kern_proc.c revision 1.100 1 /* $NetBSD: kern_proc.c,v 1.100 2007/02/09 21:55:31 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.100 2007/02/09 21:55:31 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include <sys/kauth.h>
99 #include <sys/sleepq.h>
100
101 #include <uvm/uvm.h>
102 #include <uvm/uvm_extern.h>
103
104 /*
105 * Other process lists
106 */
107
108 struct proclist allproc;
109 struct proclist zombproc; /* resources have been freed */
110
111 /*
112 * There are two locks on global process state.
113 *
114 * 1. proclist_lock is a reader/writer lock and is used when modifying or
115 * examining process state from a process context. It protects our internal
116 * tables, all of the process lists, and a number of members of struct lwp
117 * and struct proc.
118
119 * 2. proclist_mutex is used when allproc must be traversed from an
120 * interrupt context, or when we must signal processes from an interrupt
121 * context. The proclist_lock should always be used in preference.
122 *
123 * proclist_lock proclist_mutex structure
124 * --------------- --------------- -----------------
125 * x zombproc
126 * x x pid_table
127 * x proc::p_pptr
128 * x proc::p_sibling
129 * x proc::p_children
130 * x x allproc
131 * x x proc::p_pgrp
132 * x x proc::p_pglist
133 * x x proc::p_session
134 * x x proc::p_list
135 * x alllwp
136 * x lwp::l_list
137 *
138 * The lock order for processes and LWPs is approximately as following:
139 *
140 * kernel_mutex
141 * -> proclist_lock
142 * -> proclist_mutex
143 * -> proc::p_mutex
144 * -> proc::p_smutex
145 */
146 krwlock_t proclist_lock;
147 kmutex_t proclist_mutex;
148
149 /*
150 * pid to proc lookup is done by indexing the pid_table array.
151 * Since pid numbers are only allocated when an empty slot
152 * has been found, there is no need to search any lists ever.
153 * (an orphaned pgrp will lock the slot, a session will lock
154 * the pgrp with the same number.)
155 * If the table is too small it is reallocated with twice the
156 * previous size and the entries 'unzipped' into the two halves.
157 * A linked list of free entries is passed through the pt_proc
158 * field of 'free' items - set odd to be an invalid ptr.
159 */
160
161 struct pid_table {
162 struct proc *pt_proc;
163 struct pgrp *pt_pgrp;
164 };
165 #if 1 /* strongly typed cast - should be a noop */
166 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
167 #else
168 #define p2u(p) ((uint)p)
169 #endif
170 #define P_VALID(p) (!(p2u(p) & 1))
171 #define P_NEXT(p) (p2u(p) >> 1)
172 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
173
174 #define INITIAL_PID_TABLE_SIZE (1 << 5)
175 static struct pid_table *pid_table;
176 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
177 static uint pid_alloc_lim; /* max we allocate before growing table */
178 static uint pid_alloc_cnt; /* number of allocated pids */
179
180 /* links through free slots - never empty! */
181 static uint next_free_pt, last_free_pt;
182 static pid_t pid_max = PID_MAX; /* largest value we allocate */
183
184 /* Components of the first process -- never freed. */
185 struct session session0;
186 struct pgrp pgrp0;
187 struct proc proc0;
188 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT);
189 kauth_cred_t cred0;
190 struct filedesc0 filedesc0;
191 struct cwdinfo cwdi0;
192 struct plimit limit0;
193 struct pstats pstat0;
194 struct vmspace vmspace0;
195 struct sigacts sigacts0;
196 struct turnstile turnstile0;
197
198 extern struct user *proc0paddr;
199
200 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
201
202 int nofile = NOFILE;
203 int maxuprc = MAXUPRC;
204 int cmask = CMASK;
205
206 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
207 &pool_allocator_nointr);
208 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
209 &pool_allocator_nointr);
210 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
211 &pool_allocator_nointr);
212 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
213 &pool_allocator_nointr);
214 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
215 &pool_allocator_nointr);
216 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
217 &pool_allocator_nointr);
218
219 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
220 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
221 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
222
223 /*
224 * The process list descriptors, used during pid allocation and
225 * by sysctl. No locking on this data structure is needed since
226 * it is completely static.
227 */
228 const struct proclist_desc proclists[] = {
229 { &allproc },
230 { &zombproc },
231 { NULL },
232 };
233
234 static void orphanpg(struct pgrp *);
235 static void pg_delete(pid_t);
236
237 static specificdata_domain_t proc_specificdata_domain;
238
239 /*
240 * Initialize global process hashing structures.
241 */
242 void
243 procinit(void)
244 {
245 const struct proclist_desc *pd;
246 int i;
247 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
248
249 for (pd = proclists; pd->pd_list != NULL; pd++)
250 LIST_INIT(pd->pd_list);
251
252 /*
253 * XXX p_smutex can be IPL_VM except for audio drivers
254 * XXX proclist_lock must die
255 */
256 rw_init(&proclist_lock);
257 mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
258
259 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
260 M_PROC, M_WAITOK);
261 /* Set free list running through table...
262 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
263 for (i = 0; i <= pid_tbl_mask; i++) {
264 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
265 pid_table[i].pt_pgrp = 0;
266 }
267 /* slot 0 is just grabbed */
268 next_free_pt = 1;
269 /* Need to fix last entry. */
270 last_free_pt = pid_tbl_mask;
271 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
272 /* point at which we grow table - to avoid reusing pids too often */
273 pid_alloc_lim = pid_tbl_mask - 1;
274 #undef LINK_EMPTY
275
276 LIST_INIT(&alllwp);
277
278 uihashtbl =
279 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
280
281 proc_specificdata_domain = specificdata_domain_create();
282 KASSERT(proc_specificdata_domain != NULL);
283 }
284
285 /*
286 * Initialize process 0.
287 */
288 void
289 proc0_init(void)
290 {
291 struct proc *p;
292 struct pgrp *pg;
293 struct session *sess;
294 struct lwp *l;
295 u_int i;
296 rlim_t lim;
297
298 p = &proc0;
299 pg = &pgrp0;
300 sess = &session0;
301 l = &lwp0;
302
303 /* XXX p_smutex can be IPL_VM except for audio drivers */
304 mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
305 mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_STATCLOCK);
306 mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_NONE);
307 mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
308 cv_init(&p->p_refcv, "drainref");
309 cv_init(&p->p_waitcv, "wait");
310 cv_init(&p->p_lwpcv, "lwpwait");
311
312 LIST_INIT(&p->p_lwps);
313 LIST_INIT(&p->p_sigwaiters);
314 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
315
316 p->p_nlwps = 1;
317 p->p_nrlwps = 1;
318 p->p_refcnt = 1;
319
320 pid_table[0].pt_proc = p;
321 LIST_INSERT_HEAD(&allproc, p, p_list);
322 LIST_INSERT_HEAD(&alllwp, l, l_list);
323
324 p->p_pgrp = pg;
325 pid_table[0].pt_pgrp = pg;
326 LIST_INIT(&pg->pg_members);
327 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
328
329 pg->pg_session = sess;
330 sess->s_count = 1;
331 sess->s_sid = 0;
332 sess->s_leader = p;
333
334 /*
335 * Set P_NOCLDWAIT so that kernel threads are reparented to
336 * init(8) when they exit. init(8) can easily wait them out
337 * for us.
338 */
339 p->p_flag = P_SYSTEM | P_NOCLDWAIT;
340 p->p_stat = SACTIVE;
341 p->p_nice = NZERO;
342 p->p_emul = &emul_netbsd;
343 #ifdef __HAVE_SYSCALL_INTERN
344 (*p->p_emul->e_syscall_intern)(p);
345 #endif
346 strncpy(p->p_comm, "swapper", MAXCOMLEN);
347
348 l->l_mutex = &sched_mutex;
349 l->l_flag = L_INMEM | L_SYSTEM;
350 l->l_stat = LSONPROC;
351 l->l_ts = &turnstile0;
352 l->l_syncobj = &sched_syncobj;
353 l->l_refcnt = 1;
354 l->l_cpu = curcpu();
355 l->l_priority = PRIBIO;
356 l->l_usrpri = PRIBIO;
357
358 callout_init(&l->l_tsleep_ch);
359 cv_init(&l->l_sigcv, "sigwait");
360
361 /* Create credentials. */
362 cred0 = kauth_cred_alloc();
363 p->p_cred = cred0;
364 kauth_cred_hold(cred0);
365 l->l_cred = cred0;
366
367 /* Create the CWD info. */
368 p->p_cwdi = &cwdi0;
369 cwdi0.cwdi_cmask = cmask;
370 cwdi0.cwdi_refcnt = 1;
371 simple_lock_init(&cwdi0.cwdi_slock);
372
373 /* Create the limits structures. */
374 p->p_limit = &limit0;
375 simple_lock_init(&limit0.p_slock);
376 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
377 limit0.pl_rlimit[i].rlim_cur =
378 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
379
380 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
381 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
382 maxfiles < nofile ? maxfiles : nofile;
383
384 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
385 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
386 maxproc < maxuprc ? maxproc : maxuprc;
387
388 lim = ptoa(uvmexp.free);
389 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
390 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
391 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
392 limit0.pl_corename = defcorename;
393 limit0.p_refcnt = 1;
394
395 /* Configure virtual memory system, set vm rlimits. */
396 uvm_init_limits(p);
397
398 /* Initialize file descriptor table for proc0. */
399 p->p_fd = &filedesc0.fd_fd;
400 fdinit1(&filedesc0);
401
402 /*
403 * Initialize proc0's vmspace, which uses the kernel pmap.
404 * All kernel processes (which never have user space mappings)
405 * share proc0's vmspace, and thus, the kernel pmap.
406 */
407 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
408 trunc_page(VM_MAX_ADDRESS));
409 p->p_vmspace = &vmspace0;
410
411 l->l_addr = proc0paddr; /* XXX */
412
413 p->p_stats = &pstat0;
414
415 /* Initialize signal state for proc0. */
416 p->p_sigacts = &sigacts0;
417 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
418 siginit(p);
419
420 proc_initspecific(p);
421 lwp_initspecific(l);
422 }
423
424 /*
425 * Check that the specified process group is in the session of the
426 * specified process.
427 * Treats -ve ids as process ids.
428 * Used to validate TIOCSPGRP requests.
429 */
430 int
431 pgid_in_session(struct proc *p, pid_t pg_id)
432 {
433 struct pgrp *pgrp;
434
435 if (pg_id < 0) {
436 struct proc *p1 = pfind(-pg_id);
437 if (p1 == NULL)
438 return EINVAL;
439 pgrp = p1->p_pgrp;
440 } else {
441 pgrp = pgfind(pg_id);
442 if (pgrp == NULL)
443 return EINVAL;
444 }
445 if (pgrp->pg_session != p->p_pgrp->pg_session)
446 return EPERM;
447 return 0;
448 }
449
450 /*
451 * Is p an inferior of q?
452 *
453 * Call with the proclist_lock held.
454 */
455 int
456 inferior(struct proc *p, struct proc *q)
457 {
458
459 for (; p != q; p = p->p_pptr)
460 if (p->p_pid == 0)
461 return 0;
462 return 1;
463 }
464
465 /*
466 * Locate a process by number
467 */
468 struct proc *
469 p_find(pid_t pid, uint flags)
470 {
471 struct proc *p;
472 char stat;
473
474 if (!(flags & PFIND_LOCKED))
475 rw_enter(&proclist_lock, RW_READER);
476
477 p = pid_table[pid & pid_tbl_mask].pt_proc;
478
479 /* Only allow live processes to be found by pid. */
480 /* XXXSMP p_stat */
481 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
482 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
483 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
484 if (flags & PFIND_UNLOCK_OK)
485 rw_exit(&proclist_lock);
486 return p;
487 }
488 if (flags & PFIND_UNLOCK_FAIL)
489 rw_exit(&proclist_lock);
490 return NULL;
491 }
492
493
494 /*
495 * Locate a process group by number
496 */
497 struct pgrp *
498 pg_find(pid_t pgid, uint flags)
499 {
500 struct pgrp *pg;
501
502 if (!(flags & PFIND_LOCKED))
503 rw_enter(&proclist_lock, RW_READER);
504 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
505 /*
506 * Can't look up a pgrp that only exists because the session
507 * hasn't died yet (traditional)
508 */
509 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
510 if (flags & PFIND_UNLOCK_FAIL)
511 rw_exit(&proclist_lock);
512 return NULL;
513 }
514
515 if (flags & PFIND_UNLOCK_OK)
516 rw_exit(&proclist_lock);
517 return pg;
518 }
519
520 static void
521 expand_pid_table(void)
522 {
523 uint pt_size = pid_tbl_mask + 1;
524 struct pid_table *n_pt, *new_pt;
525 struct proc *proc;
526 struct pgrp *pgrp;
527 int i;
528 pid_t pid;
529
530 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
531
532 rw_enter(&proclist_lock, RW_WRITER);
533 if (pt_size != pid_tbl_mask + 1) {
534 /* Another process beat us to it... */
535 rw_exit(&proclist_lock);
536 FREE(new_pt, M_PROC);
537 return;
538 }
539
540 /*
541 * Copy entries from old table into new one.
542 * If 'pid' is 'odd' we need to place in the upper half,
543 * even pid's to the lower half.
544 * Free items stay in the low half so we don't have to
545 * fixup the reference to them.
546 * We stuff free items on the front of the freelist
547 * because we can't write to unmodified entries.
548 * Processing the table backwards maintains a semblance
549 * of issueing pid numbers that increase with time.
550 */
551 i = pt_size - 1;
552 n_pt = new_pt + i;
553 for (; ; i--, n_pt--) {
554 proc = pid_table[i].pt_proc;
555 pgrp = pid_table[i].pt_pgrp;
556 if (!P_VALID(proc)) {
557 /* Up 'use count' so that link is valid */
558 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
559 proc = P_FREE(pid);
560 if (pgrp)
561 pid = pgrp->pg_id;
562 } else
563 pid = proc->p_pid;
564
565 /* Save entry in appropriate half of table */
566 n_pt[pid & pt_size].pt_proc = proc;
567 n_pt[pid & pt_size].pt_pgrp = pgrp;
568
569 /* Put other piece on start of free list */
570 pid = (pid ^ pt_size) & ~pid_tbl_mask;
571 n_pt[pid & pt_size].pt_proc =
572 P_FREE((pid & ~pt_size) | next_free_pt);
573 n_pt[pid & pt_size].pt_pgrp = 0;
574 next_free_pt = i | (pid & pt_size);
575 if (i == 0)
576 break;
577 }
578
579 /* Switch tables */
580 mutex_enter(&proclist_mutex);
581 n_pt = pid_table;
582 pid_table = new_pt;
583 mutex_exit(&proclist_mutex);
584 pid_tbl_mask = pt_size * 2 - 1;
585
586 /*
587 * pid_max starts as PID_MAX (= 30000), once we have 16384
588 * allocated pids we need it to be larger!
589 */
590 if (pid_tbl_mask > PID_MAX) {
591 pid_max = pid_tbl_mask * 2 + 1;
592 pid_alloc_lim |= pid_alloc_lim << 1;
593 } else
594 pid_alloc_lim <<= 1; /* doubles number of free slots... */
595
596 rw_exit(&proclist_lock);
597 FREE(n_pt, M_PROC);
598 }
599
600 struct proc *
601 proc_alloc(void)
602 {
603 struct proc *p;
604 int nxt;
605 pid_t pid;
606 struct pid_table *pt;
607
608 p = pool_get(&proc_pool, PR_WAITOK);
609 p->p_stat = SIDL; /* protect against others */
610
611 proc_initspecific(p);
612 /* allocate next free pid */
613
614 for (;;expand_pid_table()) {
615 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
616 /* ensure pids cycle through 2000+ values */
617 continue;
618 rw_enter(&proclist_lock, RW_WRITER);
619 pt = &pid_table[next_free_pt];
620 #ifdef DIAGNOSTIC
621 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
622 panic("proc_alloc: slot busy");
623 #endif
624 nxt = P_NEXT(pt->pt_proc);
625 if (nxt & pid_tbl_mask)
626 break;
627 /* Table full - expand (NB last entry not used....) */
628 rw_exit(&proclist_lock);
629 }
630
631 /* pid is 'saved use count' + 'size' + entry */
632 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
633 if ((uint)pid > (uint)pid_max)
634 pid &= pid_tbl_mask;
635 p->p_pid = pid;
636 next_free_pt = nxt & pid_tbl_mask;
637
638 /* Grab table slot */
639 mutex_enter(&proclist_mutex);
640 pt->pt_proc = p;
641 mutex_exit(&proclist_mutex);
642 pid_alloc_cnt++;
643
644 rw_exit(&proclist_lock);
645
646 return p;
647 }
648
649 /*
650 * Free last resources of a process - called from proc_free (in kern_exit.c)
651 *
652 * Called with the proclist_lock write held, and releases upon exit.
653 */
654 void
655 proc_free_mem(struct proc *p)
656 {
657 pid_t pid = p->p_pid;
658 struct pid_table *pt;
659
660 LOCK_ASSERT(rw_write_held(&proclist_lock));
661
662 pt = &pid_table[pid & pid_tbl_mask];
663 #ifdef DIAGNOSTIC
664 if (__predict_false(pt->pt_proc != p))
665 panic("proc_free: pid_table mismatch, pid %x, proc %p",
666 pid, p);
667 #endif
668 mutex_enter(&proclist_mutex);
669 /* save pid use count in slot */
670 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
671
672 if (pt->pt_pgrp == NULL) {
673 /* link last freed entry onto ours */
674 pid &= pid_tbl_mask;
675 pt = &pid_table[last_free_pt];
676 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
677 last_free_pt = pid;
678 pid_alloc_cnt--;
679 }
680 mutex_exit(&proclist_mutex);
681
682 nprocs--;
683 rw_exit(&proclist_lock);
684
685 pool_put(&proc_pool, p);
686 }
687
688 /*
689 * Move p to a new or existing process group (and session)
690 *
691 * If we are creating a new pgrp, the pgid should equal
692 * the calling process' pid.
693 * If is only valid to enter a process group that is in the session
694 * of the process.
695 * Also mksess should only be set if we are creating a process group
696 *
697 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
698 * SYSV setpgrp support for hpux.
699 */
700 int
701 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
702 {
703 struct pgrp *new_pgrp, *pgrp;
704 struct session *sess;
705 struct proc *p;
706 int rval;
707 pid_t pg_id = NO_PGID;
708
709 /* Allocate data areas we might need before doing any validity checks */
710 rw_enter(&proclist_lock, RW_READER); /* Because pid_table might change */
711 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
712 rw_exit(&proclist_lock);
713 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
714 } else {
715 rw_exit(&proclist_lock);
716 new_pgrp = NULL;
717 }
718 if (mksess)
719 sess = pool_get(&session_pool, PR_WAITOK);
720 else
721 sess = NULL;
722
723 rw_enter(&proclist_lock, RW_WRITER);
724 rval = EPERM; /* most common error (to save typing) */
725
726 /* Check pgrp exists or can be created */
727 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
728 if (pgrp != NULL && pgrp->pg_id != pgid)
729 goto done;
730
731 /* Can only set another process under restricted circumstances. */
732 if (pid != curp->p_pid) {
733 /* must exist and be one of our children... */
734 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
735 !inferior(p, curp)) {
736 rval = ESRCH;
737 goto done;
738 }
739 /* ... in the same session... */
740 if (sess != NULL || p->p_session != curp->p_session)
741 goto done;
742 /* ... existing pgid must be in same session ... */
743 if (pgrp != NULL && pgrp->pg_session != p->p_session)
744 goto done;
745 /* ... and not done an exec. */
746 if (p->p_flag & P_EXEC) {
747 rval = EACCES;
748 goto done;
749 }
750 } else {
751 /* ... setsid() cannot re-enter a pgrp */
752 if (mksess && (curp->p_pgid == curp->p_pid ||
753 pg_find(curp->p_pid, PFIND_LOCKED)))
754 goto done;
755 p = curp;
756 }
757
758 /* Changing the process group/session of a session
759 leader is definitely off limits. */
760 if (SESS_LEADER(p)) {
761 if (sess == NULL && p->p_pgrp == pgrp)
762 /* unless it's a definite noop */
763 rval = 0;
764 goto done;
765 }
766
767 /* Can only create a process group with id of process */
768 if (pgrp == NULL && pgid != pid)
769 goto done;
770
771 /* Can only create a session if creating pgrp */
772 if (sess != NULL && pgrp != NULL)
773 goto done;
774
775 /* Check we allocated memory for a pgrp... */
776 if (pgrp == NULL && new_pgrp == NULL)
777 goto done;
778
779 /* Don't attach to 'zombie' pgrp */
780 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
781 goto done;
782
783 /* Expect to succeed now */
784 rval = 0;
785
786 if (pgrp == p->p_pgrp)
787 /* nothing to do */
788 goto done;
789
790 /* Ok all setup, link up required structures */
791
792 if (pgrp == NULL) {
793 pgrp = new_pgrp;
794 new_pgrp = 0;
795 if (sess != NULL) {
796 sess->s_sid = p->p_pid;
797 sess->s_leader = p;
798 sess->s_count = 1;
799 sess->s_ttyvp = NULL;
800 sess->s_ttyp = NULL;
801 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
802 memcpy(sess->s_login, p->p_session->s_login,
803 sizeof(sess->s_login));
804 p->p_lflag &= ~PL_CONTROLT;
805 } else {
806 sess = p->p_pgrp->pg_session;
807 SESSHOLD(sess);
808 }
809 pgrp->pg_session = sess;
810 sess = 0;
811
812 pgrp->pg_id = pgid;
813 LIST_INIT(&pgrp->pg_members);
814 #ifdef DIAGNOSTIC
815 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
816 panic("enterpgrp: pgrp table slot in use");
817 if (__predict_false(mksess && p != curp))
818 panic("enterpgrp: mksession and p != curproc");
819 #endif
820 mutex_enter(&proclist_mutex);
821 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
822 pgrp->pg_jobc = 0;
823 } else
824 mutex_enter(&proclist_mutex);
825
826 #ifdef notyet
827 /*
828 * If there's a controlling terminal for the current session, we
829 * have to interlock with it. See ttread().
830 */
831 if (p->p_session->s_ttyvp != NULL) {
832 tp = p->p_session->s_ttyp;
833 mutex_enter(&tp->t_mutex);
834 } else
835 tp = NULL;
836 #endif
837
838 /*
839 * Adjust eligibility of affected pgrps to participate in job control.
840 * Increment eligibility counts before decrementing, otherwise we
841 * could reach 0 spuriously during the first call.
842 */
843 fixjobc(p, pgrp, 1);
844 fixjobc(p, p->p_pgrp, 0);
845
846 /* Move process to requested group. */
847 LIST_REMOVE(p, p_pglist);
848 if (LIST_EMPTY(&p->p_pgrp->pg_members))
849 /* defer delete until we've dumped the lock */
850 pg_id = p->p_pgrp->pg_id;
851 p->p_pgrp = pgrp;
852 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
853 mutex_exit(&proclist_mutex);
854
855 #ifdef notyet
856 /* Done with the swap; we can release the tty mutex. */
857 if (tp != NULL)
858 mutex_exit(&tp->t_mutex);
859 #endif
860
861 done:
862 if (pg_id != NO_PGID)
863 pg_delete(pg_id);
864 rw_exit(&proclist_lock);
865 if (sess != NULL)
866 pool_put(&session_pool, sess);
867 if (new_pgrp != NULL)
868 pool_put(&pgrp_pool, new_pgrp);
869 #ifdef DEBUG_PGRP
870 if (__predict_false(rval))
871 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
872 pid, pgid, mksess, curp->p_pid, rval);
873 #endif
874 return rval;
875 }
876
877 /*
878 * Remove a process from its process group. Must be called with the
879 * proclist_lock write held.
880 */
881 void
882 leavepgrp(struct proc *p)
883 {
884 struct pgrp *pgrp;
885
886 LOCK_ASSERT(rw_write_held(&proclist_lock));
887
888 /*
889 * If there's a controlling terminal for the session, we have to
890 * interlock with it. See ttread().
891 */
892 mutex_enter(&proclist_mutex);
893 #ifdef notyet
894 if (p_>p_session->s_ttyvp != NULL) {
895 tp = p->p_session->s_ttyp;
896 mutex_enter(&tp->t_mutex);
897 } else
898 tp = NULL;
899 #endif
900
901 pgrp = p->p_pgrp;
902 LIST_REMOVE(p, p_pglist);
903 p->p_pgrp = NULL;
904
905 #ifdef notyet
906 if (tp != NULL)
907 mutex_exit(&tp->t_mutex);
908 #endif
909 mutex_exit(&proclist_mutex);
910
911 if (LIST_EMPTY(&pgrp->pg_members))
912 pg_delete(pgrp->pg_id);
913 }
914
915 /*
916 * Free a process group. Must be called with the proclist_lock write held.
917 */
918 static void
919 pg_free(pid_t pg_id)
920 {
921 struct pgrp *pgrp;
922 struct pid_table *pt;
923
924 LOCK_ASSERT(rw_write_held(&proclist_lock));
925
926 pt = &pid_table[pg_id & pid_tbl_mask];
927 pgrp = pt->pt_pgrp;
928 #ifdef DIAGNOSTIC
929 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
930 || !LIST_EMPTY(&pgrp->pg_members)))
931 panic("pg_free: process group absent or has members");
932 #endif
933 pt->pt_pgrp = 0;
934
935 if (!P_VALID(pt->pt_proc)) {
936 /* orphaned pgrp, put slot onto free list */
937 #ifdef DIAGNOSTIC
938 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
939 panic("pg_free: process slot on free list");
940 #endif
941 mutex_enter(&proclist_mutex);
942 pg_id &= pid_tbl_mask;
943 pt = &pid_table[last_free_pt];
944 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
945 mutex_exit(&proclist_mutex);
946 last_free_pt = pg_id;
947 pid_alloc_cnt--;
948 }
949 pool_put(&pgrp_pool, pgrp);
950 }
951
952 /*
953 * Delete a process group. Must be called with the proclist_lock write
954 * held.
955 */
956 static void
957 pg_delete(pid_t pg_id)
958 {
959 struct pgrp *pgrp;
960 struct tty *ttyp;
961 struct session *ss;
962 int is_pgrp_leader;
963
964 LOCK_ASSERT(rw_write_held(&proclist_lock));
965
966 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
967 if (pgrp == NULL || pgrp->pg_id != pg_id ||
968 !LIST_EMPTY(&pgrp->pg_members))
969 return;
970
971 ss = pgrp->pg_session;
972
973 /* Remove reference (if any) from tty to this process group */
974 ttyp = ss->s_ttyp;
975 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
976 ttyp->t_pgrp = NULL;
977 #ifdef DIAGNOSTIC
978 if (ttyp->t_session != ss)
979 panic("pg_delete: wrong session on terminal");
980 #endif
981 }
982
983 /*
984 * The leading process group in a session is freed
985 * by sessdelete() if last reference.
986 */
987 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
988 SESSRELE(ss);
989
990 if (is_pgrp_leader)
991 return;
992
993 pg_free(pg_id);
994 }
995
996 /*
997 * Delete session - called from SESSRELE when s_count becomes zero.
998 * Must be called with the proclist_lock write held.
999 */
1000 void
1001 sessdelete(struct session *ss)
1002 {
1003
1004 LOCK_ASSERT(rw_write_held(&proclist_lock));
1005
1006 /*
1007 * We keep the pgrp with the same id as the session in
1008 * order to stop a process being given the same pid.
1009 * Since the pgrp holds a reference to the session, it
1010 * must be a 'zombie' pgrp by now.
1011 */
1012 pg_free(ss->s_sid);
1013 pool_put(&session_pool, ss);
1014 }
1015
1016 /*
1017 * Adjust pgrp jobc counters when specified process changes process group.
1018 * We count the number of processes in each process group that "qualify"
1019 * the group for terminal job control (those with a parent in a different
1020 * process group of the same session). If that count reaches zero, the
1021 * process group becomes orphaned. Check both the specified process'
1022 * process group and that of its children.
1023 * entering == 0 => p is leaving specified group.
1024 * entering == 1 => p is entering specified group.
1025 *
1026 * Call with proclist_lock write held.
1027 */
1028 void
1029 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1030 {
1031 struct pgrp *hispgrp;
1032 struct session *mysession = pgrp->pg_session;
1033 struct proc *child;
1034
1035 LOCK_ASSERT(rw_write_held(&proclist_lock));
1036 LOCK_ASSERT(mutex_owned(&proclist_mutex));
1037
1038 /*
1039 * Check p's parent to see whether p qualifies its own process
1040 * group; if so, adjust count for p's process group.
1041 */
1042 hispgrp = p->p_pptr->p_pgrp;
1043 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1044 if (entering) {
1045 mutex_enter(&p->p_smutex);
1046 p->p_sflag &= ~PS_ORPHANPG;
1047 mutex_exit(&p->p_smutex);
1048 pgrp->pg_jobc++;
1049 } else if (--pgrp->pg_jobc == 0)
1050 orphanpg(pgrp);
1051 }
1052
1053 /*
1054 * Check this process' children to see whether they qualify
1055 * their process groups; if so, adjust counts for children's
1056 * process groups.
1057 */
1058 LIST_FOREACH(child, &p->p_children, p_sibling) {
1059 hispgrp = child->p_pgrp;
1060 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1061 !P_ZOMBIE(child)) {
1062 if (entering) {
1063 mutex_enter(&child->p_smutex);
1064 child->p_sflag &= ~PS_ORPHANPG;
1065 mutex_exit(&child->p_smutex);
1066 hispgrp->pg_jobc++;
1067 } else if (--hispgrp->pg_jobc == 0)
1068 orphanpg(hispgrp);
1069 }
1070 }
1071 }
1072
1073 /*
1074 * A process group has become orphaned;
1075 * if there are any stopped processes in the group,
1076 * hang-up all process in that group.
1077 *
1078 * Call with proclist_lock write held.
1079 */
1080 static void
1081 orphanpg(struct pgrp *pg)
1082 {
1083 struct proc *p;
1084 int doit;
1085
1086 LOCK_ASSERT(rw_write_held(&proclist_lock));
1087 LOCK_ASSERT(mutex_owned(&proclist_mutex));
1088
1089 doit = 0;
1090
1091 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1092 mutex_enter(&p->p_smutex);
1093 if (p->p_stat == SSTOP) {
1094 doit = 1;
1095 p->p_sflag |= PS_ORPHANPG;
1096 }
1097 mutex_exit(&p->p_smutex);
1098 }
1099
1100 if (doit) {
1101 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1102 psignal(p, SIGHUP);
1103 psignal(p, SIGCONT);
1104 }
1105 }
1106 }
1107
1108 #ifdef DDB
1109 #include <ddb/db_output.h>
1110 void pidtbl_dump(void);
1111 void
1112 pidtbl_dump(void)
1113 {
1114 struct pid_table *pt;
1115 struct proc *p;
1116 struct pgrp *pgrp;
1117 int id;
1118
1119 db_printf("pid table %p size %x, next %x, last %x\n",
1120 pid_table, pid_tbl_mask+1,
1121 next_free_pt, last_free_pt);
1122 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1123 p = pt->pt_proc;
1124 if (!P_VALID(p) && !pt->pt_pgrp)
1125 continue;
1126 db_printf(" id %x: ", id);
1127 if (P_VALID(p))
1128 db_printf("proc %p id %d (0x%x) %s\n",
1129 p, p->p_pid, p->p_pid, p->p_comm);
1130 else
1131 db_printf("next %x use %x\n",
1132 P_NEXT(p) & pid_tbl_mask,
1133 P_NEXT(p) & ~pid_tbl_mask);
1134 if ((pgrp = pt->pt_pgrp)) {
1135 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1136 pgrp->pg_session, pgrp->pg_session->s_sid,
1137 pgrp->pg_session->s_count,
1138 pgrp->pg_session->s_login);
1139 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1140 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1141 pgrp->pg_members.lh_first);
1142 for (p = pgrp->pg_members.lh_first; p != 0;
1143 p = p->p_pglist.le_next) {
1144 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1145 p->p_pid, p, p->p_pgrp, p->p_comm);
1146 }
1147 }
1148 }
1149 }
1150 #endif /* DDB */
1151
1152 #ifdef KSTACK_CHECK_MAGIC
1153 #include <sys/user.h>
1154
1155 #define KSTACK_MAGIC 0xdeadbeaf
1156
1157 /* XXX should be per process basis? */
1158 int kstackleftmin = KSTACK_SIZE;
1159 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1160 less than this */
1161
1162 void
1163 kstack_setup_magic(const struct lwp *l)
1164 {
1165 uint32_t *ip;
1166 uint32_t const *end;
1167
1168 KASSERT(l != NULL);
1169 KASSERT(l != &lwp0);
1170
1171 /*
1172 * fill all the stack with magic number
1173 * so that later modification on it can be detected.
1174 */
1175 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1176 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1177 for (; ip < end; ip++) {
1178 *ip = KSTACK_MAGIC;
1179 }
1180 }
1181
1182 void
1183 kstack_check_magic(const struct lwp *l)
1184 {
1185 uint32_t const *ip, *end;
1186 int stackleft;
1187
1188 KASSERT(l != NULL);
1189
1190 /* don't check proc0 */ /*XXX*/
1191 if (l == &lwp0)
1192 return;
1193
1194 #ifdef __MACHINE_STACK_GROWS_UP
1195 /* stack grows upwards (eg. hppa) */
1196 ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1197 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1198 for (ip--; ip >= end; ip--)
1199 if (*ip != KSTACK_MAGIC)
1200 break;
1201
1202 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1203 #else /* __MACHINE_STACK_GROWS_UP */
1204 /* stack grows downwards (eg. i386) */
1205 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1206 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1207 for (; ip < end; ip++)
1208 if (*ip != KSTACK_MAGIC)
1209 break;
1210
1211 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1212 #endif /* __MACHINE_STACK_GROWS_UP */
1213
1214 if (kstackleftmin > stackleft) {
1215 kstackleftmin = stackleft;
1216 if (stackleft < kstackleftthres)
1217 printf("warning: kernel stack left %d bytes"
1218 "(pid %u:lid %u)\n", stackleft,
1219 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1220 }
1221
1222 if (stackleft <= 0) {
1223 panic("magic on the top of kernel stack changed for "
1224 "pid %u, lid %u: maybe kernel stack overflow",
1225 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1226 }
1227 }
1228 #endif /* KSTACK_CHECK_MAGIC */
1229
1230 /*
1231 * XXXSMP this is bust, it grabs a read lock and then messes about
1232 * with allproc.
1233 */
1234 int
1235 proclist_foreach_call(struct proclist *list,
1236 int (*callback)(struct proc *, void *arg), void *arg)
1237 {
1238 struct proc marker;
1239 struct proc *p;
1240 struct lwp * const l = curlwp;
1241 int ret = 0;
1242
1243 marker.p_flag = P_MARKER;
1244 PHOLD(l);
1245 rw_enter(&proclist_lock, RW_READER);
1246 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1247 if (p->p_flag & P_MARKER) {
1248 p = LIST_NEXT(p, p_list);
1249 continue;
1250 }
1251 LIST_INSERT_AFTER(p, &marker, p_list);
1252 ret = (*callback)(p, arg);
1253 KASSERT(rw_read_held(&proclist_lock));
1254 p = LIST_NEXT(&marker, p_list);
1255 LIST_REMOVE(&marker, p_list);
1256 }
1257 rw_exit(&proclist_lock);
1258 PRELE(l);
1259
1260 return ret;
1261 }
1262
1263 int
1264 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1265 {
1266
1267 /* XXXCDC: how should locking work here? */
1268
1269 /* curproc exception is for coredump. */
1270
1271 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1272 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1273 return EFAULT;
1274 }
1275
1276 uvmspace_addref(p->p_vmspace);
1277 *vm = p->p_vmspace;
1278
1279 return 0;
1280 }
1281
1282 /*
1283 * Acquire a write lock on the process credential.
1284 */
1285 void
1286 proc_crmod_enter(void)
1287 {
1288 struct lwp *l = curlwp;
1289 struct proc *p = l->l_proc;
1290 struct plimit *lim;
1291 kauth_cred_t oc;
1292 char *cn;
1293
1294 mutex_enter(&p->p_mutex);
1295
1296 /* Ensure the LWP cached credentials are up to date. */
1297 if ((oc = l->l_cred) != p->p_cred) {
1298 kauth_cred_hold(p->p_cred);
1299 l->l_cred = p->p_cred;
1300 kauth_cred_free(oc);
1301 }
1302
1303 /* Reset what needs to be reset in plimit. */
1304 lim = p->p_limit;
1305 if (lim->pl_corename != defcorename) {
1306 if (lim->p_refcnt > 1 &&
1307 (lim->p_lflags & PL_SHAREMOD) == 0) {
1308 p->p_limit = limcopy(p);
1309 limfree(lim);
1310 lim = p->p_limit;
1311 }
1312 simple_lock(&lim->p_slock);
1313 cn = lim->pl_corename;
1314 lim->pl_corename = defcorename;
1315 simple_unlock(&lim->p_slock);
1316 if (cn != defcorename)
1317 free(cn, M_TEMP);
1318 }
1319 }
1320
1321 /*
1322 * Set in a new process credential, and drop the write lock. The credential
1323 * must have a reference already. Optionally, free a no-longer required
1324 * credential. The scheduler also needs to inspect p_cred, so we also
1325 * briefly acquire the sched state mutex.
1326 */
1327 void
1328 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, boolean_t sugid)
1329 {
1330 struct lwp *l = curlwp;
1331 struct proc *p = l->l_proc;
1332 kauth_cred_t oc;
1333
1334 /* Is there a new credential to set in? */
1335 if (scred != NULL) {
1336 mutex_enter(&p->p_smutex);
1337 p->p_cred = scred;
1338 mutex_exit(&p->p_smutex);
1339
1340 /* Ensure the LWP cached credentials are up to date. */
1341 if ((oc = l->l_cred) != scred) {
1342 kauth_cred_hold(scred);
1343 l->l_cred = scred;
1344 }
1345 } else
1346 oc = NULL; /* XXXgcc */
1347
1348 if (sugid) {
1349 /*
1350 * Mark process as having changed credentials, stops
1351 * tracing etc.
1352 */
1353 p->p_flag |= P_SUGID;
1354 }
1355
1356 mutex_exit(&p->p_mutex);
1357
1358 /* If there is a credential to be released, free it now. */
1359 if (fcred != NULL) {
1360 KASSERT(scred != NULL);
1361 kauth_cred_free(fcred);
1362 if (oc != scred)
1363 kauth_cred_free(oc);
1364 }
1365 }
1366
1367 /*
1368 * Acquire a reference on a process, to prevent it from exiting or execing.
1369 */
1370 int
1371 proc_addref(struct proc *p)
1372 {
1373
1374 LOCK_ASSERT(mutex_owned(&p->p_mutex));
1375
1376 if (p->p_refcnt <= 0)
1377 return EAGAIN;
1378 p->p_refcnt++;
1379
1380 return 0;
1381 }
1382
1383 /*
1384 * Release a reference on a process.
1385 */
1386 void
1387 proc_delref(struct proc *p)
1388 {
1389
1390 LOCK_ASSERT(mutex_owned(&p->p_mutex));
1391
1392 if (p->p_refcnt < 0) {
1393 if (++p->p_refcnt == 0)
1394 cv_broadcast(&p->p_refcv);
1395 } else {
1396 p->p_refcnt--;
1397 KASSERT(p->p_refcnt != 0);
1398 }
1399 }
1400
1401 /*
1402 * Wait for all references on the process to drain, and prevent new
1403 * references from being acquired.
1404 */
1405 void
1406 proc_drainrefs(struct proc *p)
1407 {
1408
1409 LOCK_ASSERT(mutex_owned(&p->p_mutex));
1410 KASSERT(p->p_refcnt > 0);
1411
1412 /*
1413 * The process itself holds the last reference. Once it's released,
1414 * no new references will be granted. If we have already locked out
1415 * new references (refcnt <= 0), potentially due to a failed exec,
1416 * there is nothing more to do.
1417 */
1418 p->p_refcnt = 1 - p->p_refcnt;
1419 while (p->p_refcnt != 0)
1420 cv_wait(&p->p_refcv, &p->p_mutex);
1421 }
1422
1423 /*
1424 * proc_specific_key_create --
1425 * Create a key for subsystem proc-specific data.
1426 */
1427 int
1428 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1429 {
1430
1431 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1432 }
1433
1434 /*
1435 * proc_specific_key_delete --
1436 * Delete a key for subsystem proc-specific data.
1437 */
1438 void
1439 proc_specific_key_delete(specificdata_key_t key)
1440 {
1441
1442 specificdata_key_delete(proc_specificdata_domain, key);
1443 }
1444
1445 /*
1446 * proc_initspecific --
1447 * Initialize a proc's specificdata container.
1448 */
1449 void
1450 proc_initspecific(struct proc *p)
1451 {
1452 int error;
1453
1454 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1455 KASSERT(error == 0);
1456 }
1457
1458 /*
1459 * proc_finispecific --
1460 * Finalize a proc's specificdata container.
1461 */
1462 void
1463 proc_finispecific(struct proc *p)
1464 {
1465
1466 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1467 }
1468
1469 /*
1470 * proc_getspecific --
1471 * Return proc-specific data corresponding to the specified key.
1472 */
1473 void *
1474 proc_getspecific(struct proc *p, specificdata_key_t key)
1475 {
1476
1477 return (specificdata_getspecific(proc_specificdata_domain,
1478 &p->p_specdataref, key));
1479 }
1480
1481 /*
1482 * proc_setspecific --
1483 * Set proc-specific data corresponding to the specified key.
1484 */
1485 void
1486 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1487 {
1488
1489 specificdata_setspecific(proc_specificdata_domain,
1490 &p->p_specdataref, key, data);
1491 }
1492