kern_proc.c revision 1.94.4.6 1 1.94.4.6 ad /* $NetBSD: kern_proc.c,v 1.94.4.6 2006/11/18 21:39:22 ad Exp $ */
2 1.33 thorpej
3 1.33 thorpej /*-
4 1.94.4.5 ad * Copyright (c) 1999, 2006 The NetBSD Foundation, Inc.
5 1.33 thorpej * All rights reserved.
6 1.33 thorpej *
7 1.33 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.33 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.94.4.5 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.33 thorpej *
11 1.33 thorpej * Redistribution and use in source and binary forms, with or without
12 1.33 thorpej * modification, are permitted provided that the following conditions
13 1.33 thorpej * are met:
14 1.33 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.33 thorpej * notice, this list of conditions and the following disclaimer.
16 1.33 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.33 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.33 thorpej * documentation and/or other materials provided with the distribution.
19 1.33 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.33 thorpej * must display the following acknowledgement:
21 1.33 thorpej * This product includes software developed by the NetBSD
22 1.33 thorpej * Foundation, Inc. and its contributors.
23 1.33 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.33 thorpej * contributors may be used to endorse or promote products derived
25 1.33 thorpej * from this software without specific prior written permission.
26 1.33 thorpej *
27 1.33 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.33 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.33 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.33 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.33 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.33 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.33 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.33 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.33 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.33 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.33 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.33 thorpej */
39 1.9 cgd
40 1.1 cgd /*
41 1.7 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 1.7 cgd * The Regents of the University of California. All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Redistribution and use in source and binary forms, with or without
45 1.1 cgd * modification, are permitted provided that the following conditions
46 1.1 cgd * are met:
47 1.1 cgd * 1. Redistributions of source code must retain the above copyright
48 1.1 cgd * notice, this list of conditions and the following disclaimer.
49 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 cgd * notice, this list of conditions and the following disclaimer in the
51 1.1 cgd * documentation and/or other materials provided with the distribution.
52 1.65 agc * 3. Neither the name of the University nor the names of its contributors
53 1.1 cgd * may be used to endorse or promote products derived from this software
54 1.1 cgd * without specific prior written permission.
55 1.1 cgd *
56 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.1 cgd * SUCH DAMAGE.
67 1.1 cgd *
68 1.23 fvdl * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 1.1 cgd */
70 1.45 lukem
71 1.45 lukem #include <sys/cdefs.h>
72 1.94.4.6 ad __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.94.4.6 2006/11/18 21:39:22 ad Exp $");
73 1.48 yamt
74 1.48 yamt #include "opt_kstack.h"
75 1.88 onoe #include "opt_maxuprc.h"
76 1.90 rjs #include "opt_multiprocessor.h"
77 1.90 rjs #include "opt_lockdebug.h"
78 1.1 cgd
79 1.5 mycroft #include <sys/param.h>
80 1.5 mycroft #include <sys/systm.h>
81 1.5 mycroft #include <sys/kernel.h>
82 1.5 mycroft #include <sys/proc.h>
83 1.28 thorpej #include <sys/resourcevar.h>
84 1.5 mycroft #include <sys/buf.h>
85 1.5 mycroft #include <sys/acct.h>
86 1.5 mycroft #include <sys/wait.h>
87 1.5 mycroft #include <sys/file.h>
88 1.8 mycroft #include <ufs/ufs/quota.h>
89 1.5 mycroft #include <sys/uio.h>
90 1.5 mycroft #include <sys/malloc.h>
91 1.24 thorpej #include <sys/pool.h>
92 1.5 mycroft #include <sys/mbuf.h>
93 1.5 mycroft #include <sys/ioctl.h>
94 1.5 mycroft #include <sys/tty.h>
95 1.11 cgd #include <sys/signalvar.h>
96 1.51 gmcgarry #include <sys/ras.h>
97 1.55 thorpej #include <sys/sa.h>
98 1.55 thorpej #include <sys/savar.h>
99 1.81 junyoung #include <sys/filedesc.h>
100 1.89 elad #include <sys/kauth.h>
101 1.94.4.3 ad #include <sys/sleepq.h>
102 1.81 junyoung
103 1.81 junyoung #include <uvm/uvm.h>
104 1.79 yamt #include <uvm/uvm_extern.h>
105 1.5 mycroft
106 1.7 cgd /*
107 1.10 mycroft * Other process lists
108 1.7 cgd */
109 1.31 thorpej
110 1.10 mycroft struct proclist allproc;
111 1.32 thorpej struct proclist zombproc; /* resources have been freed */
112 1.32 thorpej
113 1.32 thorpej /*
114 1.94.4.1 ad * There are three locks on global process state.
115 1.33 thorpej *
116 1.94.4.1 ad * 1. proclist_lock is a reader/writer lock and is used when modifying or
117 1.94.4.1 ad * examining process state from a process context. It protects our internal
118 1.94.4.1 ad * tables, all of the process lists, and a number of members of struct lwp
119 1.94.4.1 ad * and struct proc.
120 1.94.4.1 ad
121 1.94.4.1 ad * 2. proclist_mutex is used when allproc must be traversed from an
122 1.94.4.1 ad * interrupt context, or when we must signal processes from an interrupt
123 1.94.4.1 ad * context. The proclist_lock should always be used in preference.
124 1.33 thorpej *
125 1.94.4.1 ad * 3. alllwp_mutex protects the "alllwp" list.
126 1.33 thorpej *
127 1.94.4.1 ad * proclist_lock proclist_mutex alllwp_mutex structure
128 1.94.4.1 ad * --------------- --------------- --------------- -----------------
129 1.94.4.1 ad * x zombproc
130 1.94.4.2 ad * x x pid_table
131 1.94.4.1 ad * x proc::p_pptr
132 1.94.4.1 ad * x proc::p_sibling
133 1.94.4.1 ad * x proc::p_children
134 1.94.4.1 ad * x x allproc
135 1.94.4.1 ad * x x proc::p_pgrp
136 1.94.4.1 ad * x x proc::p_pglist
137 1.94.4.1 ad * x x proc::p_session
138 1.94.4.1 ad * x x proc::p_list
139 1.94.4.1 ad * x alllwp
140 1.94.4.1 ad * x lwp::l_list
141 1.94.4.3 ad *
142 1.94.4.3 ad * The lock order for processes and LWPs is apporoximately as following:
143 1.94.4.3 ad *
144 1.94.4.3 ad * kernel_mutex
145 1.94.4.3 ad * -> proclist_lock
146 1.94.4.3 ad * -> proclist_mutex
147 1.94.4.5 ad * -> proc::p_mutex
148 1.94.4.3 ad * -> proc::p_smutex
149 1.94.4.3 ad * -> alllwp_mutex
150 1.94.4.3 ad * -> lwp::l_mutex
151 1.94.4.3 ad * -> sched_mutex
152 1.33 thorpej */
153 1.94.4.1 ad krwlock_t proclist_lock;
154 1.94.4.1 ad kmutex_t proclist_mutex;
155 1.94.4.5 ad kmutex_t proc_stop_mutex;
156 1.33 thorpej
157 1.33 thorpej /*
158 1.72 junyoung * pid to proc lookup is done by indexing the pid_table array.
159 1.61 dsl * Since pid numbers are only allocated when an empty slot
160 1.61 dsl * has been found, there is no need to search any lists ever.
161 1.61 dsl * (an orphaned pgrp will lock the slot, a session will lock
162 1.61 dsl * the pgrp with the same number.)
163 1.61 dsl * If the table is too small it is reallocated with twice the
164 1.61 dsl * previous size and the entries 'unzipped' into the two halves.
165 1.61 dsl * A linked list of free entries is passed through the pt_proc
166 1.61 dsl * field of 'free' items - set odd to be an invalid ptr.
167 1.61 dsl */
168 1.61 dsl
169 1.61 dsl struct pid_table {
170 1.61 dsl struct proc *pt_proc;
171 1.61 dsl struct pgrp *pt_pgrp;
172 1.72 junyoung };
173 1.61 dsl #if 1 /* strongly typed cast - should be a noop */
174 1.84 perry static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
175 1.61 dsl #else
176 1.61 dsl #define p2u(p) ((uint)p)
177 1.72 junyoung #endif
178 1.61 dsl #define P_VALID(p) (!(p2u(p) & 1))
179 1.61 dsl #define P_NEXT(p) (p2u(p) >> 1)
180 1.61 dsl #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
181 1.61 dsl
182 1.61 dsl #define INITIAL_PID_TABLE_SIZE (1 << 5)
183 1.61 dsl static struct pid_table *pid_table;
184 1.61 dsl static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
185 1.61 dsl static uint pid_alloc_lim; /* max we allocate before growing table */
186 1.61 dsl static uint pid_alloc_cnt; /* number of allocated pids */
187 1.61 dsl
188 1.61 dsl /* links through free slots - never empty! */
189 1.61 dsl static uint next_free_pt, last_free_pt;
190 1.61 dsl static pid_t pid_max = PID_MAX; /* largest value we allocate */
191 1.31 thorpej
192 1.81 junyoung /* Components of the first process -- never freed. */
193 1.81 junyoung struct session session0;
194 1.81 junyoung struct pgrp pgrp0;
195 1.81 junyoung struct proc proc0;
196 1.94.4.3 ad struct lwp lwp0 __aligned(16);
197 1.89 elad kauth_cred_t cred0;
198 1.81 junyoung struct filedesc0 filedesc0;
199 1.81 junyoung struct cwdinfo cwdi0;
200 1.81 junyoung struct plimit limit0;
201 1.81 junyoung struct pstats pstat0;
202 1.81 junyoung struct vmspace vmspace0;
203 1.81 junyoung struct sigacts sigacts0;
204 1.94.4.1 ad struct turnstile turnstile0;
205 1.81 junyoung
206 1.81 junyoung extern struct user *proc0paddr;
207 1.81 junyoung
208 1.81 junyoung extern const struct emul emul_netbsd; /* defined in kern_exec.c */
209 1.81 junyoung
210 1.81 junyoung int nofile = NOFILE;
211 1.81 junyoung int maxuprc = MAXUPRC;
212 1.81 junyoung int cmask = CMASK;
213 1.81 junyoung
214 1.77 simonb POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
215 1.77 simonb &pool_allocator_nointr);
216 1.77 simonb POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
217 1.77 simonb &pool_allocator_nointr);
218 1.77 simonb POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
219 1.77 simonb &pool_allocator_nointr);
220 1.77 simonb POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
221 1.77 simonb &pool_allocator_nointr);
222 1.77 simonb POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
223 1.77 simonb &pool_allocator_nointr);
224 1.77 simonb POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
225 1.77 simonb &pool_allocator_nointr);
226 1.57 thorpej
227 1.57 thorpej MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
228 1.57 thorpej MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
229 1.57 thorpej MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
230 1.10 mycroft
231 1.31 thorpej /*
232 1.31 thorpej * The process list descriptors, used during pid allocation and
233 1.31 thorpej * by sysctl. No locking on this data structure is needed since
234 1.31 thorpej * it is completely static.
235 1.31 thorpej */
236 1.31 thorpej const struct proclist_desc proclists[] = {
237 1.31 thorpej { &allproc },
238 1.31 thorpej { &zombproc },
239 1.31 thorpej { NULL },
240 1.31 thorpej };
241 1.31 thorpej
242 1.72 junyoung static void orphanpg(struct pgrp *);
243 1.72 junyoung static void pg_delete(pid_t);
244 1.13 christos
245 1.94.4.6 ad static specificdata_domain_t proc_specificdata_domain;
246 1.94.4.6 ad
247 1.10 mycroft /*
248 1.10 mycroft * Initialize global process hashing structures.
249 1.10 mycroft */
250 1.11 cgd void
251 1.59 dsl procinit(void)
252 1.7 cgd {
253 1.31 thorpej const struct proclist_desc *pd;
254 1.61 dsl int i;
255 1.61 dsl #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
256 1.31 thorpej
257 1.31 thorpej for (pd = proclists; pd->pd_list != NULL; pd++)
258 1.31 thorpej LIST_INIT(pd->pd_list);
259 1.7 cgd
260 1.94.4.1 ad rw_init(&proclist_lock);
261 1.94.4.1 ad mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
262 1.94.4.1 ad mutex_init(&alllwp_mutex, MUTEX_SPIN, IPL_SCHED);
263 1.94.4.3 ad mutex_init(&lwp_mutex, MUTEX_SPIN, IPL_SCHED);
264 1.94.4.5 ad mutex_init(&proc_stop_mutex, MUTEX_SPIN, IPL_NONE);
265 1.33 thorpej
266 1.61 dsl pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
267 1.61 dsl M_PROC, M_WAITOK);
268 1.61 dsl /* Set free list running through table...
269 1.61 dsl Preset 'use count' above PID_MAX so we allocate pid 1 next. */
270 1.61 dsl for (i = 0; i <= pid_tbl_mask; i++) {
271 1.61 dsl pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
272 1.61 dsl pid_table[i].pt_pgrp = 0;
273 1.61 dsl }
274 1.61 dsl /* slot 0 is just grabbed */
275 1.61 dsl next_free_pt = 1;
276 1.61 dsl /* Need to fix last entry. */
277 1.61 dsl last_free_pt = pid_tbl_mask;
278 1.61 dsl pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
279 1.61 dsl /* point at which we grow table - to avoid reusing pids too often */
280 1.61 dsl pid_alloc_lim = pid_tbl_mask - 1;
281 1.61 dsl #undef LINK_EMPTY
282 1.61 dsl
283 1.55 thorpej LIST_INIT(&alllwp);
284 1.55 thorpej
285 1.43 ad uihashtbl =
286 1.43 ad hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
287 1.94.4.6 ad
288 1.94.4.6 ad proc_specificdata_domain = specificdata_domain_create();
289 1.94.4.6 ad KASSERT(proc_specificdata_domain != NULL);
290 1.7 cgd }
291 1.1 cgd
292 1.7 cgd /*
293 1.81 junyoung * Initialize process 0.
294 1.81 junyoung */
295 1.81 junyoung void
296 1.81 junyoung proc0_init(void)
297 1.81 junyoung {
298 1.81 junyoung struct proc *p;
299 1.81 junyoung struct pgrp *pg;
300 1.81 junyoung struct session *sess;
301 1.81 junyoung struct lwp *l;
302 1.81 junyoung u_int i;
303 1.81 junyoung rlim_t lim;
304 1.81 junyoung
305 1.81 junyoung p = &proc0;
306 1.81 junyoung pg = &pgrp0;
307 1.81 junyoung sess = &session0;
308 1.81 junyoung l = &lwp0;
309 1.81 junyoung
310 1.94.4.3 ad mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
311 1.94.4.5 ad mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_NONE);
312 1.94.4.3 ad mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
313 1.94.4.5 ad cv_init(&p->p_refcv, "drainref");
314 1.94.4.5 ad cv_init(&p->p_waitcv, "wait");
315 1.94.4.5 ad
316 1.81 junyoung LIST_INIT(&p->p_lwps);
317 1.94.4.3 ad LIST_INIT(&p->p_sigwaiters);
318 1.81 junyoung LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
319 1.94.4.5 ad
320 1.81 junyoung p->p_nlwps = 1;
321 1.94.4.3 ad p->p_nrlwps = 1;
322 1.94.4.5 ad p->p_refcnt = 1;
323 1.81 junyoung
324 1.81 junyoung pid_table[0].pt_proc = p;
325 1.81 junyoung LIST_INSERT_HEAD(&allproc, p, p_list);
326 1.81 junyoung LIST_INSERT_HEAD(&alllwp, l, l_list);
327 1.81 junyoung
328 1.81 junyoung p->p_pgrp = pg;
329 1.81 junyoung pid_table[0].pt_pgrp = pg;
330 1.81 junyoung LIST_INIT(&pg->pg_members);
331 1.81 junyoung LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
332 1.81 junyoung
333 1.81 junyoung pg->pg_session = sess;
334 1.81 junyoung sess->s_count = 1;
335 1.81 junyoung sess->s_sid = 0;
336 1.81 junyoung sess->s_leader = p;
337 1.81 junyoung
338 1.81 junyoung /*
339 1.81 junyoung * Set P_NOCLDWAIT so that kernel threads are reparented to
340 1.81 junyoung * init(8) when they exit. init(8) can easily wait them out
341 1.81 junyoung * for us.
342 1.81 junyoung */
343 1.81 junyoung p->p_flag = P_SYSTEM | P_NOCLDWAIT;
344 1.81 junyoung p->p_stat = SACTIVE;
345 1.81 junyoung p->p_nice = NZERO;
346 1.81 junyoung p->p_emul = &emul_netbsd;
347 1.81 junyoung #ifdef __HAVE_SYSCALL_INTERN
348 1.81 junyoung (*p->p_emul->e_syscall_intern)(p);
349 1.81 junyoung #endif
350 1.81 junyoung strncpy(p->p_comm, "swapper", MAXCOMLEN);
351 1.81 junyoung
352 1.94.4.4 ad #ifdef MULTIPROCESSOR
353 1.94.4.3 ad l->l_mutex = &lwp_mutex;
354 1.94.4.4 ad #else
355 1.94.4.4 ad l->l_mutex = &sched_mutex;
356 1.94.4.4 ad #endif
357 1.94.4.3 ad l->l_flag = L_INMEM | L_SYSTEM;
358 1.81 junyoung l->l_stat = LSONPROC;
359 1.94.4.1 ad l->l_ts = &turnstile0;
360 1.94.4.5 ad l->l_syncobj = &sched_syncobj;
361 1.94.4.5 ad l->l_refcnt = 1;
362 1.81 junyoung
363 1.81 junyoung callout_init(&l->l_tsleep_ch);
364 1.81 junyoung
365 1.81 junyoung /* Create credentials. */
366 1.89 elad cred0 = kauth_cred_alloc();
367 1.89 elad p->p_cred = cred0;
368 1.94.4.1 ad kauth_cred_hold(cred0);
369 1.94.4.1 ad l->l_cred = cred0;
370 1.81 junyoung
371 1.81 junyoung /* Create the CWD info. */
372 1.81 junyoung p->p_cwdi = &cwdi0;
373 1.81 junyoung cwdi0.cwdi_cmask = cmask;
374 1.81 junyoung cwdi0.cwdi_refcnt = 1;
375 1.81 junyoung simple_lock_init(&cwdi0.cwdi_slock);
376 1.81 junyoung
377 1.81 junyoung /* Create the limits structures. */
378 1.81 junyoung p->p_limit = &limit0;
379 1.81 junyoung simple_lock_init(&limit0.p_slock);
380 1.81 junyoung for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
381 1.81 junyoung limit0.pl_rlimit[i].rlim_cur =
382 1.81 junyoung limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
383 1.81 junyoung
384 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
385 1.81 junyoung limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
386 1.81 junyoung maxfiles < nofile ? maxfiles : nofile;
387 1.81 junyoung
388 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
389 1.81 junyoung limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
390 1.81 junyoung maxproc < maxuprc ? maxproc : maxuprc;
391 1.81 junyoung
392 1.81 junyoung lim = ptoa(uvmexp.free);
393 1.81 junyoung limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
394 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
395 1.81 junyoung limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
396 1.81 junyoung limit0.pl_corename = defcorename;
397 1.81 junyoung limit0.p_refcnt = 1;
398 1.81 junyoung
399 1.81 junyoung /* Configure virtual memory system, set vm rlimits. */
400 1.81 junyoung uvm_init_limits(p);
401 1.81 junyoung
402 1.81 junyoung /* Initialize file descriptor table for proc0. */
403 1.81 junyoung p->p_fd = &filedesc0.fd_fd;
404 1.81 junyoung fdinit1(&filedesc0);
405 1.81 junyoung
406 1.81 junyoung /*
407 1.81 junyoung * Initialize proc0's vmspace, which uses the kernel pmap.
408 1.81 junyoung * All kernel processes (which never have user space mappings)
409 1.81 junyoung * share proc0's vmspace, and thus, the kernel pmap.
410 1.81 junyoung */
411 1.81 junyoung uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
412 1.81 junyoung trunc_page(VM_MAX_ADDRESS));
413 1.81 junyoung p->p_vmspace = &vmspace0;
414 1.81 junyoung
415 1.81 junyoung l->l_addr = proc0paddr; /* XXX */
416 1.81 junyoung
417 1.81 junyoung p->p_stats = &pstat0;
418 1.81 junyoung
419 1.81 junyoung /* Initialize signal state for proc0. */
420 1.81 junyoung p->p_sigacts = &sigacts0;
421 1.94.4.5 ad mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
422 1.81 junyoung siginit(p);
423 1.94.4.6 ad
424 1.94.4.6 ad proc_initspecific(p);
425 1.94.4.6 ad lwp_initspecific(l);
426 1.81 junyoung }
427 1.81 junyoung
428 1.81 junyoung /*
429 1.74 junyoung * Check that the specified process group is in the session of the
430 1.60 dsl * specified process.
431 1.60 dsl * Treats -ve ids as process ids.
432 1.60 dsl * Used to validate TIOCSPGRP requests.
433 1.60 dsl */
434 1.60 dsl int
435 1.60 dsl pgid_in_session(struct proc *p, pid_t pg_id)
436 1.60 dsl {
437 1.60 dsl struct pgrp *pgrp;
438 1.60 dsl
439 1.60 dsl if (pg_id < 0) {
440 1.60 dsl struct proc *p1 = pfind(-pg_id);
441 1.64 dsl if (p1 == NULL)
442 1.64 dsl return EINVAL;
443 1.60 dsl pgrp = p1->p_pgrp;
444 1.60 dsl } else {
445 1.60 dsl pgrp = pgfind(pg_id);
446 1.60 dsl if (pgrp == NULL)
447 1.64 dsl return EINVAL;
448 1.60 dsl }
449 1.60 dsl if (pgrp->pg_session != p->p_pgrp->pg_session)
450 1.60 dsl return EPERM;
451 1.60 dsl return 0;
452 1.7 cgd }
453 1.4 andrew
454 1.1 cgd /*
455 1.41 sommerfe * Is p an inferior of q?
456 1.94 ad *
457 1.94 ad * Call with the proclist_lock held.
458 1.1 cgd */
459 1.11 cgd int
460 1.59 dsl inferior(struct proc *p, struct proc *q)
461 1.1 cgd {
462 1.1 cgd
463 1.41 sommerfe for (; p != q; p = p->p_pptr)
464 1.1 cgd if (p->p_pid == 0)
465 1.82 junyoung return 0;
466 1.82 junyoung return 1;
467 1.1 cgd }
468 1.1 cgd
469 1.1 cgd /*
470 1.1 cgd * Locate a process by number
471 1.1 cgd */
472 1.1 cgd struct proc *
473 1.68 dsl p_find(pid_t pid, uint flags)
474 1.1 cgd {
475 1.33 thorpej struct proc *p;
476 1.68 dsl char stat;
477 1.1 cgd
478 1.68 dsl if (!(flags & PFIND_LOCKED))
479 1.94.4.1 ad rw_enter(&proclist_lock, RW_READER);
480 1.94.4.1 ad
481 1.61 dsl p = pid_table[pid & pid_tbl_mask].pt_proc;
482 1.61 dsl /* Only allow live processes to be found by pid. */
483 1.68 dsl if (P_VALID(p) && p->p_pid == pid &&
484 1.68 dsl ((stat = p->p_stat) == SACTIVE || stat == SSTOP
485 1.68 dsl || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
486 1.68 dsl if (flags & PFIND_UNLOCK_OK)
487 1.94.4.1 ad rw_exit(&proclist_lock);
488 1.68 dsl return p;
489 1.68 dsl }
490 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
491 1.94.4.1 ad rw_exit(&proclist_lock);
492 1.68 dsl return NULL;
493 1.1 cgd }
494 1.1 cgd
495 1.61 dsl
496 1.1 cgd /*
497 1.1 cgd * Locate a process group by number
498 1.1 cgd */
499 1.1 cgd struct pgrp *
500 1.68 dsl pg_find(pid_t pgid, uint flags)
501 1.1 cgd {
502 1.68 dsl struct pgrp *pg;
503 1.1 cgd
504 1.68 dsl if (!(flags & PFIND_LOCKED))
505 1.94.4.1 ad rw_enter(&proclist_lock, RW_READER);
506 1.68 dsl pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
507 1.61 dsl /*
508 1.61 dsl * Can't look up a pgrp that only exists because the session
509 1.61 dsl * hasn't died yet (traditional)
510 1.61 dsl */
511 1.68 dsl if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
512 1.68 dsl if (flags & PFIND_UNLOCK_FAIL)
513 1.94.4.1 ad rw_exit(&proclist_lock);
514 1.68 dsl return NULL;
515 1.68 dsl }
516 1.68 dsl
517 1.68 dsl if (flags & PFIND_UNLOCK_OK)
518 1.94.4.1 ad rw_exit(&proclist_lock);
519 1.68 dsl return pg;
520 1.1 cgd }
521 1.1 cgd
522 1.61 dsl static void
523 1.61 dsl expand_pid_table(void)
524 1.1 cgd {
525 1.61 dsl uint pt_size = pid_tbl_mask + 1;
526 1.61 dsl struct pid_table *n_pt, *new_pt;
527 1.61 dsl struct proc *proc;
528 1.61 dsl struct pgrp *pgrp;
529 1.61 dsl int i;
530 1.61 dsl pid_t pid;
531 1.1 cgd
532 1.61 dsl new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
533 1.61 dsl
534 1.94.4.1 ad rw_enter(&proclist_lock, RW_WRITER);
535 1.61 dsl if (pt_size != pid_tbl_mask + 1) {
536 1.61 dsl /* Another process beat us to it... */
537 1.94.4.1 ad rw_exit(&proclist_lock);
538 1.61 dsl FREE(new_pt, M_PROC);
539 1.61 dsl return;
540 1.61 dsl }
541 1.72 junyoung
542 1.61 dsl /*
543 1.61 dsl * Copy entries from old table into new one.
544 1.61 dsl * If 'pid' is 'odd' we need to place in the upper half,
545 1.61 dsl * even pid's to the lower half.
546 1.61 dsl * Free items stay in the low half so we don't have to
547 1.61 dsl * fixup the reference to them.
548 1.61 dsl * We stuff free items on the front of the freelist
549 1.61 dsl * because we can't write to unmodified entries.
550 1.74 junyoung * Processing the table backwards maintains a semblance
551 1.61 dsl * of issueing pid numbers that increase with time.
552 1.61 dsl */
553 1.61 dsl i = pt_size - 1;
554 1.61 dsl n_pt = new_pt + i;
555 1.61 dsl for (; ; i--, n_pt--) {
556 1.61 dsl proc = pid_table[i].pt_proc;
557 1.61 dsl pgrp = pid_table[i].pt_pgrp;
558 1.61 dsl if (!P_VALID(proc)) {
559 1.61 dsl /* Up 'use count' so that link is valid */
560 1.61 dsl pid = (P_NEXT(proc) + pt_size) & ~pt_size;
561 1.61 dsl proc = P_FREE(pid);
562 1.61 dsl if (pgrp)
563 1.61 dsl pid = pgrp->pg_id;
564 1.61 dsl } else
565 1.61 dsl pid = proc->p_pid;
566 1.72 junyoung
567 1.61 dsl /* Save entry in appropriate half of table */
568 1.61 dsl n_pt[pid & pt_size].pt_proc = proc;
569 1.61 dsl n_pt[pid & pt_size].pt_pgrp = pgrp;
570 1.61 dsl
571 1.61 dsl /* Put other piece on start of free list */
572 1.61 dsl pid = (pid ^ pt_size) & ~pid_tbl_mask;
573 1.61 dsl n_pt[pid & pt_size].pt_proc =
574 1.61 dsl P_FREE((pid & ~pt_size) | next_free_pt);
575 1.61 dsl n_pt[pid & pt_size].pt_pgrp = 0;
576 1.61 dsl next_free_pt = i | (pid & pt_size);
577 1.61 dsl if (i == 0)
578 1.61 dsl break;
579 1.61 dsl }
580 1.61 dsl
581 1.61 dsl /* Switch tables */
582 1.94.4.2 ad mutex_enter(&proclist_mutex);
583 1.61 dsl n_pt = pid_table;
584 1.61 dsl pid_table = new_pt;
585 1.94.4.2 ad mutex_exit(&proclist_mutex);
586 1.61 dsl pid_tbl_mask = pt_size * 2 - 1;
587 1.61 dsl
588 1.61 dsl /*
589 1.61 dsl * pid_max starts as PID_MAX (= 30000), once we have 16384
590 1.61 dsl * allocated pids we need it to be larger!
591 1.61 dsl */
592 1.61 dsl if (pid_tbl_mask > PID_MAX) {
593 1.61 dsl pid_max = pid_tbl_mask * 2 + 1;
594 1.61 dsl pid_alloc_lim |= pid_alloc_lim << 1;
595 1.61 dsl } else
596 1.61 dsl pid_alloc_lim <<= 1; /* doubles number of free slots... */
597 1.61 dsl
598 1.94.4.1 ad rw_exit(&proclist_lock);
599 1.61 dsl FREE(n_pt, M_PROC);
600 1.61 dsl }
601 1.61 dsl
602 1.61 dsl struct proc *
603 1.61 dsl proc_alloc(void)
604 1.61 dsl {
605 1.61 dsl struct proc *p;
606 1.61 dsl int nxt;
607 1.61 dsl pid_t pid;
608 1.61 dsl struct pid_table *pt;
609 1.61 dsl
610 1.61 dsl p = pool_get(&proc_pool, PR_WAITOK);
611 1.61 dsl p->p_stat = SIDL; /* protect against others */
612 1.61 dsl
613 1.94.4.6 ad proc_initspecific(p);
614 1.61 dsl /* allocate next free pid */
615 1.61 dsl
616 1.61 dsl for (;;expand_pid_table()) {
617 1.61 dsl if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
618 1.61 dsl /* ensure pids cycle through 2000+ values */
619 1.61 dsl continue;
620 1.94.4.1 ad rw_enter(&proclist_lock, RW_WRITER);
621 1.61 dsl pt = &pid_table[next_free_pt];
622 1.1 cgd #ifdef DIAGNOSTIC
623 1.63 christos if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
624 1.61 dsl panic("proc_alloc: slot busy");
625 1.1 cgd #endif
626 1.61 dsl nxt = P_NEXT(pt->pt_proc);
627 1.61 dsl if (nxt & pid_tbl_mask)
628 1.61 dsl break;
629 1.61 dsl /* Table full - expand (NB last entry not used....) */
630 1.94.4.1 ad rw_exit(&proclist_lock);
631 1.61 dsl }
632 1.61 dsl
633 1.61 dsl /* pid is 'saved use count' + 'size' + entry */
634 1.61 dsl pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
635 1.61 dsl if ((uint)pid > (uint)pid_max)
636 1.61 dsl pid &= pid_tbl_mask;
637 1.61 dsl p->p_pid = pid;
638 1.61 dsl next_free_pt = nxt & pid_tbl_mask;
639 1.61 dsl
640 1.61 dsl /* Grab table slot */
641 1.94.4.2 ad mutex_enter(&proclist_mutex);
642 1.61 dsl pt->pt_proc = p;
643 1.94.4.2 ad mutex_exit(&proclist_mutex);
644 1.61 dsl pid_alloc_cnt++;
645 1.61 dsl
646 1.94.4.1 ad rw_exit(&proclist_lock);
647 1.61 dsl
648 1.61 dsl return p;
649 1.61 dsl }
650 1.61 dsl
651 1.61 dsl /*
652 1.61 dsl * Free last resources of a process - called from proc_free (in kern_exit.c)
653 1.94.4.1 ad *
654 1.94.4.1 ad * Called with the proclist_lock write held, and releases upon exit.
655 1.61 dsl */
656 1.61 dsl void
657 1.61 dsl proc_free_mem(struct proc *p)
658 1.61 dsl {
659 1.61 dsl pid_t pid = p->p_pid;
660 1.61 dsl struct pid_table *pt;
661 1.61 dsl
662 1.94.4.1 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
663 1.61 dsl
664 1.61 dsl pt = &pid_table[pid & pid_tbl_mask];
665 1.1 cgd #ifdef DIAGNOSTIC
666 1.63 christos if (__predict_false(pt->pt_proc != p))
667 1.61 dsl panic("proc_free: pid_table mismatch, pid %x, proc %p",
668 1.61 dsl pid, p);
669 1.1 cgd #endif
670 1.94.4.2 ad mutex_enter(&proclist_mutex);
671 1.61 dsl /* save pid use count in slot */
672 1.61 dsl pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
673 1.61 dsl
674 1.61 dsl if (pt->pt_pgrp == NULL) {
675 1.61 dsl /* link last freed entry onto ours */
676 1.61 dsl pid &= pid_tbl_mask;
677 1.61 dsl pt = &pid_table[last_free_pt];
678 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
679 1.61 dsl last_free_pt = pid;
680 1.61 dsl pid_alloc_cnt--;
681 1.61 dsl }
682 1.94.4.2 ad mutex_exit(&proclist_mutex);
683 1.61 dsl
684 1.61 dsl nprocs--;
685 1.94.4.1 ad rw_exit(&proclist_lock);
686 1.61 dsl
687 1.61 dsl pool_put(&proc_pool, p);
688 1.61 dsl }
689 1.61 dsl
690 1.61 dsl /*
691 1.61 dsl * Move p to a new or existing process group (and session)
692 1.61 dsl *
693 1.61 dsl * If we are creating a new pgrp, the pgid should equal
694 1.72 junyoung * the calling process' pid.
695 1.61 dsl * If is only valid to enter a process group that is in the session
696 1.61 dsl * of the process.
697 1.61 dsl * Also mksess should only be set if we are creating a process group
698 1.61 dsl *
699 1.72 junyoung * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
700 1.94.4.1 ad * SYSV setpgrp support for hpux.
701 1.61 dsl */
702 1.61 dsl int
703 1.94.4.1 ad enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
704 1.61 dsl {
705 1.61 dsl struct pgrp *new_pgrp, *pgrp;
706 1.61 dsl struct session *sess;
707 1.94.4.1 ad struct proc *p;
708 1.61 dsl int rval;
709 1.61 dsl pid_t pg_id = NO_PGID;
710 1.61 dsl
711 1.61 dsl /* Allocate data areas we might need before doing any validity checks */
712 1.94.4.1 ad rw_enter(&proclist_lock, RW_READER); /* Because pid_table might change */
713 1.61 dsl if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
714 1.94.4.1 ad rw_exit(&proclist_lock);
715 1.61 dsl new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
716 1.61 dsl } else {
717 1.94.4.1 ad rw_exit(&proclist_lock);
718 1.61 dsl new_pgrp = NULL;
719 1.61 dsl }
720 1.61 dsl if (mksess)
721 1.94.4.6 ad sess = pool_get(&session_pool, PR_WAITOK);
722 1.61 dsl else
723 1.61 dsl sess = NULL;
724 1.61 dsl
725 1.94.4.1 ad rw_enter(&proclist_lock, RW_WRITER);
726 1.61 dsl rval = EPERM; /* most common error (to save typing) */
727 1.61 dsl
728 1.61 dsl /* Check pgrp exists or can be created */
729 1.61 dsl pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
730 1.61 dsl if (pgrp != NULL && pgrp->pg_id != pgid)
731 1.61 dsl goto done;
732 1.61 dsl
733 1.61 dsl /* Can only set another process under restricted circumstances. */
734 1.94.4.1 ad if (pid != curp->p_pid) {
735 1.61 dsl /* must exist and be one of our children... */
736 1.94.4.1 ad if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
737 1.94.4.1 ad !inferior(p, curp)) {
738 1.61 dsl rval = ESRCH;
739 1.61 dsl goto done;
740 1.61 dsl }
741 1.61 dsl /* ... in the same session... */
742 1.61 dsl if (sess != NULL || p->p_session != curp->p_session)
743 1.61 dsl goto done;
744 1.61 dsl /* ... existing pgid must be in same session ... */
745 1.61 dsl if (pgrp != NULL && pgrp->pg_session != p->p_session)
746 1.61 dsl goto done;
747 1.61 dsl /* ... and not done an exec. */
748 1.61 dsl if (p->p_flag & P_EXEC) {
749 1.61 dsl rval = EACCES;
750 1.61 dsl goto done;
751 1.49 enami }
752 1.94.4.1 ad } else {
753 1.94.4.1 ad /* ... setsid() cannot re-enter a pgrp */
754 1.94.4.1 ad if (mksess && (curp->p_pgid == curp->p_pid ||
755 1.94.4.1 ad pg_find(curp->p_pid, PFIND_LOCKED)))
756 1.94.4.1 ad goto done;
757 1.94.4.1 ad p = curp;
758 1.61 dsl }
759 1.1 cgd
760 1.61 dsl /* Changing the process group/session of a session
761 1.61 dsl leader is definitely off limits. */
762 1.61 dsl if (SESS_LEADER(p)) {
763 1.61 dsl if (sess == NULL && p->p_pgrp == pgrp)
764 1.61 dsl /* unless it's a definite noop */
765 1.61 dsl rval = 0;
766 1.61 dsl goto done;
767 1.61 dsl }
768 1.61 dsl
769 1.61 dsl /* Can only create a process group with id of process */
770 1.61 dsl if (pgrp == NULL && pgid != pid)
771 1.61 dsl goto done;
772 1.61 dsl
773 1.61 dsl /* Can only create a session if creating pgrp */
774 1.61 dsl if (sess != NULL && pgrp != NULL)
775 1.61 dsl goto done;
776 1.61 dsl
777 1.61 dsl /* Check we allocated memory for a pgrp... */
778 1.61 dsl if (pgrp == NULL && new_pgrp == NULL)
779 1.61 dsl goto done;
780 1.61 dsl
781 1.61 dsl /* Don't attach to 'zombie' pgrp */
782 1.61 dsl if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
783 1.61 dsl goto done;
784 1.61 dsl
785 1.61 dsl /* Expect to succeed now */
786 1.61 dsl rval = 0;
787 1.61 dsl
788 1.61 dsl if (pgrp == p->p_pgrp)
789 1.61 dsl /* nothing to do */
790 1.61 dsl goto done;
791 1.61 dsl
792 1.61 dsl /* Ok all setup, link up required structures */
793 1.94.4.2 ad
794 1.61 dsl if (pgrp == NULL) {
795 1.61 dsl pgrp = new_pgrp;
796 1.61 dsl new_pgrp = 0;
797 1.61 dsl if (sess != NULL) {
798 1.21 thorpej sess->s_sid = p->p_pid;
799 1.1 cgd sess->s_leader = p;
800 1.1 cgd sess->s_count = 1;
801 1.1 cgd sess->s_ttyvp = NULL;
802 1.1 cgd sess->s_ttyp = NULL;
803 1.58 dsl sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
804 1.25 perry memcpy(sess->s_login, p->p_session->s_login,
805 1.1 cgd sizeof(sess->s_login));
806 1.94.4.5 ad p->p_lflag &= ~PL_CONTROLT;
807 1.1 cgd } else {
808 1.61 dsl sess = p->p_pgrp->pg_session;
809 1.61 dsl SESSHOLD(sess);
810 1.1 cgd }
811 1.61 dsl pgrp->pg_session = sess;
812 1.61 dsl sess = 0;
813 1.61 dsl
814 1.1 cgd pgrp->pg_id = pgid;
815 1.10 mycroft LIST_INIT(&pgrp->pg_members);
816 1.61 dsl #ifdef DIAGNOSTIC
817 1.63 christos if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
818 1.61 dsl panic("enterpgrp: pgrp table slot in use");
819 1.63 christos if (__predict_false(mksess && p != curp))
820 1.63 christos panic("enterpgrp: mksession and p != curproc");
821 1.61 dsl #endif
822 1.94.4.2 ad mutex_enter(&proclist_mutex);
823 1.61 dsl pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
824 1.1 cgd pgrp->pg_jobc = 0;
825 1.94.4.2 ad } else
826 1.94.4.2 ad mutex_enter(&proclist_mutex);
827 1.1 cgd
828 1.94.4.1 ad #ifdef notyet
829 1.94.4.1 ad /*
830 1.94.4.1 ad * If there's a controlling terminal for the current session, we
831 1.94.4.1 ad * have to interlock with it. See ttread().
832 1.94.4.1 ad */
833 1.94.4.1 ad if (p->p_session->s_ttyvp != NULL) {
834 1.94.4.1 ad tp = p->p_session->s_ttyp;
835 1.94.4.1 ad mutex_enter(&tp->t_mutex);
836 1.94.4.1 ad } else
837 1.94.4.1 ad tp = NULL;
838 1.94.4.1 ad #endif
839 1.94.4.1 ad
840 1.1 cgd /*
841 1.1 cgd * Adjust eligibility of affected pgrps to participate in job control.
842 1.1 cgd * Increment eligibility counts before decrementing, otherwise we
843 1.1 cgd * could reach 0 spuriously during the first call.
844 1.1 cgd */
845 1.1 cgd fixjobc(p, pgrp, 1);
846 1.1 cgd fixjobc(p, p->p_pgrp, 0);
847 1.1 cgd
848 1.94.4.1 ad /* Move process to requested group. */
849 1.10 mycroft LIST_REMOVE(p, p_pglist);
850 1.52 matt if (LIST_EMPTY(&p->p_pgrp->pg_members))
851 1.61 dsl /* defer delete until we've dumped the lock */
852 1.61 dsl pg_id = p->p_pgrp->pg_id;
853 1.1 cgd p->p_pgrp = pgrp;
854 1.10 mycroft LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
855 1.94.4.1 ad mutex_exit(&proclist_mutex);
856 1.94.4.1 ad
857 1.94.4.1 ad #ifdef notyet
858 1.94.4.1 ad /* Done with the swap; we can release the tty mutex. */
859 1.94.4.1 ad if (tp != NULL)
860 1.94.4.1 ad mutex_exit(&tp->t_mutex);
861 1.94.4.1 ad #endif
862 1.61 dsl
863 1.61 dsl done:
864 1.94.4.5 ad if (pg_id != NO_PGID)
865 1.94.4.5 ad pg_delete(pg_id);
866 1.94.4.1 ad rw_exit(&proclist_lock);
867 1.61 dsl if (sess != NULL)
868 1.77 simonb pool_put(&session_pool, sess);
869 1.61 dsl if (new_pgrp != NULL)
870 1.61 dsl pool_put(&pgrp_pool, new_pgrp);
871 1.63 christos #ifdef DEBUG_PGRP
872 1.63 christos if (__predict_false(rval))
873 1.61 dsl printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
874 1.61 dsl pid, pgid, mksess, curp->p_pid, rval);
875 1.61 dsl #endif
876 1.61 dsl return rval;
877 1.1 cgd }
878 1.1 cgd
879 1.1 cgd /*
880 1.94.4.5 ad * Remove a process from its process group. Must be called with the
881 1.94.4.5 ad * proclist_lock write held.
882 1.1 cgd */
883 1.94.4.1 ad void
884 1.59 dsl leavepgrp(struct proc *p)
885 1.1 cgd {
886 1.61 dsl struct pgrp *pgrp;
887 1.1 cgd
888 1.94.4.5 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
889 1.94.4.5 ad
890 1.94.4.1 ad /*
891 1.94.4.1 ad * If there's a controlling terminal for the session, we have to
892 1.94.4.1 ad * interlock with it. See ttread().
893 1.94.4.1 ad */
894 1.94.4.1 ad mutex_enter(&proclist_mutex);
895 1.94.4.1 ad #ifdef notyet
896 1.94.4.1 ad if (p_>p_session->s_ttyvp != NULL) {
897 1.94.4.1 ad tp = p->p_session->s_ttyp;
898 1.94.4.1 ad mutex_enter(&tp->t_mutex);
899 1.94.4.1 ad } else
900 1.94.4.1 ad tp = NULL;
901 1.94.4.1 ad #endif
902 1.94.4.1 ad
903 1.61 dsl pgrp = p->p_pgrp;
904 1.10 mycroft LIST_REMOVE(p, p_pglist);
905 1.94 ad p->p_pgrp = NULL;
906 1.61 dsl
907 1.94.4.1 ad #ifdef notyet
908 1.94.4.1 ad if (tp != NULL)
909 1.94.4.1 ad mutex_exit(&tp->t_mutex);
910 1.94.4.1 ad #endif
911 1.94.4.1 ad mutex_exit(&proclist_mutex);
912 1.94.4.1 ad
913 1.94.4.1 ad if (LIST_EMPTY(&pgrp->pg_members))
914 1.94.4.1 ad pg_delete(pgrp->pg_id);
915 1.61 dsl }
916 1.61 dsl
917 1.94.4.5 ad /*
918 1.94.4.5 ad * Free a process group. Must be called with the proclist_lock write held.
919 1.94.4.5 ad */
920 1.61 dsl static void
921 1.61 dsl pg_free(pid_t pg_id)
922 1.61 dsl {
923 1.61 dsl struct pgrp *pgrp;
924 1.61 dsl struct pid_table *pt;
925 1.61 dsl
926 1.94.4.5 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
927 1.94.4.5 ad
928 1.61 dsl pt = &pid_table[pg_id & pid_tbl_mask];
929 1.61 dsl pgrp = pt->pt_pgrp;
930 1.61 dsl #ifdef DIAGNOSTIC
931 1.63 christos if (__predict_false(!pgrp || pgrp->pg_id != pg_id
932 1.63 christos || !LIST_EMPTY(&pgrp->pg_members)))
933 1.61 dsl panic("pg_free: process group absent or has members");
934 1.61 dsl #endif
935 1.61 dsl pt->pt_pgrp = 0;
936 1.61 dsl
937 1.61 dsl if (!P_VALID(pt->pt_proc)) {
938 1.61 dsl /* orphaned pgrp, put slot onto free list */
939 1.61 dsl #ifdef DIAGNOSTIC
940 1.63 christos if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
941 1.61 dsl panic("pg_free: process slot on free list");
942 1.61 dsl #endif
943 1.94.4.2 ad mutex_enter(&proclist_mutex);
944 1.61 dsl pg_id &= pid_tbl_mask;
945 1.61 dsl pt = &pid_table[last_free_pt];
946 1.61 dsl pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
947 1.94.4.2 ad mutex_exit(&proclist_mutex);
948 1.61 dsl last_free_pt = pg_id;
949 1.61 dsl pid_alloc_cnt--;
950 1.61 dsl }
951 1.61 dsl pool_put(&pgrp_pool, pgrp);
952 1.1 cgd }
953 1.1 cgd
954 1.1 cgd /*
955 1.94.4.5 ad * Delete a process group. Must be called with the proclist_lock write
956 1.94.4.5 ad * held.
957 1.1 cgd */
958 1.61 dsl static void
959 1.61 dsl pg_delete(pid_t pg_id)
960 1.61 dsl {
961 1.61 dsl struct pgrp *pgrp;
962 1.61 dsl struct tty *ttyp;
963 1.61 dsl struct session *ss;
964 1.94.4.1 ad int is_pgrp_leader;
965 1.61 dsl
966 1.94.4.5 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
967 1.94.4.5 ad
968 1.61 dsl pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
969 1.61 dsl if (pgrp == NULL || pgrp->pg_id != pg_id ||
970 1.94.4.5 ad !LIST_EMPTY(&pgrp->pg_members))
971 1.61 dsl return;
972 1.61 dsl
973 1.71 pk ss = pgrp->pg_session;
974 1.71 pk
975 1.61 dsl /* Remove reference (if any) from tty to this process group */
976 1.71 pk ttyp = ss->s_ttyp;
977 1.71 pk if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
978 1.61 dsl ttyp->t_pgrp = NULL;
979 1.71 pk #ifdef DIAGNOSTIC
980 1.71 pk if (ttyp->t_session != ss)
981 1.71 pk panic("pg_delete: wrong session on terminal");
982 1.71 pk #endif
983 1.71 pk }
984 1.61 dsl
985 1.71 pk /*
986 1.71 pk * The leading process group in a session is freed
987 1.71 pk * by sessdelete() if last reference.
988 1.71 pk */
989 1.71 pk is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
990 1.71 pk SESSRELE(ss);
991 1.61 dsl
992 1.71 pk if (is_pgrp_leader)
993 1.61 dsl return;
994 1.61 dsl
995 1.61 dsl pg_free(pg_id);
996 1.61 dsl }
997 1.61 dsl
998 1.61 dsl /*
999 1.61 dsl * Delete session - called from SESSRELE when s_count becomes zero.
1000 1.94.4.5 ad * Must be called with the proclist_lock write held.
1001 1.61 dsl */
1002 1.11 cgd void
1003 1.61 dsl sessdelete(struct session *ss)
1004 1.1 cgd {
1005 1.94.4.5 ad
1006 1.94.4.5 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
1007 1.94.4.5 ad
1008 1.61 dsl /*
1009 1.61 dsl * We keep the pgrp with the same id as the session in
1010 1.61 dsl * order to stop a process being given the same pid.
1011 1.61 dsl * Since the pgrp holds a reference to the session, it
1012 1.61 dsl * must be a 'zombie' pgrp by now.
1013 1.61 dsl */
1014 1.61 dsl pg_free(ss->s_sid);
1015 1.77 simonb pool_put(&session_pool, ss);
1016 1.1 cgd }
1017 1.1 cgd
1018 1.1 cgd /*
1019 1.1 cgd * Adjust pgrp jobc counters when specified process changes process group.
1020 1.1 cgd * We count the number of processes in each process group that "qualify"
1021 1.1 cgd * the group for terminal job control (those with a parent in a different
1022 1.1 cgd * process group of the same session). If that count reaches zero, the
1023 1.1 cgd * process group becomes orphaned. Check both the specified process'
1024 1.1 cgd * process group and that of its children.
1025 1.1 cgd * entering == 0 => p is leaving specified group.
1026 1.1 cgd * entering == 1 => p is entering specified group.
1027 1.68 dsl *
1028 1.94.4.5 ad * Call with proclist_lock write held.
1029 1.1 cgd */
1030 1.4 andrew void
1031 1.59 dsl fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1032 1.1 cgd {
1033 1.39 augustss struct pgrp *hispgrp;
1034 1.39 augustss struct session *mysession = pgrp->pg_session;
1035 1.68 dsl struct proc *child;
1036 1.1 cgd
1037 1.94.4.5 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
1038 1.94.4.5 ad
1039 1.1 cgd /*
1040 1.1 cgd * Check p's parent to see whether p qualifies its own process
1041 1.1 cgd * group; if so, adjust count for p's process group.
1042 1.1 cgd */
1043 1.68 dsl hispgrp = p->p_pptr->p_pgrp;
1044 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1045 1.94.4.3 ad if (entering) {
1046 1.94.4.5 ad mutex_enter(&p->p_smutex);
1047 1.94.4.5 ad p->p_sflag &= ~PS_ORPHANPG;
1048 1.94.4.5 ad mutex_exit(&p->p_smutex);
1049 1.1 cgd pgrp->pg_jobc++;
1050 1.94.4.3 ad } else if (--pgrp->pg_jobc == 0)
1051 1.1 cgd orphanpg(pgrp);
1052 1.26 thorpej }
1053 1.1 cgd
1054 1.1 cgd /*
1055 1.1 cgd * Check this process' children to see whether they qualify
1056 1.1 cgd * their process groups; if so, adjust counts for children's
1057 1.1 cgd * process groups.
1058 1.1 cgd */
1059 1.68 dsl LIST_FOREACH(child, &p->p_children, p_sibling) {
1060 1.68 dsl hispgrp = child->p_pgrp;
1061 1.68 dsl if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1062 1.68 dsl !P_ZOMBIE(child)) {
1063 1.94.4.3 ad if (entering) {
1064 1.94.4.5 ad mutex_enter(&child->p_smutex);
1065 1.94.4.5 ad child->p_sflag &= ~PS_ORPHANPG;
1066 1.94.4.5 ad mutex_exit(&child->p_smutex);
1067 1.1 cgd hispgrp->pg_jobc++;
1068 1.94.4.3 ad } else if (--hispgrp->pg_jobc == 0)
1069 1.1 cgd orphanpg(hispgrp);
1070 1.26 thorpej }
1071 1.26 thorpej }
1072 1.1 cgd }
1073 1.1 cgd
1074 1.72 junyoung /*
1075 1.1 cgd * A process group has become orphaned;
1076 1.1 cgd * if there are any stopped processes in the group,
1077 1.1 cgd * hang-up all process in that group.
1078 1.68 dsl *
1079 1.94.4.5 ad * Call with proclist_lock write held.
1080 1.1 cgd */
1081 1.4 andrew static void
1082 1.59 dsl orphanpg(struct pgrp *pg)
1083 1.1 cgd {
1084 1.39 augustss struct proc *p;
1085 1.94.4.3 ad int doit;
1086 1.94.4.3 ad
1087 1.94.4.5 ad LOCK_ASSERT(rw_write_held(&proclist_lock));
1088 1.94.4.5 ad
1089 1.94.4.3 ad doit = 0;
1090 1.1 cgd
1091 1.52 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1092 1.94.4.3 ad mutex_enter(&p->p_smutex);
1093 1.1 cgd if (p->p_stat == SSTOP) {
1094 1.94.4.3 ad doit = 1;
1095 1.94.4.5 ad p->p_sflag |= PS_ORPHANPG;
1096 1.94.4.3 ad }
1097 1.94.4.3 ad mutex_exit(&p->p_smutex);
1098 1.94.4.3 ad }
1099 1.94.4.3 ad
1100 1.94.4.3 ad if (doit) {
1101 1.94.4.3 ad LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1102 1.94.4.3 ad psignal(p, SIGHUP);
1103 1.94.4.3 ad psignal(p, SIGCONT);
1104 1.1 cgd }
1105 1.1 cgd }
1106 1.1 cgd }
1107 1.35 bouyer
1108 1.61 dsl /* mark process as suid/sgid, reset some values to defaults */
1109 1.35 bouyer void
1110 1.59 dsl p_sugid(struct proc *p)
1111 1.35 bouyer {
1112 1.78 pk struct plimit *lim;
1113 1.78 pk char *cn;
1114 1.35 bouyer
1115 1.35 bouyer p->p_flag |= P_SUGID;
1116 1.35 bouyer /* reset what needs to be reset in plimit */
1117 1.78 pk lim = p->p_limit;
1118 1.78 pk if (lim->pl_corename != defcorename) {
1119 1.78 pk if (lim->p_refcnt > 1 &&
1120 1.78 pk (lim->p_lflags & PL_SHAREMOD) == 0) {
1121 1.78 pk p->p_limit = limcopy(lim);
1122 1.78 pk limfree(lim);
1123 1.78 pk lim = p->p_limit;
1124 1.35 bouyer }
1125 1.78 pk simple_lock(&lim->p_slock);
1126 1.78 pk cn = lim->pl_corename;
1127 1.78 pk lim->pl_corename = defcorename;
1128 1.78 pk simple_unlock(&lim->p_slock);
1129 1.78 pk if (cn != defcorename)
1130 1.78 pk free(cn, M_TEMP);
1131 1.35 bouyer }
1132 1.35 bouyer }
1133 1.1 cgd
1134 1.61 dsl #ifdef DDB
1135 1.61 dsl #include <ddb/db_output.h>
1136 1.61 dsl void pidtbl_dump(void);
1137 1.14 christos void
1138 1.61 dsl pidtbl_dump(void)
1139 1.1 cgd {
1140 1.61 dsl struct pid_table *pt;
1141 1.61 dsl struct proc *p;
1142 1.39 augustss struct pgrp *pgrp;
1143 1.61 dsl int id;
1144 1.1 cgd
1145 1.61 dsl db_printf("pid table %p size %x, next %x, last %x\n",
1146 1.61 dsl pid_table, pid_tbl_mask+1,
1147 1.61 dsl next_free_pt, last_free_pt);
1148 1.61 dsl for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1149 1.61 dsl p = pt->pt_proc;
1150 1.61 dsl if (!P_VALID(p) && !pt->pt_pgrp)
1151 1.61 dsl continue;
1152 1.61 dsl db_printf(" id %x: ", id);
1153 1.61 dsl if (P_VALID(p))
1154 1.61 dsl db_printf("proc %p id %d (0x%x) %s\n",
1155 1.61 dsl p, p->p_pid, p->p_pid, p->p_comm);
1156 1.61 dsl else
1157 1.61 dsl db_printf("next %x use %x\n",
1158 1.61 dsl P_NEXT(p) & pid_tbl_mask,
1159 1.61 dsl P_NEXT(p) & ~pid_tbl_mask);
1160 1.61 dsl if ((pgrp = pt->pt_pgrp)) {
1161 1.61 dsl db_printf("\tsession %p, sid %d, count %d, login %s\n",
1162 1.61 dsl pgrp->pg_session, pgrp->pg_session->s_sid,
1163 1.61 dsl pgrp->pg_session->s_count,
1164 1.61 dsl pgrp->pg_session->s_login);
1165 1.61 dsl db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1166 1.61 dsl pgrp, pgrp->pg_id, pgrp->pg_jobc,
1167 1.61 dsl pgrp->pg_members.lh_first);
1168 1.61 dsl for (p = pgrp->pg_members.lh_first; p != 0;
1169 1.61 dsl p = p->p_pglist.le_next) {
1170 1.72 junyoung db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1171 1.61 dsl p->p_pid, p, p->p_pgrp, p->p_comm);
1172 1.10 mycroft }
1173 1.1 cgd }
1174 1.1 cgd }
1175 1.1 cgd }
1176 1.61 dsl #endif /* DDB */
1177 1.48 yamt
1178 1.48 yamt #ifdef KSTACK_CHECK_MAGIC
1179 1.48 yamt #include <sys/user.h>
1180 1.48 yamt
1181 1.48 yamt #define KSTACK_MAGIC 0xdeadbeaf
1182 1.48 yamt
1183 1.48 yamt /* XXX should be per process basis? */
1184 1.48 yamt int kstackleftmin = KSTACK_SIZE;
1185 1.50 enami int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1186 1.50 enami less than this */
1187 1.48 yamt
1188 1.48 yamt void
1189 1.56 yamt kstack_setup_magic(const struct lwp *l)
1190 1.48 yamt {
1191 1.85 perry uint32_t *ip;
1192 1.85 perry uint32_t const *end;
1193 1.48 yamt
1194 1.56 yamt KASSERT(l != NULL);
1195 1.56 yamt KASSERT(l != &lwp0);
1196 1.48 yamt
1197 1.48 yamt /*
1198 1.48 yamt * fill all the stack with magic number
1199 1.48 yamt * so that later modification on it can be detected.
1200 1.48 yamt */
1201 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1202 1.85 perry end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1203 1.48 yamt for (; ip < end; ip++) {
1204 1.48 yamt *ip = KSTACK_MAGIC;
1205 1.48 yamt }
1206 1.48 yamt }
1207 1.48 yamt
1208 1.48 yamt void
1209 1.56 yamt kstack_check_magic(const struct lwp *l)
1210 1.48 yamt {
1211 1.85 perry uint32_t const *ip, *end;
1212 1.48 yamt int stackleft;
1213 1.48 yamt
1214 1.56 yamt KASSERT(l != NULL);
1215 1.48 yamt
1216 1.48 yamt /* don't check proc0 */ /*XXX*/
1217 1.56 yamt if (l == &lwp0)
1218 1.48 yamt return;
1219 1.48 yamt
1220 1.48 yamt #ifdef __MACHINE_STACK_GROWS_UP
1221 1.48 yamt /* stack grows upwards (eg. hppa) */
1222 1.85 perry ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1223 1.85 perry end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1224 1.48 yamt for (ip--; ip >= end; ip--)
1225 1.48 yamt if (*ip != KSTACK_MAGIC)
1226 1.48 yamt break;
1227 1.72 junyoung
1228 1.56 yamt stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1229 1.48 yamt #else /* __MACHINE_STACK_GROWS_UP */
1230 1.48 yamt /* stack grows downwards (eg. i386) */
1231 1.85 perry ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1232 1.85 perry end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1233 1.48 yamt for (; ip < end; ip++)
1234 1.48 yamt if (*ip != KSTACK_MAGIC)
1235 1.48 yamt break;
1236 1.48 yamt
1237 1.93 christos stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1238 1.48 yamt #endif /* __MACHINE_STACK_GROWS_UP */
1239 1.48 yamt
1240 1.48 yamt if (kstackleftmin > stackleft) {
1241 1.48 yamt kstackleftmin = stackleft;
1242 1.48 yamt if (stackleft < kstackleftthres)
1243 1.56 yamt printf("warning: kernel stack left %d bytes"
1244 1.56 yamt "(pid %u:lid %u)\n", stackleft,
1245 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1246 1.48 yamt }
1247 1.48 yamt
1248 1.48 yamt if (stackleft <= 0) {
1249 1.56 yamt panic("magic on the top of kernel stack changed for "
1250 1.56 yamt "pid %u, lid %u: maybe kernel stack overflow",
1251 1.56 yamt (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1252 1.48 yamt }
1253 1.48 yamt }
1254 1.50 enami #endif /* KSTACK_CHECK_MAGIC */
1255 1.79 yamt
1256 1.94.4.1 ad /*
1257 1.94.4.1 ad * XXXSMP this is bust, it grabs a read lock and then messes about
1258 1.94.4.1 ad * with allproc.
1259 1.94.4.1 ad */
1260 1.79 yamt int
1261 1.79 yamt proclist_foreach_call(struct proclist *list,
1262 1.79 yamt int (*callback)(struct proc *, void *arg), void *arg)
1263 1.79 yamt {
1264 1.79 yamt struct proc marker;
1265 1.79 yamt struct proc *p;
1266 1.79 yamt struct lwp * const l = curlwp;
1267 1.79 yamt int ret = 0;
1268 1.79 yamt
1269 1.79 yamt marker.p_flag = P_MARKER;
1270 1.79 yamt PHOLD(l);
1271 1.94.4.1 ad rw_enter(&proclist_lock, RW_READER);
1272 1.79 yamt for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1273 1.79 yamt if (p->p_flag & P_MARKER) {
1274 1.79 yamt p = LIST_NEXT(p, p_list);
1275 1.79 yamt continue;
1276 1.79 yamt }
1277 1.79 yamt LIST_INSERT_AFTER(p, &marker, p_list);
1278 1.79 yamt ret = (*callback)(p, arg);
1279 1.94.4.1 ad KASSERT(rw_read_held(&proclist_lock));
1280 1.79 yamt p = LIST_NEXT(&marker, p_list);
1281 1.79 yamt LIST_REMOVE(&marker, p_list);
1282 1.79 yamt }
1283 1.94.4.1 ad rw_exit(&proclist_lock);
1284 1.79 yamt PRELE(l);
1285 1.79 yamt
1286 1.79 yamt return ret;
1287 1.79 yamt }
1288 1.86 yamt
1289 1.86 yamt int
1290 1.86 yamt proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1291 1.86 yamt {
1292 1.86 yamt
1293 1.86 yamt /* XXXCDC: how should locking work here? */
1294 1.86 yamt
1295 1.87 yamt /* curproc exception is for coredump. */
1296 1.87 yamt
1297 1.94.4.5 ad if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1298 1.86 yamt (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1299 1.86 yamt return EFAULT;
1300 1.86 yamt }
1301 1.86 yamt
1302 1.86 yamt uvmspace_addref(p->p_vmspace);
1303 1.86 yamt *vm = p->p_vmspace;
1304 1.86 yamt
1305 1.86 yamt return 0;
1306 1.86 yamt }
1307 1.94 ad
1308 1.94 ad /*
1309 1.94 ad * Acquire a write lock on the process credential.
1310 1.94 ad */
1311 1.94 ad void
1312 1.94.4.5 ad proc_crmod_enter(void)
1313 1.94 ad {
1314 1.94.4.5 ad struct lwp *l = curlwp;
1315 1.94.4.5 ad struct proc *p = l->l_proc;
1316 1.94.4.5 ad kauth_cred_t oc;
1317 1.94.4.5 ad
1318 1.94.4.5 ad mutex_enter(&p->p_mutex);
1319 1.94.4.5 ad
1320 1.94.4.5 ad /* Ensure the LWP cached credentials are up to date. */
1321 1.94.4.5 ad if ((oc = l->l_cred) != p->p_cred) {
1322 1.94.4.5 ad kauth_cred_hold(p->p_cred);
1323 1.94.4.5 ad l->l_cred = p->p_cred;
1324 1.94.4.5 ad kauth_cred_free(oc);
1325 1.94.4.5 ad }
1326 1.94 ad }
1327 1.94 ad
1328 1.94 ad /*
1329 1.94.4.3 ad * Set in a new process credential, and drop the write lock. The credential
1330 1.94.4.3 ad * must have a reference already. Optionally, free a no-longer required
1331 1.94.4.3 ad * credential. The scheduler also needs to inspect p_cred, so we also
1332 1.94.4.3 ad * briefly acquire the sched state mutex.
1333 1.94 ad */
1334 1.94 ad void
1335 1.94.4.5 ad proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred)
1336 1.94 ad {
1337 1.94.4.5 ad struct lwp *l = curlwp;
1338 1.94.4.5 ad struct proc *p = l->l_proc;
1339 1.94.4.5 ad kauth_cred_t oc;
1340 1.94 ad
1341 1.94.4.3 ad mutex_enter(&p->p_smutex);
1342 1.94 ad p->p_cred = scred;
1343 1.94.4.3 ad mutex_exit(&p->p_smutex);
1344 1.94.4.5 ad
1345 1.94.4.5 ad /* Ensure the LWP cached credentials are up to date. */
1346 1.94.4.5 ad if ((oc = l->l_cred) != scred) {
1347 1.94.4.5 ad kauth_cred_hold(scred);
1348 1.94.4.5 ad l->l_cred = scred;
1349 1.94.4.5 ad }
1350 1.94.4.5 ad
1351 1.94.4.5 ad mutex_exit(&p->p_mutex);
1352 1.94.4.5 ad kauth_cred_free(fcred);
1353 1.94.4.5 ad if (oc != scred)
1354 1.94.4.5 ad kauth_cred_free(oc);
1355 1.94.4.5 ad }
1356 1.94.4.5 ad
1357 1.94.4.5 ad /*
1358 1.94.4.5 ad * Acquire a reference on a process, to prevent it from exiting or execing.
1359 1.94.4.5 ad */
1360 1.94.4.5 ad int
1361 1.94.4.5 ad proc_addref(struct proc *p)
1362 1.94.4.5 ad {
1363 1.94.4.5 ad
1364 1.94.4.5 ad LOCK_ASSERT(mutex_owned(&p->p_mutex));
1365 1.94.4.5 ad
1366 1.94.4.5 ad if (p->p_refcnt <= 0)
1367 1.94.4.5 ad return EAGAIN;
1368 1.94.4.5 ad p->p_refcnt++;
1369 1.94.4.5 ad
1370 1.94.4.5 ad return 0;
1371 1.94.4.5 ad }
1372 1.94.4.5 ad
1373 1.94.4.5 ad /*
1374 1.94.4.5 ad * Release a reference on a process.
1375 1.94.4.5 ad */
1376 1.94.4.5 ad void
1377 1.94.4.5 ad proc_delref(struct proc *p)
1378 1.94.4.5 ad {
1379 1.94.4.5 ad
1380 1.94.4.5 ad LOCK_ASSERT(mutex_owned(&p->p_mutex));
1381 1.94.4.5 ad
1382 1.94.4.5 ad if (p->p_refcnt < 0) {
1383 1.94.4.5 ad if (++p->p_refcnt == 0)
1384 1.94.4.5 ad cv_signal(&p->p_refcv);
1385 1.94.4.5 ad } else {
1386 1.94.4.5 ad p->p_refcnt--;
1387 1.94.4.5 ad KASSERT(p->p_refcnt != 0);
1388 1.94.4.5 ad }
1389 1.94.4.5 ad }
1390 1.94.4.5 ad
1391 1.94.4.5 ad /*
1392 1.94.4.5 ad * Wait for all references on the process to drain, and prevent new
1393 1.94.4.5 ad * references from being acquired.
1394 1.94.4.5 ad */
1395 1.94.4.5 ad void
1396 1.94.4.5 ad proc_drainrefs(struct proc *p)
1397 1.94.4.5 ad {
1398 1.94.4.5 ad
1399 1.94.4.5 ad LOCK_ASSERT(mutex_owned(&p->p_mutex));
1400 1.94.4.5 ad KASSERT(p->p_refcnt > 0);
1401 1.94.4.5 ad
1402 1.94.4.5 ad /*
1403 1.94.4.5 ad * The process itself holds the last reference. Once it's released,
1404 1.94.4.5 ad * no new references will be granted. If we have already locked out
1405 1.94.4.5 ad * new references (refcnt <= 0), potentially due to a failed exec,
1406 1.94.4.5 ad * there is nothing more to do.
1407 1.94.4.5 ad */
1408 1.94.4.5 ad p->p_refcnt = 1 - p->p_refcnt;
1409 1.94.4.5 ad while (p->p_refcnt != 0)
1410 1.94.4.5 ad cv_wait(&p->p_refcv, &p->p_mutex);
1411 1.94 ad }
1412 1.94.4.6 ad
1413 1.94.4.6 ad /*
1414 1.94.4.6 ad * proc_specific_key_create --
1415 1.94.4.6 ad * Create a key for subsystem proc-specific data.
1416 1.94.4.6 ad */
1417 1.94.4.6 ad int
1418 1.94.4.6 ad proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1419 1.94.4.6 ad {
1420 1.94.4.6 ad
1421 1.94.4.6 ad return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1422 1.94.4.6 ad }
1423 1.94.4.6 ad
1424 1.94.4.6 ad /*
1425 1.94.4.6 ad * proc_specific_key_delete --
1426 1.94.4.6 ad * Delete a key for subsystem proc-specific data.
1427 1.94.4.6 ad */
1428 1.94.4.6 ad void
1429 1.94.4.6 ad proc_specific_key_delete(specificdata_key_t key)
1430 1.94.4.6 ad {
1431 1.94.4.6 ad
1432 1.94.4.6 ad specificdata_key_delete(proc_specificdata_domain, key);
1433 1.94.4.6 ad }
1434 1.94.4.6 ad
1435 1.94.4.6 ad /*
1436 1.94.4.6 ad * proc_initspecific --
1437 1.94.4.6 ad * Initialize a proc's specificdata container.
1438 1.94.4.6 ad */
1439 1.94.4.6 ad void
1440 1.94.4.6 ad proc_initspecific(struct proc *p)
1441 1.94.4.6 ad {
1442 1.94.4.6 ad int error;
1443 1.94.4.6 ad
1444 1.94.4.6 ad error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1445 1.94.4.6 ad KASSERT(error == 0);
1446 1.94.4.6 ad }
1447 1.94.4.6 ad
1448 1.94.4.6 ad /*
1449 1.94.4.6 ad * proc_finispecific --
1450 1.94.4.6 ad * Finalize a proc's specificdata container.
1451 1.94.4.6 ad */
1452 1.94.4.6 ad void
1453 1.94.4.6 ad proc_finispecific(struct proc *p)
1454 1.94.4.6 ad {
1455 1.94.4.6 ad
1456 1.94.4.6 ad specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1457 1.94.4.6 ad }
1458 1.94.4.6 ad
1459 1.94.4.6 ad /*
1460 1.94.4.6 ad * proc_getspecific --
1461 1.94.4.6 ad * Return proc-specific data corresponding to the specified key.
1462 1.94.4.6 ad */
1463 1.94.4.6 ad void *
1464 1.94.4.6 ad proc_getspecific(struct proc *p, specificdata_key_t key)
1465 1.94.4.6 ad {
1466 1.94.4.6 ad
1467 1.94.4.6 ad return (specificdata_getspecific(proc_specificdata_domain,
1468 1.94.4.6 ad &p->p_specdataref, key));
1469 1.94.4.6 ad }
1470 1.94.4.6 ad
1471 1.94.4.6 ad /*
1472 1.94.4.6 ad * proc_setspecific --
1473 1.94.4.6 ad * Set proc-specific data corresponding to the specified key.
1474 1.94.4.6 ad */
1475 1.94.4.6 ad void
1476 1.94.4.6 ad proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1477 1.94.4.6 ad {
1478 1.94.4.6 ad
1479 1.94.4.6 ad specificdata_setspecific(proc_specificdata_domain,
1480 1.94.4.6 ad &p->p_specdataref, key, data);
1481 1.94.4.6 ad }
1482