if (zombie)
   1856  1.170     pooka  		LIST_REMOVE(marker, p_list);
   1857  1.170     pooka 	else
   1858  1.170     pooka 		rw_exit(&p->p_reflock);
   1859  1.170     pooka  cleanup:
   1860  1.170     pooka 	mutex_exit(proc_lock);
   1861  1.170     pooka  out:
   1862  1.211     kamil 	kmem_free(kbuf, sizeof(*kbuf));
   1863  1.211     kamil 	kmem_free(marker, sizeof(*marker));
   1864  1.170     pooka 	sysctl_relock();
   1865  1.170     pooka 	return error;
   1866  1.170     pooka }
   1867  1.170     pooka 
   1868  1.172     joerg int
   1869  1.172     joerg copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   1870  1.172     joerg {
   1871  1.172     joerg 
   1872  1.172     joerg #ifdef COMPAT_NETBSD32
   1873  1.172     joerg 	if (p->p_flag & PK_32) {
   1874  1.172     joerg 		struct ps_strings32 arginfo32;
   1875  1.172     joerg 
   1876  1.173      matt 		int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
   1877  1.172     joerg 		    sizeof(arginfo32));
   1878  1.172     joerg 		if (error)
   1879  1.172     joerg 			return error;
   1880  1.172     joerg 		arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
   1881  1.172     joerg 		arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
   1882  1.172     joerg 		arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
   1883  1.172     joerg 		arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
   1884  1.173      matt 		return 0;
   1885  1.173      matt 	}
   1886  1.172     joerg #endif
   1887  1.173      matt 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   1888  1.172     joerg }
   1889  1.172     joerg 
   1890  1.172     joerg static int
   1891  1.172     joerg copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   1892  1.172     joerg {
   1893  1.172     joerg 	void **cookie = cookie_;
   1894  1.172     joerg 	struct lwp *l = cookie[0];
   1895  1.172     joerg 	char *dst = cookie[1];
   1896  1.172     joerg 
   1897  1.172     joerg 	return sysctl_copyout(l, src, dst + off, len);
   1898  1.172     joerg }
   1899  1.172     joerg 
   1900  1.170     pooka /*
   1901  1.170     pooka  * sysctl helper routine for kern.proc_args pseudo-subtree.
   1902  1.170     pooka  */
   1903  1.170     pooka static int
   1904  1.170     pooka sysctl_kern_proc_args(SYSCTLFN_ARGS)
   1905  1.170     pooka {
   1906  1.170     pooka 	struct ps_strings pss;
   1907  1.170     pooka 	struct proc *p;
   1908  1.170     pooka 	pid_t pid;
   1909  1.172     joerg 	int type, error;
   1910  1.172     joerg 	void *cookie[2];
   1911  1.170     pooka 
   1912  1.170     pooka 	if (namelen == 1 && name[0] == CTL_QUERY)
   1913  1.170     pooka 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1914  1.170     pooka 
   1915  1.170     pooka 	if (newp != NULL || namelen != 2)
   1916  1.170     pooka 		return (EINVAL);
   1917  1.170     pooka 	pid = name[0];
   1918  1.170     pooka 	type = name[1];
   1919  1.170     pooka 
   1920  1.170     pooka 	switch (type) {
   1921  1.194  christos 	case KERN_PROC_PATHNAME:
   1922  1.194  christos 		sysctl_unlock();
   1923  1.194  christos 		error = fill_pathname(l, pid, oldp, oldlenp);
   1924  1.194  christos 		sysctl_relock();
   1925  1.194  christos 		return error;
   1926  1.194  christos 
   1927  1.170     pooka 	case KERN_PROC_ARGV:
   1928  1.170     pooka 	case KERN_PROC_NARGV:
   1929  1.170     pooka 	case KERN_PROC_ENV:
   1930  1.170     pooka 	case KERN_PROC_NENV:
   1931  1.170     pooka 		/* ok */
   1932  1.170     pooka 		break;
   1933  1.170     pooka 	default:
   1934  1.170     pooka 		return (EINVAL);
   1935  1.170     pooka 	}
   1936  1.170     pooka 
   1937  1.170     pooka 	sysctl_unlock();
   1938  1.170     pooka 
   1939  1.170     pooka 	/* check pid */
   1940  1.170     pooka 	mutex_enter(proc_lock);
   1941  1.170     pooka 	if ((p = proc_find(pid)) == NULL) {
   1942  1.170     pooka 		error = EINVAL;
   1943  1.170     pooka 		goto out_locked;
   1944  1.170     pooka 	}
   1945  1.170     pooka 	mutex_enter(p->p_lock);
   1946  1.170     pooka 
   1947  1.170     pooka 	/* Check permission. */
   1948  1.170     pooka 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   1949  1.170     pooka 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1950  1.170     pooka 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   1951  1.170     pooka 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   1952  1.170     pooka 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1953  1.170     pooka 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   1954  1.170     pooka 	else
   1955  1.170     pooka 		error = EINVAL; /* XXXGCC */
   1956  1.170     pooka 	if (error) {
   1957  1.170     pooka 		mutex_exit(p->p_lock);
   1958  1.170     pooka 		goto out_locked;
   1959  1.170     pooka 	}
   1960  1.170     pooka 
   1961  1.170     pooka 	if (oldp == NULL) {
   1962  1.170     pooka 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   1963  1.170     pooka 			*oldlenp = sizeof (int);
   1964  1.170     pooka 		else
   1965  1.170     pooka 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   1966  1.170     pooka 		error = 0;
   1967  1.170     pooka 		mutex_exit(p->p_lock);
   1968  1.170     pooka 		goto out_locked;
   1969  1.170     pooka 	}
   1970  1.170     pooka 
   1971  1.170     pooka 	/*
   1972  1.170     pooka 	 * Zombies don't have a stack, so we can't read their psstrings.
   1973  1.170     pooka 	 * System processes also don't have a user stack.
   1974  1.170     pooka 	 */
   1975  1.170     pooka 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   1976  1.170     pooka 		error = EINVAL;
   1977  1.170     pooka 		mutex_exit(p->p_lock);
   1978  1.170     pooka 		goto out_locked;
   1979  1.170     pooka 	}
   1980  1.170     pooka 
   1981  1.174     rmind 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   1982  1.172     joerg 	mutex_exit(p->p_lock);
   1983  1.174     rmind 	if (error) {
   1984  1.174     rmind 		goto out_locked;
   1985  1.174     rmind 	}
   1986  1.172     joerg 	mutex_exit(proc_lock);
   1987  1.172     joerg 
   1988  1.172     joerg 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   1989  1.172     joerg 		int value;
   1990  1.172     joerg 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   1991  1.172     joerg 			if (type == KERN_PROC_NARGV)
   1992  1.172     joerg 				value = pss.ps_nargvstr;
   1993  1.172     joerg 			else
   1994  1.172     joerg 				value = pss.ps_nenvstr;
   1995  1.172     joerg 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   1996  1.172     joerg 			*oldlenp = sizeof(value);
   1997  1.172     joerg 		}
   1998  1.170     pooka 	} else {
   1999  1.172     joerg 		cookie[0] = l;
   2000  1.172     joerg 		cookie[1] = oldp;
   2001  1.172     joerg 		error = copy_procargs(p, type, oldlenp,
   2002  1.172     joerg 		    copy_procargs_sysctl_cb, cookie);
   2003  1.170     pooka 	}
   2004  1.172     joerg 	rw_exit(&p->p_reflock);
   2005  1.172     joerg 	sysctl_relock();
   2006  1.172     joerg 	return error;
   2007  1.172     joerg 
   2008  1.172     joerg out_locked:
   2009  1.170     pooka 	mutex_exit(proc_lock);
   2010  1.172     joerg 	sysctl_relock();
   2011  1.172     joerg 	return error;
   2012  1.172     joerg }
   2013  1.172     joerg 
   2014  1.172     joerg int
   2015  1.172     joerg copy_procargs(struct proc *p, int oid, size_t *limit,
   2016  1.172     joerg     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   2017  1.172     joerg {
   2018  1.172     joerg 	struct ps_strings pss;
   2019  1.172     joerg 	size_t len, i, loaded, entry_len;
   2020  1.172     joerg 	struct uio auio;
   2021  1.172     joerg 	struct iovec aiov;
   2022  1.172     joerg 	int error, argvlen;
   2023  1.172     joerg 	char *arg;
   2024  1.172     joerg 	char **argv;
   2025  1.172     joerg 	vaddr_t user_argv;
   2026  1.172     joerg 	struct vmspace *vmspace;
   2027  1.170     pooka 
   2028  1.170     pooka 	/*
   2029  1.172     joerg 	 * Allocate a temporary buffer to hold the argument vector and
   2030  1.172     joerg 	 * the arguments themselve.
   2031  1.170     pooka 	 */
   2032  1.170     pooka 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2033  1.172     joerg 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2034  1.172     joerg 
   2035  1.172     joerg 	/*
   2036  1.172     joerg 	 * Lock the process down in memory.
   2037  1.172     joerg 	 */
   2038  1.172     joerg 	vmspace = p->p_vmspace;
   2039  1.172     joerg 	uvmspace_addref(vmspace);
   2040  1.170     pooka 
   2041  1.170     pooka 	/*
   2042  1.170     pooka 	 * Read in the ps_strings structure.
   2043  1.170     pooka 	 */
   2044  1.172     joerg 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2045  1.170     pooka 		goto done;
   2046  1.170     pooka 
   2047  1.170     pooka 	/*
   2048  1.170     pooka 	 * Now read the address of the argument vector.
   2049  1.170     pooka 	 */
   2050  1.172     joerg 	switch (oid) {
   2051  1.170     pooka 	case KERN_PROC_ARGV:
   2052  1.172     joerg 		user_argv = (uintptr_t)pss.ps_argvstr;
   2053  1.172     joerg 		argvlen = pss.ps_nargvstr;
   2054  1.172     joerg 		break;
   2055  1.170     pooka 	case KERN_PROC_ENV:
   2056  1.172     joerg 		user_argv = (uintptr_t)pss.ps_envstr;
   2057  1.172     joerg 		argvlen = pss.ps_nenvstr;
   2058  1.170     pooka 		break;
   2059  1.170     pooka 	default:
   2060  1.170     pooka 		error = EINVAL;
   2061  1.170     pooka 		goto done;
   2062  1.170     pooka 	}
   2063  1.170     pooka 
   2064  1.172     joerg 	if (argvlen < 0) {
   2065  1.172     joerg 		error = EIO;
   2066  1.172     joerg 		goto done;
   2067  1.172     joerg 	}
   2068  1.172     joerg 
   2069  1.170     pooka 
   2070  1.170     pooka 	/*
   2071  1.170     pooka 	 * Now copy each string.
   2072  1.170     pooka 	 */
   2073  1.170     pooka 	len = 0; /* bytes written to user buffer */
   2074  1.172     joerg 	loaded = 0; /* bytes from argv already processed */
   2075  1.172     joerg 	i = 0; /* To make compiler happy */
   2076  1.198  christos 	entry_len = PROC_PTRSZ(p);
   2077  1.172     joerg 
   2078  1.172     joerg 	for (; argvlen; --argvlen) {
   2079  1.170     pooka 		int finished = 0;
   2080  1.170     pooka 		vaddr_t base;
   2081  1.170     pooka 		size_t xlen;
   2082  1.170     pooka 		int j;
   2083  1.170     pooka 
   2084  1.172     joerg 		if (loaded == 0) {
   2085  1.172     joerg 			size_t rem = entry_len * argvlen;
   2086  1.172     joerg 			loaded = MIN(rem, PAGE_SIZE);
   2087  1.172     joerg 			error = copyin_vmspace(vmspace,
   2088  1.172     joerg 			    (const void *)user_argv, argv, loaded);
   2089  1.172     joerg 			if (error)
   2090  1.172     joerg 				break;
   2091  1.172     joerg 			user_argv += loaded;
   2092  1.172     joerg 			i = 0;
   2093  1.172     joerg 		}
   2094  1.172     joerg 
   2095  1.170     pooka #ifdef COMPAT_NETBSD32
   2096  1.170     pooka 		if (p->p_flag & PK_32) {
   2097  1.170     pooka 			netbsd32_charp *argv32;
   2098  1.170     pooka 
   2099  1.170     pooka 			argv32 = (netbsd32_charp *)argv;
   2100  1.172     joerg 			base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
   2101  1.170     pooka 		} else
   2102  1.170     pooka #endif
   2103  1.172     joerg 			base = (vaddr_t)argv[i++];
   2104  1.172     joerg 		loaded -= entry_len;
   2105  1.170     pooka 
   2106  1.170     pooka 		/*
   2107  1.170     pooka 		 * The program has messed around with its arguments,
   2108  1.170     pooka 		 * possibly deleting some, and replacing them with
   2109  1.170     pooka 		 * NULL's. Treat this as the last argument and not
   2110  1.170     pooka 		 * a failure.
   2111  1.170     pooka 		 */
   2112  1.170     pooka 		if (base == 0)
   2113  1.170     pooka 			break;
   2114  1.170     pooka 
   2115  1.170     pooka 		while (!finished) {
   2116  1.170     pooka 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2117  1.170     pooka 
   2118  1.170     pooka 			aiov.iov_base = arg;
   2119  1.170     pooka 			aiov.iov_len = PAGE_SIZE;
   2120  1.170     pooka 			auio.uio_iov = &aiov;
   2121  1.170     pooka 			auio.uio_iovcnt = 1;
   2122  1.170     pooka 			auio.uio_offset = base;
   2123  1.170     pooka 			auio.uio_resid = xlen;
   2124  1.170     pooka 			auio.uio_rw = UIO_READ;
   2125  1.170     pooka 			UIO_SETUP_SYSSPACE(&auio);
   2126  1.196  christos 			error = uvm_io(&vmspace->vm_map, &auio, 0);
   2127  1.170     pooka 			if (error)
   2128  1.170     pooka 				goto done;
   2129  1.170     pooka 
   2130  1.170     pooka 			/* Look for the end of the string */
   2131  1.170     pooka 			for (j = 0; j < xlen; j++) {
   2132  1.170     pooka 				if (arg[j] == '\0') {
   2133  1.170     pooka 					xlen = j + 1;
   2134  1.170     pooka 					finished = 1;
   2135  1.170     pooka 					break;
   2136  1.170     pooka 				}
   2137  1.170     pooka 			}
   2138  1.170     pooka 
   2139  1.170     pooka 			/* Check for user buffer overflow */
   2140  1.172     joerg 			if (len + xlen > *limit) {
   2141  1.170     pooka 				finished = 1;
   2142  1.172     joerg 				if (len > *limit)
   2143  1.170     pooka 					xlen = 0;
   2144  1.170     pooka 				else
   2145  1.172     joerg 					xlen = *limit - len;
   2146  1.170     pooka 			}
   2147  1.170     pooka 
   2148  1.170     pooka 			/* Copyout the page */
   2149  1.172     joerg 			error = (*cb)(cookie, arg, len, xlen);
   2150  1.170     pooka 			if (error)
   2151  1.170     pooka 				goto done;
   2152  1.170     pooka 
   2153  1.170     pooka 			len += xlen;
   2154  1.170     pooka 			base += xlen;
   2155  1.170     pooka 		}
   2156  1.170     pooka 	}
   2157  1.172     joerg 	*limit = len;
   2158  1.170     pooka 
   2159  1.170     pooka done:
   2160  1.172     joerg 	kmem_free(argv, PAGE_SIZE);
   2161  1.172     joerg 	kmem_free(arg, PAGE_SIZE);
   2162  1.170     pooka 	uvmspace_free(vmspace);
   2163  1.170     pooka 	return error;
   2164  1.170     pooka }
   2165  1.170     pooka 
   2166  1.170     pooka /*
   2167  1.170     pooka  * Fill in an eproc structure for the specified process.
   2168  1.170     pooka  */
   2169  1.170     pooka void
   2170  1.170     pooka fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
   2171  1.170     pooka {
   2172  1.170     pooka 	struct tty *tp;
   2173  1.170     pooka 	struct lwp *l;
   2174  1.170     pooka 
   2175  1.170     pooka 	KASSERT(mutex_owned(proc_lock));
   2176  1.170     pooka 	KASSERT(mutex_owned(p->p_lock));
   2177  1.170     pooka 
   2178  1.170     pooka 	memset(ep, 0, sizeof(*ep));
   2179  1.170     pooka 
   2180  1.170     pooka 	ep->e_paddr = p;
   2181  1.170     pooka 	ep->e_sess = p->p_session;
   2182  1.170     pooka 	if (p->p_cred) {
   2183  1.170     pooka 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2184  1.170     pooka 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2185  1.170     pooka 	}
   2186  1.170     pooka 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2187  1.170     pooka 		struct vmspace *vm = p->p_vmspace;
   2188  1.170     pooka 
   2189  1.170     pooka 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2190  1.170     pooka 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2191  1.170     pooka 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2192  1.170     pooka 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2193  1.170     pooka 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2194  1.170     pooka 
   2195  1.170     pooka 		/* Pick the primary (first) LWP */
   2196  1.170     pooka 		l = proc_active_lwp(p);
   2197  1.170     pooka 		KASSERT(l != NULL);
   2198  1.170     pooka 		lwp_lock(l);
   2199  1.170     pooka 		if (l->l_wchan)
   2200  1.170     pooka 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2201  1.170     pooka 		lwp_unlock(l);
   2202  1.170     pooka 	}
   2203  1.199       kre 	ep->e_ppid = p->p_ppid;
   2204  1.170     pooka 	if (p->p_pgrp && p->p_session) {
   2205  1.170     pooka 		ep->e_pgid = p->p_pgrp->pg_id;
   2206  1.170     pooka 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2207  1.170     pooka 		ep->e_sid = p->p_session->s_sid;
   2208  1.170     pooka 		if ((p->p_lflag & PL_CONTROLT) &&
   2209  1.170     pooka 		    (tp = ep->e_sess->s_ttyp)) {
   2210  1.170     pooka 			ep->e_tdev = tp->t_dev;
   2211  1.170     pooka 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2212  1.170     pooka 			ep->e_tsess = tp->t_session;
   2213  1.170     pooka 		} else
   2214  1.170     pooka 			ep->e_tdev = (uint32_t)NODEV;
   2215  1.170     pooka 		ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
   2216  1.170     pooka 		if (SESS_LEADER(p))
   2217  1.170     pooka 			ep->e_flag |= EPROC_SLEADER;
   2218  1.170     pooka 		strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
   2219  1.170     pooka 	}
   2220  1.170     pooka 	ep->e_xsize = ep->e_xrssize = 0;
   2221  1.170     pooka 	ep->e_xccount = ep->e_xswrss = 0;
   2222  1.170     pooka }
   2223  1.170     pooka 
   2224  1.170     pooka /*
   2225  1.170     pooka  * Fill in a kinfo_proc2 structure for the specified process.
   2226  1.170     pooka  */
   2227  1.193     njoly void
   2228  1.170     pooka fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
   2229  1.170     pooka {
   2230  1.170     pooka 	struct tty *tp;
   2231  1.170     pooka 	struct lwp *l, *l2;
   2232  1.170     pooka 	struct timeval ut, st, rt;
   2233  1.170     pooka 	sigset_t ss1, ss2;
   2234  1.170     pooka 	struct rusage ru;
   2235  1.170     pooka 	struct vmspace *vm;
   2236  1.170     pooka 
   2237  1.170     pooka 	KASSERT(mutex_owned(proc_lock));
   2238  1.170     pooka 	KASSERT(mutex_owned(p->p_lock));
   2239  1.170     pooka 
   2240  1.170     pooka 	sigemptyset(&ss1);
   2241  1.170     pooka 	sigemptyset(&ss2);
   2242  1.170     pooka 	memset(ki, 0, sizeof(*ki));
   2243  1.170     pooka 
   2244  1.170     pooka 	ki->p_paddr = PTRTOUINT64(p);
   2245  1.170     pooka 	ki->p_fd = PTRTOUINT64(p->p_fd);
   2246  1.170     pooka 	ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
   2247  1.170     pooka 	ki->p_stats = PTRTOUINT64(p->p_stats);
   2248  1.170     pooka 	ki->p_limit = PTRTOUINT64(p->p_limit);
   2249  1.170     pooka 	ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
   2250  1.170     pooka 	ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
   2251  1.170     pooka 	ki->p_sess = PTRTOUINT64(p->p_session);
   2252  1.170     pooka 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2253  1.170     pooka 	ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
   2254  1.170     pooka 	ki->p_eflag = 0;
   2255  1.170     pooka 	ki->p_exitsig = p->p_exitsig;
   2256  1.170     pooka 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2257  1.170     pooka 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2258  1.170     pooka 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2259  1.170     pooka 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2260  1.170     pooka 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2261  1.170     pooka 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2262  1.170     pooka 	ki->p_pid = p->p_pid;
   2263  1.199       kre 	ki->p_ppid = p->p_ppid;
   2264  1.170     pooka 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2265  1.170     pooka 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2266  1.170     pooka 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2267  1.170     pooka 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2268  1.170     pooka 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2269  1.170     pooka 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2270  1.170     pooka 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2271  1.170     pooka 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2272  1.170     pooka 	    min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2273  1.170     pooka 	    UIO_SYSSPACE);
   2274  1.170     pooka 
   2275  1.170     pooka 	ki->p_uticks = p->p_uticks;
   2276  1.170     pooka 	ki->p_sticks = p->p_sticks;
   2277  1.170     pooka 	ki->p_iticks = p->p_iticks;
   2278  1.170     pooka 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2279  1.170     pooka 	ki->p_tracep = PTRTOUINT64(p->p_tracep);
   2280  1.170     pooka 	ki->p_traceflag = p->p_traceflag;
   2281  1.170     pooka 
   2282  1.170     pooka 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2283  1.170     pooka 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2284  1.170     pooka 
   2285  1.170     pooka 	ki->p_cpticks = 0;
   2286  1.170     pooka 	ki->p_pctcpu = p->p_pctcpu;
   2287  1.170     pooka 	ki->p_estcpu = 0;
   2288  1.170     pooka 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2289  1.170     pooka 	ki->p_realstat = p->p_stat;
   2290  1.170     pooka 	ki->p_nice = p->p_nice;
   2291  1.195  christos 	ki->p_xstat = P_WAITSTATUS(p);
   2292  1.170     pooka 	ki->p_acflag = p->p_acflag;
   2293  1.170     pooka 
   2294  1.170     pooka 	strncpy(ki->p_comm, p->p_comm,
   2295  1.170     pooka 	    min(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2296  1.170     pooka 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2297  1.170     pooka 
   2298  1.170     pooka 	ki->p_nlwps = p->p_nlwps;
   2299  1.170     pooka 	ki->p_realflag = ki->p_flag;
   2300  1.170     pooka 
   2301  1.170     pooka 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2302  1.170     pooka 		vm = p->p_vmspace;
   2303  1.170     pooka 		ki->p_vm_rssize = vm_resident_count(vm);
   2304  1.170     pooka 		ki->p_vm_tsize = vm->vm_tsize;
   2305  1.170     pooka 		ki->p_vm_dsize = vm->vm_dsize;
   2306  1.170     pooka 		ki->p_vm_ssize = vm->vm_ssize;
   2307  1.184    martin 		ki->p_vm_vsize = atop(vm->vm_map.size);
   2308  1.170     pooka 		/*
   2309  1.170     pooka 		 * Since the stack is initially mapped mostly with
   2310  1.170     pooka 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2311  1.170     pooka 		 * to skip the unused stack portion.
   2312  1.170     pooka 		 */
   2313  1.170     pooka 		ki->p_vm_msize =
   2314  1.170     pooka 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2315  1.170     pooka 
   2316  1.170     pooka 		/* Pick the primary (first) LWP */
   2317  1.170     pooka 		l = proc_active_lwp(p);
   2318  1.170     pooka 		KASSERT(l != NULL);
   2319  1.170     pooka 		lwp_lock(l);
   2320  1.170     pooka 		ki->p_nrlwps = p->p_nrlwps;
   2321  1.170     pooka 		ki->p_forw = 0;
   2322  1.170     pooka 		ki->p_back = 0;
   2323  1.170     pooka 		ki->p_addr = PTRTOUINT64(l->l_addr);
   2324  1.170     pooka 		ki->p_stat = l->l_stat;
   2325  1.170     pooka 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2326  1.170     pooka 		ki->p_swtime = l->l_swtime;
   2327  1.170     pooka 		ki->p_slptime = l->l_slptime;
   2328  1.170     pooka 		if (l->l_stat == LSONPROC)
   2329  1.170     pooka 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2330  1.170     pooka 		else
   2331  1.170     pooka 			ki->p_schedflags = 0;
   2332  1.170     pooka 		ki->p_priority = lwp_eprio(l);
   2333  1.170     pooka 		ki->p_usrpri = l->l_priority;
   2334  1.170     pooka 		if (l->l_wchan)
   2335  1.170     pooka 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2336  1.170     pooka 		ki->p_wchan = PTRTOUINT64(l->l_wchan);
   2337  1.170     pooka 		ki->p_cpuid = cpu_index(l->l_cpu);
   2338  1.170     pooka 		lwp_unlock(l);
   2339  1.170     pooka 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2340  1.170     pooka 			/* This is hardly correct, but... */
   2341  1.170     pooka 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2342  1.170     pooka 			sigplusset(&l->l_sigmask, &ss2);
   2343  1.170     pooka 			ki->p_cpticks += l->l_cpticks;
   2344  1.170     pooka 			ki->p_pctcpu += l->l_pctcpu;
   2345  1.170     pooka 			ki->p_estcpu += l->l_estcpu;
   2346  1.170     pooka 		}
   2347  1.170     pooka 	}
   2348  1.170     pooka 	sigplusset(&p->p_sigpend.sp_set, &ss2);
   2349  1.170     pooka 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2350  1.170     pooka 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2351  1.170     pooka 
   2352  1.170     pooka 	if (p->p_session != NULL) {
   2353  1.170     pooka 		ki->p_sid = p->p_session->s_sid;
   2354  1.170     pooka 		ki->p__pgid = p->p_pgrp->pg_id;
   2355  1.170     pooka 		if (p->p_session->s_ttyvp)
   2356  1.170     pooka 			ki->p_eflag |= EPROC_CTTY;
   2357  1.170     pooka 		if (SESS_LEADER(p))
   2358  1.170     pooka 			ki->p_eflag |= EPROC_SLEADER;
   2359  1.170     pooka 		strncpy(ki->p_login, p->p_session->s_login,
   2360  1.170     pooka 		    min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2361  1.170     pooka 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2362  1.170     pooka 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2363  1.170     pooka 			ki->p_tdev = tp->t_dev;
   2364  1.170     pooka 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2365  1.170     pooka 			ki->p_tsess = PTRTOUINT64(tp->t_session);
   2366  1.170     pooka 		} else {
   2367  1.170     pooka 			ki->p_tdev = (int32_t)NODEV;
   2368  1.170     pooka 		}
   2369  1.170     pooka 	}
   2370  1.170     pooka 
   2371  1.170     pooka 	if (!P_ZOMBIE(p) && !zombie) {
   2372  1.170     pooka 		ki->p_uvalid = 1;
   2373  1.170     pooka 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2374  1.170     pooka 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2375  1.170     pooka 
   2376  1.170     pooka 		calcru(p, &ut, &st, NULL, &rt);
   2377  1.170     pooka 		ki->p_rtime_sec = rt.tv_sec;
   2378  1.170     pooka 		ki->p_rtime_usec = rt.tv_usec;
   2379  1.170     pooka 		ki->p_uutime_sec = ut.tv_sec;
   2380  1.170     pooka 		ki->p_uutime_usec = ut.tv_usec;
   2381  1.170     pooka 		ki->p_ustime_sec = st.tv_sec;
   2382  1.170     pooka 		ki->p_ustime_usec = st.tv_usec;
   2383  1.170     pooka 
   2384  1.170     pooka 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2385  1.170     pooka 		ki->p_uru_nvcsw = 0;
   2386  1.170     pooka 		ki->p_uru_nivcsw = 0;
   2387  1.170     pooka 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2388  1.170     pooka 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2389  1.170     pooka 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2390  1.170     pooka 			ruadd(&ru, &l2->l_ru);
   2391  1.170     pooka 		}
   2392  1.170     pooka 		ki->p_uru_maxrss = ru.ru_maxrss;
   2393  1.170     pooka 		ki->p_uru_ixrss = ru.ru_ixrss;
   2394  1.170     pooka 		ki->p_uru_idrss = ru.ru_idrss;
   2395  1.170     pooka 		ki->p_uru_isrss = ru.ru_isrss;
   2396  1.170     pooka 		ki->p_uru_minflt = ru.ru_minflt;
   2397  1.170     pooka 		ki->p_uru_majflt = ru.ru_majflt;
   2398  1.170     pooka 		ki->p_uru_nswap = ru.ru_nswap;
   2399  1.170     pooka 		ki->p_uru_inblock = ru.ru_inblock;
   2400  1.170     pooka 		ki->p_uru_oublock = ru.ru_oublock;
   2401  1.170     pooka 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2402  1.170     pooka 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2403  1.170     pooka 		ki->p_uru_nsignals = ru.ru_nsignals;
   2404  1.170     pooka 
   2405  1.170     pooka 		timeradd(&p->p_stats->p_cru.ru_utime,
   2406  1.170     pooka 			 &p->p_stats->p_cru.ru_stime, &ut);
   2407  1.170     pooka 		ki->p_uctime_sec = ut.tv_sec;
   2408  1.170     pooka 		ki->p_uctime_usec = ut.tv_usec;
   2409  1.170     pooka 	}
   2410  1.170     pooka }
   2411  1.194  christos 
   2412  1.194  christos 
   2413  1.194  christos int
   2414  1.194  christos proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
   2415  1.194  christos {
   2416  1.194  christos 	int error;
   2417  1.194  christos 
   2418  1.194  christos 	mutex_enter(proc_lock);
   2419  1.194  christos 	if (pid == -1)
   2420  1.194  christos 		*p = l->l_proc;
   2421  1.194  christos 	else
   2422  1.194  christos 		*p = proc_find(pid);
   2423  1.194  christos 
   2424  1.194  christos 	if (*p == NULL) {
   2425  1.194  christos 		if (pid != -1)
   2426  1.194  christos 			mutex_exit(proc_lock);
   2427  1.194  christos 		return ESRCH;
   2428  1.194  christos 	}
   2429  1.194  christos 	if (pid != -1)
   2430  1.194  christos 		mutex_enter((*p)->p_lock);
   2431  1.194  christos 	mutex_exit(proc_lock);
   2432  1.194  christos 
   2433  1.194  christos 	error = kauth_authorize_process(l->l_cred,
   2434  1.194  christos 	    KAUTH_PROCESS_CANSEE, *p,
   2435  1.194  christos 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   2436  1.194  christos 	if (error) {
   2437  1.194  christos 		if (pid != -1)
   2438  1.194  christos 			mutex_exit((*p)->p_lock);
   2439  1.194  christos 	}
   2440  1.194  christos 	return error;
   2441  1.194  christos }
   2442  1.194  christos 
   2443  1.194  christos static int
   2444  1.194  christos fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2445  1.194  christos {
   2446  1.194  christos 	int error;
   2447  1.194  christos 	struct proc *p;
   2448  1.194  christos 
   2449  1.194  christos 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2450  1.194  christos 		return error;
   2451  1.194  christos 
   2452  1.208  christos 	if (p->p_path == NULL) {
   2453  1.194  christos 		if (pid != -1)
   2454  1.194  christos 			mutex_exit(p->p_lock);
   2455  1.194  christos 		return ENOENT;
   2456  1.194  christos 	}
   2457  1.194  christos 
   2458  1.208  christos 	size_t len = strlen(p->p_path) + 1;
   2459  1.194  christos 	if (oldp != NULL) {
   2460  1.208  christos 		error = sysctl_copyout(l, p->p_path, oldp, *oldlenp);
   2461  1.194  christos 		if (error == 0 && *oldlenp < len)
   2462  1.194  christos 			error = ENOSPC;
   2463  1.194  christos 	}
   2464  1.194  christos 	*oldlenp = len;
   2465  1.194  christos 	if (pid != -1)
   2466  1.194  christos 		mutex_exit(p->p_lock);
   2467  1.194  christos 	return error;
   2468  1.194  christos }
   2469  1.206  christos 
   2470  1.206  christos int
   2471  1.206  christos proc_getauxv(struct proc *p, void **buf, size_t *len)
   2472  1.206  christos {
   2473  1.206  christos 	struct ps_strings pss;
   2474  1.206  christos 	int error;
   2475  1.206  christos 	void *uauxv, *kauxv;
   2476  1.209      maxv 	size_t size;
   2477  1.206  christos 
   2478  1.206  christos 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2479  1.206  christos 		return error;
   2480  1.209      maxv 	if (pss.ps_envstr == NULL)
   2481  1.209      maxv 		return EIO;
   2482  1.206  christos 
   2483  1.209      maxv 	size = p->p_execsw->es_arglen;
   2484  1.209      maxv 	if (size == 0)
   2485  1.206  christos 		return EIO;
   2486  1.206  christos 
   2487  1.206  christos 	size_t ptrsz = PROC_PTRSZ(p);
   2488  1.206  christos 	uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
   2489  1.206  christos 
   2490  1.206  christos 	kauxv = kmem_alloc(size, KM_SLEEP);
   2491  1.206  christos 
   2492  1.206  christos 	error = copyin_proc(p, uauxv, kauxv, size);
   2493  1.206  christos 	if (error) {
   2494  1.206  christos 		kmem_free(kauxv, size);
   2495  1.206  christos 		return error;
   2496  1.206  christos 	}
   2497  1.206  christos 
   2498  1.206  christos 	*buf = kauxv;
   2499  1.206  christos 	*len = size;
   2500  1.206  christos 
   2501  1.206  christos 	return 0;
   2502  1.206  christos }
   2503