Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.269.2.1
      1  1.269.2.1    martin /*	$NetBSD: kern_proc.c,v 1.269.2.1 2024/08/07 10:04:47 martin Exp $	*/
      2       1.33   thorpej 
      3       1.33   thorpej /*-
      4      1.242        ad  * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
      5       1.33   thorpej  * All rights reserved.
      6       1.33   thorpej  *
      7       1.33   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.33   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.100        ad  * NASA Ames Research Center, and by Andrew Doran.
     10       1.33   thorpej  *
     11       1.33   thorpej  * Redistribution and use in source and binary forms, with or without
     12       1.33   thorpej  * modification, are permitted provided that the following conditions
     13       1.33   thorpej  * are met:
     14       1.33   thorpej  * 1. Redistributions of source code must retain the above copyright
     15       1.33   thorpej  *    notice, this list of conditions and the following disclaimer.
     16       1.33   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.33   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18       1.33   thorpej  *    documentation and/or other materials provided with the distribution.
     19       1.33   thorpej  *
     20       1.33   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21       1.33   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22       1.33   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23       1.33   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24       1.33   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25       1.33   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26       1.33   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27       1.33   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28       1.33   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29       1.33   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30       1.33   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31       1.33   thorpej  */
     32        1.9       cgd 
     33        1.1       cgd /*
     34        1.7       cgd  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35        1.7       cgd  *	The Regents of the University of California.  All rights reserved.
     36        1.1       cgd  *
     37        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     38        1.1       cgd  * modification, are permitted provided that the following conditions
     39        1.1       cgd  * are met:
     40        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     41        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     42        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     43        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     44        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     45       1.65       agc  * 3. Neither the name of the University nor the names of its contributors
     46        1.1       cgd  *    may be used to endorse or promote products derived from this software
     47        1.1       cgd  *    without specific prior written permission.
     48        1.1       cgd  *
     49        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59        1.1       cgd  * SUCH DAMAGE.
     60        1.1       cgd  *
     61       1.23      fvdl  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62        1.1       cgd  */
     63       1.45     lukem 
     64       1.45     lukem #include <sys/cdefs.h>
     65  1.269.2.1    martin __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.269.2.1 2024/08/07 10:04:47 martin Exp $");
     66       1.48      yamt 
     67      1.165     pooka #ifdef _KERNEL_OPT
     68       1.48      yamt #include "opt_kstack.h"
     69       1.88      onoe #include "opt_maxuprc.h"
     70      1.161    darran #include "opt_dtrace.h"
     71      1.171     pooka #include "opt_compat_netbsd32.h"
     72      1.222  christos #include "opt_kaslr.h"
     73      1.165     pooka #endif
     74        1.1       cgd 
     75      1.205  christos #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
     76      1.205  christos     && !defined(_RUMPKERNEL)
     77      1.205  christos #define COMPAT_NETBSD32
     78      1.205  christos #endif
     79      1.205  christos 
     80        1.5   mycroft #include <sys/param.h>
     81        1.5   mycroft #include <sys/systm.h>
     82        1.5   mycroft #include <sys/kernel.h>
     83        1.5   mycroft #include <sys/proc.h>
     84       1.28   thorpej #include <sys/resourcevar.h>
     85        1.5   mycroft #include <sys/buf.h>
     86        1.5   mycroft #include <sys/acct.h>
     87        1.5   mycroft #include <sys/wait.h>
     88        1.5   mycroft #include <sys/file.h>
     89        1.8   mycroft #include <ufs/ufs/quota.h>
     90        1.5   mycroft #include <sys/uio.h>
     91       1.24   thorpej #include <sys/pool.h>
     92      1.147     rmind #include <sys/pset.h>
     93        1.5   mycroft #include <sys/ioctl.h>
     94        1.5   mycroft #include <sys/tty.h>
     95       1.11       cgd #include <sys/signalvar.h>
     96       1.51  gmcgarry #include <sys/ras.h>
     97       1.81  junyoung #include <sys/filedesc.h>
     98      1.185    martin #include <sys/syscall_stats.h>
     99       1.89      elad #include <sys/kauth.h>
    100      1.100        ad #include <sys/sleepq.h>
    101      1.126        ad #include <sys/atomic.h>
    102      1.131        ad #include <sys/kmem.h>
    103      1.194  christos #include <sys/namei.h>
    104      1.160    darran #include <sys/dtrace_bsd.h>
    105      1.170     pooka #include <sys/sysctl.h>
    106      1.170     pooka #include <sys/exec.h>
    107      1.170     pooka #include <sys/cpu.h>
    108      1.225  pgoyette #include <sys/compat_stub.h>
    109      1.250   thorpej #include <sys/futex.h>
    110      1.252        ad #include <sys/pserialize.h>
    111      1.160    darran 
    112      1.169  uebayasi #include <uvm/uvm_extern.h>
    113        1.5   mycroft 
    114        1.7       cgd /*
    115      1.180     rmind  * Process lists.
    116        1.7       cgd  */
    117       1.31   thorpej 
    118      1.180     rmind struct proclist		allproc		__cacheline_aligned;
    119      1.180     rmind struct proclist		zombproc	__cacheline_aligned;
    120       1.32   thorpej 
    121      1.253        ad  kmutex_t		proc_lock	__cacheline_aligned;
    122      1.252        ad static pserialize_t	proc_psz;
    123       1.33   thorpej 
    124       1.33   thorpej /*
    125      1.247   thorpej  * pid to lwp/proc lookup is done by indexing the pid_table array.
    126       1.61       dsl  * Since pid numbers are only allocated when an empty slot
    127       1.61       dsl  * has been found, there is no need to search any lists ever.
    128       1.61       dsl  * (an orphaned pgrp will lock the slot, a session will lock
    129       1.61       dsl  * the pgrp with the same number.)
    130       1.61       dsl  * If the table is too small it is reallocated with twice the
    131       1.61       dsl  * previous size and the entries 'unzipped' into the two halves.
    132      1.247   thorpej  * A linked list of free entries is passed through the pt_lwp
    133      1.247   thorpej  * field of 'free' items - set odd to be an invalid ptr.  Two
    134      1.247   thorpej  * additional bits are also used to indicate if the slot is
    135      1.247   thorpej  * currently occupied by a proc or lwp, and if the PID is
    136      1.247   thorpej  * hidden from certain kinds of lookups.  We thus require a
    137      1.247   thorpej  * minimum alignment for proc and lwp structures (LWPs are
    138      1.247   thorpej  * at least 32-byte aligned).
    139       1.61       dsl  */
    140       1.61       dsl 
    141       1.61       dsl struct pid_table {
    142      1.247   thorpej 	uintptr_t	pt_slot;
    143       1.61       dsl 	struct pgrp	*pt_pgrp;
    144      1.168       chs 	pid_t		pt_pid;
    145       1.72  junyoung };
    146      1.247   thorpej 
    147      1.248   thorpej #define	PT_F_FREE		((uintptr_t)__BIT(0))
    148      1.247   thorpej #define	PT_F_LWP		0	/* pseudo-flag */
    149      1.248   thorpej #define	PT_F_PROC		((uintptr_t)__BIT(1))
    150      1.247   thorpej 
    151      1.247   thorpej #define	PT_F_TYPEBITS		(PT_F_FREE|PT_F_PROC)
    152      1.251   thorpej #define	PT_F_ALLBITS		(PT_F_FREE|PT_F_PROC)
    153      1.247   thorpej 
    154      1.247   thorpej #define	PT_VALID(s)		(((s) & PT_F_FREE) == 0)
    155      1.247   thorpej #define	PT_RESERVED(s)		((s) == 0)
    156      1.247   thorpej #define	PT_NEXT(s)		((u_int)(s) >> 1)
    157      1.247   thorpej #define	PT_SET_FREE(pid)	(((pid) << 1) | PT_F_FREE)
    158      1.247   thorpej #define	PT_SET_LWP(l)		((uintptr_t)(l))
    159      1.247   thorpej #define	PT_SET_PROC(p)		(((uintptr_t)(p)) | PT_F_PROC)
    160      1.247   thorpej #define	PT_SET_RESERVED		0
    161      1.247   thorpej #define	PT_GET_LWP(s)		((struct lwp *)((s) & ~PT_F_ALLBITS))
    162      1.247   thorpej #define	PT_GET_PROC(s)		((struct proc *)((s) & ~PT_F_ALLBITS))
    163      1.247   thorpej #define	PT_GET_TYPE(s)		((s) & PT_F_TYPEBITS)
    164      1.247   thorpej #define	PT_IS_LWP(s)		(PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
    165      1.247   thorpej #define	PT_IS_PROC(s)		(PT_GET_TYPE(s) == PT_F_PROC)
    166      1.247   thorpej 
    167      1.247   thorpej #define	MIN_PROC_ALIGNMENT	(PT_F_ALLBITS + 1)
    168       1.61       dsl 
    169      1.180     rmind /*
    170      1.180     rmind  * Table of process IDs (PIDs).
    171      1.180     rmind  */
    172      1.180     rmind static struct pid_table *pid_table	__read_mostly;
    173      1.180     rmind 
    174      1.180     rmind #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    175      1.180     rmind 
    176      1.180     rmind /* Table mask, threshold for growing and number of allocated PIDs. */
    177      1.180     rmind static u_int		pid_tbl_mask	__read_mostly;
    178      1.180     rmind static u_int		pid_alloc_lim	__read_mostly;
    179      1.180     rmind static u_int		pid_alloc_cnt	__cacheline_aligned;
    180      1.180     rmind 
    181      1.180     rmind /* Next free, last free and maximum PIDs. */
    182      1.180     rmind static u_int		next_free_pt	__cacheline_aligned;
    183      1.180     rmind static u_int		last_free_pt	__cacheline_aligned;
    184      1.180     rmind static pid_t		pid_max		__read_mostly;
    185       1.31   thorpej 
    186       1.81  junyoung /* Components of the first process -- never freed. */
    187      1.123      matt 
    188      1.123      matt struct session session0 = {
    189      1.123      matt 	.s_count = 1,
    190      1.123      matt 	.s_sid = 0,
    191      1.123      matt };
    192      1.123      matt struct pgrp pgrp0 = {
    193      1.123      matt 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    194      1.123      matt 	.pg_session = &session0,
    195      1.123      matt };
    196      1.132        ad filedesc_t filedesc0;
    197      1.123      matt struct cwdinfo cwdi0 = {
    198      1.187     pooka 	.cwdi_cmask = CMASK,
    199      1.123      matt 	.cwdi_refcnt = 1,
    200      1.123      matt };
    201      1.143  gmcgarry struct plimit limit0;
    202       1.81  junyoung struct pstats pstat0;
    203       1.81  junyoung struct vmspace vmspace0;
    204       1.81  junyoung struct sigacts sigacts0;
    205      1.123      matt struct proc proc0 = {
    206      1.123      matt 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    207      1.123      matt 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    208      1.123      matt 	.p_nlwps = 1,
    209      1.123      matt 	.p_nrlwps = 1,
    210      1.123      matt 	.p_pgrp = &pgrp0,
    211      1.123      matt 	.p_comm = "system",
    212      1.123      matt 	/*
    213      1.123      matt 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    214      1.123      matt 	 * when they exit.  init(8) can easily wait them out for us.
    215      1.123      matt 	 */
    216      1.123      matt 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    217      1.123      matt 	.p_stat = SACTIVE,
    218      1.123      matt 	.p_nice = NZERO,
    219      1.123      matt 	.p_emul = &emul_netbsd,
    220      1.123      matt 	.p_cwdi = &cwdi0,
    221      1.123      matt 	.p_limit = &limit0,
    222      1.132        ad 	.p_fd = &filedesc0,
    223      1.123      matt 	.p_vmspace = &vmspace0,
    224      1.123      matt 	.p_stats = &pstat0,
    225      1.123      matt 	.p_sigacts = &sigacts0,
    226      1.188      matt #ifdef PROC0_MD_INITIALIZERS
    227      1.188      matt 	PROC0_MD_INITIALIZERS
    228      1.188      matt #endif
    229      1.123      matt };
    230      1.123      matt kauth_cred_t cred0;
    231       1.81  junyoung 
    232      1.180     rmind static const int	nofile	= NOFILE;
    233      1.180     rmind static const int	maxuprc	= MAXUPRC;
    234       1.81  junyoung 
    235      1.170     pooka static int sysctl_doeproc(SYSCTLFN_PROTO);
    236      1.170     pooka static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    237      1.222  christos static int sysctl_security_expose_address(SYSCTLFN_PROTO);
    238      1.170     pooka 
    239      1.222  christos #ifdef KASLR
    240      1.223  christos static int kern_expose_address = 0;
    241      1.222  christos #else
    242      1.222  christos static int kern_expose_address = 1;
    243      1.222  christos #endif
    244       1.31   thorpej /*
    245       1.31   thorpej  * The process list descriptors, used during pid allocation and
    246       1.31   thorpej  * by sysctl.  No locking on this data structure is needed since
    247       1.31   thorpej  * it is completely static.
    248       1.31   thorpej  */
    249       1.31   thorpej const struct proclist_desc proclists[] = {
    250       1.31   thorpej 	{ &allproc	},
    251       1.31   thorpej 	{ &zombproc	},
    252       1.31   thorpej 	{ NULL		},
    253       1.31   thorpej };
    254       1.31   thorpej 
    255      1.151     rmind static struct pgrp *	pg_remove(pid_t);
    256      1.151     rmind static void		pg_delete(pid_t);
    257      1.151     rmind static void		orphanpg(struct pgrp *);
    258       1.13  christos 
    259       1.95   thorpej static specificdata_domain_t proc_specificdata_domain;
    260       1.95   thorpej 
    261      1.128        ad static pool_cache_t proc_cache;
    262      1.128        ad 
    263      1.153      elad static kauth_listener_t proc_listener;
    264      1.153      elad 
    265      1.222  christos static void fill_proc(const struct proc *, struct proc *, bool);
    266      1.194  christos static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
    267      1.229     kamil static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
    268      1.194  christos 
    269      1.153      elad static int
    270      1.153      elad proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    271      1.153      elad     void *arg0, void *arg1, void *arg2, void *arg3)
    272      1.153      elad {
    273      1.153      elad 	struct proc *p;
    274      1.153      elad 	int result;
    275      1.153      elad 
    276      1.153      elad 	result = KAUTH_RESULT_DEFER;
    277      1.153      elad 	p = arg0;
    278      1.153      elad 
    279      1.153      elad 	switch (action) {
    280      1.153      elad 	case KAUTH_PROCESS_CANSEE: {
    281      1.153      elad 		enum kauth_process_req req;
    282      1.153      elad 
    283      1.241     joerg 		req = (enum kauth_process_req)(uintptr_t)arg1;
    284      1.153      elad 
    285      1.153      elad 		switch (req) {
    286      1.153      elad 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    287      1.153      elad 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    288      1.153      elad 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    289      1.213      maxv 		case KAUTH_REQ_PROCESS_CANSEE_EPROC:
    290      1.153      elad 			result = KAUTH_RESULT_ALLOW;
    291      1.153      elad 			break;
    292      1.153      elad 
    293      1.153      elad 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    294      1.153      elad 			if (kauth_cred_getuid(cred) !=
    295      1.153      elad 			    kauth_cred_getuid(p->p_cred) ||
    296      1.153      elad 			    kauth_cred_getuid(cred) !=
    297      1.153      elad 			    kauth_cred_getsvuid(p->p_cred))
    298      1.153      elad 				break;
    299      1.153      elad 
    300      1.153      elad 			result = KAUTH_RESULT_ALLOW;
    301      1.153      elad 
    302      1.153      elad 			break;
    303      1.153      elad 
    304      1.215      maxv 		case KAUTH_REQ_PROCESS_CANSEE_KPTR:
    305      1.222  christos 			if (!kern_expose_address)
    306      1.222  christos 				break;
    307      1.222  christos 
    308      1.222  christos 			if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
    309      1.222  christos 				break;
    310      1.222  christos 
    311      1.222  christos 			result = KAUTH_RESULT_ALLOW;
    312      1.222  christos 
    313      1.222  christos 			break;
    314      1.222  christos 
    315      1.153      elad 		default:
    316      1.153      elad 			break;
    317      1.153      elad 		}
    318      1.153      elad 
    319      1.153      elad 		break;
    320      1.153      elad 		}
    321      1.153      elad 
    322      1.153      elad 	case KAUTH_PROCESS_FORK: {
    323      1.153      elad 		int lnprocs = (int)(unsigned long)arg2;
    324      1.153      elad 
    325      1.153      elad 		/*
    326      1.153      elad 		 * Don't allow a nonprivileged user to use the last few
    327      1.153      elad 		 * processes. The variable lnprocs is the current number of
    328      1.153      elad 		 * processes, maxproc is the limit.
    329      1.153      elad 		 */
    330      1.153      elad 		if (__predict_false((lnprocs >= maxproc - 5)))
    331      1.153      elad 			break;
    332      1.153      elad 
    333      1.153      elad 		result = KAUTH_RESULT_ALLOW;
    334      1.153      elad 
    335      1.153      elad 		break;
    336      1.153      elad 		}
    337      1.153      elad 
    338      1.153      elad 	case KAUTH_PROCESS_CORENAME:
    339      1.153      elad 	case KAUTH_PROCESS_STOPFLAG:
    340      1.153      elad 		if (proc_uidmatch(cred, p->p_cred) == 0)
    341      1.153      elad 			result = KAUTH_RESULT_ALLOW;
    342      1.153      elad 
    343      1.153      elad 		break;
    344      1.153      elad 
    345      1.153      elad 	default:
    346      1.153      elad 		break;
    347      1.153      elad 	}
    348      1.153      elad 
    349      1.153      elad 	return result;
    350      1.153      elad }
    351      1.153      elad 
    352      1.221  christos static int
    353      1.221  christos proc_ctor(void *arg __unused, void *obj, int flags __unused)
    354      1.221  christos {
    355      1.263   thorpej 	struct proc *p = obj;
    356      1.263   thorpej 
    357      1.263   thorpej 	memset(p, 0, sizeof(*p));
    358      1.263   thorpej 	klist_init(&p->p_klist);
    359      1.263   thorpej 
    360      1.263   thorpej 	/*
    361      1.263   thorpej 	 * There is no need for a proc_dtor() to do a klist_fini(),
    362      1.263   thorpej 	 * since knote_proc_exit() ensures that p->p_klist is empty
    363      1.263   thorpej 	 * when a process exits.
    364      1.263   thorpej 	 */
    365      1.263   thorpej 
    366      1.221  christos 	return 0;
    367      1.221  christos }
    368      1.221  christos 
    369      1.247   thorpej static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
    370      1.247   thorpej 
    371       1.10   mycroft /*
    372       1.10   mycroft  * Initialize global process hashing structures.
    373       1.10   mycroft  */
    374       1.11       cgd void
    375       1.59       dsl procinit(void)
    376        1.7       cgd {
    377       1.31   thorpej 	const struct proclist_desc *pd;
    378      1.150     rmind 	u_int i;
    379       1.61       dsl #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    380       1.31   thorpej 
    381       1.31   thorpej 	for (pd = proclists; pd->pd_list != NULL; pd++)
    382       1.31   thorpej 		LIST_INIT(pd->pd_list);
    383        1.7       cgd 
    384      1.253        ad 	mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
    385      1.247   thorpej 
    386      1.252        ad 	proc_psz = pserialize_create();
    387      1.247   thorpej 
    388      1.150     rmind 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    389      1.150     rmind 	    * sizeof(struct pid_table), KM_SLEEP);
    390      1.180     rmind 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    391      1.180     rmind 	pid_max = PID_MAX;
    392       1.33   thorpej 
    393       1.61       dsl 	/* Set free list running through table...
    394       1.61       dsl 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    395       1.61       dsl 	for (i = 0; i <= pid_tbl_mask; i++) {
    396      1.247   thorpej 		pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
    397       1.61       dsl 		pid_table[i].pt_pgrp = 0;
    398      1.168       chs 		pid_table[i].pt_pid = 0;
    399       1.61       dsl 	}
    400       1.61       dsl 	/* slot 0 is just grabbed */
    401       1.61       dsl 	next_free_pt = 1;
    402       1.61       dsl 	/* Need to fix last entry. */
    403       1.61       dsl 	last_free_pt = pid_tbl_mask;
    404      1.247   thorpej 	pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
    405       1.61       dsl 	/* point at which we grow table - to avoid reusing pids too often */
    406       1.61       dsl 	pid_alloc_lim = pid_tbl_mask - 1;
    407       1.61       dsl #undef LINK_EMPTY
    408       1.61       dsl 
    409      1.247   thorpej 	/* Reserve PID 1 for init(8). */	/* XXX slightly gross */
    410      1.253        ad 	mutex_enter(&proc_lock);
    411      1.247   thorpej 	if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
    412      1.247   thorpej 		panic("failed to reserve PID 1 for init(8)");
    413      1.253        ad 	mutex_exit(&proc_lock);
    414      1.247   thorpej 
    415       1.95   thorpej 	proc_specificdata_domain = specificdata_domain_create();
    416       1.95   thorpej 	KASSERT(proc_specificdata_domain != NULL);
    417      1.128        ad 
    418      1.247   thorpej 	size_t proc_alignment = coherency_unit;
    419      1.247   thorpej 	if (proc_alignment < MIN_PROC_ALIGNMENT)
    420      1.247   thorpej 		proc_alignment = MIN_PROC_ALIGNMENT;
    421      1.247   thorpej 
    422      1.247   thorpej 	proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
    423      1.221  christos 	    "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
    424      1.153      elad 
    425      1.153      elad 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    426      1.153      elad 	    proc_listener_cb, NULL);
    427        1.7       cgd }
    428        1.1       cgd 
    429      1.170     pooka void
    430      1.170     pooka procinit_sysctl(void)
    431      1.170     pooka {
    432      1.170     pooka 	static struct sysctllog *clog;
    433      1.170     pooka 
    434      1.170     pooka 	sysctl_createv(&clog, 0, NULL, NULL,
    435      1.222  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    436      1.222  christos 		       CTLTYPE_INT, "expose_address",
    437      1.222  christos 		       SYSCTL_DESCR("Enable exposing kernel addresses"),
    438      1.222  christos 		       sysctl_security_expose_address, 0,
    439      1.222  christos 		       &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
    440      1.222  christos 	sysctl_createv(&clog, 0, NULL, NULL,
    441      1.170     pooka 		       CTLFLAG_PERMANENT,
    442      1.170     pooka 		       CTLTYPE_NODE, "proc",
    443      1.170     pooka 		       SYSCTL_DESCR("System-wide process information"),
    444      1.170     pooka 		       sysctl_doeproc, 0, NULL, 0,
    445      1.170     pooka 		       CTL_KERN, KERN_PROC, CTL_EOL);
    446      1.170     pooka 	sysctl_createv(&clog, 0, NULL, NULL,
    447      1.170     pooka 		       CTLFLAG_PERMANENT,
    448      1.170     pooka 		       CTLTYPE_NODE, "proc2",
    449      1.170     pooka 		       SYSCTL_DESCR("Machine-independent process information"),
    450      1.170     pooka 		       sysctl_doeproc, 0, NULL, 0,
    451      1.170     pooka 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    452      1.170     pooka 	sysctl_createv(&clog, 0, NULL, NULL,
    453      1.170     pooka 		       CTLFLAG_PERMANENT,
    454      1.170     pooka 		       CTLTYPE_NODE, "proc_args",
    455      1.170     pooka 		       SYSCTL_DESCR("Process argument information"),
    456      1.170     pooka 		       sysctl_kern_proc_args, 0, NULL, 0,
    457      1.170     pooka 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    458      1.170     pooka 
    459      1.170     pooka 	/*
    460      1.170     pooka 	  "nodes" under these:
    461      1.170     pooka 
    462      1.170     pooka 	  KERN_PROC_ALL
    463      1.170     pooka 	  KERN_PROC_PID pid
    464      1.170     pooka 	  KERN_PROC_PGRP pgrp
    465      1.170     pooka 	  KERN_PROC_SESSION sess
    466      1.170     pooka 	  KERN_PROC_TTY tty
    467      1.170     pooka 	  KERN_PROC_UID uid
    468      1.170     pooka 	  KERN_PROC_RUID uid
    469      1.170     pooka 	  KERN_PROC_GID gid
    470      1.170     pooka 	  KERN_PROC_RGID gid
    471      1.170     pooka 
    472      1.170     pooka 	  all in all, probably not worth the effort...
    473      1.170     pooka 	*/
    474      1.170     pooka }
    475      1.170     pooka 
    476        1.7       cgd /*
    477       1.81  junyoung  * Initialize process 0.
    478       1.81  junyoung  */
    479       1.81  junyoung void
    480       1.81  junyoung proc0_init(void)
    481       1.81  junyoung {
    482       1.81  junyoung 	struct proc *p;
    483       1.81  junyoung 	struct pgrp *pg;
    484      1.177     rmind 	struct rlimit *rlim;
    485       1.81  junyoung 	rlim_t lim;
    486      1.143  gmcgarry 	int i;
    487       1.81  junyoung 
    488       1.81  junyoung 	p = &proc0;
    489       1.81  junyoung 	pg = &pgrp0;
    490      1.123      matt 
    491      1.127        ad 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    492      1.129        ad 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    493      1.137        ad 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    494      1.107        ad 
    495      1.122        ad 	rw_init(&p->p_reflock);
    496      1.100        ad 	cv_init(&p->p_waitcv, "wait");
    497      1.100        ad 	cv_init(&p->p_lwpcv, "lwpwait");
    498      1.100        ad 
    499      1.166     pooka 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    500      1.100        ad 
    501      1.247   thorpej 	KASSERT(lwp0.l_lid == 0);
    502      1.247   thorpej 	pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
    503       1.81  junyoung 	LIST_INSERT_HEAD(&allproc, p, p_list);
    504       1.81  junyoung 
    505      1.247   thorpej 	pid_table[lwp0.l_lid].pt_pgrp = pg;
    506       1.81  junyoung 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    507       1.81  junyoung 
    508       1.81  junyoung #ifdef __HAVE_SYSCALL_INTERN
    509       1.81  junyoung 	(*p->p_emul->e_syscall_intern)(p);
    510       1.81  junyoung #endif
    511       1.81  junyoung 
    512       1.81  junyoung 	/* Create credentials. */
    513       1.89      elad 	cred0 = kauth_cred_alloc();
    514       1.89      elad 	p->p_cred = cred0;
    515       1.81  junyoung 
    516       1.81  junyoung 	/* Create the CWD info. */
    517      1.246        ad 	rw_init(&cwdi0.cwdi_lock);
    518       1.81  junyoung 
    519       1.81  junyoung 	/* Create the limits structures. */
    520      1.116       dsl 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    521      1.177     rmind 
    522      1.177     rmind 	rlim = limit0.pl_rlimit;
    523      1.177     rmind 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    524      1.177     rmind 		rlim[i].rlim_cur = RLIM_INFINITY;
    525      1.177     rmind 		rlim[i].rlim_max = RLIM_INFINITY;
    526      1.177     rmind 	}
    527      1.177     rmind 
    528      1.177     rmind 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    529      1.177     rmind 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    530      1.177     rmind 
    531      1.177     rmind 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    532      1.177     rmind 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    533       1.81  junyoung 
    534      1.255        ad 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
    535      1.177     rmind 	rlim[RLIMIT_RSS].rlim_max = lim;
    536      1.177     rmind 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    537      1.177     rmind 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    538      1.177     rmind 
    539      1.186  christos 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
    540      1.267       mrg 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp / 2;
    541      1.186  christos 
    542      1.179     rmind 	/* Note that default core name has zero length. */
    543      1.177     rmind 	limit0.pl_corename = defcorename;
    544      1.179     rmind 	limit0.pl_cnlen = 0;
    545      1.177     rmind 	limit0.pl_refcnt = 1;
    546      1.179     rmind 	limit0.pl_writeable = false;
    547      1.143  gmcgarry 	limit0.pl_sv_limit = NULL;
    548       1.81  junyoung 
    549       1.81  junyoung 	/* Configure virtual memory system, set vm rlimits. */
    550       1.81  junyoung 	uvm_init_limits(p);
    551       1.81  junyoung 
    552       1.81  junyoung 	/* Initialize file descriptor table for proc0. */
    553      1.132        ad 	fd_init(&filedesc0);
    554       1.81  junyoung 
    555       1.81  junyoung 	/*
    556       1.81  junyoung 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    557       1.81  junyoung 	 * All kernel processes (which never have user space mappings)
    558       1.81  junyoung 	 * share proc0's vmspace, and thus, the kernel pmap.
    559       1.81  junyoung 	 */
    560       1.81  junyoung 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    561      1.197      maxv 	    trunc_page(VM_MAXUSER_ADDRESS),
    562      1.191  christos #ifdef __USE_TOPDOWN_VM
    563      1.190    martin 	    true
    564      1.190    martin #else
    565      1.190    martin 	    false
    566      1.190    martin #endif
    567      1.190    martin 	    );
    568       1.81  junyoung 
    569      1.127        ad 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    570      1.127        ad 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    571       1.81  junyoung 	siginit(p);
    572       1.96  christos 
    573      1.164     rmind 	proc_initspecific(p);
    574      1.160    darran 	kdtrace_proc_ctor(NULL, p);
    575       1.81  junyoung }
    576       1.81  junyoung 
    577       1.81  junyoung /*
    578      1.151     rmind  * Session reference counting.
    579      1.151     rmind  */
    580      1.151     rmind 
    581      1.151     rmind void
    582      1.151     rmind proc_sesshold(struct session *ss)
    583      1.151     rmind {
    584      1.151     rmind 
    585      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
    586      1.151     rmind 	ss->s_count++;
    587      1.151     rmind }
    588      1.151     rmind 
    589      1.252        ad void
    590      1.252        ad proc_sessrele(struct session *ss)
    591      1.151     rmind {
    592      1.247   thorpej 	struct pgrp *pg;
    593      1.151     rmind 
    594      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
    595      1.245      maxv 	KASSERT(ss->s_count > 0);
    596      1.247   thorpej 
    597      1.151     rmind 	/*
    598      1.151     rmind 	 * We keep the pgrp with the same id as the session in order to
    599      1.151     rmind 	 * stop a process being given the same pid.  Since the pgrp holds
    600      1.151     rmind 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    601      1.151     rmind 	 */
    602      1.151     rmind 	if (--ss->s_count == 0) {
    603      1.247   thorpej 		pg = pg_remove(ss->s_sid);
    604      1.247   thorpej 	} else {
    605      1.247   thorpej 		pg = NULL;
    606      1.247   thorpej 		ss = NULL;
    607      1.247   thorpej 	}
    608      1.151     rmind 
    609      1.253        ad 	mutex_exit(&proc_lock);
    610      1.151     rmind 
    611      1.247   thorpej 	if (pg)
    612      1.151     rmind 		kmem_free(pg, sizeof(struct pgrp));
    613      1.247   thorpej 	if (ss)
    614      1.151     rmind 		kmem_free(ss, sizeof(struct session));
    615      1.247   thorpej }
    616      1.247   thorpej 
    617      1.151     rmind /*
    618       1.74  junyoung  * Check that the specified process group is in the session of the
    619       1.60       dsl  * specified process.
    620       1.60       dsl  * Treats -ve ids as process ids.
    621       1.60       dsl  * Used to validate TIOCSPGRP requests.
    622       1.60       dsl  */
    623       1.60       dsl int
    624       1.60       dsl pgid_in_session(struct proc *p, pid_t pg_id)
    625       1.60       dsl {
    626       1.60       dsl 	struct pgrp *pgrp;
    627      1.101       dsl 	struct session *session;
    628      1.107        ad 	int error;
    629      1.101       dsl 
    630  1.269.2.1    martin 	if (pg_id <= INT_MIN)
    631      1.262       nia 		return EINVAL;
    632      1.262       nia 
    633      1.253        ad 	mutex_enter(&proc_lock);
    634       1.60       dsl 	if (pg_id < 0) {
    635      1.167     rmind 		struct proc *p1 = proc_find(-pg_id);
    636      1.167     rmind 		if (p1 == NULL) {
    637      1.167     rmind 			error = EINVAL;
    638      1.167     rmind 			goto fail;
    639      1.167     rmind 		}
    640       1.60       dsl 		pgrp = p1->p_pgrp;
    641       1.60       dsl 	} else {
    642      1.167     rmind 		pgrp = pgrp_find(pg_id);
    643      1.167     rmind 		if (pgrp == NULL) {
    644      1.167     rmind 			error = EINVAL;
    645      1.167     rmind 			goto fail;
    646      1.167     rmind 		}
    647       1.60       dsl 	}
    648      1.101       dsl 	session = pgrp->pg_session;
    649      1.167     rmind 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    650      1.167     rmind fail:
    651      1.253        ad 	mutex_exit(&proc_lock);
    652      1.107        ad 	return error;
    653        1.7       cgd }
    654        1.4    andrew 
    655        1.1       cgd /*
    656      1.148     rmind  * p_inferior: is p an inferior of q?
    657        1.1       cgd  */
    658      1.148     rmind static inline bool
    659      1.148     rmind p_inferior(struct proc *p, struct proc *q)
    660        1.1       cgd {
    661        1.1       cgd 
    662      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
    663      1.148     rmind 
    664       1.41  sommerfe 	for (; p != q; p = p->p_pptr)
    665        1.1       cgd 		if (p->p_pid == 0)
    666      1.148     rmind 			return false;
    667      1.148     rmind 	return true;
    668        1.1       cgd }
    669        1.1       cgd 
    670        1.1       cgd /*
    671      1.247   thorpej  * proc_find_lwp: locate an lwp in said proc by the ID.
    672      1.247   thorpej  *
    673      1.247   thorpej  * => Must be called with p::p_lock held.
    674      1.252        ad  * => LSIDL lwps are not returned because they are only partially
    675      1.247   thorpej  *    constructed while occupying the slot.
    676      1.247   thorpej  * => Callers need to be careful about lwp::l_stat of the returned
    677      1.247   thorpej  *    lwp.
    678      1.247   thorpej  */
    679      1.247   thorpej struct lwp *
    680      1.247   thorpej proc_find_lwp(proc_t *p, pid_t pid)
    681      1.247   thorpej {
    682      1.247   thorpej 	struct pid_table *pt;
    683      1.265  riastrad 	unsigned pt_mask;
    684      1.247   thorpej 	struct lwp *l = NULL;
    685      1.247   thorpej 	uintptr_t slot;
    686      1.252        ad 	int s;
    687      1.247   thorpej 
    688      1.247   thorpej 	KASSERT(mutex_owned(p->p_lock));
    689      1.252        ad 
    690      1.252        ad 	/*
    691      1.265  riastrad 	 * Look in the pid_table.  This is done unlocked inside a
    692      1.265  riastrad 	 * pserialize read section covering pid_table's memory
    693      1.265  riastrad 	 * allocation only, so take care to read things in the correct
    694      1.265  riastrad 	 * order:
    695      1.265  riastrad 	 *
    696      1.265  riastrad 	 * 1. First read the table mask -- this only ever increases, in
    697      1.265  riastrad 	 *    expand_pid_table, so a stale value is safely
    698      1.265  riastrad 	 *    conservative.
    699      1.265  riastrad 	 *
    700      1.265  riastrad 	 * 2. Next read the pid table -- this is always set _before_
    701      1.265  riastrad 	 *    the mask increases, so if we see a new table and stale
    702      1.265  riastrad 	 *    mask, the mask is still valid for the table.
    703      1.252        ad 	 */
    704      1.252        ad 	s = pserialize_read_enter();
    705      1.265  riastrad 	pt_mask = atomic_load_acquire(&pid_tbl_mask);
    706      1.265  riastrad 	pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
    707      1.252        ad 	slot = atomic_load_consume(&pt->pt_slot);
    708      1.252        ad 	if (__predict_false(!PT_IS_LWP(slot))) {
    709      1.252        ad 		pserialize_read_exit(s);
    710      1.252        ad 		return NULL;
    711      1.252        ad 	}
    712      1.252        ad 
    713      1.252        ad 	/*
    714      1.252        ad 	 * Check to see if the LWP is from the correct process.  We won't
    715      1.252        ad 	 * see entries in pid_table from a prior process that also used "p",
    716      1.252        ad 	 * by virtue of the fact that allocating "p" means all prior updates
    717      1.252        ad 	 * to dependant data structures are visible to this thread.
    718      1.252        ad 	 */
    719      1.252        ad 	l = PT_GET_LWP(slot);
    720      1.252        ad 	if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
    721      1.252        ad 		pserialize_read_exit(s);
    722      1.252        ad 		return NULL;
    723      1.252        ad 	}
    724      1.252        ad 
    725      1.252        ad 	/*
    726      1.252        ad 	 * We now know that p->p_lock holds this LWP stable.
    727      1.252        ad 	 *
    728      1.252        ad 	 * If the status is not LSIDL, it means the LWP is intended to be
    729      1.252        ad 	 * findable by LID and l_lid cannot change behind us.
    730      1.252        ad 	 *
    731      1.252        ad 	 * No need to acquire the LWP's lock to check for LSIDL, as
    732      1.252        ad 	 * p->p_lock must be held to transition in and out of LSIDL.
    733      1.252        ad 	 * Any other observed state of is no particular interest.
    734      1.252        ad 	 */
    735      1.252        ad 	pserialize_read_exit(s);
    736      1.252        ad 	return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
    737      1.252        ad }
    738      1.252        ad 
    739      1.252        ad /*
    740      1.252        ad  * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
    741      1.252        ad  *
    742      1.252        ad  * => Called in a pserialize read section with no locks held.
    743      1.252        ad  * => LSIDL lwps are not returned because they are only partially
    744      1.252        ad  *    constructed while occupying the slot.
    745      1.252        ad  * => Callers need to be careful about lwp::l_stat of the returned
    746      1.252        ad  *    lwp.
    747      1.252        ad  * => If an LWP is found, it's returned locked.
    748      1.252        ad  */
    749      1.252        ad struct lwp *
    750      1.252        ad proc_find_lwp_unlocked(proc_t *p, pid_t pid)
    751      1.252        ad {
    752      1.252        ad 	struct pid_table *pt;
    753      1.265  riastrad 	unsigned pt_mask;
    754      1.252        ad 	struct lwp *l = NULL;
    755      1.252        ad 	uintptr_t slot;
    756      1.252        ad 
    757      1.252        ad 	KASSERT(pserialize_in_read_section());
    758      1.252        ad 
    759      1.252        ad 	/*
    760      1.265  riastrad 	 * Look in the pid_table.  This is done unlocked inside a
    761      1.265  riastrad 	 * pserialize read section covering pid_table's memory
    762      1.265  riastrad 	 * allocation only, so take care to read things in the correct
    763      1.265  riastrad 	 * order:
    764      1.265  riastrad 	 *
    765      1.265  riastrad 	 * 1. First read the table mask -- this only ever increases, in
    766      1.265  riastrad 	 *    expand_pid_table, so a stale value is safely
    767      1.265  riastrad 	 *    conservative.
    768      1.265  riastrad 	 *
    769      1.265  riastrad 	 * 2. Next read the pid table -- this is always set _before_
    770      1.265  riastrad 	 *    the mask increases, so if we see a new table and stale
    771      1.265  riastrad 	 *    mask, the mask is still valid for the table.
    772      1.252        ad 	 */
    773      1.265  riastrad 	pt_mask = atomic_load_acquire(&pid_tbl_mask);
    774      1.265  riastrad 	pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
    775      1.252        ad 	slot = atomic_load_consume(&pt->pt_slot);
    776      1.252        ad 	if (__predict_false(!PT_IS_LWP(slot))) {
    777      1.252        ad 		return NULL;
    778      1.252        ad 	}
    779      1.252        ad 
    780      1.252        ad 	/*
    781      1.252        ad 	 * Lock the LWP we found to get it stable.  If it's embryonic or
    782      1.252        ad 	 * reaped (LSIDL) then none of the other fields can safely be
    783      1.252        ad 	 * checked.
    784      1.252        ad 	 */
    785      1.252        ad 	l = PT_GET_LWP(slot);
    786      1.252        ad 	lwp_lock(l);
    787      1.252        ad 	if (__predict_false(l->l_stat == LSIDL)) {
    788      1.252        ad 		lwp_unlock(l);
    789      1.252        ad 		return NULL;
    790      1.252        ad 	}
    791      1.247   thorpej 
    792      1.252        ad 	/*
    793      1.252        ad 	 * l_proc and l_lid are now known stable because the LWP is not
    794      1.252        ad 	 * LSIDL, so check those fields too to make sure we found the
    795      1.252        ad 	 * right thing.
    796      1.252        ad 	 */
    797      1.252        ad 	if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
    798      1.252        ad 		lwp_unlock(l);
    799      1.252        ad 		return NULL;
    800      1.247   thorpej 	}
    801      1.247   thorpej 
    802      1.252        ad 	/* Everything checks out, return it locked. */
    803      1.247   thorpej 	return l;
    804      1.247   thorpej }
    805      1.247   thorpej 
    806      1.247   thorpej /*
    807      1.251   thorpej  * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
    808      1.251   thorpej  * on its containing proc.
    809      1.247   thorpej  *
    810      1.251   thorpej  * => Similar to proc_find_lwp(), but does not require you to have
    811      1.251   thorpej  *    the proc a priori.
    812      1.251   thorpej  * => Also returns proc * to caller, with p::p_lock held.
    813      1.251   thorpej  * => Same caveats apply.
    814      1.247   thorpej  */
    815      1.247   thorpej struct lwp *
    816      1.251   thorpej proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
    817      1.247   thorpej {
    818      1.247   thorpej 	struct pid_table *pt;
    819      1.251   thorpej 	struct proc *p = NULL;
    820      1.247   thorpej 	struct lwp *l = NULL;
    821      1.247   thorpej 	uintptr_t slot;
    822      1.247   thorpej 
    823      1.251   thorpej 	KASSERT(pp != NULL);
    824      1.253        ad 	mutex_enter(&proc_lock);
    825      1.247   thorpej 	pt = &pid_table[pid & pid_tbl_mask];
    826      1.247   thorpej 
    827      1.247   thorpej 	slot = pt->pt_slot;
    828      1.251   thorpej 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    829      1.247   thorpej 		l = PT_GET_LWP(slot);
    830      1.251   thorpej 		p = l->l_proc;
    831      1.251   thorpej 		mutex_enter(p->p_lock);
    832      1.252        ad 		if (__predict_false(l->l_stat == LSIDL)) {
    833      1.251   thorpej 			mutex_exit(p->p_lock);
    834      1.251   thorpej 			l = NULL;
    835      1.251   thorpej 			p = NULL;
    836      1.251   thorpej 		}
    837      1.247   thorpej 	}
    838      1.253        ad 	mutex_exit(&proc_lock);
    839      1.247   thorpej 
    840      1.251   thorpej 	KASSERT(p == NULL || mutex_owned(p->p_lock));
    841      1.251   thorpej 	*pp = p;
    842      1.247   thorpej 	return l;
    843      1.247   thorpej }
    844      1.247   thorpej 
    845      1.247   thorpej /*
    846      1.247   thorpej  * proc_find_raw_pid_table_locked: locate a process by the ID.
    847      1.167     rmind  *
    848      1.252        ad  * => Must be called with proc_lock held.
    849        1.1       cgd  */
    850      1.247   thorpej static proc_t *
    851      1.251   thorpej proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
    852        1.1       cgd {
    853      1.168       chs 	struct pid_table *pt;
    854      1.247   thorpej 	proc_t *p = NULL;
    855      1.247   thorpej 	uintptr_t slot;
    856      1.167     rmind 
    857      1.253        ad 	/* No - used by DDB.  KASSERT(mutex_owned(&proc_lock)); */
    858      1.168       chs 	pt = &pid_table[pid & pid_tbl_mask];
    859      1.247   thorpej 
    860      1.247   thorpej 	slot = pt->pt_slot;
    861      1.247   thorpej 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    862      1.247   thorpej 		/*
    863      1.247   thorpej 		 * When looking up processes, require a direct match
    864      1.247   thorpej 		 * on the PID assigned to the proc, not just one of
    865      1.247   thorpej 		 * its LWPs.
    866      1.247   thorpej 		 *
    867      1.252        ad 		 * N.B. We require lwp::l_proc of LSIDL LWPs to be
    868      1.247   thorpej 		 * valid here.
    869      1.247   thorpej 		 */
    870      1.247   thorpej 		p = PT_GET_LWP(slot)->l_proc;
    871      1.251   thorpej 		if (__predict_false(p->p_pid != pid && !any_lwpid))
    872      1.247   thorpej 			p = NULL;
    873      1.247   thorpej 	} else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
    874      1.247   thorpej 		p = PT_GET_PROC(slot);
    875      1.167     rmind 	}
    876      1.167     rmind 	return p;
    877      1.167     rmind }
    878        1.1       cgd 
    879      1.167     rmind proc_t *
    880      1.247   thorpej proc_find_raw(pid_t pid)
    881      1.247   thorpej {
    882      1.252        ad 
    883      1.252        ad 	return proc_find_raw_pid_table_locked(pid, false);
    884      1.247   thorpej }
    885      1.247   thorpej 
    886      1.247   thorpej static proc_t *
    887      1.252        ad proc_find_internal(pid_t pid, bool any_lwpid)
    888      1.167     rmind {
    889      1.167     rmind 	proc_t *p;
    890      1.100        ad 
    891      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
    892      1.247   thorpej 
    893      1.251   thorpej 	p = proc_find_raw_pid_table_locked(pid, any_lwpid);
    894      1.167     rmind 	if (__predict_false(p == NULL)) {
    895      1.167     rmind 		return NULL;
    896      1.167     rmind 	}
    897      1.168       chs 
    898      1.167     rmind 	/*
    899      1.167     rmind 	 * Only allow live processes to be found by PID.
    900      1.247   thorpej 	 * XXX: p_stat might change, since proc unlocked.
    901      1.167     rmind 	 */
    902      1.167     rmind 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    903       1.68       dsl 		return p;
    904       1.68       dsl 	}
    905       1.68       dsl 	return NULL;
    906        1.1       cgd }
    907        1.1       cgd 
    908      1.251   thorpej proc_t *
    909      1.251   thorpej proc_find(pid_t pid)
    910      1.251   thorpej {
    911      1.251   thorpej 	return proc_find_internal(pid, false);
    912      1.251   thorpej }
    913      1.251   thorpej 
    914      1.251   thorpej proc_t *
    915      1.251   thorpej proc_find_lwpid(pid_t pid)
    916      1.251   thorpej {
    917      1.251   thorpej 	return proc_find_internal(pid, true);
    918      1.251   thorpej }
    919      1.251   thorpej 
    920        1.1       cgd /*
    921      1.252        ad  * pgrp_find: locate a process group by the ID.
    922      1.167     rmind  *
    923      1.252        ad  * => Must be called with proc_lock held.
    924        1.1       cgd  */
    925      1.252        ad struct pgrp *
    926      1.252        ad pgrp_find(pid_t pgid)
    927        1.1       cgd {
    928       1.68       dsl 	struct pgrp *pg;
    929        1.1       cgd 
    930      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
    931      1.167     rmind 
    932       1.68       dsl 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    933      1.168       chs 
    934       1.61       dsl 	/*
    935      1.167     rmind 	 * Cannot look up a process group that only exists because the
    936      1.167     rmind 	 * session has not died yet (traditional).
    937       1.61       dsl 	 */
    938       1.68       dsl 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    939       1.68       dsl 		return NULL;
    940       1.68       dsl 	}
    941       1.68       dsl 	return pg;
    942        1.1       cgd }
    943        1.1       cgd 
    944       1.61       dsl static void
    945       1.61       dsl expand_pid_table(void)
    946        1.1       cgd {
    947      1.150     rmind 	size_t pt_size, tsz;
    948       1.61       dsl 	struct pid_table *n_pt, *new_pt;
    949      1.247   thorpej 	uintptr_t slot;
    950       1.61       dsl 	struct pgrp *pgrp;
    951      1.168       chs 	pid_t pid, rpid;
    952      1.150     rmind 	u_int i;
    953      1.168       chs 	uint new_pt_mask;
    954        1.1       cgd 
    955      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
    956      1.247   thorpej 
    957      1.247   thorpej 	/* Unlock the pid_table briefly to allocate memory. */
    958      1.249   thorpej 	pt_size = pid_tbl_mask + 1;
    959      1.253        ad 	mutex_exit(&proc_lock);
    960      1.247   thorpej 
    961      1.150     rmind 	tsz = pt_size * 2 * sizeof(struct pid_table);
    962      1.150     rmind 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    963      1.168       chs 	new_pt_mask = pt_size * 2 - 1;
    964       1.61       dsl 
    965      1.250   thorpej 	/* XXX For now.  The pratical limit is much lower anyway. */
    966      1.250   thorpej 	KASSERT(new_pt_mask <= FUTEX_TID_MASK);
    967      1.250   thorpej 
    968      1.253        ad 	mutex_enter(&proc_lock);
    969       1.61       dsl 	if (pt_size != pid_tbl_mask + 1) {
    970       1.61       dsl 		/* Another process beat us to it... */
    971      1.253        ad 		mutex_exit(&proc_lock);
    972      1.150     rmind 		kmem_free(new_pt, tsz);
    973      1.247   thorpej 		goto out;
    974       1.61       dsl 	}
    975       1.72  junyoung 
    976       1.61       dsl 	/*
    977       1.61       dsl 	 * Copy entries from old table into new one.
    978       1.61       dsl 	 * If 'pid' is 'odd' we need to place in the upper half,
    979       1.61       dsl 	 * even pid's to the lower half.
    980       1.61       dsl 	 * Free items stay in the low half so we don't have to
    981       1.61       dsl 	 * fixup the reference to them.
    982       1.61       dsl 	 * We stuff free items on the front of the freelist
    983       1.61       dsl 	 * because we can't write to unmodified entries.
    984       1.74  junyoung 	 * Processing the table backwards maintains a semblance
    985      1.168       chs 	 * of issuing pid numbers that increase with time.
    986       1.61       dsl 	 */
    987       1.61       dsl 	i = pt_size - 1;
    988       1.61       dsl 	n_pt = new_pt + i;
    989       1.61       dsl 	for (; ; i--, n_pt--) {
    990      1.247   thorpej 		slot = pid_table[i].pt_slot;
    991       1.61       dsl 		pgrp = pid_table[i].pt_pgrp;
    992      1.247   thorpej 		if (!PT_VALID(slot)) {
    993       1.61       dsl 			/* Up 'use count' so that link is valid */
    994      1.247   thorpej 			pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
    995      1.168       chs 			rpid = 0;
    996      1.247   thorpej 			slot = PT_SET_FREE(pid);
    997       1.61       dsl 			if (pgrp)
    998       1.61       dsl 				pid = pgrp->pg_id;
    999      1.168       chs 		} else {
   1000      1.168       chs 			pid = pid_table[i].pt_pid;
   1001      1.168       chs 			rpid = pid;
   1002      1.168       chs 		}
   1003       1.72  junyoung 
   1004       1.61       dsl 		/* Save entry in appropriate half of table */
   1005      1.247   thorpej 		n_pt[pid & pt_size].pt_slot = slot;
   1006       1.61       dsl 		n_pt[pid & pt_size].pt_pgrp = pgrp;
   1007      1.168       chs 		n_pt[pid & pt_size].pt_pid = rpid;
   1008       1.61       dsl 
   1009       1.61       dsl 		/* Put other piece on start of free list */
   1010       1.61       dsl 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
   1011      1.247   thorpej 		n_pt[pid & pt_size].pt_slot =
   1012      1.247   thorpej 			PT_SET_FREE((pid & ~pt_size) | next_free_pt);
   1013       1.61       dsl 		n_pt[pid & pt_size].pt_pgrp = 0;
   1014      1.168       chs 		n_pt[pid & pt_size].pt_pid = 0;
   1015      1.168       chs 
   1016       1.61       dsl 		next_free_pt = i | (pid & pt_size);
   1017       1.61       dsl 		if (i == 0)
   1018       1.61       dsl 			break;
   1019       1.61       dsl 	}
   1020       1.61       dsl 
   1021      1.150     rmind 	/* Save old table size and switch tables */
   1022      1.150     rmind 	tsz = pt_size * sizeof(struct pid_table);
   1023       1.61       dsl 	n_pt = pid_table;
   1024      1.264  riastrad 	atomic_store_release(&pid_table, new_pt);
   1025      1.265  riastrad 	KASSERT(new_pt_mask >= pid_tbl_mask);
   1026      1.265  riastrad 	atomic_store_release(&pid_tbl_mask, new_pt_mask);
   1027       1.61       dsl 
   1028       1.61       dsl 	/*
   1029       1.61       dsl 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
   1030       1.61       dsl 	 * allocated pids we need it to be larger!
   1031       1.61       dsl 	 */
   1032       1.61       dsl 	if (pid_tbl_mask > PID_MAX) {
   1033       1.61       dsl 		pid_max = pid_tbl_mask * 2 + 1;
   1034       1.61       dsl 		pid_alloc_lim |= pid_alloc_lim << 1;
   1035       1.61       dsl 	} else
   1036       1.61       dsl 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
   1037       1.61       dsl 
   1038      1.253        ad 	mutex_exit(&proc_lock);
   1039      1.252        ad 
   1040      1.252        ad 	/*
   1041      1.252        ad 	 * Make sure that unlocked access to the old pid_table is complete
   1042      1.252        ad 	 * and then free it.
   1043      1.252        ad 	 */
   1044      1.252        ad 	pserialize_perform(proc_psz);
   1045      1.150     rmind 	kmem_free(n_pt, tsz);
   1046      1.247   thorpej 
   1047      1.252        ad  out:	/* Return with proc_lock held again. */
   1048      1.253        ad 	mutex_enter(&proc_lock);
   1049       1.61       dsl }
   1050       1.61       dsl 
   1051       1.61       dsl struct proc *
   1052       1.61       dsl proc_alloc(void)
   1053       1.61       dsl {
   1054       1.61       dsl 	struct proc *p;
   1055       1.61       dsl 
   1056      1.128        ad 	p = pool_cache_get(proc_cache, PR_WAITOK);
   1057       1.61       dsl 	p->p_stat = SIDL;			/* protect against others */
   1058       1.96  christos 	proc_initspecific(p);
   1059      1.164     rmind 	kdtrace_proc_ctor(NULL, p);
   1060      1.247   thorpej 
   1061      1.247   thorpej 	/*
   1062      1.247   thorpej 	 * Allocate a placeholder in the pid_table.  When we create the
   1063      1.247   thorpej 	 * first LWP for this process, it will take ownership of the
   1064      1.247   thorpej 	 * slot.
   1065      1.247   thorpej 	 */
   1066      1.247   thorpej 	if (__predict_false(proc_alloc_pid(p) == -1)) {
   1067      1.247   thorpej 		/* Allocating the PID failed; unwind. */
   1068      1.247   thorpej 		proc_finispecific(p);
   1069      1.247   thorpej 		proc_free_mem(p);
   1070      1.247   thorpej 		p = NULL;
   1071      1.247   thorpej 	}
   1072      1.168       chs 	return p;
   1073      1.168       chs }
   1074      1.168       chs 
   1075      1.183      yamt /*
   1076      1.247   thorpej  * proc_alloc_pid_slot: allocate PID and record the occcupant so that
   1077      1.183      yamt  * proc_find_raw() can find it by the PID.
   1078      1.183      yamt  */
   1079      1.247   thorpej static pid_t __noinline
   1080      1.247   thorpej proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
   1081      1.168       chs {
   1082      1.168       chs 	struct pid_table *pt;
   1083      1.168       chs 	pid_t pid;
   1084      1.168       chs 	int nxt;
   1085       1.61       dsl 
   1086      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
   1087      1.247   thorpej 
   1088       1.61       dsl 	for (;;expand_pid_table()) {
   1089      1.247   thorpej 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
   1090       1.61       dsl 			/* ensure pids cycle through 2000+ values */
   1091       1.61       dsl 			continue;
   1092      1.247   thorpej 		}
   1093      1.247   thorpej 		/*
   1094      1.247   thorpej 		 * The first user process *must* be given PID 1.
   1095      1.247   thorpej 		 * it has already been reserved for us.  This
   1096      1.247   thorpej 		 * will be coming in from the proc_alloc() call
   1097      1.247   thorpej 		 * above, and the entry will be usurped later when
   1098      1.247   thorpej 		 * the first user LWP is created.
   1099      1.247   thorpej 		 * XXX this is slightly gross.
   1100      1.247   thorpej 		 */
   1101      1.247   thorpej 		if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
   1102      1.247   thorpej 				    p != &proc0)) {
   1103      1.247   thorpej 			KASSERT(PT_IS_PROC(slot));
   1104      1.247   thorpej 			pt = &pid_table[1];
   1105      1.247   thorpej 			pt->pt_slot = slot;
   1106      1.247   thorpej 			return 1;
   1107      1.247   thorpej 		}
   1108       1.61       dsl 		pt = &pid_table[next_free_pt];
   1109        1.1       cgd #ifdef DIAGNOSTIC
   1110      1.247   thorpej 		if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
   1111       1.61       dsl 			panic("proc_alloc: slot busy");
   1112        1.1       cgd #endif
   1113      1.247   thorpej 		nxt = PT_NEXT(pt->pt_slot);
   1114       1.61       dsl 		if (nxt & pid_tbl_mask)
   1115       1.61       dsl 			break;
   1116       1.61       dsl 		/* Table full - expand (NB last entry not used....) */
   1117       1.61       dsl 	}
   1118       1.61       dsl 
   1119       1.61       dsl 	/* pid is 'saved use count' + 'size' + entry */
   1120       1.61       dsl 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
   1121       1.61       dsl 	if ((uint)pid > (uint)pid_max)
   1122       1.61       dsl 		pid &= pid_tbl_mask;
   1123       1.61       dsl 	next_free_pt = nxt & pid_tbl_mask;
   1124       1.61       dsl 
   1125      1.250   thorpej 	/* XXX For now.  The pratical limit is much lower anyway. */
   1126      1.250   thorpej 	KASSERT(pid <= FUTEX_TID_MASK);
   1127      1.250   thorpej 
   1128       1.61       dsl 	/* Grab table slot */
   1129      1.247   thorpej 	pt->pt_slot = slot;
   1130      1.168       chs 
   1131      1.168       chs 	KASSERT(pt->pt_pid == 0);
   1132      1.168       chs 	pt->pt_pid = pid;
   1133      1.247   thorpej 	pid_alloc_cnt++;
   1134      1.247   thorpej 
   1135      1.247   thorpej 	return pid;
   1136      1.247   thorpej }
   1137      1.247   thorpej 
   1138      1.247   thorpej pid_t
   1139      1.247   thorpej proc_alloc_pid(struct proc *p)
   1140      1.247   thorpej {
   1141      1.247   thorpej 	pid_t pid;
   1142      1.247   thorpej 
   1143      1.247   thorpej 	KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
   1144      1.252        ad 	KASSERT(p->p_stat == SIDL);
   1145      1.247   thorpej 
   1146      1.253        ad 	mutex_enter(&proc_lock);
   1147      1.247   thorpej 	pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
   1148      1.247   thorpej 	if (pid != -1)
   1149      1.168       chs 		p->p_pid = pid;
   1150      1.253        ad 	mutex_exit(&proc_lock);
   1151      1.247   thorpej 
   1152      1.247   thorpej 	return pid;
   1153      1.247   thorpej }
   1154      1.247   thorpej 
   1155      1.247   thorpej pid_t
   1156      1.247   thorpej proc_alloc_lwpid(struct proc *p, struct lwp *l)
   1157      1.247   thorpej {
   1158      1.247   thorpej 	struct pid_table *pt;
   1159      1.247   thorpej 	pid_t pid;
   1160      1.247   thorpej 
   1161      1.247   thorpej 	KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
   1162      1.252        ad 	KASSERT(l->l_proc == p);
   1163      1.252        ad 	KASSERT(l->l_stat == LSIDL);
   1164      1.252        ad 
   1165      1.252        ad 	/*
   1166      1.252        ad 	 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
   1167      1.252        ad 	 * is globally visible before the LWP becomes visible via the
   1168      1.252        ad 	 * pid_table.
   1169      1.252        ad 	 */
   1170      1.252        ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
   1171      1.252        ad 	membar_producer();
   1172      1.252        ad #endif
   1173      1.247   thorpej 
   1174      1.247   thorpej 	/*
   1175      1.247   thorpej 	 * If the slot for p->p_pid currently points to the proc,
   1176      1.247   thorpej 	 * then we should usurp this ID for the LWP.  This happens
   1177      1.247   thorpej 	 * at least once per process (for the first LWP), and can
   1178      1.247   thorpej 	 * happen again if the first LWP for a process exits and
   1179      1.247   thorpej 	 * before the process creates another.
   1180      1.247   thorpej 	 */
   1181      1.253        ad 	mutex_enter(&proc_lock);
   1182      1.247   thorpej 	pid = p->p_pid;
   1183      1.247   thorpej 	pt = &pid_table[pid & pid_tbl_mask];
   1184      1.247   thorpej 	KASSERT(pt->pt_pid == pid);
   1185      1.247   thorpej 	if (PT_IS_PROC(pt->pt_slot)) {
   1186      1.247   thorpej 		KASSERT(PT_GET_PROC(pt->pt_slot) == p);
   1187      1.247   thorpej 		l->l_lid = pid;
   1188      1.247   thorpej 		pt->pt_slot = PT_SET_LWP(l);
   1189      1.247   thorpej 	} else {
   1190      1.247   thorpej 		/* Need to allocate a new slot. */
   1191      1.247   thorpej 		pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
   1192      1.247   thorpej 		if (pid != -1)
   1193      1.247   thorpej 			l->l_lid = pid;
   1194      1.168       chs 	}
   1195      1.253        ad 	mutex_exit(&proc_lock);
   1196       1.61       dsl 
   1197      1.168       chs 	return pid;
   1198       1.61       dsl }
   1199       1.61       dsl 
   1200      1.247   thorpej static void __noinline
   1201      1.247   thorpej proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
   1202       1.61       dsl {
   1203       1.61       dsl 	struct pid_table *pt;
   1204       1.61       dsl 
   1205      1.265  riastrad 	KASSERT(mutex_owned(&proc_lock));
   1206      1.265  riastrad 
   1207      1.247   thorpej 	pt = &pid_table[pid & pid_tbl_mask];
   1208       1.61       dsl 
   1209      1.247   thorpej 	KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
   1210      1.247   thorpej 	KASSERT(pt->pt_pid == pid);
   1211      1.168       chs 
   1212       1.61       dsl 	/* save pid use count in slot */
   1213      1.247   thorpej 	pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
   1214      1.168       chs 	pt->pt_pid = 0;
   1215       1.61       dsl 
   1216       1.61       dsl 	if (pt->pt_pgrp == NULL) {
   1217       1.61       dsl 		/* link last freed entry onto ours */
   1218       1.61       dsl 		pid &= pid_tbl_mask;
   1219       1.61       dsl 		pt = &pid_table[last_free_pt];
   1220      1.247   thorpej 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
   1221      1.168       chs 		pt->pt_pid = 0;
   1222       1.61       dsl 		last_free_pt = pid;
   1223       1.61       dsl 		pid_alloc_cnt--;
   1224       1.61       dsl 	}
   1225      1.247   thorpej }
   1226      1.247   thorpej 
   1227      1.247   thorpej /*
   1228      1.247   thorpej  * Free a process id - called from proc_free (in kern_exit.c)
   1229      1.247   thorpej  *
   1230      1.247   thorpej  * Called with the proc_lock held.
   1231      1.247   thorpej  */
   1232      1.247   thorpej void
   1233      1.247   thorpej proc_free_pid(pid_t pid)
   1234      1.247   thorpej {
   1235      1.253        ad 
   1236      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
   1237      1.247   thorpej 	proc_free_pid_internal(pid, PT_F_PROC);
   1238      1.247   thorpej }
   1239      1.247   thorpej 
   1240      1.247   thorpej /*
   1241      1.247   thorpej  * Free a process id used by an LWP.  If this was the process's
   1242      1.247   thorpej  * first LWP, we convert the slot to point to the process; the
   1243      1.247   thorpej  * entry will get cleaned up later when the process finishes exiting.
   1244      1.247   thorpej  *
   1245      1.247   thorpej  * If not, then it's the same as proc_free_pid().
   1246      1.247   thorpej  */
   1247      1.247   thorpej void
   1248      1.247   thorpej proc_free_lwpid(struct proc *p, pid_t pid)
   1249      1.247   thorpej {
   1250      1.247   thorpej 
   1251      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
   1252      1.247   thorpej 
   1253      1.247   thorpej 	if (__predict_true(p->p_pid == pid)) {
   1254      1.247   thorpej 		struct pid_table *pt;
   1255      1.247   thorpej 
   1256      1.247   thorpej 		pt = &pid_table[pid & pid_tbl_mask];
   1257      1.247   thorpej 
   1258      1.247   thorpej 		KASSERT(pt->pt_pid == pid);
   1259      1.247   thorpej 		KASSERT(PT_IS_LWP(pt->pt_slot));
   1260      1.247   thorpej 		KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
   1261      1.247   thorpej 
   1262      1.247   thorpej 		pt->pt_slot = PT_SET_PROC(p);
   1263      1.247   thorpej 		return;
   1264      1.247   thorpej 	}
   1265      1.247   thorpej 	proc_free_pid_internal(pid, PT_F_LWP);
   1266       1.61       dsl }
   1267       1.61       dsl 
   1268      1.128        ad void
   1269      1.128        ad proc_free_mem(struct proc *p)
   1270      1.128        ad {
   1271      1.128        ad 
   1272      1.160    darran 	kdtrace_proc_dtor(NULL, p);
   1273      1.128        ad 	pool_cache_put(proc_cache, p);
   1274      1.128        ad }
   1275      1.128        ad 
   1276       1.61       dsl /*
   1277      1.151     rmind  * proc_enterpgrp: move p to a new or existing process group (and session).
   1278       1.61       dsl  *
   1279       1.61       dsl  * If we are creating a new pgrp, the pgid should equal
   1280       1.72  junyoung  * the calling process' pid.
   1281       1.61       dsl  * If is only valid to enter a process group that is in the session
   1282       1.61       dsl  * of the process.
   1283       1.61       dsl  * Also mksess should only be set if we are creating a process group
   1284       1.61       dsl  *
   1285      1.181    martin  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
   1286       1.61       dsl  */
   1287       1.61       dsl int
   1288      1.151     rmind proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
   1289       1.61       dsl {
   1290       1.61       dsl 	struct pgrp *new_pgrp, *pgrp;
   1291       1.61       dsl 	struct session *sess;
   1292      1.100        ad 	struct proc *p;
   1293       1.61       dsl 	int rval;
   1294       1.61       dsl 	pid_t pg_id = NO_PGID;
   1295       1.61       dsl 
   1296      1.252        ad 	/* Allocate data areas we might need before doing any validity checks */
   1297      1.151     rmind 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
   1298      1.252        ad 	new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
   1299       1.61       dsl 
   1300      1.253        ad 	mutex_enter(&proc_lock);
   1301       1.61       dsl 	rval = EPERM;	/* most common error (to save typing) */
   1302       1.61       dsl 
   1303       1.61       dsl 	/* Check pgrp exists or can be created */
   1304       1.61       dsl 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
   1305       1.61       dsl 	if (pgrp != NULL && pgrp->pg_id != pgid)
   1306       1.61       dsl 		goto done;
   1307       1.61       dsl 
   1308       1.61       dsl 	/* Can only set another process under restricted circumstances. */
   1309      1.100        ad 	if (pid != curp->p_pid) {
   1310      1.167     rmind 		/* Must exist and be one of our children... */
   1311      1.252        ad 		p = proc_find_internal(pid, false);
   1312      1.167     rmind 		if (p == NULL || !p_inferior(p, curp)) {
   1313       1.61       dsl 			rval = ESRCH;
   1314       1.61       dsl 			goto done;
   1315       1.61       dsl 		}
   1316       1.61       dsl 		/* ... in the same session... */
   1317       1.61       dsl 		if (sess != NULL || p->p_session != curp->p_session)
   1318       1.61       dsl 			goto done;
   1319       1.61       dsl 		/* ... existing pgid must be in same session ... */
   1320       1.61       dsl 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
   1321       1.61       dsl 			goto done;
   1322       1.61       dsl 		/* ... and not done an exec. */
   1323      1.102     pavel 		if (p->p_flag & PK_EXEC) {
   1324       1.61       dsl 			rval = EACCES;
   1325       1.61       dsl 			goto done;
   1326       1.49     enami 		}
   1327      1.100        ad 	} else {
   1328      1.100        ad 		/* ... setsid() cannot re-enter a pgrp */
   1329      1.100        ad 		if (mksess && (curp->p_pgid == curp->p_pid ||
   1330      1.252        ad 		    pgrp_find(curp->p_pid)))
   1331      1.100        ad 			goto done;
   1332      1.100        ad 		p = curp;
   1333       1.61       dsl 	}
   1334        1.1       cgd 
   1335       1.61       dsl 	/* Changing the process group/session of a session
   1336       1.61       dsl 	   leader is definitely off limits. */
   1337       1.61       dsl 	if (SESS_LEADER(p)) {
   1338       1.61       dsl 		if (sess == NULL && p->p_pgrp == pgrp)
   1339       1.61       dsl 			/* unless it's a definite noop */
   1340       1.61       dsl 			rval = 0;
   1341       1.61       dsl 		goto done;
   1342       1.61       dsl 	}
   1343       1.61       dsl 
   1344       1.61       dsl 	/* Can only create a process group with id of process */
   1345       1.61       dsl 	if (pgrp == NULL && pgid != pid)
   1346       1.61       dsl 		goto done;
   1347       1.61       dsl 
   1348       1.61       dsl 	/* Can only create a session if creating pgrp */
   1349       1.61       dsl 	if (sess != NULL && pgrp != NULL)
   1350       1.61       dsl 		goto done;
   1351       1.61       dsl 
   1352       1.61       dsl 	/* Check we allocated memory for a pgrp... */
   1353       1.61       dsl 	if (pgrp == NULL && new_pgrp == NULL)
   1354       1.61       dsl 		goto done;
   1355       1.61       dsl 
   1356       1.61       dsl 	/* Don't attach to 'zombie' pgrp */
   1357       1.61       dsl 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
   1358       1.61       dsl 		goto done;
   1359       1.61       dsl 
   1360       1.61       dsl 	/* Expect to succeed now */
   1361       1.61       dsl 	rval = 0;
   1362       1.61       dsl 
   1363       1.61       dsl 	if (pgrp == p->p_pgrp)
   1364       1.61       dsl 		/* nothing to do */
   1365       1.61       dsl 		goto done;
   1366       1.61       dsl 
   1367       1.61       dsl 	/* Ok all setup, link up required structures */
   1368      1.100        ad 
   1369       1.61       dsl 	if (pgrp == NULL) {
   1370       1.61       dsl 		pgrp = new_pgrp;
   1371      1.141      yamt 		new_pgrp = NULL;
   1372       1.61       dsl 		if (sess != NULL) {
   1373       1.21   thorpej 			sess->s_sid = p->p_pid;
   1374        1.1       cgd 			sess->s_leader = p;
   1375        1.1       cgd 			sess->s_count = 1;
   1376        1.1       cgd 			sess->s_ttyvp = NULL;
   1377        1.1       cgd 			sess->s_ttyp = NULL;
   1378       1.58       dsl 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
   1379       1.25     perry 			memcpy(sess->s_login, p->p_session->s_login,
   1380        1.1       cgd 			    sizeof(sess->s_login));
   1381      1.100        ad 			p->p_lflag &= ~PL_CONTROLT;
   1382        1.1       cgd 		} else {
   1383       1.61       dsl 			sess = p->p_pgrp->pg_session;
   1384      1.151     rmind 			proc_sesshold(sess);
   1385        1.1       cgd 		}
   1386       1.61       dsl 		pgrp->pg_session = sess;
   1387      1.141      yamt 		sess = NULL;
   1388       1.61       dsl 
   1389        1.1       cgd 		pgrp->pg_id = pgid;
   1390       1.10   mycroft 		LIST_INIT(&pgrp->pg_members);
   1391       1.61       dsl #ifdef DIAGNOSTIC
   1392       1.63  christos 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
   1393       1.61       dsl 			panic("enterpgrp: pgrp table slot in use");
   1394       1.63  christos 		if (__predict_false(mksess && p != curp))
   1395       1.63  christos 			panic("enterpgrp: mksession and p != curproc");
   1396       1.61       dsl #endif
   1397       1.61       dsl 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
   1398        1.1       cgd 		pgrp->pg_jobc = 0;
   1399      1.136        ad 	}
   1400        1.1       cgd 
   1401        1.1       cgd 	/*
   1402        1.1       cgd 	 * Adjust eligibility of affected pgrps to participate in job control.
   1403        1.1       cgd 	 * Increment eligibility counts before decrementing, otherwise we
   1404        1.1       cgd 	 * could reach 0 spuriously during the first call.
   1405        1.1       cgd 	 */
   1406        1.1       cgd 	fixjobc(p, pgrp, 1);
   1407        1.1       cgd 	fixjobc(p, p->p_pgrp, 0);
   1408        1.1       cgd 
   1409      1.139        ad 	/* Interlock with ttread(). */
   1410      1.139        ad 	mutex_spin_enter(&tty_lock);
   1411      1.139        ad 
   1412      1.100        ad 	/* Move process to requested group. */
   1413       1.10   mycroft 	LIST_REMOVE(p, p_pglist);
   1414       1.52      matt 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
   1415       1.61       dsl 		/* defer delete until we've dumped the lock */
   1416       1.61       dsl 		pg_id = p->p_pgrp->pg_id;
   1417        1.1       cgd 	p->p_pgrp = pgrp;
   1418       1.10   mycroft 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
   1419      1.100        ad 
   1420      1.100        ad 	/* Done with the swap; we can release the tty mutex. */
   1421      1.128        ad 	mutex_spin_exit(&tty_lock);
   1422      1.128        ad 
   1423       1.61       dsl     done:
   1424      1.151     rmind 	if (pg_id != NO_PGID) {
   1425      1.151     rmind 		/* Releases proc_lock. */
   1426      1.100        ad 		pg_delete(pg_id);
   1427      1.151     rmind 	} else {
   1428      1.253        ad 		mutex_exit(&proc_lock);
   1429      1.151     rmind 	}
   1430       1.61       dsl 	if (sess != NULL)
   1431      1.131        ad 		kmem_free(sess, sizeof(*sess));
   1432       1.61       dsl 	if (new_pgrp != NULL)
   1433      1.131        ad 		kmem_free(new_pgrp, sizeof(*new_pgrp));
   1434       1.63  christos #ifdef DEBUG_PGRP
   1435       1.63  christos 	if (__predict_false(rval))
   1436       1.61       dsl 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
   1437       1.61       dsl 			pid, pgid, mksess, curp->p_pid, rval);
   1438       1.61       dsl #endif
   1439       1.61       dsl 	return rval;
   1440        1.1       cgd }
   1441        1.1       cgd 
   1442        1.1       cgd /*
   1443      1.151     rmind  * proc_leavepgrp: remove a process from its process group.
   1444      1.151     rmind  *  => must be called with the proc_lock held, which will be released;
   1445        1.1       cgd  */
   1446      1.100        ad void
   1447      1.151     rmind proc_leavepgrp(struct proc *p)
   1448        1.1       cgd {
   1449       1.61       dsl 	struct pgrp *pgrp;
   1450        1.1       cgd 
   1451      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
   1452      1.100        ad 
   1453      1.139        ad 	/* Interlock with ttread() */
   1454      1.128        ad 	mutex_spin_enter(&tty_lock);
   1455       1.61       dsl 	pgrp = p->p_pgrp;
   1456       1.10   mycroft 	LIST_REMOVE(p, p_pglist);
   1457       1.94        ad 	p->p_pgrp = NULL;
   1458      1.128        ad 	mutex_spin_exit(&tty_lock);
   1459      1.100        ad 
   1460      1.151     rmind 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1461      1.151     rmind 		/* Releases proc_lock. */
   1462      1.100        ad 		pg_delete(pgrp->pg_id);
   1463      1.151     rmind 	} else {
   1464      1.253        ad 		mutex_exit(&proc_lock);
   1465      1.151     rmind 	}
   1466       1.61       dsl }
   1467       1.61       dsl 
   1468      1.100        ad /*
   1469      1.151     rmind  * pg_remove: remove a process group from the table.
   1470      1.151     rmind  *  => must be called with the proc_lock held;
   1471      1.151     rmind  *  => returns process group to free;
   1472      1.100        ad  */
   1473      1.151     rmind static struct pgrp *
   1474      1.151     rmind pg_remove(pid_t pg_id)
   1475       1.61       dsl {
   1476       1.61       dsl 	struct pgrp *pgrp;
   1477       1.61       dsl 	struct pid_table *pt;
   1478       1.61       dsl 
   1479      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
   1480      1.100        ad 
   1481       1.61       dsl 	pt = &pid_table[pg_id & pid_tbl_mask];
   1482       1.61       dsl 	pgrp = pt->pt_pgrp;
   1483      1.151     rmind 
   1484      1.151     rmind 	KASSERT(pgrp != NULL);
   1485      1.151     rmind 	KASSERT(pgrp->pg_id == pg_id);
   1486      1.151     rmind 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1487      1.151     rmind 
   1488      1.151     rmind 	pt->pt_pgrp = NULL;
   1489       1.61       dsl 
   1490      1.247   thorpej 	if (!PT_VALID(pt->pt_slot)) {
   1491      1.151     rmind 		/* Orphaned pgrp, put slot onto free list. */
   1492      1.247   thorpej 		KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
   1493       1.61       dsl 		pg_id &= pid_tbl_mask;
   1494       1.61       dsl 		pt = &pid_table[last_free_pt];
   1495      1.247   thorpej 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
   1496      1.168       chs 		KASSERT(pt->pt_pid == 0);
   1497       1.61       dsl 		last_free_pt = pg_id;
   1498       1.61       dsl 		pid_alloc_cnt--;
   1499       1.61       dsl 	}
   1500      1.151     rmind 	return pgrp;
   1501        1.1       cgd }
   1502        1.1       cgd 
   1503        1.1       cgd /*
   1504      1.151     rmind  * pg_delete: delete and free a process group.
   1505      1.151     rmind  *  => must be called with the proc_lock held, which will be released.
   1506        1.1       cgd  */
   1507       1.61       dsl static void
   1508       1.61       dsl pg_delete(pid_t pg_id)
   1509       1.61       dsl {
   1510      1.151     rmind 	struct pgrp *pg;
   1511       1.61       dsl 	struct tty *ttyp;
   1512       1.61       dsl 	struct session *ss;
   1513      1.100        ad 
   1514      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
   1515       1.61       dsl 
   1516      1.151     rmind 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1517      1.151     rmind 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1518      1.253        ad 		mutex_exit(&proc_lock);
   1519       1.61       dsl 		return;
   1520      1.151     rmind 	}
   1521       1.61       dsl 
   1522      1.151     rmind 	ss = pg->pg_session;
   1523       1.71        pk 
   1524       1.61       dsl 	/* Remove reference (if any) from tty to this process group */
   1525      1.128        ad 	mutex_spin_enter(&tty_lock);
   1526       1.71        pk 	ttyp = ss->s_ttyp;
   1527      1.151     rmind 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1528       1.61       dsl 		ttyp->t_pgrp = NULL;
   1529      1.151     rmind 		KASSERT(ttyp->t_session == ss);
   1530       1.71        pk 	}
   1531      1.128        ad 	mutex_spin_exit(&tty_lock);
   1532       1.61       dsl 
   1533       1.71        pk 	/*
   1534      1.252        ad 	 * The leading process group in a session is freed by proc_sessrele(),
   1535      1.252        ad 	 * if last reference.  It will also release the locks.
   1536       1.71        pk 	 */
   1537      1.151     rmind 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1538      1.252        ad 	proc_sessrele(ss);
   1539       1.61       dsl 
   1540      1.151     rmind 	if (pg != NULL) {
   1541      1.247   thorpej 		/* Free it, if was not done above. */
   1542      1.151     rmind 		kmem_free(pg, sizeof(struct pgrp));
   1543      1.151     rmind 	}
   1544        1.1       cgd }
   1545        1.1       cgd 
   1546        1.1       cgd /*
   1547        1.1       cgd  * Adjust pgrp jobc counters when specified process changes process group.
   1548        1.1       cgd  * We count the number of processes in each process group that "qualify"
   1549        1.1       cgd  * the group for terminal job control (those with a parent in a different
   1550        1.1       cgd  * process group of the same session).  If that count reaches zero, the
   1551        1.1       cgd  * process group becomes orphaned.  Check both the specified process'
   1552        1.1       cgd  * process group and that of its children.
   1553        1.1       cgd  * entering == 0 => p is leaving specified group.
   1554        1.1       cgd  * entering == 1 => p is entering specified group.
   1555       1.68       dsl  *
   1556      1.136        ad  * Call with proc_lock held.
   1557        1.1       cgd  */
   1558        1.4    andrew void
   1559       1.59       dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1560        1.1       cgd {
   1561       1.39  augustss 	struct pgrp *hispgrp;
   1562       1.39  augustss 	struct session *mysession = pgrp->pg_session;
   1563       1.68       dsl 	struct proc *child;
   1564        1.1       cgd 
   1565      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
   1566      1.100        ad 
   1567        1.1       cgd 	/*
   1568        1.1       cgd 	 * Check p's parent to see whether p qualifies its own process
   1569        1.1       cgd 	 * group; if so, adjust count for p's process group.
   1570        1.1       cgd 	 */
   1571       1.68       dsl 	hispgrp = p->p_pptr->p_pgrp;
   1572       1.68       dsl 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1573      1.100        ad 		if (entering) {
   1574        1.1       cgd 			pgrp->pg_jobc++;
   1575      1.136        ad 			p->p_lflag &= ~PL_ORPHANPG;
   1576      1.245      maxv 		} else {
   1577      1.261    martin 			/* KASSERT(pgrp->pg_jobc > 0); */
   1578      1.245      maxv 			if (--pgrp->pg_jobc == 0)
   1579      1.245      maxv 				orphanpg(pgrp);
   1580      1.245      maxv 		}
   1581       1.26   thorpej 	}
   1582        1.1       cgd 
   1583        1.1       cgd 	/*
   1584        1.1       cgd 	 * Check this process' children to see whether they qualify
   1585        1.1       cgd 	 * their process groups; if so, adjust counts for children's
   1586        1.1       cgd 	 * process groups.
   1587        1.1       cgd 	 */
   1588       1.68       dsl 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1589       1.68       dsl 		hispgrp = child->p_pgrp;
   1590       1.68       dsl 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1591       1.68       dsl 		    !P_ZOMBIE(child)) {
   1592      1.100        ad 			if (entering) {
   1593      1.136        ad 				child->p_lflag &= ~PL_ORPHANPG;
   1594        1.1       cgd 				hispgrp->pg_jobc++;
   1595      1.245      maxv 			} else {
   1596      1.245      maxv 				KASSERT(hispgrp->pg_jobc > 0);
   1597      1.245      maxv 				if (--hispgrp->pg_jobc == 0)
   1598      1.245      maxv 					orphanpg(hispgrp);
   1599      1.245      maxv 			}
   1600       1.26   thorpej 		}
   1601       1.26   thorpej 	}
   1602        1.1       cgd }
   1603        1.1       cgd 
   1604       1.72  junyoung /*
   1605        1.1       cgd  * A process group has become orphaned;
   1606        1.1       cgd  * if there are any stopped processes in the group,
   1607        1.1       cgd  * hang-up all process in that group.
   1608       1.68       dsl  *
   1609      1.136        ad  * Call with proc_lock held.
   1610        1.1       cgd  */
   1611        1.4    andrew static void
   1612       1.59       dsl orphanpg(struct pgrp *pg)
   1613        1.1       cgd {
   1614       1.39  augustss 	struct proc *p;
   1615      1.100        ad 
   1616      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
   1617      1.100        ad 
   1618       1.52      matt 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1619        1.1       cgd 		if (p->p_stat == SSTOP) {
   1620      1.136        ad 			p->p_lflag |= PL_ORPHANPG;
   1621      1.100        ad 			psignal(p, SIGHUP);
   1622      1.100        ad 			psignal(p, SIGCONT);
   1623       1.35    bouyer 		}
   1624       1.35    bouyer 	}
   1625       1.35    bouyer }
   1626        1.1       cgd 
   1627       1.61       dsl #ifdef DDB
   1628       1.61       dsl #include <ddb/db_output.h>
   1629       1.61       dsl void pidtbl_dump(void);
   1630       1.14  christos void
   1631       1.61       dsl pidtbl_dump(void)
   1632        1.1       cgd {
   1633       1.61       dsl 	struct pid_table *pt;
   1634       1.61       dsl 	struct proc *p;
   1635       1.39  augustss 	struct pgrp *pgrp;
   1636      1.247   thorpej 	uintptr_t slot;
   1637       1.61       dsl 	int id;
   1638        1.1       cgd 
   1639       1.61       dsl 	db_printf("pid table %p size %x, next %x, last %x\n",
   1640       1.61       dsl 		pid_table, pid_tbl_mask+1,
   1641       1.61       dsl 		next_free_pt, last_free_pt);
   1642       1.61       dsl 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1643      1.247   thorpej 		slot = pt->pt_slot;
   1644      1.247   thorpej 		if (!PT_VALID(slot) && !pt->pt_pgrp)
   1645       1.61       dsl 			continue;
   1646      1.247   thorpej 		if (PT_IS_LWP(slot)) {
   1647      1.247   thorpej 			p = PT_GET_LWP(slot)->l_proc;
   1648      1.247   thorpej 		} else if (PT_IS_PROC(slot)) {
   1649      1.247   thorpej 			p = PT_GET_PROC(slot);
   1650      1.247   thorpej 		} else {
   1651      1.247   thorpej 			p = NULL;
   1652      1.247   thorpej 		}
   1653       1.61       dsl 		db_printf("  id %x: ", id);
   1654      1.247   thorpej 		if (p != NULL)
   1655      1.168       chs 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1656      1.168       chs 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1657       1.61       dsl 		else
   1658       1.61       dsl 			db_printf("next %x use %x\n",
   1659      1.247   thorpej 				PT_NEXT(slot) & pid_tbl_mask,
   1660      1.247   thorpej 				PT_NEXT(slot) & ~pid_tbl_mask);
   1661       1.61       dsl 		if ((pgrp = pt->pt_pgrp)) {
   1662       1.61       dsl 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1663       1.61       dsl 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1664       1.61       dsl 			    pgrp->pg_session->s_count,
   1665       1.61       dsl 			    pgrp->pg_session->s_login);
   1666       1.61       dsl 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1667       1.61       dsl 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1668      1.135      yamt 			    LIST_FIRST(&pgrp->pg_members));
   1669      1.135      yamt 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1670       1.72  junyoung 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1671       1.61       dsl 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1672       1.10   mycroft 			}
   1673        1.1       cgd 		}
   1674        1.1       cgd 	}
   1675        1.1       cgd }
   1676       1.61       dsl #endif /* DDB */
   1677       1.48      yamt 
   1678       1.48      yamt #ifdef KSTACK_CHECK_MAGIC
   1679       1.48      yamt 
   1680       1.48      yamt #define	KSTACK_MAGIC	0xdeadbeaf
   1681       1.48      yamt 
   1682       1.48      yamt /* XXX should be per process basis? */
   1683      1.149     rmind static int	kstackleftmin = KSTACK_SIZE;
   1684      1.149     rmind static int	kstackleftthres = KSTACK_SIZE / 8;
   1685       1.48      yamt 
   1686       1.48      yamt void
   1687       1.56      yamt kstack_setup_magic(const struct lwp *l)
   1688       1.48      yamt {
   1689       1.85     perry 	uint32_t *ip;
   1690       1.85     perry 	uint32_t const *end;
   1691       1.48      yamt 
   1692       1.56      yamt 	KASSERT(l != NULL);
   1693       1.56      yamt 	KASSERT(l != &lwp0);
   1694       1.48      yamt 
   1695       1.48      yamt 	/*
   1696       1.48      yamt 	 * fill all the stack with magic number
   1697       1.48      yamt 	 * so that later modification on it can be detected.
   1698       1.48      yamt 	 */
   1699       1.85     perry 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1700      1.114    dyoung 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1701       1.48      yamt 	for (; ip < end; ip++) {
   1702       1.48      yamt 		*ip = KSTACK_MAGIC;
   1703       1.48      yamt 	}
   1704       1.48      yamt }
   1705       1.48      yamt 
   1706       1.48      yamt void
   1707       1.56      yamt kstack_check_magic(const struct lwp *l)
   1708       1.48      yamt {
   1709       1.85     perry 	uint32_t const *ip, *end;
   1710       1.48      yamt 	int stackleft;
   1711       1.48      yamt 
   1712       1.56      yamt 	KASSERT(l != NULL);
   1713       1.48      yamt 
   1714       1.48      yamt 	/* don't check proc0 */ /*XXX*/
   1715       1.56      yamt 	if (l == &lwp0)
   1716       1.48      yamt 		return;
   1717       1.48      yamt 
   1718       1.48      yamt #ifdef __MACHINE_STACK_GROWS_UP
   1719       1.48      yamt 	/* stack grows upwards (eg. hppa) */
   1720      1.106  christos 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1721       1.85     perry 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1722       1.48      yamt 	for (ip--; ip >= end; ip--)
   1723       1.48      yamt 		if (*ip != KSTACK_MAGIC)
   1724       1.48      yamt 			break;
   1725       1.72  junyoung 
   1726      1.106  christos 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1727       1.48      yamt #else /* __MACHINE_STACK_GROWS_UP */
   1728       1.48      yamt 	/* stack grows downwards (eg. i386) */
   1729       1.85     perry 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1730      1.114    dyoung 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1731       1.48      yamt 	for (; ip < end; ip++)
   1732       1.48      yamt 		if (*ip != KSTACK_MAGIC)
   1733       1.48      yamt 			break;
   1734       1.48      yamt 
   1735       1.93  christos 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1736       1.48      yamt #endif /* __MACHINE_STACK_GROWS_UP */
   1737       1.48      yamt 
   1738       1.48      yamt 	if (kstackleftmin > stackleft) {
   1739       1.48      yamt 		kstackleftmin = stackleft;
   1740       1.48      yamt 		if (stackleft < kstackleftthres)
   1741       1.56      yamt 			printf("warning: kernel stack left %d bytes"
   1742       1.56      yamt 			    "(pid %u:lid %u)\n", stackleft,
   1743       1.56      yamt 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1744       1.48      yamt 	}
   1745       1.48      yamt 
   1746       1.48      yamt 	if (stackleft <= 0) {
   1747       1.56      yamt 		panic("magic on the top of kernel stack changed for "
   1748       1.56      yamt 		    "pid %u, lid %u: maybe kernel stack overflow",
   1749       1.56      yamt 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1750       1.48      yamt 	}
   1751       1.48      yamt }
   1752       1.50     enami #endif /* KSTACK_CHECK_MAGIC */
   1753       1.79      yamt 
   1754       1.79      yamt int
   1755       1.79      yamt proclist_foreach_call(struct proclist *list,
   1756       1.79      yamt     int (*callback)(struct proc *, void *arg), void *arg)
   1757       1.79      yamt {
   1758       1.79      yamt 	struct proc marker;
   1759       1.79      yamt 	struct proc *p;
   1760       1.79      yamt 	int ret = 0;
   1761       1.79      yamt 
   1762      1.102     pavel 	marker.p_flag = PK_MARKER;
   1763      1.253        ad 	mutex_enter(&proc_lock);
   1764       1.79      yamt 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1765      1.102     pavel 		if (p->p_flag & PK_MARKER) {
   1766       1.79      yamt 			p = LIST_NEXT(p, p_list);
   1767       1.79      yamt 			continue;
   1768       1.79      yamt 		}
   1769       1.79      yamt 		LIST_INSERT_AFTER(p, &marker, p_list);
   1770       1.79      yamt 		ret = (*callback)(p, arg);
   1771      1.253        ad 		KASSERT(mutex_owned(&proc_lock));
   1772       1.79      yamt 		p = LIST_NEXT(&marker, p_list);
   1773       1.79      yamt 		LIST_REMOVE(&marker, p_list);
   1774       1.79      yamt 	}
   1775      1.253        ad 	mutex_exit(&proc_lock);
   1776       1.79      yamt 
   1777       1.79      yamt 	return ret;
   1778       1.79      yamt }
   1779       1.86      yamt 
   1780       1.86      yamt int
   1781       1.86      yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1782       1.86      yamt {
   1783       1.86      yamt 
   1784       1.86      yamt 	/* XXXCDC: how should locking work here? */
   1785       1.86      yamt 
   1786       1.87      yamt 	/* curproc exception is for coredump. */
   1787       1.87      yamt 
   1788      1.100        ad 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1789      1.254     kamil 	    (p->p_vmspace->vm_refcnt < 1)) {
   1790       1.86      yamt 		return EFAULT;
   1791       1.86      yamt 	}
   1792       1.86      yamt 
   1793       1.86      yamt 	uvmspace_addref(p->p_vmspace);
   1794       1.86      yamt 	*vm = p->p_vmspace;
   1795       1.86      yamt 
   1796       1.86      yamt 	return 0;
   1797       1.86      yamt }
   1798       1.94        ad 
   1799       1.94        ad /*
   1800       1.94        ad  * Acquire a write lock on the process credential.
   1801       1.94        ad  */
   1802      1.258  riastrad void
   1803      1.100        ad proc_crmod_enter(void)
   1804       1.94        ad {
   1805      1.100        ad 	struct lwp *l = curlwp;
   1806      1.100        ad 	struct proc *p = l->l_proc;
   1807      1.100        ad 	kauth_cred_t oc;
   1808       1.94        ad 
   1809      1.117       dsl 	/* Reset what needs to be reset in plimit. */
   1810      1.117       dsl 	if (p->p_limit->pl_corename != defcorename) {
   1811      1.178     rmind 		lim_setcorename(p, defcorename, 0);
   1812      1.117       dsl 	}
   1813      1.117       dsl 
   1814      1.137        ad 	mutex_enter(p->p_lock);
   1815      1.100        ad 
   1816      1.100        ad 	/* Ensure the LWP cached credentials are up to date. */
   1817      1.100        ad 	if ((oc = l->l_cred) != p->p_cred) {
   1818      1.100        ad 		kauth_cred_hold(p->p_cred);
   1819      1.100        ad 		l->l_cred = p->p_cred;
   1820      1.100        ad 		kauth_cred_free(oc);
   1821      1.100        ad 	}
   1822       1.94        ad }
   1823       1.94        ad 
   1824       1.94        ad /*
   1825      1.100        ad  * Set in a new process credential, and drop the write lock.  The credential
   1826      1.100        ad  * must have a reference already.  Optionally, free a no-longer required
   1827      1.268  riastrad  * credential.
   1828       1.94        ad  */
   1829       1.94        ad void
   1830      1.104   thorpej proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1831       1.94        ad {
   1832      1.133        ad 	struct lwp *l = curlwp, *l2;
   1833      1.100        ad 	struct proc *p = l->l_proc;
   1834      1.100        ad 	kauth_cred_t oc;
   1835      1.100        ad 
   1836      1.137        ad 	KASSERT(mutex_owned(p->p_lock));
   1837      1.137        ad 
   1838      1.100        ad 	/* Is there a new credential to set in? */
   1839      1.100        ad 	if (scred != NULL) {
   1840      1.100        ad 		p->p_cred = scred;
   1841      1.133        ad 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1842      1.133        ad 			if (l2 != l)
   1843      1.133        ad 				l2->l_prflag |= LPR_CRMOD;
   1844      1.133        ad 		}
   1845      1.100        ad 
   1846      1.100        ad 		/* Ensure the LWP cached credentials are up to date. */
   1847      1.100        ad 		if ((oc = l->l_cred) != scred) {
   1848      1.100        ad 			kauth_cred_hold(scred);
   1849      1.100        ad 			l->l_cred = scred;
   1850      1.100        ad 		}
   1851      1.100        ad 	} else
   1852      1.100        ad 		oc = NULL;	/* XXXgcc */
   1853      1.100        ad 
   1854      1.100        ad 	if (sugid) {
   1855      1.100        ad 		/*
   1856      1.100        ad 		 * Mark process as having changed credentials, stops
   1857      1.100        ad 		 * tracing etc.
   1858      1.100        ad 		 */
   1859      1.102     pavel 		p->p_flag |= PK_SUGID;
   1860      1.100        ad 	}
   1861       1.94        ad 
   1862      1.137        ad 	mutex_exit(p->p_lock);
   1863      1.100        ad 
   1864      1.100        ad 	/* If there is a credential to be released, free it now. */
   1865      1.100        ad 	if (fcred != NULL) {
   1866      1.100        ad 		KASSERT(scred != NULL);
   1867       1.94        ad 		kauth_cred_free(fcred);
   1868      1.100        ad 		if (oc != scred)
   1869      1.100        ad 			kauth_cred_free(oc);
   1870      1.100        ad 	}
   1871      1.100        ad }
   1872      1.100        ad 
   1873      1.100        ad /*
   1874       1.95   thorpej  * proc_specific_key_create --
   1875       1.95   thorpej  *	Create a key for subsystem proc-specific data.
   1876       1.95   thorpej  */
   1877       1.95   thorpej int
   1878       1.95   thorpej proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1879       1.95   thorpej {
   1880       1.95   thorpej 
   1881       1.98   thorpej 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1882       1.95   thorpej }
   1883       1.95   thorpej 
   1884       1.95   thorpej /*
   1885       1.95   thorpej  * proc_specific_key_delete --
   1886       1.95   thorpej  *	Delete a key for subsystem proc-specific data.
   1887       1.95   thorpej  */
   1888       1.95   thorpej void
   1889       1.95   thorpej proc_specific_key_delete(specificdata_key_t key)
   1890       1.95   thorpej {
   1891       1.95   thorpej 
   1892       1.95   thorpej 	specificdata_key_delete(proc_specificdata_domain, key);
   1893       1.95   thorpej }
   1894       1.95   thorpej 
   1895       1.98   thorpej /*
   1896       1.98   thorpej  * proc_initspecific --
   1897       1.98   thorpej  *	Initialize a proc's specificdata container.
   1898       1.98   thorpej  */
   1899       1.96  christos void
   1900       1.96  christos proc_initspecific(struct proc *p)
   1901       1.96  christos {
   1902      1.189    martin 	int error __diagused;
   1903       1.98   thorpej 
   1904       1.96  christos 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1905       1.96  christos 	KASSERT(error == 0);
   1906       1.96  christos }
   1907       1.96  christos 
   1908       1.95   thorpej /*
   1909       1.98   thorpej  * proc_finispecific --
   1910       1.98   thorpej  *	Finalize a proc's specificdata container.
   1911       1.98   thorpej  */
   1912       1.98   thorpej void
   1913       1.98   thorpej proc_finispecific(struct proc *p)
   1914       1.98   thorpej {
   1915       1.98   thorpej 
   1916       1.98   thorpej 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1917       1.98   thorpej }
   1918       1.98   thorpej 
   1919       1.98   thorpej /*
   1920       1.95   thorpej  * proc_getspecific --
   1921       1.95   thorpej  *	Return proc-specific data corresponding to the specified key.
   1922       1.95   thorpej  */
   1923       1.95   thorpej void *
   1924       1.95   thorpej proc_getspecific(struct proc *p, specificdata_key_t key)
   1925       1.95   thorpej {
   1926       1.95   thorpej 
   1927       1.95   thorpej 	return (specificdata_getspecific(proc_specificdata_domain,
   1928       1.95   thorpej 					 &p->p_specdataref, key));
   1929       1.95   thorpej }
   1930       1.95   thorpej 
   1931       1.95   thorpej /*
   1932       1.95   thorpej  * proc_setspecific --
   1933       1.95   thorpej  *	Set proc-specific data corresponding to the specified key.
   1934       1.95   thorpej  */
   1935       1.95   thorpej void
   1936       1.95   thorpej proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1937       1.95   thorpej {
   1938       1.95   thorpej 
   1939       1.95   thorpej 	specificdata_setspecific(proc_specificdata_domain,
   1940       1.95   thorpej 				 &p->p_specdataref, key, data);
   1941       1.95   thorpej }
   1942      1.154      elad 
   1943      1.154      elad int
   1944      1.154      elad proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1945      1.154      elad {
   1946      1.154      elad 	int r = 0;
   1947      1.154      elad 
   1948      1.154      elad 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1949      1.154      elad 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1950      1.154      elad 		/*
   1951      1.154      elad 		 * suid proc of ours or proc not ours
   1952      1.154      elad 		 */
   1953      1.154      elad 		r = EPERM;
   1954      1.154      elad 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1955      1.154      elad 		/*
   1956      1.154      elad 		 * sgid proc has sgid back to us temporarily
   1957      1.154      elad 		 */
   1958      1.154      elad 		r = EPERM;
   1959      1.154      elad 	} else {
   1960      1.154      elad 		/*
   1961      1.154      elad 		 * our rgid must be in target's group list (ie,
   1962      1.154      elad 		 * sub-processes started by a sgid process)
   1963      1.154      elad 		 */
   1964      1.154      elad 		int ismember = 0;
   1965      1.154      elad 
   1966      1.154      elad 		if (kauth_cred_ismember_gid(cred,
   1967      1.154      elad 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1968      1.154      elad 		    !ismember)
   1969      1.154      elad 			r = EPERM;
   1970      1.154      elad 	}
   1971      1.154      elad 
   1972      1.154      elad 	return (r);
   1973      1.154      elad }
   1974      1.170     pooka 
   1975      1.170     pooka /*
   1976      1.170     pooka  * sysctl stuff
   1977      1.170     pooka  */
   1978      1.170     pooka 
   1979      1.170     pooka #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1980      1.170     pooka 
   1981      1.170     pooka static const u_int sysctl_flagmap[] = {
   1982      1.170     pooka 	PK_ADVLOCK, P_ADVLOCK,
   1983      1.170     pooka 	PK_EXEC, P_EXEC,
   1984      1.170     pooka 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1985      1.170     pooka 	PK_32, P_32,
   1986      1.170     pooka 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1987      1.170     pooka 	PK_SUGID, P_SUGID,
   1988      1.170     pooka 	0
   1989      1.170     pooka };
   1990      1.170     pooka 
   1991      1.170     pooka static const u_int sysctl_sflagmap[] = {
   1992      1.170     pooka 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1993      1.170     pooka 	PS_WEXIT, P_WEXIT,
   1994      1.170     pooka 	PS_STOPFORK, P_STOPFORK,
   1995      1.170     pooka 	PS_STOPEXEC, P_STOPEXEC,
   1996      1.170     pooka 	PS_STOPEXIT, P_STOPEXIT,
   1997      1.170     pooka 	0
   1998      1.170     pooka };
   1999      1.170     pooka 
   2000      1.170     pooka static const u_int sysctl_slflagmap[] = {
   2001      1.170     pooka 	PSL_TRACED, P_TRACED,
   2002      1.170     pooka 	PSL_CHTRACED, P_CHTRACED,
   2003      1.170     pooka 	PSL_SYSCALL, P_SYSCALL,
   2004      1.170     pooka 	0
   2005      1.170     pooka };
   2006      1.170     pooka 
   2007      1.170     pooka static const u_int sysctl_lflagmap[] = {
   2008      1.170     pooka 	PL_CONTROLT, P_CONTROLT,
   2009      1.170     pooka 	PL_PPWAIT, P_PPWAIT,
   2010      1.170     pooka 	0
   2011      1.170     pooka };
   2012      1.170     pooka 
   2013      1.170     pooka static const u_int sysctl_stflagmap[] = {
   2014      1.170     pooka 	PST_PROFIL, P_PROFIL,
   2015      1.170     pooka 	0
   2016      1.170     pooka 
   2017      1.170     pooka };
   2018      1.170     pooka 
   2019      1.170     pooka /* used by kern_lwp also */
   2020      1.170     pooka const u_int sysctl_lwpflagmap[] = {
   2021      1.170     pooka 	LW_SINTR, L_SINTR,
   2022      1.170     pooka 	LW_SYSTEM, L_SYSTEM,
   2023      1.170     pooka 	0
   2024      1.170     pooka };
   2025      1.170     pooka 
   2026      1.170     pooka /*
   2027      1.170     pooka  * Find the most ``active'' lwp of a process and return it for ps display
   2028      1.170     pooka  * purposes
   2029      1.170     pooka  */
   2030      1.170     pooka static struct lwp *
   2031      1.170     pooka proc_active_lwp(struct proc *p)
   2032      1.170     pooka {
   2033      1.170     pooka 	static const int ostat[] = {
   2034      1.258  riastrad 		0,
   2035      1.170     pooka 		2,	/* LSIDL */
   2036      1.170     pooka 		6,	/* LSRUN */
   2037      1.170     pooka 		5,	/* LSSLEEP */
   2038      1.170     pooka 		4,	/* LSSTOP */
   2039      1.170     pooka 		0,	/* LSZOMB */
   2040      1.170     pooka 		1,	/* LSDEAD */
   2041      1.170     pooka 		7,	/* LSONPROC */
   2042      1.170     pooka 		3	/* LSSUSPENDED */
   2043      1.170     pooka 	};
   2044      1.170     pooka 
   2045      1.170     pooka 	struct lwp *l, *lp = NULL;
   2046      1.170     pooka 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2047      1.170     pooka 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   2048      1.170     pooka 		if (lp == NULL ||
   2049      1.170     pooka 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   2050      1.170     pooka 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   2051      1.170     pooka 		    l->l_cpticks > lp->l_cpticks)) {
   2052      1.170     pooka 			lp = l;
   2053      1.170     pooka 			continue;
   2054      1.170     pooka 		}
   2055      1.170     pooka 	}
   2056      1.170     pooka 	return lp;
   2057      1.170     pooka }
   2058      1.170     pooka 
   2059      1.170     pooka static int
   2060      1.170     pooka sysctl_doeproc(SYSCTLFN_ARGS)
   2061      1.170     pooka {
   2062      1.170     pooka 	union {
   2063      1.170     pooka 		struct kinfo_proc kproc;
   2064      1.170     pooka 		struct kinfo_proc2 kproc2;
   2065      1.170     pooka 	} *kbuf;
   2066      1.170     pooka 	struct proc *p, *next, *marker;
   2067      1.170     pooka 	char *where, *dp;
   2068      1.170     pooka 	int type, op, arg, error;
   2069      1.170     pooka 	u_int elem_size, kelem_size, elem_count;
   2070      1.170     pooka 	size_t buflen, needed;
   2071      1.170     pooka 	bool match, zombie, mmmbrains;
   2072      1.222  christos 	const bool allowaddr = get_expose_address(curproc);
   2073      1.170     pooka 
   2074      1.170     pooka 	if (namelen == 1 && name[0] == CTL_QUERY)
   2075      1.170     pooka 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2076      1.170     pooka 
   2077      1.170     pooka 	dp = where = oldp;
   2078      1.170     pooka 	buflen = where != NULL ? *oldlenp : 0;
   2079      1.170     pooka 	error = 0;
   2080      1.170     pooka 	needed = 0;
   2081      1.170     pooka 	type = rnode->sysctl_num;
   2082      1.170     pooka 
   2083      1.170     pooka 	if (type == KERN_PROC) {
   2084      1.194  christos 		if (namelen == 0)
   2085      1.194  christos 			return EINVAL;
   2086      1.194  christos 		switch (op = name[0]) {
   2087      1.194  christos 		case KERN_PROC_ALL:
   2088      1.194  christos 			if (namelen != 1)
   2089      1.194  christos 				return EINVAL;
   2090      1.194  christos 			arg = 0;
   2091      1.194  christos 			break;
   2092      1.194  christos 		default:
   2093      1.194  christos 			if (namelen != 2)
   2094      1.194  christos 				return EINVAL;
   2095      1.170     pooka 			arg = name[1];
   2096      1.194  christos 			break;
   2097      1.194  christos 		}
   2098      1.210       kre 		elem_count = 0;	/* Hush little compiler, don't you cry */
   2099      1.170     pooka 		kelem_size = elem_size = sizeof(kbuf->kproc);
   2100      1.170     pooka 	} else {
   2101      1.170     pooka 		if (namelen != 4)
   2102      1.194  christos 			return EINVAL;
   2103      1.170     pooka 		op = name[0];
   2104      1.170     pooka 		arg = name[1];
   2105      1.170     pooka 		elem_size = name[2];
   2106      1.170     pooka 		elem_count = name[3];
   2107      1.170     pooka 		kelem_size = sizeof(kbuf->kproc2);
   2108      1.170     pooka 	}
   2109      1.170     pooka 
   2110      1.170     pooka 	sysctl_unlock();
   2111      1.170     pooka 
   2112      1.221  christos 	kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
   2113      1.170     pooka 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   2114      1.170     pooka 	marker->p_flag = PK_MARKER;
   2115      1.170     pooka 
   2116      1.253        ad 	mutex_enter(&proc_lock);
   2117      1.211     kamil 	/*
   2118      1.211     kamil 	 * Start with zombies to prevent reporting processes twice, in case they
   2119      1.211     kamil 	 * are dying and being moved from the list of alive processes to zombies.
   2120      1.211     kamil 	 */
   2121      1.211     kamil 	mmmbrains = true;
   2122      1.211     kamil 	for (p = LIST_FIRST(&zombproc);; p = next) {
   2123      1.170     pooka 		if (p == NULL) {
   2124      1.211     kamil 			if (mmmbrains) {
   2125      1.211     kamil 				p = LIST_FIRST(&allproc);
   2126      1.211     kamil 				mmmbrains = false;
   2127      1.170     pooka 			}
   2128      1.170     pooka 			if (p == NULL)
   2129      1.170     pooka 				break;
   2130      1.170     pooka 		}
   2131      1.170     pooka 		next = LIST_NEXT(p, p_list);
   2132      1.170     pooka 		if ((p->p_flag & PK_MARKER) != 0)
   2133      1.170     pooka 			continue;
   2134      1.170     pooka 
   2135      1.170     pooka 		/*
   2136      1.170     pooka 		 * Skip embryonic processes.
   2137      1.170     pooka 		 */
   2138      1.170     pooka 		if (p->p_stat == SIDL)
   2139      1.170     pooka 			continue;
   2140      1.170     pooka 
   2141      1.170     pooka 		mutex_enter(p->p_lock);
   2142      1.170     pooka 		error = kauth_authorize_process(l->l_cred,
   2143      1.170     pooka 		    KAUTH_PROCESS_CANSEE, p,
   2144      1.213      maxv 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
   2145      1.170     pooka 		if (error != 0) {
   2146      1.170     pooka 			mutex_exit(p->p_lock);
   2147      1.170     pooka 			continue;
   2148      1.170     pooka 		}
   2149      1.170     pooka 
   2150      1.170     pooka 		/*
   2151      1.211     kamil 		 * Hande all the operations in one switch on the cost of
   2152      1.211     kamil 		 * algorithm complexity is on purpose. The win splitting this
   2153      1.266    andvar 		 * function into several similar copies makes maintenance
   2154      1.266    andvar 		 * burden, code grow and boost is negligible in practical
   2155      1.266    andvar 		 * systems.
   2156      1.170     pooka 		 */
   2157      1.170     pooka 		switch (op) {
   2158      1.170     pooka 		case KERN_PROC_PID:
   2159      1.170     pooka 			match = (p->p_pid == (pid_t)arg);
   2160      1.170     pooka 			break;
   2161      1.170     pooka 
   2162      1.170     pooka 		case KERN_PROC_PGRP:
   2163      1.170     pooka 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   2164      1.170     pooka 			break;
   2165      1.170     pooka 
   2166      1.170     pooka 		case KERN_PROC_SESSION:
   2167      1.170     pooka 			match = (p->p_session->s_sid == (pid_t)arg);
   2168      1.170     pooka 			break;
   2169      1.170     pooka 
   2170      1.170     pooka 		case KERN_PROC_TTY:
   2171      1.170     pooka 			match = true;
   2172      1.170     pooka 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   2173      1.170     pooka 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2174      1.170     pooka 				    p->p_session->s_ttyp == NULL ||
   2175      1.170     pooka 				    p->p_session->s_ttyvp != NULL) {
   2176      1.170     pooka 				    	match = false;
   2177      1.170     pooka 				}
   2178      1.170     pooka 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2179      1.170     pooka 			    p->p_session->s_ttyp == NULL) {
   2180      1.170     pooka 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   2181      1.170     pooka 					match = false;
   2182      1.170     pooka 				}
   2183      1.170     pooka 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   2184      1.170     pooka 				match = false;
   2185      1.170     pooka 			}
   2186      1.170     pooka 			break;
   2187      1.170     pooka 
   2188      1.170     pooka 		case KERN_PROC_UID:
   2189      1.170     pooka 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   2190      1.170     pooka 			break;
   2191      1.170     pooka 
   2192      1.170     pooka 		case KERN_PROC_RUID:
   2193      1.170     pooka 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   2194      1.170     pooka 			break;
   2195      1.170     pooka 
   2196      1.170     pooka 		case KERN_PROC_GID:
   2197      1.170     pooka 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   2198      1.170     pooka 			break;
   2199      1.170     pooka 
   2200      1.170     pooka 		case KERN_PROC_RGID:
   2201      1.170     pooka 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   2202      1.170     pooka 			break;
   2203      1.170     pooka 
   2204      1.170     pooka 		case KERN_PROC_ALL:
   2205      1.170     pooka 			match = true;
   2206      1.170     pooka 			/* allow everything */
   2207      1.170     pooka 			break;
   2208      1.170     pooka 
   2209      1.170     pooka 		default:
   2210      1.170     pooka 			error = EINVAL;
   2211      1.170     pooka 			mutex_exit(p->p_lock);
   2212      1.170     pooka 			goto cleanup;
   2213      1.170     pooka 		}
   2214      1.170     pooka 		if (!match) {
   2215      1.170     pooka 			mutex_exit(p->p_lock);
   2216      1.170     pooka 			continue;
   2217      1.170     pooka 		}
   2218      1.170     pooka 
   2219      1.170     pooka 		/*
   2220      1.170     pooka 		 * Grab a hold on the process.
   2221      1.170     pooka 		 */
   2222      1.258  riastrad 		if (mmmbrains) {
   2223      1.170     pooka 			zombie = true;
   2224      1.170     pooka 		} else {
   2225      1.170     pooka 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   2226      1.170     pooka 		}
   2227      1.170     pooka 		if (zombie) {
   2228      1.170     pooka 			LIST_INSERT_AFTER(p, marker, p_list);
   2229      1.170     pooka 		}
   2230      1.170     pooka 
   2231      1.170     pooka 		if (buflen >= elem_size &&
   2232      1.170     pooka 		    (type == KERN_PROC || elem_count > 0)) {
   2233      1.234     kamil 			ruspace(p);	/* Update process vm resource use */
   2234      1.234     kamil 
   2235      1.170     pooka 			if (type == KERN_PROC) {
   2236      1.222  christos 				fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
   2237      1.222  christos 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
   2238      1.222  christos 				    allowaddr);
   2239      1.170     pooka 			} else {
   2240      1.222  christos 				fill_kproc2(p, &kbuf->kproc2, zombie,
   2241      1.222  christos 				    allowaddr);
   2242      1.170     pooka 				elem_count--;
   2243      1.170     pooka 			}
   2244      1.170     pooka 			mutex_exit(p->p_lock);
   2245      1.253        ad 			mutex_exit(&proc_lock);
   2246      1.170     pooka 			/*
   2247      1.170     pooka 			 * Copy out elem_size, but not larger than kelem_size
   2248      1.170     pooka 			 */
   2249      1.170     pooka 			error = sysctl_copyout(l, kbuf, dp,
   2250      1.214  riastrad 			    uimin(kelem_size, elem_size));
   2251      1.253        ad 			mutex_enter(&proc_lock);
   2252      1.170     pooka 			if (error) {
   2253      1.170     pooka 				goto bah;
   2254      1.170     pooka 			}
   2255      1.170     pooka 			dp += elem_size;
   2256      1.170     pooka 			buflen -= elem_size;
   2257      1.170     pooka 		} else {
   2258      1.170     pooka 			mutex_exit(p->p_lock);
   2259      1.170     pooka 		}
   2260      1.170     pooka 		needed += elem_size;
   2261      1.170     pooka 
   2262      1.170     pooka 		/*
   2263      1.170     pooka 		 * Release reference to process.
   2264      1.170     pooka 		 */
   2265      1.170     pooka 	 	if (zombie) {
   2266      1.170     pooka 			next = LIST_NEXT(marker, p_list);
   2267      1.170     pooka  			LIST_REMOVE(marker, p_list);
   2268      1.170     pooka 		} else {
   2269      1.170     pooka 			rw_exit(&p->p_reflock);
   2270      1.170     pooka 			next = LIST_NEXT(p, p_list);
   2271      1.170     pooka 		}
   2272      1.211     kamil 
   2273      1.211     kamil 		/*
   2274      1.211     kamil 		 * Short-circuit break quickly!
   2275      1.211     kamil 		 */
   2276      1.211     kamil 		if (op == KERN_PROC_PID)
   2277      1.211     kamil                 	break;
   2278      1.170     pooka 	}
   2279      1.253        ad 	mutex_exit(&proc_lock);
   2280      1.170     pooka 
   2281      1.170     pooka 	if (where != NULL) {
   2282      1.170     pooka 		*oldlenp = dp - where;
   2283      1.170     pooka 		if (needed > *oldlenp) {
   2284      1.170     pooka 			error = ENOMEM;
   2285      1.170     pooka 			goto out;
   2286      1.170     pooka 		}
   2287      1.170     pooka 	} else {
   2288      1.170     pooka 		needed += KERN_PROCSLOP;
   2289      1.170     pooka 		*oldlenp = needed;
   2290      1.170     pooka 	}
   2291      1.211     kamil 	kmem_free(kbuf, sizeof(*kbuf));
   2292      1.211     kamil 	kmem_free(marker, sizeof(*marker));
   2293      1.170     pooka 	sysctl_relock();
   2294      1.170     pooka 	return 0;
   2295      1.170     pooka  bah:
   2296      1.170     pooka  	if (zombie)
   2297      1.170     pooka  		LIST_REMOVE(marker, p_list);
   2298      1.170     pooka 	else
   2299      1.170     pooka 		rw_exit(&p->p_reflock);
   2300      1.170     pooka  cleanup:
   2301      1.253        ad 	mutex_exit(&proc_lock);
   2302      1.170     pooka  out:
   2303      1.211     kamil 	kmem_free(kbuf, sizeof(*kbuf));
   2304      1.211     kamil 	kmem_free(marker, sizeof(*marker));
   2305      1.170     pooka 	sysctl_relock();
   2306      1.170     pooka 	return error;
   2307      1.170     pooka }
   2308      1.170     pooka 
   2309      1.172     joerg int
   2310      1.172     joerg copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   2311      1.172     joerg {
   2312      1.225  pgoyette #if !defined(_RUMPKERNEL)
   2313      1.225  pgoyette 	int retval;
   2314      1.172     joerg 
   2315      1.172     joerg 	if (p->p_flag & PK_32) {
   2316      1.228  pgoyette 		MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
   2317      1.225  pgoyette 		    enosys(), retval);
   2318      1.225  pgoyette 		return retval;
   2319      1.225  pgoyette 	}
   2320      1.225  pgoyette #endif /* !defined(_RUMPKERNEL) */
   2321      1.172     joerg 
   2322      1.173      matt 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   2323      1.172     joerg }
   2324      1.172     joerg 
   2325      1.172     joerg static int
   2326      1.172     joerg copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   2327      1.172     joerg {
   2328      1.172     joerg 	void **cookie = cookie_;
   2329      1.172     joerg 	struct lwp *l = cookie[0];
   2330      1.172     joerg 	char *dst = cookie[1];
   2331      1.172     joerg 
   2332      1.172     joerg 	return sysctl_copyout(l, src, dst + off, len);
   2333      1.172     joerg }
   2334      1.172     joerg 
   2335      1.170     pooka /*
   2336      1.170     pooka  * sysctl helper routine for kern.proc_args pseudo-subtree.
   2337      1.170     pooka  */
   2338      1.170     pooka static int
   2339      1.170     pooka sysctl_kern_proc_args(SYSCTLFN_ARGS)
   2340      1.170     pooka {
   2341      1.170     pooka 	struct ps_strings pss;
   2342      1.170     pooka 	struct proc *p;
   2343      1.170     pooka 	pid_t pid;
   2344      1.172     joerg 	int type, error;
   2345      1.172     joerg 	void *cookie[2];
   2346      1.170     pooka 
   2347      1.170     pooka 	if (namelen == 1 && name[0] == CTL_QUERY)
   2348      1.170     pooka 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2349      1.170     pooka 
   2350      1.170     pooka 	if (newp != NULL || namelen != 2)
   2351      1.170     pooka 		return (EINVAL);
   2352      1.170     pooka 	pid = name[0];
   2353      1.170     pooka 	type = name[1];
   2354      1.170     pooka 
   2355      1.170     pooka 	switch (type) {
   2356      1.194  christos 	case KERN_PROC_PATHNAME:
   2357      1.194  christos 		sysctl_unlock();
   2358      1.194  christos 		error = fill_pathname(l, pid, oldp, oldlenp);
   2359      1.194  christos 		sysctl_relock();
   2360      1.194  christos 		return error;
   2361      1.194  christos 
   2362      1.229     kamil 	case KERN_PROC_CWD:
   2363      1.229     kamil 		sysctl_unlock();
   2364      1.229     kamil 		error = fill_cwd(l, pid, oldp, oldlenp);
   2365      1.229     kamil 		sysctl_relock();
   2366      1.229     kamil 		return error;
   2367      1.229     kamil 
   2368      1.170     pooka 	case KERN_PROC_ARGV:
   2369      1.170     pooka 	case KERN_PROC_NARGV:
   2370      1.170     pooka 	case KERN_PROC_ENV:
   2371      1.170     pooka 	case KERN_PROC_NENV:
   2372      1.170     pooka 		/* ok */
   2373      1.170     pooka 		break;
   2374      1.170     pooka 	default:
   2375      1.170     pooka 		return (EINVAL);
   2376      1.170     pooka 	}
   2377      1.170     pooka 
   2378      1.170     pooka 	sysctl_unlock();
   2379      1.170     pooka 
   2380      1.170     pooka 	/* check pid */
   2381      1.253        ad 	mutex_enter(&proc_lock);
   2382      1.170     pooka 	if ((p = proc_find(pid)) == NULL) {
   2383      1.170     pooka 		error = EINVAL;
   2384      1.170     pooka 		goto out_locked;
   2385      1.170     pooka 	}
   2386      1.170     pooka 	mutex_enter(p->p_lock);
   2387      1.170     pooka 
   2388      1.170     pooka 	/* Check permission. */
   2389      1.170     pooka 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   2390      1.170     pooka 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2391      1.170     pooka 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   2392      1.170     pooka 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   2393      1.170     pooka 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2394      1.170     pooka 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   2395      1.170     pooka 	else
   2396      1.170     pooka 		error = EINVAL; /* XXXGCC */
   2397      1.170     pooka 	if (error) {
   2398      1.170     pooka 		mutex_exit(p->p_lock);
   2399      1.170     pooka 		goto out_locked;
   2400      1.170     pooka 	}
   2401      1.170     pooka 
   2402      1.170     pooka 	if (oldp == NULL) {
   2403      1.170     pooka 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   2404      1.170     pooka 			*oldlenp = sizeof (int);
   2405      1.170     pooka 		else
   2406      1.170     pooka 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   2407      1.170     pooka 		error = 0;
   2408      1.170     pooka 		mutex_exit(p->p_lock);
   2409      1.170     pooka 		goto out_locked;
   2410      1.170     pooka 	}
   2411      1.170     pooka 
   2412      1.170     pooka 	/*
   2413      1.170     pooka 	 * Zombies don't have a stack, so we can't read their psstrings.
   2414      1.170     pooka 	 * System processes also don't have a user stack.
   2415      1.170     pooka 	 */
   2416      1.170     pooka 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   2417      1.170     pooka 		error = EINVAL;
   2418      1.170     pooka 		mutex_exit(p->p_lock);
   2419      1.170     pooka 		goto out_locked;
   2420      1.170     pooka 	}
   2421      1.170     pooka 
   2422      1.174     rmind 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   2423      1.172     joerg 	mutex_exit(p->p_lock);
   2424      1.174     rmind 	if (error) {
   2425      1.174     rmind 		goto out_locked;
   2426      1.174     rmind 	}
   2427      1.253        ad 	mutex_exit(&proc_lock);
   2428      1.172     joerg 
   2429      1.172     joerg 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   2430      1.172     joerg 		int value;
   2431      1.172     joerg 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   2432      1.172     joerg 			if (type == KERN_PROC_NARGV)
   2433      1.172     joerg 				value = pss.ps_nargvstr;
   2434      1.172     joerg 			else
   2435      1.172     joerg 				value = pss.ps_nenvstr;
   2436      1.172     joerg 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   2437      1.172     joerg 			*oldlenp = sizeof(value);
   2438      1.172     joerg 		}
   2439      1.170     pooka 	} else {
   2440      1.172     joerg 		cookie[0] = l;
   2441      1.172     joerg 		cookie[1] = oldp;
   2442      1.172     joerg 		error = copy_procargs(p, type, oldlenp,
   2443      1.172     joerg 		    copy_procargs_sysctl_cb, cookie);
   2444      1.170     pooka 	}
   2445      1.172     joerg 	rw_exit(&p->p_reflock);
   2446      1.172     joerg 	sysctl_relock();
   2447      1.172     joerg 	return error;
   2448      1.172     joerg 
   2449      1.172     joerg out_locked:
   2450      1.253        ad 	mutex_exit(&proc_lock);
   2451      1.172     joerg 	sysctl_relock();
   2452      1.172     joerg 	return error;
   2453      1.172     joerg }
   2454      1.172     joerg 
   2455      1.172     joerg int
   2456      1.172     joerg copy_procargs(struct proc *p, int oid, size_t *limit,
   2457      1.172     joerg     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   2458      1.172     joerg {
   2459      1.172     joerg 	struct ps_strings pss;
   2460      1.172     joerg 	size_t len, i, loaded, entry_len;
   2461      1.172     joerg 	struct uio auio;
   2462      1.172     joerg 	struct iovec aiov;
   2463      1.172     joerg 	int error, argvlen;
   2464      1.172     joerg 	char *arg;
   2465      1.172     joerg 	char **argv;
   2466      1.172     joerg 	vaddr_t user_argv;
   2467      1.172     joerg 	struct vmspace *vmspace;
   2468      1.170     pooka 
   2469      1.170     pooka 	/*
   2470      1.172     joerg 	 * Allocate a temporary buffer to hold the argument vector and
   2471      1.172     joerg 	 * the arguments themselve.
   2472      1.170     pooka 	 */
   2473      1.170     pooka 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2474      1.172     joerg 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2475      1.172     joerg 
   2476      1.172     joerg 	/*
   2477      1.172     joerg 	 * Lock the process down in memory.
   2478      1.172     joerg 	 */
   2479      1.172     joerg 	vmspace = p->p_vmspace;
   2480      1.172     joerg 	uvmspace_addref(vmspace);
   2481      1.170     pooka 
   2482      1.170     pooka 	/*
   2483      1.170     pooka 	 * Read in the ps_strings structure.
   2484      1.170     pooka 	 */
   2485      1.172     joerg 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2486      1.170     pooka 		goto done;
   2487      1.170     pooka 
   2488      1.170     pooka 	/*
   2489      1.170     pooka 	 * Now read the address of the argument vector.
   2490      1.170     pooka 	 */
   2491      1.172     joerg 	switch (oid) {
   2492      1.170     pooka 	case KERN_PROC_ARGV:
   2493      1.172     joerg 		user_argv = (uintptr_t)pss.ps_argvstr;
   2494      1.172     joerg 		argvlen = pss.ps_nargvstr;
   2495      1.172     joerg 		break;
   2496      1.170     pooka 	case KERN_PROC_ENV:
   2497      1.172     joerg 		user_argv = (uintptr_t)pss.ps_envstr;
   2498      1.172     joerg 		argvlen = pss.ps_nenvstr;
   2499      1.170     pooka 		break;
   2500      1.170     pooka 	default:
   2501      1.170     pooka 		error = EINVAL;
   2502      1.170     pooka 		goto done;
   2503      1.170     pooka 	}
   2504      1.170     pooka 
   2505      1.172     joerg 	if (argvlen < 0) {
   2506      1.172     joerg 		error = EIO;
   2507      1.172     joerg 		goto done;
   2508      1.172     joerg 	}
   2509      1.172     joerg 
   2510      1.170     pooka 
   2511      1.170     pooka 	/*
   2512      1.170     pooka 	 * Now copy each string.
   2513      1.170     pooka 	 */
   2514      1.170     pooka 	len = 0; /* bytes written to user buffer */
   2515      1.172     joerg 	loaded = 0; /* bytes from argv already processed */
   2516      1.172     joerg 	i = 0; /* To make compiler happy */
   2517      1.198  christos 	entry_len = PROC_PTRSZ(p);
   2518      1.172     joerg 
   2519      1.172     joerg 	for (; argvlen; --argvlen) {
   2520      1.170     pooka 		int finished = 0;
   2521      1.170     pooka 		vaddr_t base;
   2522      1.170     pooka 		size_t xlen;
   2523      1.170     pooka 		int j;
   2524      1.170     pooka 
   2525      1.172     joerg 		if (loaded == 0) {
   2526      1.172     joerg 			size_t rem = entry_len * argvlen;
   2527      1.172     joerg 			loaded = MIN(rem, PAGE_SIZE);
   2528      1.172     joerg 			error = copyin_vmspace(vmspace,
   2529      1.172     joerg 			    (const void *)user_argv, argv, loaded);
   2530      1.172     joerg 			if (error)
   2531      1.172     joerg 				break;
   2532      1.172     joerg 			user_argv += loaded;
   2533      1.172     joerg 			i = 0;
   2534      1.172     joerg 		}
   2535      1.172     joerg 
   2536      1.225  pgoyette #if !defined(_RUMPKERNEL)
   2537      1.225  pgoyette 		if (p->p_flag & PK_32)
   2538      1.228  pgoyette 			MODULE_HOOK_CALL(kern_proc32_base_hook,
   2539      1.225  pgoyette 			    (argv, i++), 0, base);
   2540      1.225  pgoyette 		else
   2541      1.225  pgoyette #endif /* !defined(_RUMPKERNEL) */
   2542      1.172     joerg 			base = (vaddr_t)argv[i++];
   2543      1.172     joerg 		loaded -= entry_len;
   2544      1.170     pooka 
   2545      1.170     pooka 		/*
   2546      1.170     pooka 		 * The program has messed around with its arguments,
   2547      1.170     pooka 		 * possibly deleting some, and replacing them with
   2548      1.170     pooka 		 * NULL's. Treat this as the last argument and not
   2549      1.170     pooka 		 * a failure.
   2550      1.170     pooka 		 */
   2551      1.170     pooka 		if (base == 0)
   2552      1.170     pooka 			break;
   2553      1.170     pooka 
   2554      1.170     pooka 		while (!finished) {
   2555      1.170     pooka 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2556      1.170     pooka 
   2557      1.170     pooka 			aiov.iov_base = arg;
   2558      1.170     pooka 			aiov.iov_len = PAGE_SIZE;
   2559      1.170     pooka 			auio.uio_iov = &aiov;
   2560      1.170     pooka 			auio.uio_iovcnt = 1;
   2561      1.170     pooka 			auio.uio_offset = base;
   2562      1.170     pooka 			auio.uio_resid = xlen;
   2563      1.170     pooka 			auio.uio_rw = UIO_READ;
   2564      1.170     pooka 			UIO_SETUP_SYSSPACE(&auio);
   2565      1.196  christos 			error = uvm_io(&vmspace->vm_map, &auio, 0);
   2566      1.170     pooka 			if (error)
   2567      1.170     pooka 				goto done;
   2568      1.170     pooka 
   2569      1.170     pooka 			/* Look for the end of the string */
   2570      1.170     pooka 			for (j = 0; j < xlen; j++) {
   2571      1.170     pooka 				if (arg[j] == '\0') {
   2572      1.170     pooka 					xlen = j + 1;
   2573      1.170     pooka 					finished = 1;
   2574      1.170     pooka 					break;
   2575      1.170     pooka 				}
   2576      1.170     pooka 			}
   2577      1.170     pooka 
   2578      1.170     pooka 			/* Check for user buffer overflow */
   2579      1.172     joerg 			if (len + xlen > *limit) {
   2580      1.170     pooka 				finished = 1;
   2581      1.172     joerg 				if (len > *limit)
   2582      1.170     pooka 					xlen = 0;
   2583      1.170     pooka 				else
   2584      1.172     joerg 					xlen = *limit - len;
   2585      1.170     pooka 			}
   2586      1.170     pooka 
   2587      1.170     pooka 			/* Copyout the page */
   2588      1.172     joerg 			error = (*cb)(cookie, arg, len, xlen);
   2589      1.170     pooka 			if (error)
   2590      1.170     pooka 				goto done;
   2591      1.170     pooka 
   2592      1.170     pooka 			len += xlen;
   2593      1.170     pooka 			base += xlen;
   2594      1.170     pooka 		}
   2595      1.170     pooka 	}
   2596      1.172     joerg 	*limit = len;
   2597      1.170     pooka 
   2598      1.170     pooka done:
   2599      1.172     joerg 	kmem_free(argv, PAGE_SIZE);
   2600      1.172     joerg 	kmem_free(arg, PAGE_SIZE);
   2601      1.170     pooka 	uvmspace_free(vmspace);
   2602      1.170     pooka 	return error;
   2603      1.170     pooka }
   2604      1.170     pooka 
   2605      1.170     pooka /*
   2606      1.220      maxv  * Fill in a proc structure for the specified process.
   2607      1.220      maxv  */
   2608      1.220      maxv static void
   2609      1.222  christos fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
   2610      1.220      maxv {
   2611      1.256  christos 	COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
   2612      1.259  riastrad 	memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
   2613      1.256  christos 	COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
   2614      1.259  riastrad 	memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
   2615      1.259  riastrad 	memset(&p->p_reflock, 0, sizeof(p->p_reflock));
   2616      1.256  christos 	COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
   2617      1.256  christos 	COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
   2618      1.256  christos 	COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
   2619      1.256  christos 	COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
   2620      1.256  christos 	COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
   2621      1.256  christos 	COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
   2622      1.256  christos 	COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
   2623      1.256  christos 	COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
   2624      1.256  christos 	COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
   2625      1.256  christos 	COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
   2626      1.220      maxv 	p->p_mqueue_cnt = psrc->p_mqueue_cnt;
   2627      1.259  riastrad 	memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
   2628      1.220      maxv 	p->p_exitsig = psrc->p_exitsig;
   2629      1.220      maxv 	p->p_flag = psrc->p_flag;
   2630      1.220      maxv 	p->p_sflag = psrc->p_sflag;
   2631      1.220      maxv 	p->p_slflag = psrc->p_slflag;
   2632      1.220      maxv 	p->p_lflag = psrc->p_lflag;
   2633      1.220      maxv 	p->p_stflag = psrc->p_stflag;
   2634      1.220      maxv 	p->p_stat = psrc->p_stat;
   2635      1.220      maxv 	p->p_trace_enabled = psrc->p_trace_enabled;
   2636      1.220      maxv 	p->p_pid = psrc->p_pid;
   2637      1.256  christos 	COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
   2638      1.256  christos 	COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
   2639      1.256  christos 	COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
   2640      1.256  christos 	COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
   2641      1.256  christos 	COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
   2642      1.256  christos 	COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
   2643      1.220      maxv 	p->p_nlwps = psrc->p_nlwps;
   2644      1.220      maxv 	p->p_nzlwps = psrc->p_nzlwps;
   2645      1.220      maxv 	p->p_nrlwps = psrc->p_nrlwps;
   2646      1.220      maxv 	p->p_nlwpwait = psrc->p_nlwpwait;
   2647      1.220      maxv 	p->p_ndlwps = psrc->p_ndlwps;
   2648      1.220      maxv 	p->p_nstopchild = psrc->p_nstopchild;
   2649      1.220      maxv 	p->p_waited = psrc->p_waited;
   2650      1.256  christos 	COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
   2651      1.256  christos 	COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
   2652      1.256  christos 	COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
   2653      1.220      maxv 	p->p_estcpu = psrc->p_estcpu;
   2654      1.220      maxv 	p->p_estcpu_inherited = psrc->p_estcpu_inherited;
   2655      1.220      maxv 	p->p_forktime = psrc->p_forktime;
   2656      1.220      maxv 	p->p_pctcpu = psrc->p_pctcpu;
   2657      1.256  christos 	COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
   2658      1.256  christos 	COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
   2659      1.220      maxv 	p->p_rtime = psrc->p_rtime;
   2660      1.220      maxv 	p->p_uticks = psrc->p_uticks;
   2661      1.220      maxv 	p->p_sticks = psrc->p_sticks;
   2662      1.220      maxv 	p->p_iticks = psrc->p_iticks;
   2663      1.220      maxv 	p->p_xutime = psrc->p_xutime;
   2664      1.220      maxv 	p->p_xstime = psrc->p_xstime;
   2665      1.220      maxv 	p->p_traceflag = psrc->p_traceflag;
   2666      1.256  christos 	COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
   2667      1.256  christos 	COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
   2668      1.256  christos 	COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
   2669      1.256  christos 	COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
   2670      1.256  christos 	COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
   2671      1.256  christos 	COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
   2672      1.256  christos 	COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
   2673      1.256  christos 	COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
   2674      1.256  christos 	    allowaddr);
   2675      1.256  christos 	p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
   2676      1.256  christos 	COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
   2677      1.220      maxv 	p->p_ppid = psrc->p_ppid;
   2678      1.243     kamil 	p->p_oppid = psrc->p_oppid;
   2679      1.256  christos 	COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
   2680      1.256  christos 	p->p_sigctx = psrc->p_sigctx;
   2681      1.220      maxv 	p->p_nice = psrc->p_nice;
   2682      1.220      maxv 	memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
   2683      1.256  christos 	COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
   2684      1.220      maxv 	COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
   2685      1.220      maxv 	p->p_pax = psrc->p_pax;
   2686      1.220      maxv 	p->p_xexit = psrc->p_xexit;
   2687      1.220      maxv 	p->p_xsig = psrc->p_xsig;
   2688      1.220      maxv 	p->p_acflag = psrc->p_acflag;
   2689      1.256  christos 	COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
   2690      1.220      maxv 	p->p_stackbase = psrc->p_stackbase;
   2691      1.256  christos 	COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
   2692      1.220      maxv }
   2693      1.220      maxv 
   2694      1.220      maxv /*
   2695      1.170     pooka  * Fill in an eproc structure for the specified process.
   2696      1.170     pooka  */
   2697      1.170     pooka void
   2698      1.222  christos fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
   2699      1.170     pooka {
   2700      1.170     pooka 	struct tty *tp;
   2701      1.170     pooka 	struct lwp *l;
   2702      1.170     pooka 
   2703      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
   2704      1.170     pooka 	KASSERT(mutex_owned(p->p_lock));
   2705      1.170     pooka 
   2706      1.256  christos 	COND_SET_PTR(ep->e_paddr, p, allowaddr);
   2707      1.256  christos 	COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
   2708      1.170     pooka 	if (p->p_cred) {
   2709      1.170     pooka 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2710      1.170     pooka 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2711      1.170     pooka 	}
   2712      1.170     pooka 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2713      1.170     pooka 		struct vmspace *vm = p->p_vmspace;
   2714      1.170     pooka 
   2715      1.170     pooka 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2716      1.170     pooka 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2717      1.170     pooka 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2718      1.170     pooka 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2719      1.170     pooka 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2720      1.170     pooka 
   2721      1.170     pooka 		/* Pick the primary (first) LWP */
   2722      1.170     pooka 		l = proc_active_lwp(p);
   2723      1.170     pooka 		KASSERT(l != NULL);
   2724      1.170     pooka 		lwp_lock(l);
   2725      1.170     pooka 		if (l->l_wchan)
   2726      1.170     pooka 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2727      1.170     pooka 		lwp_unlock(l);
   2728      1.170     pooka 	}
   2729      1.199       kre 	ep->e_ppid = p->p_ppid;
   2730      1.170     pooka 	if (p->p_pgrp && p->p_session) {
   2731      1.170     pooka 		ep->e_pgid = p->p_pgrp->pg_id;
   2732      1.170     pooka 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2733      1.170     pooka 		ep->e_sid = p->p_session->s_sid;
   2734      1.170     pooka 		if ((p->p_lflag & PL_CONTROLT) &&
   2735      1.216      maxv 		    (tp = p->p_session->s_ttyp)) {
   2736      1.170     pooka 			ep->e_tdev = tp->t_dev;
   2737      1.170     pooka 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2738      1.256  christos 			COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
   2739      1.170     pooka 		} else
   2740      1.170     pooka 			ep->e_tdev = (uint32_t)NODEV;
   2741      1.216      maxv 		ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
   2742      1.170     pooka 		if (SESS_LEADER(p))
   2743      1.170     pooka 			ep->e_flag |= EPROC_SLEADER;
   2744      1.216      maxv 		strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
   2745      1.170     pooka 	}
   2746      1.170     pooka 	ep->e_xsize = ep->e_xrssize = 0;
   2747      1.170     pooka 	ep->e_xccount = ep->e_xswrss = 0;
   2748      1.170     pooka }
   2749      1.170     pooka 
   2750      1.170     pooka /*
   2751      1.170     pooka  * Fill in a kinfo_proc2 structure for the specified process.
   2752      1.170     pooka  */
   2753      1.193     njoly void
   2754      1.222  christos fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
   2755      1.170     pooka {
   2756      1.170     pooka 	struct tty *tp;
   2757      1.170     pooka 	struct lwp *l, *l2;
   2758      1.170     pooka 	struct timeval ut, st, rt;
   2759      1.170     pooka 	sigset_t ss1, ss2;
   2760      1.170     pooka 	struct rusage ru;
   2761      1.170     pooka 	struct vmspace *vm;
   2762      1.170     pooka 
   2763      1.253        ad 	KASSERT(mutex_owned(&proc_lock));
   2764      1.170     pooka 	KASSERT(mutex_owned(p->p_lock));
   2765      1.170     pooka 
   2766      1.170     pooka 	sigemptyset(&ss1);
   2767      1.170     pooka 	sigemptyset(&ss2);
   2768      1.170     pooka 
   2769      1.218  christos 	COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
   2770      1.218  christos 	COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
   2771      1.218  christos 	COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
   2772      1.218  christos 	COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
   2773      1.218  christos 	COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
   2774      1.218  christos 	COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
   2775      1.218  christos 	COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
   2776      1.218  christos 	COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
   2777      1.170     pooka 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2778      1.218  christos 	COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
   2779      1.170     pooka 	ki->p_eflag = 0;
   2780      1.170     pooka 	ki->p_exitsig = p->p_exitsig;
   2781      1.170     pooka 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2782      1.170     pooka 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2783      1.170     pooka 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2784      1.170     pooka 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2785      1.170     pooka 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2786      1.170     pooka 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2787      1.170     pooka 	ki->p_pid = p->p_pid;
   2788      1.199       kre 	ki->p_ppid = p->p_ppid;
   2789      1.170     pooka 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2790      1.170     pooka 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2791      1.170     pooka 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2792      1.170     pooka 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2793      1.170     pooka 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2794      1.170     pooka 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2795      1.170     pooka 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2796      1.170     pooka 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2797      1.214  riastrad 	    uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2798      1.170     pooka 	    UIO_SYSSPACE);
   2799      1.170     pooka 
   2800      1.170     pooka 	ki->p_uticks = p->p_uticks;
   2801      1.170     pooka 	ki->p_sticks = p->p_sticks;
   2802      1.170     pooka 	ki->p_iticks = p->p_iticks;
   2803      1.170     pooka 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2804      1.218  christos 	COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
   2805      1.170     pooka 	ki->p_traceflag = p->p_traceflag;
   2806      1.170     pooka 
   2807      1.170     pooka 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2808      1.170     pooka 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2809      1.170     pooka 
   2810      1.170     pooka 	ki->p_cpticks = 0;
   2811      1.170     pooka 	ki->p_pctcpu = p->p_pctcpu;
   2812      1.170     pooka 	ki->p_estcpu = 0;
   2813      1.170     pooka 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2814      1.170     pooka 	ki->p_realstat = p->p_stat;
   2815      1.170     pooka 	ki->p_nice = p->p_nice;
   2816      1.195  christos 	ki->p_xstat = P_WAITSTATUS(p);
   2817      1.170     pooka 	ki->p_acflag = p->p_acflag;
   2818      1.170     pooka 
   2819      1.170     pooka 	strncpy(ki->p_comm, p->p_comm,
   2820      1.214  riastrad 	    uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2821      1.170     pooka 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2822      1.170     pooka 
   2823      1.170     pooka 	ki->p_nlwps = p->p_nlwps;
   2824      1.170     pooka 	ki->p_realflag = ki->p_flag;
   2825      1.170     pooka 
   2826      1.170     pooka 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2827      1.170     pooka 		vm = p->p_vmspace;
   2828      1.170     pooka 		ki->p_vm_rssize = vm_resident_count(vm);
   2829      1.170     pooka 		ki->p_vm_tsize = vm->vm_tsize;
   2830      1.170     pooka 		ki->p_vm_dsize = vm->vm_dsize;
   2831      1.170     pooka 		ki->p_vm_ssize = vm->vm_ssize;
   2832      1.184    martin 		ki->p_vm_vsize = atop(vm->vm_map.size);
   2833      1.170     pooka 		/*
   2834      1.170     pooka 		 * Since the stack is initially mapped mostly with
   2835      1.170     pooka 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2836      1.170     pooka 		 * to skip the unused stack portion.
   2837      1.170     pooka 		 */
   2838      1.170     pooka 		ki->p_vm_msize =
   2839      1.170     pooka 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2840      1.170     pooka 
   2841      1.170     pooka 		/* Pick the primary (first) LWP */
   2842      1.170     pooka 		l = proc_active_lwp(p);
   2843      1.170     pooka 		KASSERT(l != NULL);
   2844      1.170     pooka 		lwp_lock(l);
   2845      1.170     pooka 		ki->p_nrlwps = p->p_nrlwps;
   2846      1.170     pooka 		ki->p_forw = 0;
   2847      1.170     pooka 		ki->p_back = 0;
   2848      1.218  christos 		COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
   2849      1.170     pooka 		ki->p_stat = l->l_stat;
   2850      1.170     pooka 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2851      1.170     pooka 		ki->p_swtime = l->l_swtime;
   2852      1.170     pooka 		ki->p_slptime = l->l_slptime;
   2853      1.170     pooka 		if (l->l_stat == LSONPROC)
   2854      1.170     pooka 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2855      1.170     pooka 		else
   2856      1.170     pooka 			ki->p_schedflags = 0;
   2857      1.170     pooka 		ki->p_priority = lwp_eprio(l);
   2858      1.170     pooka 		ki->p_usrpri = l->l_priority;
   2859      1.170     pooka 		if (l->l_wchan)
   2860      1.170     pooka 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2861      1.218  christos 		COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
   2862      1.170     pooka 		ki->p_cpuid = cpu_index(l->l_cpu);
   2863      1.170     pooka 		lwp_unlock(l);
   2864      1.170     pooka 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2865      1.170     pooka 			/* This is hardly correct, but... */
   2866      1.170     pooka 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2867      1.170     pooka 			sigplusset(&l->l_sigmask, &ss2);
   2868      1.170     pooka 			ki->p_cpticks += l->l_cpticks;
   2869      1.170     pooka 			ki->p_pctcpu += l->l_pctcpu;
   2870      1.170     pooka 			ki->p_estcpu += l->l_estcpu;
   2871      1.170     pooka 		}
   2872      1.170     pooka 	}
   2873      1.237     kamil 	sigplusset(&p->p_sigpend.sp_set, &ss1);
   2874      1.170     pooka 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2875      1.170     pooka 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2876      1.170     pooka 
   2877      1.170     pooka 	if (p->p_session != NULL) {
   2878      1.170     pooka 		ki->p_sid = p->p_session->s_sid;
   2879      1.170     pooka 		ki->p__pgid = p->p_pgrp->pg_id;
   2880      1.170     pooka 		if (p->p_session->s_ttyvp)
   2881      1.170     pooka 			ki->p_eflag |= EPROC_CTTY;
   2882      1.170     pooka 		if (SESS_LEADER(p))
   2883      1.170     pooka 			ki->p_eflag |= EPROC_SLEADER;
   2884      1.170     pooka 		strncpy(ki->p_login, p->p_session->s_login,
   2885      1.214  riastrad 		    uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2886      1.170     pooka 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2887      1.170     pooka 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2888      1.170     pooka 			ki->p_tdev = tp->t_dev;
   2889      1.170     pooka 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2890      1.218  christos 			COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
   2891      1.217      maxv 			    allowaddr);
   2892      1.170     pooka 		} else {
   2893      1.170     pooka 			ki->p_tdev = (int32_t)NODEV;
   2894      1.170     pooka 		}
   2895      1.170     pooka 	}
   2896      1.170     pooka 
   2897      1.170     pooka 	if (!P_ZOMBIE(p) && !zombie) {
   2898      1.170     pooka 		ki->p_uvalid = 1;
   2899      1.170     pooka 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2900      1.170     pooka 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2901      1.170     pooka 
   2902      1.170     pooka 		calcru(p, &ut, &st, NULL, &rt);
   2903      1.170     pooka 		ki->p_rtime_sec = rt.tv_sec;
   2904      1.170     pooka 		ki->p_rtime_usec = rt.tv_usec;
   2905      1.170     pooka 		ki->p_uutime_sec = ut.tv_sec;
   2906      1.170     pooka 		ki->p_uutime_usec = ut.tv_usec;
   2907      1.170     pooka 		ki->p_ustime_sec = st.tv_sec;
   2908      1.170     pooka 		ki->p_ustime_usec = st.tv_usec;
   2909      1.170     pooka 
   2910      1.170     pooka 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2911      1.170     pooka 		ki->p_uru_nvcsw = 0;
   2912      1.170     pooka 		ki->p_uru_nivcsw = 0;
   2913      1.170     pooka 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2914      1.170     pooka 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2915      1.170     pooka 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2916      1.170     pooka 			ruadd(&ru, &l2->l_ru);
   2917      1.170     pooka 		}
   2918      1.170     pooka 		ki->p_uru_maxrss = ru.ru_maxrss;
   2919      1.170     pooka 		ki->p_uru_ixrss = ru.ru_ixrss;
   2920      1.170     pooka 		ki->p_uru_idrss = ru.ru_idrss;
   2921      1.170     pooka 		ki->p_uru_isrss = ru.ru_isrss;
   2922      1.170     pooka 		ki->p_uru_minflt = ru.ru_minflt;
   2923      1.170     pooka 		ki->p_uru_majflt = ru.ru_majflt;
   2924      1.170     pooka 		ki->p_uru_nswap = ru.ru_nswap;
   2925      1.170     pooka 		ki->p_uru_inblock = ru.ru_inblock;
   2926      1.170     pooka 		ki->p_uru_oublock = ru.ru_oublock;
   2927      1.170     pooka 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2928      1.170     pooka 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2929      1.170     pooka 		ki->p_uru_nsignals = ru.ru_nsignals;
   2930      1.170     pooka 
   2931      1.170     pooka 		timeradd(&p->p_stats->p_cru.ru_utime,
   2932      1.170     pooka 			 &p->p_stats->p_cru.ru_stime, &ut);
   2933      1.170     pooka 		ki->p_uctime_sec = ut.tv_sec;
   2934      1.170     pooka 		ki->p_uctime_usec = ut.tv_usec;
   2935      1.170     pooka 	}
   2936      1.170     pooka }
   2937      1.194  christos 
   2938      1.194  christos 
   2939      1.194  christos int
   2940      1.194  christos proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
   2941      1.194  christos {
   2942      1.194  christos 	int error;
   2943      1.194  christos 
   2944      1.253        ad 	mutex_enter(&proc_lock);
   2945      1.194  christos 	if (pid == -1)
   2946      1.194  christos 		*p = l->l_proc;
   2947      1.194  christos 	else
   2948      1.194  christos 		*p = proc_find(pid);
   2949      1.194  christos 
   2950      1.194  christos 	if (*p == NULL) {
   2951      1.194  christos 		if (pid != -1)
   2952      1.253        ad 			mutex_exit(&proc_lock);
   2953      1.194  christos 		return ESRCH;
   2954      1.194  christos 	}
   2955      1.194  christos 	if (pid != -1)
   2956      1.194  christos 		mutex_enter((*p)->p_lock);
   2957      1.253        ad 	mutex_exit(&proc_lock);
   2958      1.194  christos 
   2959      1.194  christos 	error = kauth_authorize_process(l->l_cred,
   2960      1.194  christos 	    KAUTH_PROCESS_CANSEE, *p,
   2961      1.194  christos 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   2962      1.194  christos 	if (error) {
   2963      1.194  christos 		if (pid != -1)
   2964      1.194  christos 			mutex_exit((*p)->p_lock);
   2965      1.194  christos 	}
   2966      1.194  christos 	return error;
   2967      1.194  christos }
   2968      1.194  christos 
   2969      1.194  christos static int
   2970      1.194  christos fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2971      1.194  christos {
   2972      1.194  christos 	int error;
   2973      1.194  christos 	struct proc *p;
   2974      1.194  christos 
   2975      1.194  christos 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2976      1.194  christos 		return error;
   2977      1.194  christos 
   2978      1.208  christos 	if (p->p_path == NULL) {
   2979      1.194  christos 		if (pid != -1)
   2980      1.194  christos 			mutex_exit(p->p_lock);
   2981      1.194  christos 		return ENOENT;
   2982      1.194  christos 	}
   2983      1.194  christos 
   2984      1.208  christos 	size_t len = strlen(p->p_path) + 1;
   2985      1.194  christos 	if (oldp != NULL) {
   2986      1.219      maxv 		size_t copylen = uimin(len, *oldlenp);
   2987      1.219      maxv 		error = sysctl_copyout(l, p->p_path, oldp, copylen);
   2988      1.194  christos 		if (error == 0 && *oldlenp < len)
   2989      1.194  christos 			error = ENOSPC;
   2990      1.194  christos 	}
   2991      1.194  christos 	*oldlenp = len;
   2992      1.194  christos 	if (pid != -1)
   2993      1.194  christos 		mutex_exit(p->p_lock);
   2994      1.194  christos 	return error;
   2995      1.194  christos }
   2996      1.206  christos 
   2997      1.229     kamil static int
   2998      1.229     kamil fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2999      1.229     kamil {
   3000      1.229     kamil 	int error;
   3001      1.229     kamil 	struct proc *p;
   3002      1.229     kamil 	char *path;
   3003      1.229     kamil 	char *bp, *bend;
   3004      1.246        ad 	struct cwdinfo *cwdi;
   3005      1.229     kamil 	struct vnode *vp;
   3006      1.229     kamil 	size_t len, lenused;
   3007      1.229     kamil 
   3008      1.229     kamil 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   3009      1.229     kamil 		return error;
   3010      1.229     kamil 
   3011      1.229     kamil 	len = MAXPATHLEN * 4;
   3012      1.229     kamil 
   3013      1.229     kamil 	path = kmem_alloc(len, KM_SLEEP);
   3014      1.229     kamil 
   3015      1.229     kamil 	bp = &path[len];
   3016      1.229     kamil 	bend = bp;
   3017      1.229     kamil 	*(--bp) = '\0';
   3018      1.229     kamil 
   3019      1.246        ad 	cwdi = p->p_cwdi;
   3020      1.246        ad 	rw_enter(&cwdi->cwdi_lock, RW_READER);
   3021      1.229     kamil 	vp = cwdi->cwdi_cdir;
   3022      1.231     kamil 	error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
   3023      1.246        ad 	rw_exit(&cwdi->cwdi_lock);
   3024      1.229     kamil 
   3025      1.229     kamil 	if (error)
   3026      1.229     kamil 		goto out;
   3027      1.229     kamil 
   3028      1.229     kamil 	lenused = bend - bp;
   3029      1.229     kamil 
   3030      1.229     kamil 	if (oldp != NULL) {
   3031      1.230     kamil 		size_t copylen = uimin(lenused, *oldlenp);
   3032      1.230     kamil 		error = sysctl_copyout(l, bp, oldp, copylen);
   3033      1.229     kamil 		if (error == 0 && *oldlenp < lenused)
   3034      1.229     kamil 			error = ENOSPC;
   3035      1.229     kamil 	}
   3036      1.229     kamil 	*oldlenp = lenused;
   3037      1.229     kamil out:
   3038      1.229     kamil 	if (pid != -1)
   3039      1.229     kamil 		mutex_exit(p->p_lock);
   3040      1.229     kamil 	kmem_free(path, len);
   3041      1.229     kamil 	return error;
   3042      1.229     kamil }
   3043      1.229     kamil 
   3044      1.206  christos int
   3045      1.206  christos proc_getauxv(struct proc *p, void **buf, size_t *len)
   3046      1.206  christos {
   3047      1.206  christos 	struct ps_strings pss;
   3048      1.206  christos 	int error;
   3049      1.206  christos 	void *uauxv, *kauxv;
   3050      1.209      maxv 	size_t size;
   3051      1.206  christos 
   3052      1.206  christos 	if ((error = copyin_psstrings(p, &pss)) != 0)
   3053      1.206  christos 		return error;
   3054      1.209      maxv 	if (pss.ps_envstr == NULL)
   3055      1.209      maxv 		return EIO;
   3056      1.206  christos 
   3057      1.209      maxv 	size = p->p_execsw->es_arglen;
   3058      1.209      maxv 	if (size == 0)
   3059      1.206  christos 		return EIO;
   3060      1.206  christos 
   3061      1.206  christos 	size_t ptrsz = PROC_PTRSZ(p);
   3062      1.206  christos 	uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
   3063      1.206  christos 
   3064      1.206  christos 	kauxv = kmem_alloc(size, KM_SLEEP);
   3065      1.206  christos 
   3066      1.206  christos 	error = copyin_proc(p, uauxv, kauxv, size);
   3067      1.206  christos 	if (error) {
   3068      1.206  christos 		kmem_free(kauxv, size);
   3069      1.206  christos 		return error;
   3070      1.206  christos 	}
   3071      1.206  christos 
   3072      1.206  christos 	*buf = kauxv;
   3073      1.206  christos 	*len = size;
   3074      1.206  christos 
   3075      1.206  christos 	return 0;
   3076      1.206  christos }
   3077      1.222  christos 
   3078      1.222  christos 
   3079      1.222  christos static int
   3080      1.222  christos sysctl_security_expose_address(SYSCTLFN_ARGS)
   3081      1.222  christos {
   3082      1.222  christos 	int expose_address, error;
   3083      1.222  christos 	struct sysctlnode node;
   3084      1.222  christos 
   3085      1.222  christos 	node = *rnode;
   3086      1.222  christos 	node.sysctl_data = &expose_address;
   3087      1.222  christos 	expose_address = *(int *)rnode->sysctl_data;
   3088      1.222  christos 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3089      1.222  christos 	if (error || newp == NULL)
   3090      1.222  christos 		return error;
   3091      1.222  christos 
   3092      1.222  christos 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
   3093      1.222  christos 	    0, NULL, NULL, NULL))
   3094      1.222  christos 		return EPERM;
   3095      1.222  christos 
   3096      1.222  christos 	switch (expose_address) {
   3097      1.222  christos 	case 0:
   3098      1.222  christos 	case 1:
   3099      1.222  christos 	case 2:
   3100      1.222  christos 		break;
   3101      1.222  christos 	default:
   3102      1.222  christos 		return EINVAL;
   3103      1.222  christos 	}
   3104      1.222  christos 
   3105      1.222  christos 	*(int *)rnode->sysctl_data = expose_address;
   3106      1.222  christos 
   3107      1.222  christos 	return 0;
   3108      1.222  christos }
   3109      1.222  christos 
   3110      1.222  christos bool
   3111      1.222  christos get_expose_address(struct proc *p)
   3112      1.222  christos {
   3113      1.222  christos 	/* allow only if sysctl variable is set or privileged */
   3114      1.222  christos 	return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
   3115      1.222  christos 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
   3116      1.222  christos }
   3117