Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.100.2.2
      1 /*	$NetBSD: kern_proc.c,v 1.100.2.2 2007/02/27 16:54:23 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.100.2.2 2007/02/27 16:54:23 yamt Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_maxuprc.h"
     76 #include "opt_multiprocessor.h"
     77 #include "opt_lockdebug.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/proc.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/buf.h>
     85 #include <sys/acct.h>
     86 #include <sys/wait.h>
     87 #include <sys/file.h>
     88 #include <ufs/ufs/quota.h>
     89 #include <sys/uio.h>
     90 #include <sys/malloc.h>
     91 #include <sys/pool.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include "sys/syscall_stats.h"
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 
    102 #include <uvm/uvm.h>
    103 #include <uvm/uvm_extern.h>
    104 
    105 /*
    106  * Other process lists
    107  */
    108 
    109 struct proclist allproc;
    110 struct proclist zombproc;	/* resources have been freed */
    111 
    112 /*
    113  * There are two locks on global process state.
    114  *
    115  * 1. proclist_lock is a reader/writer lock and is used when modifying or
    116  * examining process state from a process context.  It protects our internal
    117  * tables, all of the process lists, and a number of members of struct lwp
    118  * and struct proc.
    119 
    120  * 2. proclist_mutex is used when allproc must be traversed from an
    121  * interrupt context, or when we must signal processes from an interrupt
    122  * context.  The proclist_lock should always be used in preference.
    123  *
    124  *	proclist_lock	proclist_mutex	structure
    125  *	--------------- --------------- -----------------
    126  *	x				zombproc
    127  *	x		x		pid_table
    128  *	x				proc::p_pptr
    129  *	x				proc::p_sibling
    130  *	x				proc::p_children
    131  *	x		x		allproc
    132  *	x		x		proc::p_pgrp
    133  *	x		x		proc::p_pglist
    134  *	x		x		proc::p_session
    135  *	x		x		proc::p_list
    136  *			x		alllwp
    137  *			x		lwp::l_list
    138  *
    139  * The lock order for processes and LWPs is approximately as following:
    140  *
    141  * kernel_mutex
    142  * -> proclist_lock
    143  *    -> proclist_mutex
    144  *	-> proc::p_mutex
    145  *         -> proc::p_smutex
    146  */
    147 krwlock_t	proclist_lock;
    148 kmutex_t	proclist_mutex;
    149 
    150 /*
    151  * pid to proc lookup is done by indexing the pid_table array.
    152  * Since pid numbers are only allocated when an empty slot
    153  * has been found, there is no need to search any lists ever.
    154  * (an orphaned pgrp will lock the slot, a session will lock
    155  * the pgrp with the same number.)
    156  * If the table is too small it is reallocated with twice the
    157  * previous size and the entries 'unzipped' into the two halves.
    158  * A linked list of free entries is passed through the pt_proc
    159  * field of 'free' items - set odd to be an invalid ptr.
    160  */
    161 
    162 struct pid_table {
    163 	struct proc	*pt_proc;
    164 	struct pgrp	*pt_pgrp;
    165 };
    166 #if 1	/* strongly typed cast - should be a noop */
    167 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    168 #else
    169 #define p2u(p) ((uint)p)
    170 #endif
    171 #define P_VALID(p) (!(p2u(p) & 1))
    172 #define P_NEXT(p) (p2u(p) >> 1)
    173 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    174 
    175 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    176 static struct pid_table *pid_table;
    177 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    178 static uint pid_alloc_lim;	/* max we allocate before growing table */
    179 static uint pid_alloc_cnt;	/* number of allocated pids */
    180 
    181 /* links through free slots - never empty! */
    182 static uint next_free_pt, last_free_pt;
    183 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    184 
    185 /* Components of the first process -- never freed. */
    186 struct session session0;
    187 struct pgrp pgrp0;
    188 struct proc proc0;
    189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT);
    190 kauth_cred_t cred0;
    191 struct filedesc0 filedesc0;
    192 struct cwdinfo cwdi0;
    193 struct plimit limit0;
    194 struct pstats pstat0;
    195 struct vmspace vmspace0;
    196 struct sigacts sigacts0;
    197 struct turnstile turnstile0;
    198 
    199 extern struct user *proc0paddr;
    200 
    201 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    202 
    203 int nofile = NOFILE;
    204 int maxuprc = MAXUPRC;
    205 int cmask = CMASK;
    206 
    207 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
    208     &pool_allocator_nointr);
    209 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
    210     &pool_allocator_nointr);
    211 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
    212     &pool_allocator_nointr);
    213 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
    214     &pool_allocator_nointr);
    215 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
    216     &pool_allocator_nointr);
    217 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
    218     &pool_allocator_nointr);
    219 
    220 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    221 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    222 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    223 
    224 /*
    225  * The process list descriptors, used during pid allocation and
    226  * by sysctl.  No locking on this data structure is needed since
    227  * it is completely static.
    228  */
    229 const struct proclist_desc proclists[] = {
    230 	{ &allproc	},
    231 	{ &zombproc	},
    232 	{ NULL		},
    233 };
    234 
    235 static void orphanpg(struct pgrp *);
    236 static void pg_delete(pid_t);
    237 
    238 static specificdata_domain_t proc_specificdata_domain;
    239 
    240 /*
    241  * Initialize global process hashing structures.
    242  */
    243 void
    244 procinit(void)
    245 {
    246 	const struct proclist_desc *pd;
    247 	int i;
    248 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    249 
    250 	for (pd = proclists; pd->pd_list != NULL; pd++)
    251 		LIST_INIT(pd->pd_list);
    252 
    253 	/*
    254 	 * XXX p_smutex can be IPL_VM except for audio drivers
    255 	 * XXX proclist_lock must die
    256 	 */
    257 	rw_init(&proclist_lock);
    258 	mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
    259 
    260 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    261 			    M_PROC, M_WAITOK);
    262 	/* Set free list running through table...
    263 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    264 	for (i = 0; i <= pid_tbl_mask; i++) {
    265 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    266 		pid_table[i].pt_pgrp = 0;
    267 	}
    268 	/* slot 0 is just grabbed */
    269 	next_free_pt = 1;
    270 	/* Need to fix last entry. */
    271 	last_free_pt = pid_tbl_mask;
    272 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    273 	/* point at which we grow table - to avoid reusing pids too often */
    274 	pid_alloc_lim = pid_tbl_mask - 1;
    275 #undef LINK_EMPTY
    276 
    277 	LIST_INIT(&alllwp);
    278 
    279 	uihashtbl =
    280 	    hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
    281 
    282 	proc_specificdata_domain = specificdata_domain_create();
    283 	KASSERT(proc_specificdata_domain != NULL);
    284 }
    285 
    286 /*
    287  * Initialize process 0.
    288  */
    289 void
    290 proc0_init(void)
    291 {
    292 	struct proc *p;
    293 	struct pgrp *pg;
    294 	struct session *sess;
    295 	struct lwp *l;
    296 	u_int i;
    297 	rlim_t lim;
    298 
    299 	p = &proc0;
    300 	pg = &pgrp0;
    301 	sess = &session0;
    302 	l = &lwp0;
    303 
    304 	/* XXX p_smutex can be IPL_VM except for audio drivers */
    305 	mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
    306 	mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_STATCLOCK);
    307 	mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_NONE);
    308 	mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
    309 	cv_init(&p->p_refcv, "drainref");
    310 	cv_init(&p->p_waitcv, "wait");
    311 	cv_init(&p->p_lwpcv, "lwpwait");
    312 
    313 	LIST_INIT(&p->p_lwps);
    314 	LIST_INIT(&p->p_sigwaiters);
    315 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    316 
    317 	p->p_nlwps = 1;
    318 	p->p_nrlwps = 1;
    319 	p->p_nlwpid = l->l_lid;
    320 	p->p_refcnt = 1;
    321 
    322 	pid_table[0].pt_proc = p;
    323 	LIST_INSERT_HEAD(&allproc, p, p_list);
    324 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    325 
    326 	p->p_pgrp = pg;
    327 	pid_table[0].pt_pgrp = pg;
    328 	LIST_INIT(&pg->pg_members);
    329 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    330 
    331 	pg->pg_session = sess;
    332 	sess->s_count = 1;
    333 	sess->s_sid = 0;
    334 	sess->s_leader = p;
    335 
    336 	/*
    337 	 * Set P_NOCLDWAIT so that kernel threads are reparented to
    338 	 * init(8) when they exit.  init(8) can easily wait them out
    339 	 * for us.
    340 	 */
    341 	p->p_flag = PK_SYSTEM | PK_NOCLDWAIT;
    342 	p->p_stat = SACTIVE;
    343 	p->p_nice = NZERO;
    344 	p->p_emul = &emul_netbsd;
    345 #ifdef __HAVE_SYSCALL_INTERN
    346 	(*p->p_emul->e_syscall_intern)(p);
    347 #endif
    348 	strncpy(p->p_comm, "swapper", MAXCOMLEN);
    349 
    350 	l->l_mutex = &sched_mutex;
    351 	l->l_flag = LW_INMEM | LW_SYSTEM;
    352 	l->l_stat = LSONPROC;
    353 	l->l_ts = &turnstile0;
    354 	l->l_syncobj = &sched_syncobj;
    355 	l->l_refcnt = 1;
    356 	l->l_cpu = curcpu();
    357 	l->l_priority = PRIBIO;
    358 	l->l_usrpri = PRIBIO;
    359 	l->l_inheritedprio = MAXPRI;
    360 	SLIST_INIT(&l->l_pi_lenders);
    361 
    362 	callout_init(&l->l_tsleep_ch);
    363 	cv_init(&l->l_sigcv, "sigwait");
    364 
    365 	/* Create credentials. */
    366 	cred0 = kauth_cred_alloc();
    367 	p->p_cred = cred0;
    368 	kauth_cred_hold(cred0);
    369 	l->l_cred = cred0;
    370 
    371 	/* Create the CWD info. */
    372 	p->p_cwdi = &cwdi0;
    373 	cwdi0.cwdi_cmask = cmask;
    374 	cwdi0.cwdi_refcnt = 1;
    375 	simple_lock_init(&cwdi0.cwdi_slock);
    376 
    377 	/* Create the limits structures. */
    378 	p->p_limit = &limit0;
    379 	simple_lock_init(&limit0.p_slock);
    380 	for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
    381 		limit0.pl_rlimit[i].rlim_cur =
    382 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    383 
    384 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    385 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    386 	    maxfiles < nofile ? maxfiles : nofile;
    387 
    388 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    389 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    390 	    maxproc < maxuprc ? maxproc : maxuprc;
    391 
    392 	lim = ptoa(uvmexp.free);
    393 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    394 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    395 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    396 	limit0.pl_corename = defcorename;
    397 	limit0.p_refcnt = 1;
    398 
    399 	/* Configure virtual memory system, set vm rlimits. */
    400 	uvm_init_limits(p);
    401 
    402 	/* Initialize file descriptor table for proc0. */
    403 	p->p_fd = &filedesc0.fd_fd;
    404 	fdinit1(&filedesc0);
    405 
    406 	/*
    407 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    408 	 * All kernel processes (which never have user space mappings)
    409 	 * share proc0's vmspace, and thus, the kernel pmap.
    410 	 */
    411 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    412 	    trunc_page(VM_MAX_ADDRESS));
    413 	p->p_vmspace = &vmspace0;
    414 
    415 	l->l_addr = proc0paddr;				/* XXX */
    416 
    417 	p->p_stats = &pstat0;
    418 
    419 	/* Initialize signal state for proc0. */
    420 	p->p_sigacts = &sigacts0;
    421 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
    422 	siginit(p);
    423 
    424 	proc_initspecific(p);
    425 	lwp_initspecific(l);
    426 
    427 	SYSCALL_TIME_LWP_INIT(l);
    428 }
    429 
    430 /*
    431  * Check that the specified process group is in the session of the
    432  * specified process.
    433  * Treats -ve ids as process ids.
    434  * Used to validate TIOCSPGRP requests.
    435  */
    436 int
    437 pgid_in_session(struct proc *p, pid_t pg_id)
    438 {
    439 	struct pgrp *pgrp;
    440 	struct session *session;
    441 
    442 	rw_enter(&proclist_lock, RW_READER);
    443 
    444 	if (pg_id < 0) {
    445 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    446 		if (p1 == NULL)
    447 			return EINVAL;
    448 		pgrp = p1->p_pgrp;
    449 	} else {
    450 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    451 		if (pgrp == NULL)
    452 			return EINVAL;
    453 	}
    454 	session = pgrp->pg_session;
    455 	rw_exit(&proclist_lock);
    456 	if (session != p->p_pgrp->pg_session)
    457 		return EPERM;
    458 	return 0;
    459 }
    460 
    461 /*
    462  * Is p an inferior of q?
    463  *
    464  * Call with the proclist_lock held.
    465  */
    466 int
    467 inferior(struct proc *p, struct proc *q)
    468 {
    469 
    470 	for (; p != q; p = p->p_pptr)
    471 		if (p->p_pid == 0)
    472 			return 0;
    473 	return 1;
    474 }
    475 
    476 /*
    477  * Locate a process by number
    478  */
    479 struct proc *
    480 p_find(pid_t pid, uint flags)
    481 {
    482 	struct proc *p;
    483 	char stat;
    484 
    485 	if (!(flags & PFIND_LOCKED))
    486 		rw_enter(&proclist_lock, RW_READER);
    487 
    488 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    489 
    490 	/* Only allow live processes to be found by pid. */
    491 	/* XXXSMP p_stat */
    492 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    493 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    494 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    495 		if (flags & PFIND_UNLOCK_OK)
    496 			 rw_exit(&proclist_lock);
    497 		return p;
    498 	}
    499 	if (flags & PFIND_UNLOCK_FAIL)
    500 		rw_exit(&proclist_lock);
    501 	return NULL;
    502 }
    503 
    504 
    505 /*
    506  * Locate a process group by number
    507  */
    508 struct pgrp *
    509 pg_find(pid_t pgid, uint flags)
    510 {
    511 	struct pgrp *pg;
    512 
    513 	if (!(flags & PFIND_LOCKED))
    514 		rw_enter(&proclist_lock, RW_READER);
    515 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    516 	/*
    517 	 * Can't look up a pgrp that only exists because the session
    518 	 * hasn't died yet (traditional)
    519 	 */
    520 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    521 		if (flags & PFIND_UNLOCK_FAIL)
    522 			 rw_exit(&proclist_lock);
    523 		return NULL;
    524 	}
    525 
    526 	if (flags & PFIND_UNLOCK_OK)
    527 		rw_exit(&proclist_lock);
    528 	return pg;
    529 }
    530 
    531 static void
    532 expand_pid_table(void)
    533 {
    534 	uint pt_size = pid_tbl_mask + 1;
    535 	struct pid_table *n_pt, *new_pt;
    536 	struct proc *proc;
    537 	struct pgrp *pgrp;
    538 	int i;
    539 	pid_t pid;
    540 
    541 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    542 
    543 	rw_enter(&proclist_lock, RW_WRITER);
    544 	if (pt_size != pid_tbl_mask + 1) {
    545 		/* Another process beat us to it... */
    546 		rw_exit(&proclist_lock);
    547 		FREE(new_pt, M_PROC);
    548 		return;
    549 	}
    550 
    551 	/*
    552 	 * Copy entries from old table into new one.
    553 	 * If 'pid' is 'odd' we need to place in the upper half,
    554 	 * even pid's to the lower half.
    555 	 * Free items stay in the low half so we don't have to
    556 	 * fixup the reference to them.
    557 	 * We stuff free items on the front of the freelist
    558 	 * because we can't write to unmodified entries.
    559 	 * Processing the table backwards maintains a semblance
    560 	 * of issueing pid numbers that increase with time.
    561 	 */
    562 	i = pt_size - 1;
    563 	n_pt = new_pt + i;
    564 	for (; ; i--, n_pt--) {
    565 		proc = pid_table[i].pt_proc;
    566 		pgrp = pid_table[i].pt_pgrp;
    567 		if (!P_VALID(proc)) {
    568 			/* Up 'use count' so that link is valid */
    569 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    570 			proc = P_FREE(pid);
    571 			if (pgrp)
    572 				pid = pgrp->pg_id;
    573 		} else
    574 			pid = proc->p_pid;
    575 
    576 		/* Save entry in appropriate half of table */
    577 		n_pt[pid & pt_size].pt_proc = proc;
    578 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    579 
    580 		/* Put other piece on start of free list */
    581 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    582 		n_pt[pid & pt_size].pt_proc =
    583 				    P_FREE((pid & ~pt_size) | next_free_pt);
    584 		n_pt[pid & pt_size].pt_pgrp = 0;
    585 		next_free_pt = i | (pid & pt_size);
    586 		if (i == 0)
    587 			break;
    588 	}
    589 
    590 	/* Switch tables */
    591 	mutex_enter(&proclist_mutex);
    592 	n_pt = pid_table;
    593 	pid_table = new_pt;
    594 	mutex_exit(&proclist_mutex);
    595 	pid_tbl_mask = pt_size * 2 - 1;
    596 
    597 	/*
    598 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    599 	 * allocated pids we need it to be larger!
    600 	 */
    601 	if (pid_tbl_mask > PID_MAX) {
    602 		pid_max = pid_tbl_mask * 2 + 1;
    603 		pid_alloc_lim |= pid_alloc_lim << 1;
    604 	} else
    605 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    606 
    607 	rw_exit(&proclist_lock);
    608 	FREE(n_pt, M_PROC);
    609 }
    610 
    611 struct proc *
    612 proc_alloc(void)
    613 {
    614 	struct proc *p;
    615 	int nxt;
    616 	pid_t pid;
    617 	struct pid_table *pt;
    618 
    619 	p = pool_get(&proc_pool, PR_WAITOK);
    620 	p->p_stat = SIDL;			/* protect against others */
    621 
    622 	proc_initspecific(p);
    623 	/* allocate next free pid */
    624 
    625 	for (;;expand_pid_table()) {
    626 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    627 			/* ensure pids cycle through 2000+ values */
    628 			continue;
    629 		rw_enter(&proclist_lock, RW_WRITER);
    630 		pt = &pid_table[next_free_pt];
    631 #ifdef DIAGNOSTIC
    632 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    633 			panic("proc_alloc: slot busy");
    634 #endif
    635 		nxt = P_NEXT(pt->pt_proc);
    636 		if (nxt & pid_tbl_mask)
    637 			break;
    638 		/* Table full - expand (NB last entry not used....) */
    639 		rw_exit(&proclist_lock);
    640 	}
    641 
    642 	/* pid is 'saved use count' + 'size' + entry */
    643 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    644 	if ((uint)pid > (uint)pid_max)
    645 		pid &= pid_tbl_mask;
    646 	p->p_pid = pid;
    647 	next_free_pt = nxt & pid_tbl_mask;
    648 
    649 	/* Grab table slot */
    650 	mutex_enter(&proclist_mutex);
    651 	pt->pt_proc = p;
    652 	mutex_exit(&proclist_mutex);
    653 	pid_alloc_cnt++;
    654 
    655 	rw_exit(&proclist_lock);
    656 
    657 	return p;
    658 }
    659 
    660 /*
    661  * Free last resources of a process - called from proc_free (in kern_exit.c)
    662  *
    663  * Called with the proclist_lock write held, and releases upon exit.
    664  */
    665 void
    666 proc_free_mem(struct proc *p)
    667 {
    668 	pid_t pid = p->p_pid;
    669 	struct pid_table *pt;
    670 
    671 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    672 
    673 	pt = &pid_table[pid & pid_tbl_mask];
    674 #ifdef DIAGNOSTIC
    675 	if (__predict_false(pt->pt_proc != p))
    676 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    677 			pid, p);
    678 #endif
    679 	mutex_enter(&proclist_mutex);
    680 	/* save pid use count in slot */
    681 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    682 
    683 	if (pt->pt_pgrp == NULL) {
    684 		/* link last freed entry onto ours */
    685 		pid &= pid_tbl_mask;
    686 		pt = &pid_table[last_free_pt];
    687 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    688 		last_free_pt = pid;
    689 		pid_alloc_cnt--;
    690 	}
    691 	mutex_exit(&proclist_mutex);
    692 
    693 	nprocs--;
    694 	rw_exit(&proclist_lock);
    695 
    696 	pool_put(&proc_pool, p);
    697 }
    698 
    699 /*
    700  * Move p to a new or existing process group (and session)
    701  *
    702  * If we are creating a new pgrp, the pgid should equal
    703  * the calling process' pid.
    704  * If is only valid to enter a process group that is in the session
    705  * of the process.
    706  * Also mksess should only be set if we are creating a process group
    707  *
    708  * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
    709  * SYSV setpgrp support for hpux.
    710  */
    711 int
    712 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
    713 {
    714 	struct pgrp *new_pgrp, *pgrp;
    715 	struct session *sess;
    716 	struct proc *p;
    717 	int rval;
    718 	pid_t pg_id = NO_PGID;
    719 
    720 	/* Allocate data areas we might need before doing any validity checks */
    721 	rw_enter(&proclist_lock, RW_READER);		/* Because pid_table might change */
    722 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    723 		rw_exit(&proclist_lock);
    724 		new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
    725 	} else {
    726 		rw_exit(&proclist_lock);
    727 		new_pgrp = NULL;
    728 	}
    729 	if (mksess)
    730 		sess = pool_get(&session_pool, PR_WAITOK);
    731 	else
    732 		sess = NULL;
    733 
    734 	rw_enter(&proclist_lock, RW_WRITER);
    735 	rval = EPERM;	/* most common error (to save typing) */
    736 
    737 	/* Check pgrp exists or can be created */
    738 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    739 	if (pgrp != NULL && pgrp->pg_id != pgid)
    740 		goto done;
    741 
    742 	/* Can only set another process under restricted circumstances. */
    743 	if (pid != curp->p_pid) {
    744 		/* must exist and be one of our children... */
    745 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    746 		    !inferior(p, curp)) {
    747 			rval = ESRCH;
    748 			goto done;
    749 		}
    750 		/* ... in the same session... */
    751 		if (sess != NULL || p->p_session != curp->p_session)
    752 			goto done;
    753 		/* ... existing pgid must be in same session ... */
    754 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    755 			goto done;
    756 		/* ... and not done an exec. */
    757 		if (p->p_flag & PK_EXEC) {
    758 			rval = EACCES;
    759 			goto done;
    760 		}
    761 	} else {
    762 		/* ... setsid() cannot re-enter a pgrp */
    763 		if (mksess && (curp->p_pgid == curp->p_pid ||
    764 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    765 			goto done;
    766 		p = curp;
    767 	}
    768 
    769 	/* Changing the process group/session of a session
    770 	   leader is definitely off limits. */
    771 	if (SESS_LEADER(p)) {
    772 		if (sess == NULL && p->p_pgrp == pgrp)
    773 			/* unless it's a definite noop */
    774 			rval = 0;
    775 		goto done;
    776 	}
    777 
    778 	/* Can only create a process group with id of process */
    779 	if (pgrp == NULL && pgid != pid)
    780 		goto done;
    781 
    782 	/* Can only create a session if creating pgrp */
    783 	if (sess != NULL && pgrp != NULL)
    784 		goto done;
    785 
    786 	/* Check we allocated memory for a pgrp... */
    787 	if (pgrp == NULL && new_pgrp == NULL)
    788 		goto done;
    789 
    790 	/* Don't attach to 'zombie' pgrp */
    791 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    792 		goto done;
    793 
    794 	/* Expect to succeed now */
    795 	rval = 0;
    796 
    797 	if (pgrp == p->p_pgrp)
    798 		/* nothing to do */
    799 		goto done;
    800 
    801 	/* Ok all setup, link up required structures */
    802 
    803 	if (pgrp == NULL) {
    804 		pgrp = new_pgrp;
    805 		new_pgrp = 0;
    806 		if (sess != NULL) {
    807 			sess->s_sid = p->p_pid;
    808 			sess->s_leader = p;
    809 			sess->s_count = 1;
    810 			sess->s_ttyvp = NULL;
    811 			sess->s_ttyp = NULL;
    812 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    813 			memcpy(sess->s_login, p->p_session->s_login,
    814 			    sizeof(sess->s_login));
    815 			p->p_lflag &= ~PL_CONTROLT;
    816 		} else {
    817 			sess = p->p_pgrp->pg_session;
    818 			SESSHOLD(sess);
    819 		}
    820 		pgrp->pg_session = sess;
    821 		sess = 0;
    822 
    823 		pgrp->pg_id = pgid;
    824 		LIST_INIT(&pgrp->pg_members);
    825 #ifdef DIAGNOSTIC
    826 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    827 			panic("enterpgrp: pgrp table slot in use");
    828 		if (__predict_false(mksess && p != curp))
    829 			panic("enterpgrp: mksession and p != curproc");
    830 #endif
    831 		mutex_enter(&proclist_mutex);
    832 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    833 		pgrp->pg_jobc = 0;
    834 	} else
    835 		mutex_enter(&proclist_mutex);
    836 
    837 #ifdef notyet
    838 	/*
    839 	 * If there's a controlling terminal for the current session, we
    840 	 * have to interlock with it.  See ttread().
    841 	 */
    842 	if (p->p_session->s_ttyvp != NULL) {
    843 		tp = p->p_session->s_ttyp;
    844 		mutex_enter(&tp->t_mutex);
    845 	} else
    846 		tp = NULL;
    847 #endif
    848 
    849 	/*
    850 	 * Adjust eligibility of affected pgrps to participate in job control.
    851 	 * Increment eligibility counts before decrementing, otherwise we
    852 	 * could reach 0 spuriously during the first call.
    853 	 */
    854 	fixjobc(p, pgrp, 1);
    855 	fixjobc(p, p->p_pgrp, 0);
    856 
    857 	/* Move process to requested group. */
    858 	LIST_REMOVE(p, p_pglist);
    859 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    860 		/* defer delete until we've dumped the lock */
    861 		pg_id = p->p_pgrp->pg_id;
    862 	p->p_pgrp = pgrp;
    863 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    864 	mutex_exit(&proclist_mutex);
    865 
    866 #ifdef notyet
    867 	/* Done with the swap; we can release the tty mutex. */
    868 	if (tp != NULL)
    869 		mutex_exit(&tp->t_mutex);
    870 #endif
    871 
    872     done:
    873 	if (pg_id != NO_PGID)
    874 		pg_delete(pg_id);
    875 	rw_exit(&proclist_lock);
    876 	if (sess != NULL)
    877 		pool_put(&session_pool, sess);
    878 	if (new_pgrp != NULL)
    879 		pool_put(&pgrp_pool, new_pgrp);
    880 #ifdef DEBUG_PGRP
    881 	if (__predict_false(rval))
    882 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    883 			pid, pgid, mksess, curp->p_pid, rval);
    884 #endif
    885 	return rval;
    886 }
    887 
    888 /*
    889  * Remove a process from its process group.  Must be called with the
    890  * proclist_lock write held.
    891  */
    892 void
    893 leavepgrp(struct proc *p)
    894 {
    895 	struct pgrp *pgrp;
    896 
    897 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    898 
    899 	/*
    900 	 * If there's a controlling terminal for the session, we have to
    901 	 * interlock with it.  See ttread().
    902 	 */
    903 	mutex_enter(&proclist_mutex);
    904 #ifdef notyet
    905 	if (p_>p_session->s_ttyvp != NULL) {
    906 		tp = p->p_session->s_ttyp;
    907 		mutex_enter(&tp->t_mutex);
    908 	} else
    909 		tp = NULL;
    910 #endif
    911 
    912 	pgrp = p->p_pgrp;
    913 	LIST_REMOVE(p, p_pglist);
    914 	p->p_pgrp = NULL;
    915 
    916 #ifdef notyet
    917 	if (tp != NULL)
    918 		mutex_exit(&tp->t_mutex);
    919 #endif
    920 	mutex_exit(&proclist_mutex);
    921 
    922 	if (LIST_EMPTY(&pgrp->pg_members))
    923 		pg_delete(pgrp->pg_id);
    924 }
    925 
    926 /*
    927  * Free a process group.  Must be called with the proclist_lock write held.
    928  */
    929 static void
    930 pg_free(pid_t pg_id)
    931 {
    932 	struct pgrp *pgrp;
    933 	struct pid_table *pt;
    934 
    935 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    936 
    937 	pt = &pid_table[pg_id & pid_tbl_mask];
    938 	pgrp = pt->pt_pgrp;
    939 #ifdef DIAGNOSTIC
    940 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    941 	    || !LIST_EMPTY(&pgrp->pg_members)))
    942 		panic("pg_free: process group absent or has members");
    943 #endif
    944 	pt->pt_pgrp = 0;
    945 
    946 	if (!P_VALID(pt->pt_proc)) {
    947 		/* orphaned pgrp, put slot onto free list */
    948 #ifdef DIAGNOSTIC
    949 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    950 			panic("pg_free: process slot on free list");
    951 #endif
    952 		mutex_enter(&proclist_mutex);
    953 		pg_id &= pid_tbl_mask;
    954 		pt = &pid_table[last_free_pt];
    955 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    956 		mutex_exit(&proclist_mutex);
    957 		last_free_pt = pg_id;
    958 		pid_alloc_cnt--;
    959 	}
    960 	pool_put(&pgrp_pool, pgrp);
    961 }
    962 
    963 /*
    964  * Delete a process group.  Must be called with the proclist_lock write
    965  * held.
    966  */
    967 static void
    968 pg_delete(pid_t pg_id)
    969 {
    970 	struct pgrp *pgrp;
    971 	struct tty *ttyp;
    972 	struct session *ss;
    973 	int is_pgrp_leader;
    974 
    975 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    976 
    977 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    978 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    979 	    !LIST_EMPTY(&pgrp->pg_members))
    980 		return;
    981 
    982 	ss = pgrp->pg_session;
    983 
    984 	/* Remove reference (if any) from tty to this process group */
    985 	ttyp = ss->s_ttyp;
    986 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    987 		ttyp->t_pgrp = NULL;
    988 #ifdef DIAGNOSTIC
    989 		if (ttyp->t_session != ss)
    990 			panic("pg_delete: wrong session on terminal");
    991 #endif
    992 	}
    993 
    994 	/*
    995 	 * The leading process group in a session is freed
    996 	 * by sessdelete() if last reference.
    997 	 */
    998 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
    999 	SESSRELE(ss);
   1000 
   1001 	if (is_pgrp_leader)
   1002 		return;
   1003 
   1004 	pg_free(pg_id);
   1005 }
   1006 
   1007 /*
   1008  * Delete session - called from SESSRELE when s_count becomes zero.
   1009  * Must be called with the proclist_lock write held.
   1010  */
   1011 void
   1012 sessdelete(struct session *ss)
   1013 {
   1014 
   1015 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1016 
   1017 	/*
   1018 	 * We keep the pgrp with the same id as the session in
   1019 	 * order to stop a process being given the same pid.
   1020 	 * Since the pgrp holds a reference to the session, it
   1021 	 * must be a 'zombie' pgrp by now.
   1022 	 */
   1023 	pg_free(ss->s_sid);
   1024 	pool_put(&session_pool, ss);
   1025 }
   1026 
   1027 /*
   1028  * Adjust pgrp jobc counters when specified process changes process group.
   1029  * We count the number of processes in each process group that "qualify"
   1030  * the group for terminal job control (those with a parent in a different
   1031  * process group of the same session).  If that count reaches zero, the
   1032  * process group becomes orphaned.  Check both the specified process'
   1033  * process group and that of its children.
   1034  * entering == 0 => p is leaving specified group.
   1035  * entering == 1 => p is entering specified group.
   1036  *
   1037  * Call with proclist_lock write held.
   1038  */
   1039 void
   1040 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1041 {
   1042 	struct pgrp *hispgrp;
   1043 	struct session *mysession = pgrp->pg_session;
   1044 	struct proc *child;
   1045 
   1046 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1047 	LOCK_ASSERT(mutex_owned(&proclist_mutex));
   1048 
   1049 	/*
   1050 	 * Check p's parent to see whether p qualifies its own process
   1051 	 * group; if so, adjust count for p's process group.
   1052 	 */
   1053 	hispgrp = p->p_pptr->p_pgrp;
   1054 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1055 		if (entering) {
   1056 			mutex_enter(&p->p_smutex);
   1057 			p->p_sflag &= ~PS_ORPHANPG;
   1058 			mutex_exit(&p->p_smutex);
   1059 			pgrp->pg_jobc++;
   1060 		} else if (--pgrp->pg_jobc == 0)
   1061 			orphanpg(pgrp);
   1062 	}
   1063 
   1064 	/*
   1065 	 * Check this process' children to see whether they qualify
   1066 	 * their process groups; if so, adjust counts for children's
   1067 	 * process groups.
   1068 	 */
   1069 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1070 		hispgrp = child->p_pgrp;
   1071 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1072 		    !P_ZOMBIE(child)) {
   1073 			if (entering) {
   1074 				mutex_enter(&child->p_smutex);
   1075 				child->p_sflag &= ~PS_ORPHANPG;
   1076 				mutex_exit(&child->p_smutex);
   1077 				hispgrp->pg_jobc++;
   1078 			} else if (--hispgrp->pg_jobc == 0)
   1079 				orphanpg(hispgrp);
   1080 		}
   1081 	}
   1082 }
   1083 
   1084 /*
   1085  * A process group has become orphaned;
   1086  * if there are any stopped processes in the group,
   1087  * hang-up all process in that group.
   1088  *
   1089  * Call with proclist_lock write held.
   1090  */
   1091 static void
   1092 orphanpg(struct pgrp *pg)
   1093 {
   1094 	struct proc *p;
   1095 	int doit;
   1096 
   1097 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1098 	LOCK_ASSERT(mutex_owned(&proclist_mutex));
   1099 
   1100 	doit = 0;
   1101 
   1102 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1103 		mutex_enter(&p->p_smutex);
   1104 		if (p->p_stat == SSTOP) {
   1105 			doit = 1;
   1106 			p->p_sflag |= PS_ORPHANPG;
   1107 		}
   1108 		mutex_exit(&p->p_smutex);
   1109 	}
   1110 
   1111 	if (doit) {
   1112 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1113 			psignal(p, SIGHUP);
   1114 			psignal(p, SIGCONT);
   1115 		}
   1116 	}
   1117 }
   1118 
   1119 #ifdef DDB
   1120 #include <ddb/db_output.h>
   1121 void pidtbl_dump(void);
   1122 void
   1123 pidtbl_dump(void)
   1124 {
   1125 	struct pid_table *pt;
   1126 	struct proc *p;
   1127 	struct pgrp *pgrp;
   1128 	int id;
   1129 
   1130 	db_printf("pid table %p size %x, next %x, last %x\n",
   1131 		pid_table, pid_tbl_mask+1,
   1132 		next_free_pt, last_free_pt);
   1133 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1134 		p = pt->pt_proc;
   1135 		if (!P_VALID(p) && !pt->pt_pgrp)
   1136 			continue;
   1137 		db_printf("  id %x: ", id);
   1138 		if (P_VALID(p))
   1139 			db_printf("proc %p id %d (0x%x) %s\n",
   1140 				p, p->p_pid, p->p_pid, p->p_comm);
   1141 		else
   1142 			db_printf("next %x use %x\n",
   1143 				P_NEXT(p) & pid_tbl_mask,
   1144 				P_NEXT(p) & ~pid_tbl_mask);
   1145 		if ((pgrp = pt->pt_pgrp)) {
   1146 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1147 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1148 			    pgrp->pg_session->s_count,
   1149 			    pgrp->pg_session->s_login);
   1150 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1151 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1152 			    pgrp->pg_members.lh_first);
   1153 			for (p = pgrp->pg_members.lh_first; p != 0;
   1154 			    p = p->p_pglist.le_next) {
   1155 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1156 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1157 			}
   1158 		}
   1159 	}
   1160 }
   1161 #endif /* DDB */
   1162 
   1163 #ifdef KSTACK_CHECK_MAGIC
   1164 #include <sys/user.h>
   1165 
   1166 #define	KSTACK_MAGIC	0xdeadbeaf
   1167 
   1168 /* XXX should be per process basis? */
   1169 int kstackleftmin = KSTACK_SIZE;
   1170 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1171 					  less than this */
   1172 
   1173 void
   1174 kstack_setup_magic(const struct lwp *l)
   1175 {
   1176 	uint32_t *ip;
   1177 	uint32_t const *end;
   1178 
   1179 	KASSERT(l != NULL);
   1180 	KASSERT(l != &lwp0);
   1181 
   1182 	/*
   1183 	 * fill all the stack with magic number
   1184 	 * so that later modification on it can be detected.
   1185 	 */
   1186 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1187 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1188 	for (; ip < end; ip++) {
   1189 		*ip = KSTACK_MAGIC;
   1190 	}
   1191 }
   1192 
   1193 void
   1194 kstack_check_magic(const struct lwp *l)
   1195 {
   1196 	uint32_t const *ip, *end;
   1197 	int stackleft;
   1198 
   1199 	KASSERT(l != NULL);
   1200 
   1201 	/* don't check proc0 */ /*XXX*/
   1202 	if (l == &lwp0)
   1203 		return;
   1204 
   1205 #ifdef __MACHINE_STACK_GROWS_UP
   1206 	/* stack grows upwards (eg. hppa) */
   1207 	ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1208 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1209 	for (ip--; ip >= end; ip--)
   1210 		if (*ip != KSTACK_MAGIC)
   1211 			break;
   1212 
   1213 	stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
   1214 #else /* __MACHINE_STACK_GROWS_UP */
   1215 	/* stack grows downwards (eg. i386) */
   1216 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1217 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1218 	for (; ip < end; ip++)
   1219 		if (*ip != KSTACK_MAGIC)
   1220 			break;
   1221 
   1222 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1223 #endif /* __MACHINE_STACK_GROWS_UP */
   1224 
   1225 	if (kstackleftmin > stackleft) {
   1226 		kstackleftmin = stackleft;
   1227 		if (stackleft < kstackleftthres)
   1228 			printf("warning: kernel stack left %d bytes"
   1229 			    "(pid %u:lid %u)\n", stackleft,
   1230 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1231 	}
   1232 
   1233 	if (stackleft <= 0) {
   1234 		panic("magic on the top of kernel stack changed for "
   1235 		    "pid %u, lid %u: maybe kernel stack overflow",
   1236 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1237 	}
   1238 }
   1239 #endif /* KSTACK_CHECK_MAGIC */
   1240 
   1241 /*
   1242  * XXXSMP this is bust, it grabs a read lock and then messes about
   1243  * with allproc.
   1244  */
   1245 int
   1246 proclist_foreach_call(struct proclist *list,
   1247     int (*callback)(struct proc *, void *arg), void *arg)
   1248 {
   1249 	struct proc marker;
   1250 	struct proc *p;
   1251 	struct lwp * const l = curlwp;
   1252 	int ret = 0;
   1253 
   1254 	marker.p_flag = PK_MARKER;
   1255 	PHOLD(l);
   1256 	rw_enter(&proclist_lock, RW_READER);
   1257 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1258 		if (p->p_flag & PK_MARKER) {
   1259 			p = LIST_NEXT(p, p_list);
   1260 			continue;
   1261 		}
   1262 		LIST_INSERT_AFTER(p, &marker, p_list);
   1263 		ret = (*callback)(p, arg);
   1264 		KASSERT(rw_read_held(&proclist_lock));
   1265 		p = LIST_NEXT(&marker, p_list);
   1266 		LIST_REMOVE(&marker, p_list);
   1267 	}
   1268 	rw_exit(&proclist_lock);
   1269 	PRELE(l);
   1270 
   1271 	return ret;
   1272 }
   1273 
   1274 int
   1275 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1276 {
   1277 
   1278 	/* XXXCDC: how should locking work here? */
   1279 
   1280 	/* curproc exception is for coredump. */
   1281 
   1282 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1283 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1284 		return EFAULT;
   1285 	}
   1286 
   1287 	uvmspace_addref(p->p_vmspace);
   1288 	*vm = p->p_vmspace;
   1289 
   1290 	return 0;
   1291 }
   1292 
   1293 /*
   1294  * Acquire a write lock on the process credential.
   1295  */
   1296 void
   1297 proc_crmod_enter(void)
   1298 {
   1299 	struct lwp *l = curlwp;
   1300 	struct proc *p = l->l_proc;
   1301 	struct plimit *lim;
   1302 	kauth_cred_t oc;
   1303 	char *cn;
   1304 
   1305 	mutex_enter(&p->p_mutex);
   1306 
   1307 	/* Ensure the LWP cached credentials are up to date. */
   1308 	if ((oc = l->l_cred) != p->p_cred) {
   1309 		kauth_cred_hold(p->p_cred);
   1310 		l->l_cred = p->p_cred;
   1311 		kauth_cred_free(oc);
   1312 	}
   1313 
   1314 	/* Reset what needs to be reset in plimit. */
   1315 	lim = p->p_limit;
   1316 	if (lim->pl_corename != defcorename) {
   1317 		if (lim->p_refcnt > 1 &&
   1318 		    (lim->p_lflags & PL_SHAREMOD) == 0) {
   1319 			p->p_limit = limcopy(p);
   1320 			limfree(lim);
   1321 			lim = p->p_limit;
   1322 		}
   1323 		simple_lock(&lim->p_slock);
   1324 		cn = lim->pl_corename;
   1325 		lim->pl_corename = defcorename;
   1326 		simple_unlock(&lim->p_slock);
   1327 		if (cn != defcorename)
   1328 			free(cn, M_TEMP);
   1329 	}
   1330 }
   1331 
   1332 /*
   1333  * Set in a new process credential, and drop the write lock.  The credential
   1334  * must have a reference already.  Optionally, free a no-longer required
   1335  * credential.  The scheduler also needs to inspect p_cred, so we also
   1336  * briefly acquire the sched state mutex.
   1337  */
   1338 void
   1339 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1340 {
   1341 	struct lwp *l = curlwp;
   1342 	struct proc *p = l->l_proc;
   1343 	kauth_cred_t oc;
   1344 
   1345 	/* Is there a new credential to set in? */
   1346 	if (scred != NULL) {
   1347 		mutex_enter(&p->p_smutex);
   1348 		p->p_cred = scred;
   1349 		mutex_exit(&p->p_smutex);
   1350 
   1351 		/* Ensure the LWP cached credentials are up to date. */
   1352 		if ((oc = l->l_cred) != scred) {
   1353 			kauth_cred_hold(scred);
   1354 			l->l_cred = scred;
   1355 		}
   1356 	} else
   1357 		oc = NULL;	/* XXXgcc */
   1358 
   1359 	if (sugid) {
   1360 		/*
   1361 		 * Mark process as having changed credentials, stops
   1362 		 * tracing etc.
   1363 		 */
   1364 		p->p_flag |= PK_SUGID;
   1365 	}
   1366 
   1367 	mutex_exit(&p->p_mutex);
   1368 
   1369 	/* If there is a credential to be released, free it now. */
   1370 	if (fcred != NULL) {
   1371 		KASSERT(scred != NULL);
   1372 		kauth_cred_free(fcred);
   1373 		if (oc != scred)
   1374 			kauth_cred_free(oc);
   1375 	}
   1376 }
   1377 
   1378 /*
   1379  * Acquire a reference on a process, to prevent it from exiting or execing.
   1380  */
   1381 int
   1382 proc_addref(struct proc *p)
   1383 {
   1384 
   1385 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1386 
   1387 	if (p->p_refcnt <= 0)
   1388 		return EAGAIN;
   1389 	p->p_refcnt++;
   1390 
   1391 	return 0;
   1392 }
   1393 
   1394 /*
   1395  * Release a reference on a process.
   1396  */
   1397 void
   1398 proc_delref(struct proc *p)
   1399 {
   1400 
   1401 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1402 
   1403 	if (p->p_refcnt < 0) {
   1404 		if (++p->p_refcnt == 0)
   1405 			cv_broadcast(&p->p_refcv);
   1406 	} else {
   1407 		p->p_refcnt--;
   1408 		KASSERT(p->p_refcnt != 0);
   1409 	}
   1410 }
   1411 
   1412 /*
   1413  * Wait for all references on the process to drain, and prevent new
   1414  * references from being acquired.
   1415  */
   1416 void
   1417 proc_drainrefs(struct proc *p)
   1418 {
   1419 
   1420 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1421 	KASSERT(p->p_refcnt > 0);
   1422 
   1423 	/*
   1424 	 * The process itself holds the last reference.  Once it's released,
   1425 	 * no new references will be granted.  If we have already locked out
   1426 	 * new references (refcnt <= 0), potentially due to a failed exec,
   1427 	 * there is nothing more to do.
   1428 	 */
   1429 	p->p_refcnt = 1 - p->p_refcnt;
   1430 	while (p->p_refcnt != 0)
   1431 		cv_wait(&p->p_refcv, &p->p_mutex);
   1432 }
   1433 
   1434 /*
   1435  * proc_specific_key_create --
   1436  *	Create a key for subsystem proc-specific data.
   1437  */
   1438 int
   1439 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1440 {
   1441 
   1442 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1443 }
   1444 
   1445 /*
   1446  * proc_specific_key_delete --
   1447  *	Delete a key for subsystem proc-specific data.
   1448  */
   1449 void
   1450 proc_specific_key_delete(specificdata_key_t key)
   1451 {
   1452 
   1453 	specificdata_key_delete(proc_specificdata_domain, key);
   1454 }
   1455 
   1456 /*
   1457  * proc_initspecific --
   1458  *	Initialize a proc's specificdata container.
   1459  */
   1460 void
   1461 proc_initspecific(struct proc *p)
   1462 {
   1463 	int error;
   1464 
   1465 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1466 	KASSERT(error == 0);
   1467 }
   1468 
   1469 /*
   1470  * proc_finispecific --
   1471  *	Finalize a proc's specificdata container.
   1472  */
   1473 void
   1474 proc_finispecific(struct proc *p)
   1475 {
   1476 
   1477 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1478 }
   1479 
   1480 /*
   1481  * proc_getspecific --
   1482  *	Return proc-specific data corresponding to the specified key.
   1483  */
   1484 void *
   1485 proc_getspecific(struct proc *p, specificdata_key_t key)
   1486 {
   1487 
   1488 	return (specificdata_getspecific(proc_specificdata_domain,
   1489 					 &p->p_specdataref, key));
   1490 }
   1491 
   1492 /*
   1493  * proc_setspecific --
   1494  *	Set proc-specific data corresponding to the specified key.
   1495  */
   1496 void
   1497 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1498 {
   1499 
   1500 	specificdata_setspecific(proc_specificdata_domain,
   1501 				 &p->p_specdataref, key, data);
   1502 }
   1503