kern_proc.c revision 1.94.4.13 1 1.94.4.13 ad /* $NetBSD: kern_proc.c,v 1.94.4.13 2007/02/01 06:21:07 ad Exp $ */
2 1.33 thorpej
3 1.33 thorpej /*-
4 1.94.4.8 ad * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
5 1.33 thorpej * All rights reserved.
6 1.33 thorpej *
7 1.33 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.33 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.94.4.5 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.33 thorpej *
11 1.33 thorpej * Redistribution and use in source and binary forms, with or without
12 1.33 thorpej * modification, are permitted provided that the following conditions
13 1.33 thorpej * are met:
14 1.33 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.33 thorpej * notice, this list of conditions and the following disclaimer.
16 1.33 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.33 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.33 thorpej * documentation and/or other materials provided with the distribution.
19 1.33 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.33 thorpej * must display the following acknowledgement:
21 1.33 thorpej * This product includes software developed by the NetBSD
22 1.33 thorpej * Foundation, Inc. and its contributors.
23 1.33 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.33 thorpej * contributors may be used to endorse or promote products derived
25 1.33 thorpej * from this software without specific prior written permission.
26 1.33 thorpej *
27 1.33 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.33 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.33 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.33 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.33 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.33 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.33 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.33 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.33 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.33 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.33 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.33 thorpej */
39 1.9 cgd
40 1.1 cgd /*
41 1.7 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 1.7 cgd * The Regents of the University of California. All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Redistribution and use in source and binary forms, with or without
45 1.1 cgd * modification, are permitted provided that the following conditions
46 1.1 cgd * are met:
47 1.1 cgd * 1. Redistributions of source code must retain the above copyright
48 1.1 cgd * notice, this list of conditions and the following disclaimer.
49 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 cgd * notice, this list of conditions and the following disclaimer in the
51 1.1 cgd * documentation and/or other materials provided with the distribution.
52 1.65 agc * 3. Neither the name of the University nor the names of its contributors
53 1.1 cgd * may be used to endorse or promote products derived from this software
54 1.1 cgd * without specific prior written permission.
55 1.1 cgd *
56 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.1 cgd * SUCH DAMAGE.
67 1.1 cgd *
68 1.23 fvdl * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 1.1 cgd */
70 1.45 lukem
71 1.45 lukem #include <sys/cdefs.h>
72 1.94.4.13 ad __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.94.4.13 2007/02/01 06:21:07 ad Exp $");
73 1.48 yamt
74 1.48 yamt #include "opt_kstack.h"
75 1.88 onoe #include "opt_maxuprc.h"
76 1.90 rjs #include "opt_multiprocessor.h"
77 1.90 rjs #include "opt_lockdebug.h"
78 1.1 cgd
79 1.5 mycroft #include <sys/param.h>
80 1.5 mycroft #include <sys/systm.h>
81 1.5 mycroft #include <sys/kernel.h>
82 1.5 mycroft #include <sys/proc.h>
83 1.28 thorpej #include <sys/resourcevar.h>
84 1.5 mycroft #include <sys/buf.h>
85 1.5 mycroft #include <sys/acct.h>
86 1.5 mycroft #include <sys/wait.h>
87 1.5 mycroft #include <sys/file.h>
88 1.8 mycroft #include <ufs/ufs/quota.h>
89 1.5 mycroft #include <sys/uio.h>
90 1.5 mycroft #include <sys/malloc.h>
91 1.24 thorpej #include <sys/pool.h>
92 1.5 mycroft #include <sys/mbuf.h>
93 1.5 mycroft #include <sys/ioctl.h>
94 1.5 mycroft #include <sys/tty.h>
95 1.11 cgd #include <sys/signalvar.h>
96 1.51 gmcgarry #include <sys/ras.h>
97 1.81 junyoung #include <sys/filedesc.h>
98 1.89 elad #include <sys/kauth.h>
99 1.94.4.3 ad #include <sys/sleepq.h>
100 1.81 junyoung
101 1.81 junyoung #include <uvm/uvm.h>
102 1.79 yamt #include <uvm/uvm_extern.h>
103 1.5 mycroft
104 1.7 cgd /*
105 1.10 mycroft * Other process lists
106 1.7 cgd */
107 1.31 thorpej
108 1.10 mycroft struct proclist allproc;
109 1.32 thorpej struct proclist zombproc; /* resources have been freed */
110 1.32 thorpej
111 1.32 thorpej /*
112 1.94.4.7 ad * There are two locks on global process state.
113 1.33 thorpej *
114 1.94.4.1 ad * 1. proclist_lock is a reader/writer lock and is used when modifying or
115 1.94.4.1 ad * examining process state from a process context. It protects our internal
116 1.94.4.1 ad * tables, all of the process lists, and a number of members of struct lwp
117 1.94.4.1 ad * and struct proc.
118 1.94.4.1 ad
119 1.94.4.1 ad * 2. proclist_mutex is used when allproc must be traversed from an
120 1.94.4.1 ad * interrupt context, or when we must signal processes from an interrupt
121 1.94.4.1 ad * context. The proclist_lock should always be used in preference.
122 1.33 thorpej *
123 1.94.4.7 ad * proclist_lock proclist_mutex structure
124 1.94.4.7 ad * --------------- --------------- -----------------
125 1.94.4.7 ad * x zombproc
126 1.94.4.7 ad * x x pid_table
127 1.94.4.7 ad * x proc::p_pptr
128 1.94.4.7 ad * x proc::p_sibling
129 1.94.4.7 ad * x proc::p_children
130 1.94.4.7 ad * x x allproc
131 1.94.4.7 ad * x x proc::p_pgrp
132 1.94.4.7 ad * x x proc::p_pglist
133 1.94.4.7 ad * x x proc::p_session
134 1.94.4.7 ad * x x proc::p_list
135 1.94.4.7 ad * x alllwp
136 1.94.4.7 ad * x lwp::l_list
137 1.94.4.3 ad *
138 1.94.4.3 ad * The lock order for processes and LWPs is apporoximately as following:
139 1.94.4.3 ad *
140 1.94.4.3 ad * kernel_mutex
141 1.94.4.3 ad * -> proclist_lock
142 1.94.4.3 ad * -> proclist_mutex
143 1.94.4.5 ad * -> proc::p_mutex
144 1.94.4.3 ad * -> proc::p_smutex
145 1.33 thorpej */
146 1.94.4.1 ad krwlock_t proclist_lock;
147 1.94.4.1 ad kmutex_t proclist_mutex;
148 1.33 thorpej
149 1.33 thorpej /*
150 1.72 junyoung * pid to proc lookup is done by indexing the pid_table array.
151 1.61 dsl * Since pid numbers are only allocated when an empty slot
152 1.61 dsl * has been found, there is no need to search any lists ever.
153 1.61 dsl * (an orphaned pgrp will lock the slot, a session will lock
154 1.61 dsl * the pgrp with the same number.)
155 1.61 dsl * If the table is too small it is reallocated with twice the
156 1.61 dsl * previous size and the entries 'unzipped' into the two halves.
157 1.61 dsl * A linked list of free entries is passed through the pt_proc
158 1.61 dsl * field of 'free' items - set odd to be an invalid ptr.
159 1.61 dsl */
160 1.61 dsl
161 1.61 dsl struct pid_table {
162 1.61 dsl struct proc *pt_proc;
163 1.61 dsl struct pgrp *pt_pgrp;
164 1.72 junyoung };
165 1.61 dsl #if 1 /* strongly typed cast - should be a noop */
166 1.84 perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
167 1.61 dsl #else
168 1.61 dsl #define p2u(p) ((uint)p)
169 1.72 junyoung #endif
170 1.61 dsl #define P_VALID(p) (!(p2u(p) & 1))
171 1.61 dsl #define P_NEXT(p) (p2u(p) >> 1)
172 1.61 dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
173 1.61 dsl
174 1.61 dsl #define INITIAL_PID_TABLE_SIZE (1 << 5)
175 1.61 dsl static struct pid_table *pid_table;
176 1.61 dsl static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
177 1.61 dsl static uint pid_alloc_lim; /* max we allocate before growing table */
178 1.61 dsl static uint pid_alloc_cnt; /* number of allocated pids */
179 1.61 dsl
180 1.61 dsl /* links through free slots - never empty! */
181 1.61 dsl static uint next_free_pt, last_free_pt;
182 1.61 dsl static pid_t pid_max = PID_MAX; /* largest value we allocate */
183 1.31 thorpej
184 1.81 junyoung /* Components of the first process -- never freed. */
185 1.81 junyoung struct session session0;
186 1.81 junyoung struct pgrp pgrp0;
187 1.81 junyoung struct proc proc0;
188 1.94.4.13 ad struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT);
189 1.89 elad kauth_cred_t cred0;
190 1.81 junyoung struct filedesc0 filedesc0;
191 1.81 junyoung struct cwdinfo cwdi0;
192 1.81 junyoung struct plimit limit0;
193 1.81 junyoung struct pstats pstat0;
194 1.81 junyoung struct vmspace vmspace0;
195 1.81 junyoung struct sigacts sigacts0;
196 1.94.4.1 ad struct turnstile turnstile0;
197 1.81 junyoung
198 1.81 junyoung extern struct user *proc0paddr;
199 1.81 junyoung
200 1.81 junyoung extern const struct emul emul_netbsd; /* defined in kern_exec.c */
201 1.81 junyoung
202 1.81 junyoung int nofile = NOFILE;
203 1.81 junyoung int maxuprc = MAXUPRC;
204 1.81 junyoung int cmask = CMASK;
205 1.81 junyoung
206 1.77 simonb POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
207 1.77 simonb &pool_allocator_nointr);
208 1.77 simonb POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
209 1.77 simonb &pool_allocator_nointr);
210 1.77 simonb POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
211 1.77 simonb &pool_allocator_nointr);
212 1.77 simonb POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
213 1.77 simonb &pool_allocator_nointr);
214 1.77 simonb POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
215 1.77 simonb &pool_allocator_nointr);
216 1.77 simonb POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
217 1.77 simonb &pool_allocator_nointr);
218 1.57 thorpej
219 1.57 thorpej MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
220 1.57 thorpej MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
221 1.57 thorpej MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
222 1.10 mycroft
223 1.31 thorpej /*
224 1.31 thorpej * The process list descriptors, used during pid allocation and
225 1.31 thorpej * by sysctl. No locking on this data structure is needed since
226 1.31 thorpej * it is completely static.
227 1.31 thorpej */
228 1.31 thorpej const struct proclist_desc proclists[] = {
229 1.31 thorpej { &allproc },
230 1.31 thorpej { &zombproc },
231 1.31 thorpej { NULL },
232 1.31 thorpej };
233 1.31 thorpej
234 1.72 junyoung static void orphanpg(struct pgrp *);
235 1.72 junyoung static void pg_delete(pid_t);
236 1.13 christos
237 1.94.4.6 ad static specificdata_domain_t proc_specificdata_domain;
238 1.94.4.6 ad
239 1.10 mycroft /*
240 1.10 mycroft * Initialize global process hashing structures.
241 1.10 mycroft */
242 1.11 cgd void
243 1.59 dsl procinit(void)
244 1.7 cgd {
245 1.31 thorpej const struct proclist_desc *pd;
246 1.61 dsl int i;
247 1.61 dsl #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
248 1.31 thorpej
249 1.31 thorpej for (pd = proclists; pd->pd_list != NULL; pd++)
250 1.31 thorpej LIST_INIT(pd->pd_list);
251 1.7 cgd
252 1.94.4.1 ad rw_init(&proclist_lock);
253 1.94.4.9 ad mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_VM);
254 1.33 thorpej
255 1.61 dsl pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
256 1.61 dsl M_PROC, M_WAITOK);
257 1.61 dsl /* Set free list running through table...
258 1.61 dsl Preset 'use count' above PID_MAX so we allocate pid 1 next. */
259 1.61 dsl for (i = 0; i <= pid_tbl_mask; i++) {
260 1.61 dsl pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
261 1.61 dsl pid_table[i].pt_pgrp = 0;
262 1.61 dsl }
263 1.61 dsl /* slot 0 is just grabbed */
264 1.61 dsl next_free_pt = 1;
265 1.61 dsl /* Need to fix last entry. */
266 1.61 dsl last_free_pt = pid_tbl_mask;
267 1.61 dsl pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
268 1.61 dsl /* point at which we grow table - to avoid reusing pids too often */
269 1.61 dsl pid_alloc_lim = pid_tbl_mask - 1;
270 1.61 dsl #undef LINK_EMPTY
271 1.61 dsl
272 1.55 thorpej LIST_INIT(&alllwp);
273 1.55 thorpej
274 1.43 ad uihashtbl =
275 1.43 ad hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
276 1.94.4.6 ad
277 1.94.4.6 ad proc_specificdata_domain = specificdata_domain_create();
278 1.94.4.6 ad KASSERT(proc_specificdata_domain != NULL);
279 1.7 cgd }
280 1.1 cgd
281 1.7 cgd /*
282 1.81 junyoung * Initialize process 0.
283 1.81 junyoung */
284 1.81 junyoung void
285 1.81 junyoung proc0_init(void)
286 1.81 junyoung {
287 1.81 junyoung struct proc *p;
288 1.81 junyoung struct pgrp *pg;
289 1.81 junyoung struct session *sess;
290 1.81 junyoung struct lwp *l;
291 1.81 junyoung u_int i;
292 1.81 junyoung rlim_t lim;
293 1.81 junyoung
294 1.81 junyoung p = &proc0;
295 1.81 junyoung pg = &pgrp0;
296 1.81 junyoung sess = &session0;
297 1.81 junyoung l = &lwp0;
298 1.81 junyoung
299 1.94.4.9 ad mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_VM);
300 1.94.4.7 ad mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_STATCLOCK);
301 1.94.4.5 ad mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_NONE);
302 1.94.4.3 ad mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
303 1.94.4.5 ad cv_init(&p->p_refcv, "drainref");
304 1.94.4.5 ad cv_init(&p->p_waitcv, "wait");
305 1.94.4.7 ad cv_init(&p->p_lwpcv, "lwpwait");
306 1.94.4.5 ad
307 1.81 junyoung LIST_INIT(&p->p_lwps);
308 1.94.4.3 ad LIST_INIT(&p->p_sigwaiters);
309 1.81 junyoung LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
310 1.94.4.5 ad
311 1.81 junyoung p->p_nlwps = 1;
312 1.94.4.3 ad p->p_nrlwps = 1;
313 1.94.4.5 ad p->p_refcnt = 1;
314 1.81 junyoung
315 1.81 junyoung pid_table[0].pt_proc = p;
316 1.81 junyoung LIST_INSERT_HEAD(&allproc, p, p_list);
317 1.81 junyoung LIST_INSERT_HEAD(&alllwp, l, l_list);
318 1.81 junyoung
319 1.81 junyoung p->p_pgrp = pg;
320 1.81 junyoung pid_table[0].pt_pgrp = pg;
321 1.81 junyoung LIST_INIT(&pg->pg_members);
322 1.81 junyoung LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
323 1.81 junyoung
324 1.81 junyoung pg->pg_session = sess;
325 1.81 junyoung sess->s_count = 1;
326 1.81 junyoung sess->s_sid = 0;
327 1.81 junyoung sess->s_leader = p;
328 1.81 junyoung
329 1.81 junyoung /*
330 1.81 junyoung * Set P_NOCLDWAIT so that kernel threads are reparented to
331 1.81 junyoung * init(8) when they exit. init(8) can easily wait them out
332 1.81 junyoung * for us.
333 1.81 junyoung */
334 1.81 junyoung p->p_flag = P_SYSTEM | P_NOCLDWAIT;
335 1.81 junyoung p->p_stat = SACTIVE;
336 1.81 junyoung p->p_nice = NZERO;
337 1.81 junyoung p->p_emul = &emul_netbsd;
338 1.81 junyoung #ifdef __HAVE_SYSCALL_INTERN
339 1.81 junyoung (*p->p_emul->e_syscall_intern)(p);
340 1.81 junyoung #endif
341 1.81 junyoung strncpy(p->p_comm, "swapper", MAXCOMLEN);
342 1.81 junyoung
343 1.94.4.4 ad l->l_mutex = &sched_mutex;
344 1.94.4.3 ad l->l_flag = L_INMEM | L_SYSTEM;
345 1.81 junyoung l->l_stat = LSONPROC;
346 1.94.4.1 ad l->l_ts = &turnstile0;
347 1.94.4.5 ad l->l_syncobj = &sched_syncobj;
348 1.94.4.5 ad l->l_refcnt = 1;
349 1.94.4.7 ad l->l_cpu = curcpu();
350 1.94.4.8 ad l->l_priority = PRIBIO;
351 1.94.4.8 ad l->l_usrpri = PRIBIO;
352 1.81 junyoung
353 1.81 junyoung callout_init(&l->l_tsleep_ch);
354 1.94.4.8 ad cv_init(&l->l_sigcv, "sigwait");
355 1.81 junyoung
356 1.81 junyoung /* Create credentials. */
357 1.89 elad cred0 = kauth_cred_alloc();
358 1.89 elad p->p_cred = cred0;
359 1.94.4.1 ad kauth_cred_hold(cred0);
360 1.94.4.1 ad l->l_cred = cred0;
361 1.81 junyoung
362 1.81 junyoung /* Create the CWD info. */
363 1.81 junyoung p->p_cwdi = &cwdi0;
364 1.81 junyoung cwdi0.cwdi_cmask = cmask;
365 1.81 junyoung cwdi0.cwdi_refcnt = 1;
366 1.81 junyoung simple_lock_init(&cwdi0.cwdi_slock);
367 1.81 junyoung
368 1.81 junyoung /* Create the limits structures. */
369 1.81 junyoung p->p_limit = &limit0;
370 1.81 junyoung simple_lock_init(&limit0.p_slock);
371 1.81 junyoung for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
372 1.81 junyoung limit0.pl_rlimit[i].rlim_cur =
373 1.81 junyoung limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
374 1.81 junyoung
375 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
376 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
377 1.81 junyoung maxfiles < nofile ? maxfiles : nofile;
378 1.81 junyoung
379 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
380 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
381 1.81 junyoung maxproc < maxuprc ? maxproc : maxuprc;
382 1.81 junyoung
383 1.81 junyoung lim = ptoa(uvmexp.free);
384 1.81 junyoung limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
385 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
386 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
387 1.81 junyoung limit0.pl_corename = defcorename;
388 1.81 junyoung limit0.p_refcnt = 1;
389 1.81 junyoung
390 1.81 junyoung /* Configure virtual memory system, set vm rlimits. */
391 1.81 junyoung uvm_init_limits(p);
392 1.81 junyoung
393 1.81 junyoung /* Initialize file descriptor table for proc0. */
394 1.81 junyoung p->p_fd = &filedesc0.fd_fd;
395 1.81 junyoung fdinit1(&filedesc0);
396 1.81 junyoung
397 1.81 junyoung /*
398 1.81 junyoung * Initialize proc0's vmspace, which uses the kernel pmap.
399 1.81 junyoung * All kernel processes (which never have user space mappings)
400 1.81 junyoung * share proc0's vmspace, and thus, the kernel pmap.
401 1.81 junyoung */
402 1.81 junyoung uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
403 1.81 junyoung trunc_page(VM_MAX_ADDRESS));
404 1.81 junyoung p->p_vmspace = &vmspace0;
405 1.81 junyoung
406 1.81 junyoung l->l_addr = proc0paddr; /* XXX */
407 1.81 junyoung
408 1.81 junyoung p->p_stats = &pstat0;
409 1.81 junyoung
410 1.81 junyoung /* Initialize signal state for proc0. */
411 1.81 junyoung p->p_sigacts = &sigacts0;
412 1.94.4.5 ad mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
413 1.81 junyoung siginit(p);
414 1.94.4.6 ad
415 1.94.4.6 ad proc_initspecific(p);
416 1.94.4.6 ad lwp_initspecific(l);
417 1.81 junyoung }
418 1.81 junyoung
419 1.81 junyoung /*
420 1.74 junyoung * Check that the specified process group is in the session of the
421 1.60 dsl * specified process.
422 1.60 dsl * Treats -ve ids as process ids.
423 1.60 dsl * Used to validate TIOCSPGRP requests.
424 1.60 dsl */
425 1.60 dsl int
426 1.60 dsl pgid_in_session(struct proc *p, pid_t pg_id)
427 1.60 dsl {
428 1.60 dsl struct pgrp *pgrp;
429 1.60 dsl
430 1.60 dsl if (pg_id < 0) {
431 1.60 dsl struct proc *p1 = pfind(-pg_id);
432 1.64 dsl if (p1 == NULL)
433 1.64 dsl return EINVAL;
434 1.60 dsl pgrp = p1->p_pgrp;
435 1.60 dsl } else {
436 1.60 dsl pgrp = pgfind(pg_id);
437 1.60 dsl if (pgrp == NULL)
438 1.64 dsl return EINVAL;
439 1.60 dsl }
440 1.60 dsl if (pgrp->pg_session != p->p_pgrp->pg_session)
441 1.60 dsl return EPERM;
442 1.60 dsl return 0;
443 1.7 cgd }
444 1.4 andrew
445 1.1 cgd /*
446 1.41 sommerfe * Is p an inferior of q?
447 1.94 ad *
448 1.94 ad * Call with the proclist_lock held.
449 1.1 cgd */
450 1.11 cgd int
451 1.59 dsl inferior(struct proc *p, struct proc *q)
452 1.1 cgd {
453 1.1 cgd
454 1.41 sommerfe for (; p != q; p = p->p_pptr)
455 1.1 cgd if (p->p_pid == 0)
456 1.82 junyoung return 0;
457 1.82 junyoung return 1;
458 1.1 cgd }
459 1.1 cgd
460 1.1 cgd /*
461 1.1 cgd * Locate a process by number
462 1.1 cgd */
463 1.1 cgd struct proc *
464 1.68 dsl p_find(pid_t pid, uint flags)
465 1.1 cgd {
466 1.33 thorpej struct proc *p;
467 1.68 dsl char stat;
468 1.1 cgd
469 1.68 dsl if (!(flags & PFIND_LOCKED))
470 1.94.4.1 ad rw_enter(&proclist_lock, RW_READER);
471 1.94.4.1 ad
472 1.61 dsl p = pid_table[pid & pid_tbl_mask].pt_proc;
473 1.94.4.7 ad
474 1.61 dsl /* Only allow live processes to be found by pid. */
475 1.94.4.7 ad /* XXXSMP p_stat */
476 1.94.4.7 ad if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
477 1.94.4.7 ad stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
478 1.94.4.7 ad (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
479 1.68 dsl if (flags & PFIND_UNLOCK_OK)
480 1.94.4.1 ad rw_exit(&proclist_lock);
481 1.68 dsl return p;
482 1.68 dsl }
483 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
484 1.94.4.1 ad rw_exit(&proclist_lock);
485 1.68 dsl return NULL;
486 1.1 cgd }
487 1.1 cgd
488 1.61 dsl
489 1.1 cgd /*
490 1.1 cgd * Locate a process group by number
491 1.1 cgd */
492 1.1 cgd struct pgrp *
493 1.68 dsl pg_find(pid_t pgid, uint flags)
494 1.1 cgd {
495 1.68 dsl struct pgrp *pg;
496 1.1 cgd
497 1.68 dsl if (!(flags & PFIND_LOCKED))
498 1.94.4.1 ad rw_enter(&proclist_lock, RW_READER);
499 1.68 dsl pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
500 1.61 dsl /*
501 1.61 dsl * Can't look up a pgrp that only exists because the session
502 1.61 dsl * hasn't died yet (traditional)
503 1.61 dsl */
504 1.68 dsl if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
505 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
506 1.94.4.1 ad rw_exit(&proclist_lock);
507 1.68 dsl return NULL;
508 1.68 dsl }
509 1.68 dsl
510 1.68 dsl if (flags & PFIND_UNLOCK_OK)
511 1.94.4.1 ad rw_exit(&proclist_lock);
512 1.68 dsl return pg;
513 1.1 cgd }
514 1.1 cgd
515 1.61 dsl static void
516 1.61 dsl expand_pid_table(void)
517 1.1 cgd {
518 1.61 dsl uint pt_size = pid_tbl_mask + 1;
519 1.61 dsl struct pid_table *n_pt, *new_pt;
520 1.61 dsl struct proc *proc;
521 1.61 dsl struct pgrp *pgrp;
522 1.61 dsl int i;
523 1.61 dsl pid_t pid;
524 1.1 cgd
525 1.61 dsl new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
526 1.61 dsl
527 1.94.4.1 ad rw_enter(&proclist_lock, RW_WRITER);
528 1.61 dsl if (pt_size != pid_tbl_mask + 1) {
529 1.61 dsl /* Another process beat us to it... */
530 1.94.4.1 ad rw_exit(&proclist_lock);
531 1.61 dsl FREE(new_pt, M_PROC);
532 1.61 dsl return;
533 1.61 dsl }
534 1.72 junyoung
535 1.61 dsl /*
536 1.61 dsl * Copy entries from old table into new one.
537 1.61 dsl * If 'pid' is 'odd' we need to place in the upper half,
538 1.61 dsl * even pid's to the lower half.
539 1.61 dsl * Free items stay in the low half so we don't have to
540 1.61 dsl * fixup the reference to them.
541 1.61 dsl * We stuff free items on the front of the freelist
542 1.61 dsl * because we can't write to unmodified entries.
543 1.74 junyoung * Processing the table backwards maintains a semblance
544 1.61 dsl * of issueing pid numbers that increase with time.
545 1.61 dsl */
546 1.61 dsl i = pt_size - 1;
547 1.61 dsl n_pt = new_pt + i;
548 1.61 dsl for (; ; i--, n_pt--) {
549 1.61 dsl proc = pid_table[i].pt_proc;
550 1.61 dsl pgrp = pid_table[i].pt_pgrp;
551 1.61 dsl if (!P_VALID(proc)) {
552 1.61 dsl /* Up 'use count' so that link is valid */
553 1.61 dsl pid = (P_NEXT(proc) + pt_size) & ~pt_size;
554 1.61 dsl proc = P_FREE(pid);
555 1.61 dsl if (pgrp)
556 1.61 dsl pid = pgrp->pg_id;
557 1.61 dsl } else
558 1.61 dsl pid = proc->p_pid;
559 1.72 junyoung
560 1.61 dsl /* Save entry in appropriate half of table */
561 1.61 dsl n_pt[pid & pt_size].pt_proc = proc;
562 1.61 dsl n_pt[pid & pt_size].pt_pgrp = pgrp;
563 1.61 dsl
564 1.61 dsl /* Put other piece on start of free list */
565 1.61 dsl pid = (pid ^ pt_size) & ~pid_tbl_mask;
566 1.61 dsl n_pt[pid & pt_size].pt_proc =
567 1.61 dsl P_FREE((pid & ~pt_size) | next_free_pt);
568 1.61 dsl n_pt[pid & pt_size].pt_pgrp = 0;
569 1.61 dsl next_free_pt = i | (pid & pt_size);
570 1.61 dsl if (i == 0)
571 1.61 dsl break;
572 1.61 dsl }
573 1.61 dsl
574 1.61 dsl /* Switch tables */
575 1.94.4.2 ad mutex_enter(&proclist_mutex);
576 1.61 dsl n_pt = pid_table;
577 1.61 dsl pid_table = new_pt;
578 1.94.4.2 ad mutex_exit(&proclist_mutex);
579 1.61 dsl pid_tbl_mask = pt_size * 2 - 1;
580 1.61 dsl
581 1.61 dsl /*
582 1.61 dsl * pid_max starts as PID_MAX (= 30000), once we have 16384
583 1.61 dsl * allocated pids we need it to be larger!
584 1.61 dsl */
585 1.61 dsl if (pid_tbl_mask > PID_MAX) {
586 1.61 dsl pid_max = pid_tbl_mask * 2 + 1;
587 1.61 dsl pid_alloc_lim |= pid_alloc_lim << 1;
588 1.61 dsl } else
589 1.61 dsl pid_alloc_lim <<= 1; /* doubles number of free slots... */
590 1.61 dsl
591 1.94.4.1 ad rw_exit(&proclist_lock);
592 1.61 dsl FREE(n_pt, M_PROC);
593 1.61 dsl }
594 1.61 dsl
595 1.61 dsl struct proc *
596 1.61 dsl proc_alloc(void)
597 1.61 dsl {
598 1.61 dsl struct proc *p;
599 1.61 dsl int nxt;
600 1.61 dsl pid_t pid;
601 1.61 dsl struct pid_table *pt;
602 1.61 dsl
603 1.61 dsl p = pool_get(&proc_pool, PR_WAITOK);
604 1.61 dsl p->p_stat = SIDL; /* protect against others */
605 1.61 dsl
606 1.94.4.6 ad proc_initspecific(p);
607 1.61 dsl /* allocate next free pid */
608 1.61 dsl
609 1.61 dsl for (;;expand_pid_table()) {
610 1.61 dsl if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
611 1.61 dsl /* ensure pids cycle through 2000+ values */
612 1.61 dsl continue;
613 1.94.4.1 ad rw_enter(&proclist_lock, RW_WRITER);
614 1.61 dsl pt = &pid_table[next_free_pt];
615 1.1 cgd #ifdef DIAGNOSTIC
616 1.63 christos if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
617 1.61 dsl panic("proc_alloc: slot busy");
618 1.1 cgd #endif
619 1.61 dsl nxt = P_NEXT(pt->pt_proc);
620 1.61 dsl if (nxt & pid_tbl_mask)
621 1.61 dsl break;
622 1.61 dsl /* Table full - expand (NB last entry not used....) */
623 1.94.4.1 ad rw_exit(&proclist_lock);
624 1.61 dsl }
625 1.61 dsl
626 1.61 dsl /* pid is 'saved use count' + 'size' + entry */
627 1.61 dsl pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
628 1.61 dsl if ((uint)pid > (uint)pid_max)
629 1.61 dsl pid &= pid_tbl_mask;
630 1.61 dsl p->p_pid = pid;
631 1.61 dsl next_free_pt = nxt & pid_tbl_mask;
632 1.61 dsl
633 1.61 dsl /* Grab table slot */
634 1.94.4.2 ad mutex_enter(&proclist_mutex);
635 1.61 dsl pt->pt_proc = p;
636 1.94.4.2 ad mutex_exit(&proclist_mutex);
637 1.61 dsl pid_alloc_cnt++;
638 1.61 dsl
639 1.94.4.1 ad rw_exit(&proclist_lock);
640 1.61 dsl
641 1.61 dsl return p;
642 1.61 dsl }
643 1.61 dsl
644 1.61 dsl /*
645 1.61 dsl * Free last resources of a process - called from proc_free (in kern_exit.c)
646 1.94.4.1 ad *
647 1.94.4.1 ad * Called with the proclist_lock write held, and releases upon exit.
648 1.61 dsl */
649 1.61 dsl void
650 1.61 dsl proc_free_mem(struct proc *p)
651 1.61 dsl {
652 1.61 dsl pid_t pid = p->p_pid;
653 1.61 dsl struct pid_table *pt;
654 1.61 dsl
655 1.94.4.1 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
656 1.61 dsl
657 1.61 dsl pt = &pid_table[pid & pid_tbl_mask];
658 1.1 cgd #ifdef DIAGNOSTIC
659 1.63 christos if (__predict_false(pt->pt_proc != p))
660 1.61 dsl panic("proc_free: pid_table mismatch, pid %x, proc %p",
661 1.61 dsl pid, p);
662 1.1 cgd #endif
663 1.94.4.2 ad mutex_enter(&proclist_mutex);
664 1.61 dsl /* save pid use count in slot */
665 1.61 dsl pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
666 1.61 dsl
667 1.61 dsl if (pt->pt_pgrp == NULL) {
668 1.61 dsl /* link last freed entry onto ours */
669 1.61 dsl pid &= pid_tbl_mask;
670 1.61 dsl pt = &pid_table[last_free_pt];
671 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
672 1.61 dsl last_free_pt = pid;
673 1.61 dsl pid_alloc_cnt--;
674 1.61 dsl }
675 1.94.4.2 ad mutex_exit(&proclist_mutex);
676 1.61 dsl
677 1.61 dsl nprocs--;
678 1.94.4.1 ad rw_exit(&proclist_lock);
679 1.61 dsl
680 1.61 dsl pool_put(&proc_pool, p);
681 1.61 dsl }
682 1.61 dsl
683 1.61 dsl /*
684 1.61 dsl * Move p to a new or existing process group (and session)
685 1.61 dsl *
686 1.61 dsl * If we are creating a new pgrp, the pgid should equal
687 1.72 junyoung * the calling process' pid.
688 1.61 dsl * If is only valid to enter a process group that is in the session
689 1.61 dsl * of the process.
690 1.61 dsl * Also mksess should only be set if we are creating a process group
691 1.61 dsl *
692 1.72 junyoung * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
693 1.94.4.1 ad * SYSV setpgrp support for hpux.
694 1.61 dsl */
695 1.61 dsl int
696 1.94.4.1 ad enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
697 1.61 dsl {
698 1.61 dsl struct pgrp *new_pgrp, *pgrp;
699 1.61 dsl struct session *sess;
700 1.94.4.1 ad struct proc *p;
701 1.61 dsl int rval;
702 1.61 dsl pid_t pg_id = NO_PGID;
703 1.61 dsl
704 1.61 dsl /* Allocate data areas we might need before doing any validity checks */
705 1.94.4.1 ad rw_enter(&proclist_lock, RW_READER); /* Because pid_table might change */
706 1.61 dsl if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
707 1.94.4.1 ad rw_exit(&proclist_lock);
708 1.61 dsl new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
709 1.61 dsl } else {
710 1.94.4.1 ad rw_exit(&proclist_lock);
711 1.61 dsl new_pgrp = NULL;
712 1.61 dsl }
713 1.61 dsl if (mksess)
714 1.94.4.6 ad sess = pool_get(&session_pool, PR_WAITOK);
715 1.61 dsl else
716 1.61 dsl sess = NULL;
717 1.61 dsl
718 1.94.4.1 ad rw_enter(&proclist_lock, RW_WRITER);
719 1.61 dsl rval = EPERM; /* most common error (to save typing) */
720 1.61 dsl
721 1.61 dsl /* Check pgrp exists or can be created */
722 1.61 dsl pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
723 1.61 dsl if (pgrp != NULL && pgrp->pg_id != pgid)
724 1.61 dsl goto done;
725 1.61 dsl
726 1.61 dsl /* Can only set another process under restricted circumstances. */
727 1.94.4.1 ad if (pid != curp->p_pid) {
728 1.61 dsl /* must exist and be one of our children... */
729 1.94.4.1 ad if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
730 1.94.4.1 ad !inferior(p, curp)) {
731 1.61 dsl rval = ESRCH;
732 1.61 dsl goto done;
733 1.61 dsl }
734 1.61 dsl /* ... in the same session... */
735 1.61 dsl if (sess != NULL || p->p_session != curp->p_session)
736 1.61 dsl goto done;
737 1.61 dsl /* ... existing pgid must be in same session ... */
738 1.61 dsl if (pgrp != NULL && pgrp->pg_session != p->p_session)
739 1.61 dsl goto done;
740 1.61 dsl /* ... and not done an exec. */
741 1.61 dsl if (p->p_flag & P_EXEC) {
742 1.61 dsl rval = EACCES;
743 1.61 dsl goto done;
744 1.49 enami }
745 1.94.4.1 ad } else {
746 1.94.4.1 ad /* ... setsid() cannot re-enter a pgrp */
747 1.94.4.1 ad if (mksess && (curp->p_pgid == curp->p_pid ||
748 1.94.4.1 ad pg_find(curp->p_pid, PFIND_LOCKED)))
749 1.94.4.1 ad goto done;
750 1.94.4.1 ad p = curp;
751 1.61 dsl }
752 1.1 cgd
753 1.61 dsl /* Changing the process group/session of a session
754 1.61 dsl leader is definitely off limits. */
755 1.61 dsl if (SESS_LEADER(p)) {
756 1.61 dsl if (sess == NULL && p->p_pgrp == pgrp)
757 1.61 dsl /* unless it's a definite noop */
758 1.61 dsl rval = 0;
759 1.61 dsl goto done;
760 1.61 dsl }
761 1.61 dsl
762 1.61 dsl /* Can only create a process group with id of process */
763 1.61 dsl if (pgrp == NULL && pgid != pid)
764 1.61 dsl goto done;
765 1.61 dsl
766 1.61 dsl /* Can only create a session if creating pgrp */
767 1.61 dsl if (sess != NULL && pgrp != NULL)
768 1.61 dsl goto done;
769 1.61 dsl
770 1.61 dsl /* Check we allocated memory for a pgrp... */
771 1.61 dsl if (pgrp == NULL && new_pgrp == NULL)
772 1.61 dsl goto done;
773 1.61 dsl
774 1.61 dsl /* Don't attach to 'zombie' pgrp */
775 1.61 dsl if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
776 1.61 dsl goto done;
777 1.61 dsl
778 1.61 dsl /* Expect to succeed now */
779 1.61 dsl rval = 0;
780 1.61 dsl
781 1.61 dsl if (pgrp == p->p_pgrp)
782 1.61 dsl /* nothing to do */
783 1.61 dsl goto done;
784 1.61 dsl
785 1.61 dsl /* Ok all setup, link up required structures */
786 1.94.4.2 ad
787 1.61 dsl if (pgrp == NULL) {
788 1.61 dsl pgrp = new_pgrp;
789 1.61 dsl new_pgrp = 0;
790 1.61 dsl if (sess != NULL) {
791 1.21 thorpej sess->s_sid = p->p_pid;
792 1.1 cgd sess->s_leader = p;
793 1.1 cgd sess->s_count = 1;
794 1.1 cgd sess->s_ttyvp = NULL;
795 1.1 cgd sess->s_ttyp = NULL;
796 1.58 dsl sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
797 1.25 perry memcpy(sess->s_login, p->p_session->s_login,
798 1.1 cgd sizeof(sess->s_login));
799 1.94.4.5 ad p->p_lflag &= ~PL_CONTROLT;
800 1.1 cgd } else {
801 1.61 dsl sess = p->p_pgrp->pg_session;
802 1.61 dsl SESSHOLD(sess);
803 1.1 cgd }
804 1.61 dsl pgrp->pg_session = sess;
805 1.61 dsl sess = 0;
806 1.61 dsl
807 1.1 cgd pgrp->pg_id = pgid;
808 1.10 mycroft LIST_INIT(&pgrp->pg_members);
809 1.61 dsl #ifdef DIAGNOSTIC
810 1.63 christos if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
811 1.61 dsl panic("enterpgrp: pgrp table slot in use");
812 1.63 christos if (__predict_false(mksess && p != curp))
813 1.63 christos panic("enterpgrp: mksession and p != curproc");
814 1.61 dsl #endif
815 1.94.4.2 ad mutex_enter(&proclist_mutex);
816 1.61 dsl pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
817 1.1 cgd pgrp->pg_jobc = 0;
818 1.94.4.2 ad } else
819 1.94.4.2 ad mutex_enter(&proclist_mutex);
820 1.1 cgd
821 1.94.4.1 ad #ifdef notyet
822 1.94.4.1 ad /*
823 1.94.4.1 ad * If there's a controlling terminal for the current session, we
824 1.94.4.1 ad * have to interlock with it. See ttread().
825 1.94.4.1 ad */
826 1.94.4.1 ad if (p->p_session->s_ttyvp != NULL) {
827 1.94.4.1 ad tp = p->p_session->s_ttyp;
828 1.94.4.1 ad mutex_enter(&tp->t_mutex);
829 1.94.4.1 ad } else
830 1.94.4.1 ad tp = NULL;
831 1.94.4.1 ad #endif
832 1.94.4.1 ad
833 1.1 cgd /*
834 1.1 cgd * Adjust eligibility of affected pgrps to participate in job control.
835 1.1 cgd * Increment eligibility counts before decrementing, otherwise we
836 1.1 cgd * could reach 0 spuriously during the first call.
837 1.1 cgd */
838 1.1 cgd fixjobc(p, pgrp, 1);
839 1.1 cgd fixjobc(p, p->p_pgrp, 0);
840 1.1 cgd
841 1.94.4.1 ad /* Move process to requested group. */
842 1.10 mycroft LIST_REMOVE(p, p_pglist);
843 1.52 matt if (LIST_EMPTY(&p->p_pgrp->pg_members))
844 1.61 dsl /* defer delete until we've dumped the lock */
845 1.61 dsl pg_id = p->p_pgrp->pg_id;
846 1.1 cgd p->p_pgrp = pgrp;
847 1.10 mycroft LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
848 1.94.4.1 ad mutex_exit(&proclist_mutex);
849 1.94.4.1 ad
850 1.94.4.1 ad #ifdef notyet
851 1.94.4.1 ad /* Done with the swap; we can release the tty mutex. */
852 1.94.4.1 ad if (tp != NULL)
853 1.94.4.1 ad mutex_exit(&tp->t_mutex);
854 1.94.4.1 ad #endif
855 1.61 dsl
856 1.61 dsl done:
857 1.94.4.5 ad if (pg_id != NO_PGID)
858 1.94.4.5 ad pg_delete(pg_id);
859 1.94.4.1 ad rw_exit(&proclist_lock);
860 1.61 dsl if (sess != NULL)
861 1.77 simonb pool_put(&session_pool, sess);
862 1.61 dsl if (new_pgrp != NULL)
863 1.61 dsl pool_put(&pgrp_pool, new_pgrp);
864 1.63 christos #ifdef DEBUG_PGRP
865 1.63 christos if (__predict_false(rval))
866 1.61 dsl printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
867 1.61 dsl pid, pgid, mksess, curp->p_pid, rval);
868 1.61 dsl #endif
869 1.61 dsl return rval;
870 1.1 cgd }
871 1.1 cgd
872 1.1 cgd /*
873 1.94.4.5 ad * Remove a process from its process group. Must be called with the
874 1.94.4.5 ad * proclist_lock write held.
875 1.1 cgd */
876 1.94.4.1 ad void
877 1.59 dsl leavepgrp(struct proc *p)
878 1.1 cgd {
879 1.61 dsl struct pgrp *pgrp;
880 1.1 cgd
881 1.94.4.5 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
882 1.94.4.5 ad
883 1.94.4.1 ad /*
884 1.94.4.1 ad * If there's a controlling terminal for the session, we have to
885 1.94.4.1 ad * interlock with it. See ttread().
886 1.94.4.1 ad */
887 1.94.4.1 ad mutex_enter(&proclist_mutex);
888 1.94.4.1 ad #ifdef notyet
889 1.94.4.1 ad if (p_>p_session->s_ttyvp != NULL) {
890 1.94.4.1 ad tp = p->p_session->s_ttyp;
891 1.94.4.1 ad mutex_enter(&tp->t_mutex);
892 1.94.4.1 ad } else
893 1.94.4.1 ad tp = NULL;
894 1.94.4.1 ad #endif
895 1.94.4.1 ad
896 1.61 dsl pgrp = p->p_pgrp;
897 1.10 mycroft LIST_REMOVE(p, p_pglist);
898 1.94 ad p->p_pgrp = NULL;
899 1.61 dsl
900 1.94.4.1 ad #ifdef notyet
901 1.94.4.1 ad if (tp != NULL)
902 1.94.4.1 ad mutex_exit(&tp->t_mutex);
903 1.94.4.1 ad #endif
904 1.94.4.1 ad mutex_exit(&proclist_mutex);
905 1.94.4.1 ad
906 1.94.4.1 ad if (LIST_EMPTY(&pgrp->pg_members))
907 1.94.4.1 ad pg_delete(pgrp->pg_id);
908 1.61 dsl }
909 1.61 dsl
910 1.94.4.5 ad /*
911 1.94.4.5 ad * Free a process group. Must be called with the proclist_lock write held.
912 1.94.4.5 ad */
913 1.61 dsl static void
914 1.61 dsl pg_free(pid_t pg_id)
915 1.61 dsl {
916 1.61 dsl struct pgrp *pgrp;
917 1.61 dsl struct pid_table *pt;
918 1.61 dsl
919 1.94.4.5 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
920 1.94.4.5 ad
921 1.61 dsl pt = &pid_table[pg_id & pid_tbl_mask];
922 1.61 dsl pgrp = pt->pt_pgrp;
923 1.61 dsl #ifdef DIAGNOSTIC
924 1.63 christos if (__predict_false(!pgrp || pgrp->pg_id != pg_id
925 1.63 christos || !LIST_EMPTY(&pgrp->pg_members)))
926 1.61 dsl panic("pg_free: process group absent or has members");
927 1.61 dsl #endif
928 1.61 dsl pt->pt_pgrp = 0;
929 1.61 dsl
930 1.61 dsl if (!P_VALID(pt->pt_proc)) {
931 1.61 dsl /* orphaned pgrp, put slot onto free list */
932 1.61 dsl #ifdef DIAGNOSTIC
933 1.63 christos if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
934 1.61 dsl panic("pg_free: process slot on free list");
935 1.61 dsl #endif
936 1.94.4.2 ad mutex_enter(&proclist_mutex);
937 1.61 dsl pg_id &= pid_tbl_mask;
938 1.61 dsl pt = &pid_table[last_free_pt];
939 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
940 1.94.4.2 ad mutex_exit(&proclist_mutex);
941 1.61 dsl last_free_pt = pg_id;
942 1.61 dsl pid_alloc_cnt--;
943 1.61 dsl }
944 1.61 dsl pool_put(&pgrp_pool, pgrp);
945 1.1 cgd }
946 1.1 cgd
947 1.1 cgd /*
948 1.94.4.5 ad * Delete a process group. Must be called with the proclist_lock write
949 1.94.4.5 ad * held.
950 1.1 cgd */
951 1.61 dsl static void
952 1.61 dsl pg_delete(pid_t pg_id)
953 1.61 dsl {
954 1.61 dsl struct pgrp *pgrp;
955 1.61 dsl struct tty *ttyp;
956 1.61 dsl struct session *ss;
957 1.94.4.1 ad int is_pgrp_leader;
958 1.61 dsl
959 1.94.4.5 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
960 1.94.4.5 ad
961 1.61 dsl pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
962 1.61 dsl if (pgrp == NULL || pgrp->pg_id != pg_id ||
963 1.94.4.5 ad !LIST_EMPTY(&pgrp->pg_members))
964 1.61 dsl return;
965 1.61 dsl
966 1.71 pk ss = pgrp->pg_session;
967 1.71 pk
968 1.61 dsl /* Remove reference (if any) from tty to this process group */
969 1.71 pk ttyp = ss->s_ttyp;
970 1.71 pk if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
971 1.61 dsl ttyp->t_pgrp = NULL;
972 1.71 pk #ifdef DIAGNOSTIC
973 1.71 pk if (ttyp->t_session != ss)
974 1.71 pk panic("pg_delete: wrong session on terminal");
975 1.71 pk #endif
976 1.71 pk }
977 1.61 dsl
978 1.71 pk /*
979 1.71 pk * The leading process group in a session is freed
980 1.71 pk * by sessdelete() if last reference.
981 1.71 pk */
982 1.71 pk is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
983 1.71 pk SESSRELE(ss);
984 1.61 dsl
985 1.71 pk if (is_pgrp_leader)
986 1.61 dsl return;
987 1.61 dsl
988 1.61 dsl pg_free(pg_id);
989 1.61 dsl }
990 1.61 dsl
991 1.61 dsl /*
992 1.61 dsl * Delete session - called from SESSRELE when s_count becomes zero.
993 1.94.4.5 ad * Must be called with the proclist_lock write held.
994 1.61 dsl */
995 1.11 cgd void
996 1.61 dsl sessdelete(struct session *ss)
997 1.1 cgd {
998 1.94.4.5 ad
999 1.94.4.5 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
1000 1.94.4.5 ad
1001 1.61 dsl /*
1002 1.61 dsl * We keep the pgrp with the same id as the session in
1003 1.61 dsl * order to stop a process being given the same pid.
1004 1.61 dsl * Since the pgrp holds a reference to the session, it
1005 1.61 dsl * must be a 'zombie' pgrp by now.
1006 1.61 dsl */
1007 1.61 dsl pg_free(ss->s_sid);
1008 1.77 simonb pool_put(&session_pool, ss);
1009 1.1 cgd }
1010 1.1 cgd
1011 1.1 cgd /*
1012 1.1 cgd * Adjust pgrp jobc counters when specified process changes process group.
1013 1.1 cgd * We count the number of processes in each process group that "qualify"
1014 1.1 cgd * the group for terminal job control (those with a parent in a different
1015 1.1 cgd * process group of the same session). If that count reaches zero, the
1016 1.1 cgd * process group becomes orphaned. Check both the specified process'
1017 1.1 cgd * process group and that of its children.
1018 1.1 cgd * entering == 0 => p is leaving specified group.
1019 1.1 cgd * entering == 1 => p is entering specified group.
1020 1.68 dsl *
1021 1.94.4.5 ad * Call with proclist_lock write held.
1022 1.1 cgd */
1023 1.4 andrew void
1024 1.59 dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1025 1.1 cgd {
1026 1.39 augustss struct pgrp *hispgrp;
1027 1.39 augustss struct session *mysession = pgrp->pg_session;
1028 1.68 dsl struct proc *child;
1029 1.1 cgd
1030 1.94.4.5 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
1031 1.94.4.12 ad LOCK_ASSERT(mutex_owned(&proclist_mutex));
1032 1.94.4.5 ad
1033 1.1 cgd /*
1034 1.1 cgd * Check p's parent to see whether p qualifies its own process
1035 1.1 cgd * group; if so, adjust count for p's process group.
1036 1.1 cgd */
1037 1.68 dsl hispgrp = p->p_pptr->p_pgrp;
1038 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1039 1.94.4.3 ad if (entering) {
1040 1.94.4.5 ad mutex_enter(&p->p_smutex);
1041 1.94.4.5 ad p->p_sflag &= ~PS_ORPHANPG;
1042 1.94.4.5 ad mutex_exit(&p->p_smutex);
1043 1.1 cgd pgrp->pg_jobc++;
1044 1.94.4.3 ad } else if (--pgrp->pg_jobc == 0)
1045 1.1 cgd orphanpg(pgrp);
1046 1.26 thorpej }
1047 1.1 cgd
1048 1.1 cgd /*
1049 1.1 cgd * Check this process' children to see whether they qualify
1050 1.1 cgd * their process groups; if so, adjust counts for children's
1051 1.1 cgd * process groups.
1052 1.1 cgd */
1053 1.68 dsl LIST_FOREACH(child, &p->p_children, p_sibling) {
1054 1.68 dsl hispgrp = child->p_pgrp;
1055 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1056 1.68 dsl !P_ZOMBIE(child)) {
1057 1.94.4.3 ad if (entering) {
1058 1.94.4.5 ad mutex_enter(&child->p_smutex);
1059 1.94.4.5 ad child->p_sflag &= ~PS_ORPHANPG;
1060 1.94.4.5 ad mutex_exit(&child->p_smutex);
1061 1.1 cgd hispgrp->pg_jobc++;
1062 1.94.4.3 ad } else if (--hispgrp->pg_jobc == 0)
1063 1.1 cgd orphanpg(hispgrp);
1064 1.26 thorpej }
1065 1.26 thorpej }
1066 1.1 cgd }
1067 1.1 cgd
1068 1.72 junyoung /*
1069 1.1 cgd * A process group has become orphaned;
1070 1.1 cgd * if there are any stopped processes in the group,
1071 1.1 cgd * hang-up all process in that group.
1072 1.68 dsl *
1073 1.94.4.5 ad * Call with proclist_lock write held.
1074 1.1 cgd */
1075 1.4 andrew static void
1076 1.59 dsl orphanpg(struct pgrp *pg)
1077 1.1 cgd {
1078 1.39 augustss struct proc *p;
1079 1.94.4.3 ad int doit;
1080 1.94.4.3 ad
1081 1.94.4.5 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
1082 1.94.4.12 ad LOCK_ASSERT(mutex_owned(&proclist_mutex));
1083 1.94.4.5 ad
1084 1.94.4.3 ad doit = 0;
1085 1.1 cgd
1086 1.52 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1087 1.94.4.3 ad mutex_enter(&p->p_smutex);
1088 1.1 cgd if (p->p_stat == SSTOP) {
1089 1.94.4.3 ad doit = 1;
1090 1.94.4.5 ad p->p_sflag |= PS_ORPHANPG;
1091 1.94.4.3 ad }
1092 1.94.4.3 ad mutex_exit(&p->p_smutex);
1093 1.94.4.3 ad }
1094 1.94.4.3 ad
1095 1.94.4.3 ad if (doit) {
1096 1.94.4.3 ad LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1097 1.94.4.3 ad psignal(p, SIGHUP);
1098 1.94.4.3 ad psignal(p, SIGCONT);
1099 1.1 cgd }
1100 1.1 cgd }
1101 1.1 cgd }
1102 1.35 bouyer
1103 1.61 dsl /* mark process as suid/sgid, reset some values to defaults */
1104 1.35 bouyer void
1105 1.59 dsl p_sugid(struct proc *p)
1106 1.35 bouyer {
1107 1.78 pk struct plimit *lim;
1108 1.78 pk char *cn;
1109 1.35 bouyer
1110 1.35 bouyer p->p_flag |= P_SUGID;
1111 1.35 bouyer /* reset what needs to be reset in plimit */
1112 1.78 pk lim = p->p_limit;
1113 1.78 pk if (lim->pl_corename != defcorename) {
1114 1.78 pk if (lim->p_refcnt > 1 &&
1115 1.78 pk (lim->p_lflags & PL_SHAREMOD) == 0) {
1116 1.78 pk p->p_limit = limcopy(lim);
1117 1.78 pk limfree(lim);
1118 1.78 pk lim = p->p_limit;
1119 1.35 bouyer }
1120 1.78 pk simple_lock(&lim->p_slock);
1121 1.78 pk cn = lim->pl_corename;
1122 1.78 pk lim->pl_corename = defcorename;
1123 1.78 pk simple_unlock(&lim->p_slock);
1124 1.78 pk if (cn != defcorename)
1125 1.78 pk free(cn, M_TEMP);
1126 1.35 bouyer }
1127 1.35 bouyer }
1128 1.1 cgd
1129 1.61 dsl #ifdef DDB
1130 1.61 dsl #include <ddb/db_output.h>
1131 1.61 dsl void pidtbl_dump(void);
1132 1.14 christos void
1133 1.61 dsl pidtbl_dump(void)
1134 1.1 cgd {
1135 1.61 dsl struct pid_table *pt;
1136 1.61 dsl struct proc *p;
1137 1.39 augustss struct pgrp *pgrp;
1138 1.61 dsl int id;
1139 1.1 cgd
1140 1.61 dsl db_printf("pid table %p size %x, next %x, last %x\n",
1141 1.61 dsl pid_table, pid_tbl_mask+1,
1142 1.61 dsl next_free_pt, last_free_pt);
1143 1.61 dsl for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1144 1.61 dsl p = pt->pt_proc;
1145 1.61 dsl if (!P_VALID(p) && !pt->pt_pgrp)
1146 1.61 dsl continue;
1147 1.61 dsl db_printf(" id %x: ", id);
1148 1.61 dsl if (P_VALID(p))
1149 1.61 dsl db_printf("proc %p id %d (0x%x) %s\n",
1150 1.61 dsl p, p->p_pid, p->p_pid, p->p_comm);
1151 1.61 dsl else
1152 1.61 dsl db_printf("next %x use %x\n",
1153 1.61 dsl P_NEXT(p) & pid_tbl_mask,
1154 1.61 dsl P_NEXT(p) & ~pid_tbl_mask);
1155 1.61 dsl if ((pgrp = pt->pt_pgrp)) {
1156 1.61 dsl db_printf("\tsession %p, sid %d, count %d, login %s\n",
1157 1.61 dsl pgrp->pg_session, pgrp->pg_session->s_sid,
1158 1.61 dsl pgrp->pg_session->s_count,
1159 1.61 dsl pgrp->pg_session->s_login);
1160 1.61 dsl db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1161 1.61 dsl pgrp, pgrp->pg_id, pgrp->pg_jobc,
1162 1.61 dsl pgrp->pg_members.lh_first);
1163 1.61 dsl for (p = pgrp->pg_members.lh_first; p != 0;
1164 1.61 dsl p = p->p_pglist.le_next) {
1165 1.72 junyoung db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1166 1.61 dsl p->p_pid, p, p->p_pgrp, p->p_comm);
1167 1.10 mycroft }
1168 1.1 cgd }
1169 1.1 cgd }
1170 1.1 cgd }
1171 1.61 dsl #endif /* DDB */
1172 1.48 yamt
1173 1.48 yamt #ifdef KSTACK_CHECK_MAGIC
1174 1.48 yamt #include <sys/user.h>
1175 1.48 yamt
1176 1.48 yamt #define KSTACK_MAGIC 0xdeadbeaf
1177 1.48 yamt
1178 1.48 yamt /* XXX should be per process basis? */
1179 1.48 yamt int kstackleftmin = KSTACK_SIZE;
1180 1.50 enami int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1181 1.50 enami less than this */
1182 1.48 yamt
1183 1.48 yamt void
1184 1.56 yamt kstack_setup_magic(const struct lwp *l)
1185 1.48 yamt {
1186 1.85 perry uint32_t *ip;
1187 1.85 perry uint32_t const *end;
1188 1.48 yamt
1189 1.56 yamt KASSERT(l != NULL);
1190 1.56 yamt KASSERT(l != &lwp0);
1191 1.48 yamt
1192 1.48 yamt /*
1193 1.48 yamt * fill all the stack with magic number
1194 1.48 yamt * so that later modification on it can be detected.
1195 1.48 yamt */
1196 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1197 1.85 perry end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1198 1.48 yamt for (; ip < end; ip++) {
1199 1.48 yamt *ip = KSTACK_MAGIC;
1200 1.48 yamt }
1201 1.48 yamt }
1202 1.48 yamt
1203 1.48 yamt void
1204 1.56 yamt kstack_check_magic(const struct lwp *l)
1205 1.48 yamt {
1206 1.85 perry uint32_t const *ip, *end;
1207 1.48 yamt int stackleft;
1208 1.48 yamt
1209 1.56 yamt KASSERT(l != NULL);
1210 1.48 yamt
1211 1.48 yamt /* don't check proc0 */ /*XXX*/
1212 1.56 yamt if (l == &lwp0)
1213 1.48 yamt return;
1214 1.48 yamt
1215 1.48 yamt #ifdef __MACHINE_STACK_GROWS_UP
1216 1.48 yamt /* stack grows upwards (eg. hppa) */
1217 1.85 perry ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1218 1.85 perry end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1219 1.48 yamt for (ip--; ip >= end; ip--)
1220 1.48 yamt if (*ip != KSTACK_MAGIC)
1221 1.48 yamt break;
1222 1.72 junyoung
1223 1.56 yamt stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1224 1.48 yamt #else /* __MACHINE_STACK_GROWS_UP */
1225 1.48 yamt /* stack grows downwards (eg. i386) */
1226 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1227 1.85 perry end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1228 1.48 yamt for (; ip < end; ip++)
1229 1.48 yamt if (*ip != KSTACK_MAGIC)
1230 1.48 yamt break;
1231 1.48 yamt
1232 1.93 christos stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1233 1.48 yamt #endif /* __MACHINE_STACK_GROWS_UP */
1234 1.48 yamt
1235 1.48 yamt if (kstackleftmin > stackleft) {
1236 1.48 yamt kstackleftmin = stackleft;
1237 1.48 yamt if (stackleft < kstackleftthres)
1238 1.56 yamt printf("warning: kernel stack left %d bytes"
1239 1.56 yamt "(pid %u:lid %u)\n", stackleft,
1240 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1241 1.48 yamt }
1242 1.48 yamt
1243 1.48 yamt if (stackleft <= 0) {
1244 1.56 yamt panic("magic on the top of kernel stack changed for "
1245 1.56 yamt "pid %u, lid %u: maybe kernel stack overflow",
1246 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1247 1.48 yamt }
1248 1.48 yamt }
1249 1.50 enami #endif /* KSTACK_CHECK_MAGIC */
1250 1.79 yamt
1251 1.94.4.1 ad /*
1252 1.94.4.1 ad * XXXSMP this is bust, it grabs a read lock and then messes about
1253 1.94.4.1 ad * with allproc.
1254 1.94.4.1 ad */
1255 1.79 yamt int
1256 1.79 yamt proclist_foreach_call(struct proclist *list,
1257 1.79 yamt int (*callback)(struct proc *, void *arg), void *arg)
1258 1.79 yamt {
1259 1.79 yamt struct proc marker;
1260 1.79 yamt struct proc *p;
1261 1.79 yamt struct lwp * const l = curlwp;
1262 1.79 yamt int ret = 0;
1263 1.79 yamt
1264 1.79 yamt marker.p_flag = P_MARKER;
1265 1.79 yamt PHOLD(l);
1266 1.94.4.1 ad rw_enter(&proclist_lock, RW_READER);
1267 1.79 yamt for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1268 1.79 yamt if (p->p_flag & P_MARKER) {
1269 1.79 yamt p = LIST_NEXT(p, p_list);
1270 1.79 yamt continue;
1271 1.79 yamt }
1272 1.79 yamt LIST_INSERT_AFTER(p, &marker, p_list);
1273 1.79 yamt ret = (*callback)(p, arg);
1274 1.94.4.1 ad KASSERT(rw_read_held(&proclist_lock));
1275 1.79 yamt p = LIST_NEXT(&marker, p_list);
1276 1.79 yamt LIST_REMOVE(&marker, p_list);
1277 1.79 yamt }
1278 1.94.4.1 ad rw_exit(&proclist_lock);
1279 1.79 yamt PRELE(l);
1280 1.79 yamt
1281 1.79 yamt return ret;
1282 1.79 yamt }
1283 1.86 yamt
1284 1.86 yamt int
1285 1.86 yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1286 1.86 yamt {
1287 1.86 yamt
1288 1.86 yamt /* XXXCDC: how should locking work here? */
1289 1.86 yamt
1290 1.87 yamt /* curproc exception is for coredump. */
1291 1.87 yamt
1292 1.94.4.5 ad if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1293 1.86 yamt (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1294 1.86 yamt return EFAULT;
1295 1.86 yamt }
1296 1.86 yamt
1297 1.86 yamt uvmspace_addref(p->p_vmspace);
1298 1.86 yamt *vm = p->p_vmspace;
1299 1.86 yamt
1300 1.86 yamt return 0;
1301 1.86 yamt }
1302 1.94 ad
1303 1.94 ad /*
1304 1.94 ad * Acquire a write lock on the process credential.
1305 1.94 ad */
1306 1.94 ad void
1307 1.94.4.5 ad proc_crmod_enter(void)
1308 1.94 ad {
1309 1.94.4.5 ad struct lwp *l = curlwp;
1310 1.94.4.5 ad struct proc *p = l->l_proc;
1311 1.94.4.5 ad kauth_cred_t oc;
1312 1.94.4.5 ad
1313 1.94.4.5 ad mutex_enter(&p->p_mutex);
1314 1.94.4.5 ad
1315 1.94.4.5 ad /* Ensure the LWP cached credentials are up to date. */
1316 1.94.4.5 ad if ((oc = l->l_cred) != p->p_cred) {
1317 1.94.4.5 ad kauth_cred_hold(p->p_cred);
1318 1.94.4.5 ad l->l_cred = p->p_cred;
1319 1.94.4.5 ad kauth_cred_free(oc);
1320 1.94.4.5 ad }
1321 1.94 ad }
1322 1.94 ad
1323 1.94 ad /*
1324 1.94.4.3 ad * Set in a new process credential, and drop the write lock. The credential
1325 1.94.4.3 ad * must have a reference already. Optionally, free a no-longer required
1326 1.94.4.3 ad * credential. The scheduler also needs to inspect p_cred, so we also
1327 1.94.4.3 ad * briefly acquire the sched state mutex.
1328 1.94 ad */
1329 1.94 ad void
1330 1.94.4.5 ad proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred)
1331 1.94 ad {
1332 1.94.4.5 ad struct lwp *l = curlwp;
1333 1.94.4.5 ad struct proc *p = l->l_proc;
1334 1.94.4.5 ad kauth_cred_t oc;
1335 1.94 ad
1336 1.94.4.3 ad mutex_enter(&p->p_smutex);
1337 1.94 ad p->p_cred = scred;
1338 1.94.4.3 ad mutex_exit(&p->p_smutex);
1339 1.94.4.5 ad
1340 1.94.4.5 ad /* Ensure the LWP cached credentials are up to date. */
1341 1.94.4.5 ad if ((oc = l->l_cred) != scred) {
1342 1.94.4.5 ad kauth_cred_hold(scred);
1343 1.94.4.5 ad l->l_cred = scred;
1344 1.94.4.5 ad }
1345 1.94.4.5 ad
1346 1.94.4.5 ad mutex_exit(&p->p_mutex);
1347 1.94.4.5 ad kauth_cred_free(fcred);
1348 1.94.4.5 ad if (oc != scred)
1349 1.94.4.5 ad kauth_cred_free(oc);
1350 1.94.4.5 ad }
1351 1.94.4.5 ad
1352 1.94.4.5 ad /*
1353 1.94.4.5 ad * Acquire a reference on a process, to prevent it from exiting or execing.
1354 1.94.4.5 ad */
1355 1.94.4.5 ad int
1356 1.94.4.5 ad proc_addref(struct proc *p)
1357 1.94.4.5 ad {
1358 1.94.4.5 ad
1359 1.94.4.5 ad LOCK_ASSERT(mutex_owned(&p->p_mutex));
1360 1.94.4.5 ad
1361 1.94.4.5 ad if (p->p_refcnt <= 0)
1362 1.94.4.5 ad return EAGAIN;
1363 1.94.4.5 ad p->p_refcnt++;
1364 1.94.4.5 ad
1365 1.94.4.5 ad return 0;
1366 1.94.4.5 ad }
1367 1.94.4.5 ad
1368 1.94.4.5 ad /*
1369 1.94.4.5 ad * Release a reference on a process.
1370 1.94.4.5 ad */
1371 1.94.4.5 ad void
1372 1.94.4.5 ad proc_delref(struct proc *p)
1373 1.94.4.5 ad {
1374 1.94.4.5 ad
1375 1.94.4.5 ad LOCK_ASSERT(mutex_owned(&p->p_mutex));
1376 1.94.4.5 ad
1377 1.94.4.5 ad if (p->p_refcnt < 0) {
1378 1.94.4.5 ad if (++p->p_refcnt == 0)
1379 1.94.4.7 ad cv_broadcast(&p->p_refcv);
1380 1.94.4.5 ad } else {
1381 1.94.4.5 ad p->p_refcnt--;
1382 1.94.4.5 ad KASSERT(p->p_refcnt != 0);
1383 1.94.4.5 ad }
1384 1.94.4.5 ad }
1385 1.94.4.5 ad
1386 1.94.4.5 ad /*
1387 1.94.4.5 ad * Wait for all references on the process to drain, and prevent new
1388 1.94.4.5 ad * references from being acquired.
1389 1.94.4.5 ad */
1390 1.94.4.5 ad void
1391 1.94.4.5 ad proc_drainrefs(struct proc *p)
1392 1.94.4.5 ad {
1393 1.94.4.5 ad
1394 1.94.4.5 ad LOCK_ASSERT(mutex_owned(&p->p_mutex));
1395 1.94.4.5 ad KASSERT(p->p_refcnt > 0);
1396 1.94.4.5 ad
1397 1.94.4.5 ad /*
1398 1.94.4.5 ad * The process itself holds the last reference. Once it's released,
1399 1.94.4.5 ad * no new references will be granted. If we have already locked out
1400 1.94.4.5 ad * new references (refcnt <= 0), potentially due to a failed exec,
1401 1.94.4.5 ad * there is nothing more to do.
1402 1.94.4.5 ad */
1403 1.94.4.5 ad p->p_refcnt = 1 - p->p_refcnt;
1404 1.94.4.5 ad while (p->p_refcnt != 0)
1405 1.94.4.5 ad cv_wait(&p->p_refcv, &p->p_mutex);
1406 1.94 ad }
1407 1.94.4.6 ad
1408 1.94.4.6 ad /*
1409 1.94.4.6 ad * proc_specific_key_create --
1410 1.94.4.6 ad * Create a key for subsystem proc-specific data.
1411 1.94.4.6 ad */
1412 1.94.4.6 ad int
1413 1.94.4.6 ad proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1414 1.94.4.6 ad {
1415 1.94.4.6 ad
1416 1.94.4.6 ad return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1417 1.94.4.6 ad }
1418 1.94.4.6 ad
1419 1.94.4.6 ad /*
1420 1.94.4.6 ad * proc_specific_key_delete --
1421 1.94.4.6 ad * Delete a key for subsystem proc-specific data.
1422 1.94.4.6 ad */
1423 1.94.4.6 ad void
1424 1.94.4.6 ad proc_specific_key_delete(specificdata_key_t key)
1425 1.94.4.6 ad {
1426 1.94.4.6 ad
1427 1.94.4.6 ad specificdata_key_delete(proc_specificdata_domain, key);
1428 1.94.4.6 ad }
1429 1.94.4.6 ad
1430 1.94.4.6 ad /*
1431 1.94.4.6 ad * proc_initspecific --
1432 1.94.4.6 ad * Initialize a proc's specificdata container.
1433 1.94.4.6 ad */
1434 1.94.4.6 ad void
1435 1.94.4.6 ad proc_initspecific(struct proc *p)
1436 1.94.4.6 ad {
1437 1.94.4.6 ad int error;
1438 1.94.4.6 ad
1439 1.94.4.6 ad error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1440 1.94.4.6 ad KASSERT(error == 0);
1441 1.94.4.6 ad }
1442 1.94.4.6 ad
1443 1.94.4.6 ad /*
1444 1.94.4.6 ad * proc_finispecific --
1445 1.94.4.6 ad * Finalize a proc's specificdata container.
1446 1.94.4.6 ad */
1447 1.94.4.6 ad void
1448 1.94.4.6 ad proc_finispecific(struct proc *p)
1449 1.94.4.6 ad {
1450 1.94.4.6 ad
1451 1.94.4.6 ad specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1452 1.94.4.6 ad }
1453 1.94.4.6 ad
1454 1.94.4.6 ad /*
1455 1.94.4.6 ad * proc_getspecific --
1456 1.94.4.6 ad * Return proc-specific data corresponding to the specified key.
1457 1.94.4.6 ad */
1458 1.94.4.6 ad void *
1459 1.94.4.6 ad proc_getspecific(struct proc *p, specificdata_key_t key)
1460 1.94.4.6 ad {
1461 1.94.4.6 ad
1462 1.94.4.6 ad return (specificdata_getspecific(proc_specificdata_domain,
1463 1.94.4.6 ad &p->p_specdataref, key));
1464 1.94.4.6 ad }
1465 1.94.4.6 ad
1466 1.94.4.6 ad /*
1467 1.94.4.6 ad * proc_setspecific --
1468 1.94.4.6 ad * Set proc-specific data corresponding to the specified key.
1469 1.94.4.6 ad */
1470 1.94.4.6 ad void
1471 1.94.4.6 ad proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1472 1.94.4.6 ad {
1473 1.94.4.6 ad
1474 1.94.4.6 ad specificdata_setspecific(proc_specificdata_domain,
1475 1.94.4.6 ad &p->p_specdataref, key, data);
1476 1.94.4.6 ad }
1477