Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.105
      1 /*	$NetBSD: kern_proc.c,v 1.105 2007/02/26 09:20:53 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.105 2007/02/26 09:20:53 yamt Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_maxuprc.h"
     76 #include "opt_multiprocessor.h"
     77 #include "opt_lockdebug.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/proc.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/buf.h>
     85 #include <sys/acct.h>
     86 #include <sys/wait.h>
     87 #include <sys/file.h>
     88 #include <ufs/ufs/quota.h>
     89 #include <sys/uio.h>
     90 #include <sys/malloc.h>
     91 #include <sys/pool.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include "sys/syscall_stats.h"
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 
    102 #include <uvm/uvm.h>
    103 #include <uvm/uvm_extern.h>
    104 
    105 /*
    106  * Other process lists
    107  */
    108 
    109 struct proclist allproc;
    110 struct proclist zombproc;	/* resources have been freed */
    111 
    112 /*
    113  * There are two locks on global process state.
    114  *
    115  * 1. proclist_lock is a reader/writer lock and is used when modifying or
    116  * examining process state from a process context.  It protects our internal
    117  * tables, all of the process lists, and a number of members of struct lwp
    118  * and struct proc.
    119 
    120  * 2. proclist_mutex is used when allproc must be traversed from an
    121  * interrupt context, or when we must signal processes from an interrupt
    122  * context.  The proclist_lock should always be used in preference.
    123  *
    124  *	proclist_lock	proclist_mutex	structure
    125  *	--------------- --------------- -----------------
    126  *	x				zombproc
    127  *	x		x		pid_table
    128  *	x				proc::p_pptr
    129  *	x				proc::p_sibling
    130  *	x				proc::p_children
    131  *	x		x		allproc
    132  *	x		x		proc::p_pgrp
    133  *	x		x		proc::p_pglist
    134  *	x		x		proc::p_session
    135  *	x		x		proc::p_list
    136  *			x		alllwp
    137  *			x		lwp::l_list
    138  *
    139  * The lock order for processes and LWPs is approximately as following:
    140  *
    141  * kernel_mutex
    142  * -> proclist_lock
    143  *    -> proclist_mutex
    144  *	-> proc::p_mutex
    145  *         -> proc::p_smutex
    146  */
    147 krwlock_t	proclist_lock;
    148 kmutex_t	proclist_mutex;
    149 
    150 /*
    151  * pid to proc lookup is done by indexing the pid_table array.
    152  * Since pid numbers are only allocated when an empty slot
    153  * has been found, there is no need to search any lists ever.
    154  * (an orphaned pgrp will lock the slot, a session will lock
    155  * the pgrp with the same number.)
    156  * If the table is too small it is reallocated with twice the
    157  * previous size and the entries 'unzipped' into the two halves.
    158  * A linked list of free entries is passed through the pt_proc
    159  * field of 'free' items - set odd to be an invalid ptr.
    160  */
    161 
    162 struct pid_table {
    163 	struct proc	*pt_proc;
    164 	struct pgrp	*pt_pgrp;
    165 };
    166 #if 1	/* strongly typed cast - should be a noop */
    167 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    168 #else
    169 #define p2u(p) ((uint)p)
    170 #endif
    171 #define P_VALID(p) (!(p2u(p) & 1))
    172 #define P_NEXT(p) (p2u(p) >> 1)
    173 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    174 
    175 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    176 static struct pid_table *pid_table;
    177 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    178 static uint pid_alloc_lim;	/* max we allocate before growing table */
    179 static uint pid_alloc_cnt;	/* number of allocated pids */
    180 
    181 /* links through free slots - never empty! */
    182 static uint next_free_pt, last_free_pt;
    183 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    184 
    185 /* Components of the first process -- never freed. */
    186 struct session session0;
    187 struct pgrp pgrp0;
    188 struct proc proc0;
    189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT);
    190 kauth_cred_t cred0;
    191 struct filedesc0 filedesc0;
    192 struct cwdinfo cwdi0;
    193 struct plimit limit0;
    194 struct pstats pstat0;
    195 struct vmspace vmspace0;
    196 struct sigacts sigacts0;
    197 struct turnstile turnstile0;
    198 
    199 extern struct user *proc0paddr;
    200 
    201 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    202 
    203 int nofile = NOFILE;
    204 int maxuprc = MAXUPRC;
    205 int cmask = CMASK;
    206 
    207 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
    208     &pool_allocator_nointr);
    209 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
    210     &pool_allocator_nointr);
    211 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
    212     &pool_allocator_nointr);
    213 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
    214     &pool_allocator_nointr);
    215 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
    216     &pool_allocator_nointr);
    217 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
    218     &pool_allocator_nointr);
    219 
    220 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    221 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    222 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    223 
    224 /*
    225  * The process list descriptors, used during pid allocation and
    226  * by sysctl.  No locking on this data structure is needed since
    227  * it is completely static.
    228  */
    229 const struct proclist_desc proclists[] = {
    230 	{ &allproc	},
    231 	{ &zombproc	},
    232 	{ NULL		},
    233 };
    234 
    235 static void orphanpg(struct pgrp *);
    236 static void pg_delete(pid_t);
    237 
    238 static specificdata_domain_t proc_specificdata_domain;
    239 
    240 /*
    241  * Initialize global process hashing structures.
    242  */
    243 void
    244 procinit(void)
    245 {
    246 	const struct proclist_desc *pd;
    247 	int i;
    248 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    249 
    250 	for (pd = proclists; pd->pd_list != NULL; pd++)
    251 		LIST_INIT(pd->pd_list);
    252 
    253 	/*
    254 	 * XXX p_smutex can be IPL_VM except for audio drivers
    255 	 * XXX proclist_lock must die
    256 	 */
    257 	rw_init(&proclist_lock);
    258 	mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
    259 
    260 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    261 			    M_PROC, M_WAITOK);
    262 	/* Set free list running through table...
    263 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    264 	for (i = 0; i <= pid_tbl_mask; i++) {
    265 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    266 		pid_table[i].pt_pgrp = 0;
    267 	}
    268 	/* slot 0 is just grabbed */
    269 	next_free_pt = 1;
    270 	/* Need to fix last entry. */
    271 	last_free_pt = pid_tbl_mask;
    272 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    273 	/* point at which we grow table - to avoid reusing pids too often */
    274 	pid_alloc_lim = pid_tbl_mask - 1;
    275 #undef LINK_EMPTY
    276 
    277 	LIST_INIT(&alllwp);
    278 
    279 	uihashtbl =
    280 	    hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
    281 
    282 	proc_specificdata_domain = specificdata_domain_create();
    283 	KASSERT(proc_specificdata_domain != NULL);
    284 }
    285 
    286 /*
    287  * Initialize process 0.
    288  */
    289 void
    290 proc0_init(void)
    291 {
    292 	struct proc *p;
    293 	struct pgrp *pg;
    294 	struct session *sess;
    295 	struct lwp *l;
    296 	u_int i;
    297 	rlim_t lim;
    298 
    299 	p = &proc0;
    300 	pg = &pgrp0;
    301 	sess = &session0;
    302 	l = &lwp0;
    303 
    304 	/* XXX p_smutex can be IPL_VM except for audio drivers */
    305 	mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
    306 	mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_STATCLOCK);
    307 	mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_NONE);
    308 	mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
    309 	cv_init(&p->p_refcv, "drainref");
    310 	cv_init(&p->p_waitcv, "wait");
    311 	cv_init(&p->p_lwpcv, "lwpwait");
    312 
    313 	LIST_INIT(&p->p_lwps);
    314 	LIST_INIT(&p->p_sigwaiters);
    315 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    316 
    317 	p->p_nlwps = 1;
    318 	p->p_nrlwps = 1;
    319 	p->p_refcnt = 1;
    320 
    321 	pid_table[0].pt_proc = p;
    322 	LIST_INSERT_HEAD(&allproc, p, p_list);
    323 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    324 
    325 	p->p_pgrp = pg;
    326 	pid_table[0].pt_pgrp = pg;
    327 	LIST_INIT(&pg->pg_members);
    328 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    329 
    330 	pg->pg_session = sess;
    331 	sess->s_count = 1;
    332 	sess->s_sid = 0;
    333 	sess->s_leader = p;
    334 
    335 	/*
    336 	 * Set P_NOCLDWAIT so that kernel threads are reparented to
    337 	 * init(8) when they exit.  init(8) can easily wait them out
    338 	 * for us.
    339 	 */
    340 	p->p_flag = PK_SYSTEM | PK_NOCLDWAIT;
    341 	p->p_stat = SACTIVE;
    342 	p->p_nice = NZERO;
    343 	p->p_emul = &emul_netbsd;
    344 #ifdef __HAVE_SYSCALL_INTERN
    345 	(*p->p_emul->e_syscall_intern)(p);
    346 #endif
    347 	strncpy(p->p_comm, "swapper", MAXCOMLEN);
    348 
    349 	l->l_mutex = &sched_mutex;
    350 	l->l_flag = LW_INMEM | LW_SYSTEM;
    351 	l->l_stat = LSONPROC;
    352 	l->l_ts = &turnstile0;
    353 	l->l_syncobj = &sched_syncobj;
    354 	l->l_refcnt = 1;
    355 	l->l_cpu = curcpu();
    356 	l->l_priority = PRIBIO;
    357 	l->l_usrpri = PRIBIO;
    358 	l->l_inheritedprio = MAXPRI;
    359 	SLIST_INIT(&l->l_pi_lenders);
    360 
    361 	callout_init(&l->l_tsleep_ch);
    362 	cv_init(&l->l_sigcv, "sigwait");
    363 
    364 	/* Create credentials. */
    365 	cred0 = kauth_cred_alloc();
    366 	p->p_cred = cred0;
    367 	kauth_cred_hold(cred0);
    368 	l->l_cred = cred0;
    369 
    370 	/* Create the CWD info. */
    371 	p->p_cwdi = &cwdi0;
    372 	cwdi0.cwdi_cmask = cmask;
    373 	cwdi0.cwdi_refcnt = 1;
    374 	simple_lock_init(&cwdi0.cwdi_slock);
    375 
    376 	/* Create the limits structures. */
    377 	p->p_limit = &limit0;
    378 	simple_lock_init(&limit0.p_slock);
    379 	for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
    380 		limit0.pl_rlimit[i].rlim_cur =
    381 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    382 
    383 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    384 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    385 	    maxfiles < nofile ? maxfiles : nofile;
    386 
    387 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    388 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    389 	    maxproc < maxuprc ? maxproc : maxuprc;
    390 
    391 	lim = ptoa(uvmexp.free);
    392 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    393 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    394 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    395 	limit0.pl_corename = defcorename;
    396 	limit0.p_refcnt = 1;
    397 
    398 	/* Configure virtual memory system, set vm rlimits. */
    399 	uvm_init_limits(p);
    400 
    401 	/* Initialize file descriptor table for proc0. */
    402 	p->p_fd = &filedesc0.fd_fd;
    403 	fdinit1(&filedesc0);
    404 
    405 	/*
    406 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    407 	 * All kernel processes (which never have user space mappings)
    408 	 * share proc0's vmspace, and thus, the kernel pmap.
    409 	 */
    410 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    411 	    trunc_page(VM_MAX_ADDRESS));
    412 	p->p_vmspace = &vmspace0;
    413 
    414 	l->l_addr = proc0paddr;				/* XXX */
    415 
    416 	p->p_stats = &pstat0;
    417 
    418 	/* Initialize signal state for proc0. */
    419 	p->p_sigacts = &sigacts0;
    420 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
    421 	siginit(p);
    422 
    423 	proc_initspecific(p);
    424 	lwp_initspecific(l);
    425 
    426 	SYSCALL_TIME_LWP_INIT(l);
    427 }
    428 
    429 /*
    430  * Check that the specified process group is in the session of the
    431  * specified process.
    432  * Treats -ve ids as process ids.
    433  * Used to validate TIOCSPGRP requests.
    434  */
    435 int
    436 pgid_in_session(struct proc *p, pid_t pg_id)
    437 {
    438 	struct pgrp *pgrp;
    439 	struct session *session;
    440 
    441 	rw_enter(&proclist_lock, RW_READER);
    442 
    443 	if (pg_id < 0) {
    444 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    445 		if (p1 == NULL)
    446 			return EINVAL;
    447 		pgrp = p1->p_pgrp;
    448 	} else {
    449 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    450 		if (pgrp == NULL)
    451 			return EINVAL;
    452 	}
    453 	session = pgrp->pg_session;
    454 	rw_exit(&proclist_lock);
    455 	if (session != p->p_pgrp->pg_session)
    456 		return EPERM;
    457 	return 0;
    458 }
    459 
    460 /*
    461  * Is p an inferior of q?
    462  *
    463  * Call with the proclist_lock held.
    464  */
    465 int
    466 inferior(struct proc *p, struct proc *q)
    467 {
    468 
    469 	for (; p != q; p = p->p_pptr)
    470 		if (p->p_pid == 0)
    471 			return 0;
    472 	return 1;
    473 }
    474 
    475 /*
    476  * Locate a process by number
    477  */
    478 struct proc *
    479 p_find(pid_t pid, uint flags)
    480 {
    481 	struct proc *p;
    482 	char stat;
    483 
    484 	if (!(flags & PFIND_LOCKED))
    485 		rw_enter(&proclist_lock, RW_READER);
    486 
    487 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    488 
    489 	/* Only allow live processes to be found by pid. */
    490 	/* XXXSMP p_stat */
    491 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    492 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    493 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    494 		if (flags & PFIND_UNLOCK_OK)
    495 			 rw_exit(&proclist_lock);
    496 		return p;
    497 	}
    498 	if (flags & PFIND_UNLOCK_FAIL)
    499 		rw_exit(&proclist_lock);
    500 	return NULL;
    501 }
    502 
    503 
    504 /*
    505  * Locate a process group by number
    506  */
    507 struct pgrp *
    508 pg_find(pid_t pgid, uint flags)
    509 {
    510 	struct pgrp *pg;
    511 
    512 	if (!(flags & PFIND_LOCKED))
    513 		rw_enter(&proclist_lock, RW_READER);
    514 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    515 	/*
    516 	 * Can't look up a pgrp that only exists because the session
    517 	 * hasn't died yet (traditional)
    518 	 */
    519 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    520 		if (flags & PFIND_UNLOCK_FAIL)
    521 			 rw_exit(&proclist_lock);
    522 		return NULL;
    523 	}
    524 
    525 	if (flags & PFIND_UNLOCK_OK)
    526 		rw_exit(&proclist_lock);
    527 	return pg;
    528 }
    529 
    530 static void
    531 expand_pid_table(void)
    532 {
    533 	uint pt_size = pid_tbl_mask + 1;
    534 	struct pid_table *n_pt, *new_pt;
    535 	struct proc *proc;
    536 	struct pgrp *pgrp;
    537 	int i;
    538 	pid_t pid;
    539 
    540 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    541 
    542 	rw_enter(&proclist_lock, RW_WRITER);
    543 	if (pt_size != pid_tbl_mask + 1) {
    544 		/* Another process beat us to it... */
    545 		rw_exit(&proclist_lock);
    546 		FREE(new_pt, M_PROC);
    547 		return;
    548 	}
    549 
    550 	/*
    551 	 * Copy entries from old table into new one.
    552 	 * If 'pid' is 'odd' we need to place in the upper half,
    553 	 * even pid's to the lower half.
    554 	 * Free items stay in the low half so we don't have to
    555 	 * fixup the reference to them.
    556 	 * We stuff free items on the front of the freelist
    557 	 * because we can't write to unmodified entries.
    558 	 * Processing the table backwards maintains a semblance
    559 	 * of issueing pid numbers that increase with time.
    560 	 */
    561 	i = pt_size - 1;
    562 	n_pt = new_pt + i;
    563 	for (; ; i--, n_pt--) {
    564 		proc = pid_table[i].pt_proc;
    565 		pgrp = pid_table[i].pt_pgrp;
    566 		if (!P_VALID(proc)) {
    567 			/* Up 'use count' so that link is valid */
    568 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    569 			proc = P_FREE(pid);
    570 			if (pgrp)
    571 				pid = pgrp->pg_id;
    572 		} else
    573 			pid = proc->p_pid;
    574 
    575 		/* Save entry in appropriate half of table */
    576 		n_pt[pid & pt_size].pt_proc = proc;
    577 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    578 
    579 		/* Put other piece on start of free list */
    580 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    581 		n_pt[pid & pt_size].pt_proc =
    582 				    P_FREE((pid & ~pt_size) | next_free_pt);
    583 		n_pt[pid & pt_size].pt_pgrp = 0;
    584 		next_free_pt = i | (pid & pt_size);
    585 		if (i == 0)
    586 			break;
    587 	}
    588 
    589 	/* Switch tables */
    590 	mutex_enter(&proclist_mutex);
    591 	n_pt = pid_table;
    592 	pid_table = new_pt;
    593 	mutex_exit(&proclist_mutex);
    594 	pid_tbl_mask = pt_size * 2 - 1;
    595 
    596 	/*
    597 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    598 	 * allocated pids we need it to be larger!
    599 	 */
    600 	if (pid_tbl_mask > PID_MAX) {
    601 		pid_max = pid_tbl_mask * 2 + 1;
    602 		pid_alloc_lim |= pid_alloc_lim << 1;
    603 	} else
    604 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    605 
    606 	rw_exit(&proclist_lock);
    607 	FREE(n_pt, M_PROC);
    608 }
    609 
    610 struct proc *
    611 proc_alloc(void)
    612 {
    613 	struct proc *p;
    614 	int nxt;
    615 	pid_t pid;
    616 	struct pid_table *pt;
    617 
    618 	p = pool_get(&proc_pool, PR_WAITOK);
    619 	p->p_stat = SIDL;			/* protect against others */
    620 
    621 	proc_initspecific(p);
    622 	/* allocate next free pid */
    623 
    624 	for (;;expand_pid_table()) {
    625 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    626 			/* ensure pids cycle through 2000+ values */
    627 			continue;
    628 		rw_enter(&proclist_lock, RW_WRITER);
    629 		pt = &pid_table[next_free_pt];
    630 #ifdef DIAGNOSTIC
    631 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    632 			panic("proc_alloc: slot busy");
    633 #endif
    634 		nxt = P_NEXT(pt->pt_proc);
    635 		if (nxt & pid_tbl_mask)
    636 			break;
    637 		/* Table full - expand (NB last entry not used....) */
    638 		rw_exit(&proclist_lock);
    639 	}
    640 
    641 	/* pid is 'saved use count' + 'size' + entry */
    642 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    643 	if ((uint)pid > (uint)pid_max)
    644 		pid &= pid_tbl_mask;
    645 	p->p_pid = pid;
    646 	next_free_pt = nxt & pid_tbl_mask;
    647 
    648 	/* Grab table slot */
    649 	mutex_enter(&proclist_mutex);
    650 	pt->pt_proc = p;
    651 	mutex_exit(&proclist_mutex);
    652 	pid_alloc_cnt++;
    653 
    654 	rw_exit(&proclist_lock);
    655 
    656 	return p;
    657 }
    658 
    659 /*
    660  * Free last resources of a process - called from proc_free (in kern_exit.c)
    661  *
    662  * Called with the proclist_lock write held, and releases upon exit.
    663  */
    664 void
    665 proc_free_mem(struct proc *p)
    666 {
    667 	pid_t pid = p->p_pid;
    668 	struct pid_table *pt;
    669 
    670 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    671 
    672 	pt = &pid_table[pid & pid_tbl_mask];
    673 #ifdef DIAGNOSTIC
    674 	if (__predict_false(pt->pt_proc != p))
    675 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    676 			pid, p);
    677 #endif
    678 	mutex_enter(&proclist_mutex);
    679 	/* save pid use count in slot */
    680 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    681 
    682 	if (pt->pt_pgrp == NULL) {
    683 		/* link last freed entry onto ours */
    684 		pid &= pid_tbl_mask;
    685 		pt = &pid_table[last_free_pt];
    686 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    687 		last_free_pt = pid;
    688 		pid_alloc_cnt--;
    689 	}
    690 	mutex_exit(&proclist_mutex);
    691 
    692 	nprocs--;
    693 	rw_exit(&proclist_lock);
    694 
    695 	pool_put(&proc_pool, p);
    696 }
    697 
    698 /*
    699  * Move p to a new or existing process group (and session)
    700  *
    701  * If we are creating a new pgrp, the pgid should equal
    702  * the calling process' pid.
    703  * If is only valid to enter a process group that is in the session
    704  * of the process.
    705  * Also mksess should only be set if we are creating a process group
    706  *
    707  * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
    708  * SYSV setpgrp support for hpux.
    709  */
    710 int
    711 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
    712 {
    713 	struct pgrp *new_pgrp, *pgrp;
    714 	struct session *sess;
    715 	struct proc *p;
    716 	int rval;
    717 	pid_t pg_id = NO_PGID;
    718 
    719 	/* Allocate data areas we might need before doing any validity checks */
    720 	rw_enter(&proclist_lock, RW_READER);		/* Because pid_table might change */
    721 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    722 		rw_exit(&proclist_lock);
    723 		new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
    724 	} else {
    725 		rw_exit(&proclist_lock);
    726 		new_pgrp = NULL;
    727 	}
    728 	if (mksess)
    729 		sess = pool_get(&session_pool, PR_WAITOK);
    730 	else
    731 		sess = NULL;
    732 
    733 	rw_enter(&proclist_lock, RW_WRITER);
    734 	rval = EPERM;	/* most common error (to save typing) */
    735 
    736 	/* Check pgrp exists or can be created */
    737 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    738 	if (pgrp != NULL && pgrp->pg_id != pgid)
    739 		goto done;
    740 
    741 	/* Can only set another process under restricted circumstances. */
    742 	if (pid != curp->p_pid) {
    743 		/* must exist and be one of our children... */
    744 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    745 		    !inferior(p, curp)) {
    746 			rval = ESRCH;
    747 			goto done;
    748 		}
    749 		/* ... in the same session... */
    750 		if (sess != NULL || p->p_session != curp->p_session)
    751 			goto done;
    752 		/* ... existing pgid must be in same session ... */
    753 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    754 			goto done;
    755 		/* ... and not done an exec. */
    756 		if (p->p_flag & PK_EXEC) {
    757 			rval = EACCES;
    758 			goto done;
    759 		}
    760 	} else {
    761 		/* ... setsid() cannot re-enter a pgrp */
    762 		if (mksess && (curp->p_pgid == curp->p_pid ||
    763 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    764 			goto done;
    765 		p = curp;
    766 	}
    767 
    768 	/* Changing the process group/session of a session
    769 	   leader is definitely off limits. */
    770 	if (SESS_LEADER(p)) {
    771 		if (sess == NULL && p->p_pgrp == pgrp)
    772 			/* unless it's a definite noop */
    773 			rval = 0;
    774 		goto done;
    775 	}
    776 
    777 	/* Can only create a process group with id of process */
    778 	if (pgrp == NULL && pgid != pid)
    779 		goto done;
    780 
    781 	/* Can only create a session if creating pgrp */
    782 	if (sess != NULL && pgrp != NULL)
    783 		goto done;
    784 
    785 	/* Check we allocated memory for a pgrp... */
    786 	if (pgrp == NULL && new_pgrp == NULL)
    787 		goto done;
    788 
    789 	/* Don't attach to 'zombie' pgrp */
    790 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    791 		goto done;
    792 
    793 	/* Expect to succeed now */
    794 	rval = 0;
    795 
    796 	if (pgrp == p->p_pgrp)
    797 		/* nothing to do */
    798 		goto done;
    799 
    800 	/* Ok all setup, link up required structures */
    801 
    802 	if (pgrp == NULL) {
    803 		pgrp = new_pgrp;
    804 		new_pgrp = 0;
    805 		if (sess != NULL) {
    806 			sess->s_sid = p->p_pid;
    807 			sess->s_leader = p;
    808 			sess->s_count = 1;
    809 			sess->s_ttyvp = NULL;
    810 			sess->s_ttyp = NULL;
    811 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    812 			memcpy(sess->s_login, p->p_session->s_login,
    813 			    sizeof(sess->s_login));
    814 			p->p_lflag &= ~PL_CONTROLT;
    815 		} else {
    816 			sess = p->p_pgrp->pg_session;
    817 			SESSHOLD(sess);
    818 		}
    819 		pgrp->pg_session = sess;
    820 		sess = 0;
    821 
    822 		pgrp->pg_id = pgid;
    823 		LIST_INIT(&pgrp->pg_members);
    824 #ifdef DIAGNOSTIC
    825 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    826 			panic("enterpgrp: pgrp table slot in use");
    827 		if (__predict_false(mksess && p != curp))
    828 			panic("enterpgrp: mksession and p != curproc");
    829 #endif
    830 		mutex_enter(&proclist_mutex);
    831 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    832 		pgrp->pg_jobc = 0;
    833 	} else
    834 		mutex_enter(&proclist_mutex);
    835 
    836 #ifdef notyet
    837 	/*
    838 	 * If there's a controlling terminal for the current session, we
    839 	 * have to interlock with it.  See ttread().
    840 	 */
    841 	if (p->p_session->s_ttyvp != NULL) {
    842 		tp = p->p_session->s_ttyp;
    843 		mutex_enter(&tp->t_mutex);
    844 	} else
    845 		tp = NULL;
    846 #endif
    847 
    848 	/*
    849 	 * Adjust eligibility of affected pgrps to participate in job control.
    850 	 * Increment eligibility counts before decrementing, otherwise we
    851 	 * could reach 0 spuriously during the first call.
    852 	 */
    853 	fixjobc(p, pgrp, 1);
    854 	fixjobc(p, p->p_pgrp, 0);
    855 
    856 	/* Move process to requested group. */
    857 	LIST_REMOVE(p, p_pglist);
    858 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    859 		/* defer delete until we've dumped the lock */
    860 		pg_id = p->p_pgrp->pg_id;
    861 	p->p_pgrp = pgrp;
    862 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    863 	mutex_exit(&proclist_mutex);
    864 
    865 #ifdef notyet
    866 	/* Done with the swap; we can release the tty mutex. */
    867 	if (tp != NULL)
    868 		mutex_exit(&tp->t_mutex);
    869 #endif
    870 
    871     done:
    872 	if (pg_id != NO_PGID)
    873 		pg_delete(pg_id);
    874 	rw_exit(&proclist_lock);
    875 	if (sess != NULL)
    876 		pool_put(&session_pool, sess);
    877 	if (new_pgrp != NULL)
    878 		pool_put(&pgrp_pool, new_pgrp);
    879 #ifdef DEBUG_PGRP
    880 	if (__predict_false(rval))
    881 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    882 			pid, pgid, mksess, curp->p_pid, rval);
    883 #endif
    884 	return rval;
    885 }
    886 
    887 /*
    888  * Remove a process from its process group.  Must be called with the
    889  * proclist_lock write held.
    890  */
    891 void
    892 leavepgrp(struct proc *p)
    893 {
    894 	struct pgrp *pgrp;
    895 
    896 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    897 
    898 	/*
    899 	 * If there's a controlling terminal for the session, we have to
    900 	 * interlock with it.  See ttread().
    901 	 */
    902 	mutex_enter(&proclist_mutex);
    903 #ifdef notyet
    904 	if (p_>p_session->s_ttyvp != NULL) {
    905 		tp = p->p_session->s_ttyp;
    906 		mutex_enter(&tp->t_mutex);
    907 	} else
    908 		tp = NULL;
    909 #endif
    910 
    911 	pgrp = p->p_pgrp;
    912 	LIST_REMOVE(p, p_pglist);
    913 	p->p_pgrp = NULL;
    914 
    915 #ifdef notyet
    916 	if (tp != NULL)
    917 		mutex_exit(&tp->t_mutex);
    918 #endif
    919 	mutex_exit(&proclist_mutex);
    920 
    921 	if (LIST_EMPTY(&pgrp->pg_members))
    922 		pg_delete(pgrp->pg_id);
    923 }
    924 
    925 /*
    926  * Free a process group.  Must be called with the proclist_lock write held.
    927  */
    928 static void
    929 pg_free(pid_t pg_id)
    930 {
    931 	struct pgrp *pgrp;
    932 	struct pid_table *pt;
    933 
    934 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    935 
    936 	pt = &pid_table[pg_id & pid_tbl_mask];
    937 	pgrp = pt->pt_pgrp;
    938 #ifdef DIAGNOSTIC
    939 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    940 	    || !LIST_EMPTY(&pgrp->pg_members)))
    941 		panic("pg_free: process group absent or has members");
    942 #endif
    943 	pt->pt_pgrp = 0;
    944 
    945 	if (!P_VALID(pt->pt_proc)) {
    946 		/* orphaned pgrp, put slot onto free list */
    947 #ifdef DIAGNOSTIC
    948 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    949 			panic("pg_free: process slot on free list");
    950 #endif
    951 		mutex_enter(&proclist_mutex);
    952 		pg_id &= pid_tbl_mask;
    953 		pt = &pid_table[last_free_pt];
    954 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    955 		mutex_exit(&proclist_mutex);
    956 		last_free_pt = pg_id;
    957 		pid_alloc_cnt--;
    958 	}
    959 	pool_put(&pgrp_pool, pgrp);
    960 }
    961 
    962 /*
    963  * Delete a process group.  Must be called with the proclist_lock write
    964  * held.
    965  */
    966 static void
    967 pg_delete(pid_t pg_id)
    968 {
    969 	struct pgrp *pgrp;
    970 	struct tty *ttyp;
    971 	struct session *ss;
    972 	int is_pgrp_leader;
    973 
    974 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    975 
    976 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    977 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    978 	    !LIST_EMPTY(&pgrp->pg_members))
    979 		return;
    980 
    981 	ss = pgrp->pg_session;
    982 
    983 	/* Remove reference (if any) from tty to this process group */
    984 	ttyp = ss->s_ttyp;
    985 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    986 		ttyp->t_pgrp = NULL;
    987 #ifdef DIAGNOSTIC
    988 		if (ttyp->t_session != ss)
    989 			panic("pg_delete: wrong session on terminal");
    990 #endif
    991 	}
    992 
    993 	/*
    994 	 * The leading process group in a session is freed
    995 	 * by sessdelete() if last reference.
    996 	 */
    997 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
    998 	SESSRELE(ss);
    999 
   1000 	if (is_pgrp_leader)
   1001 		return;
   1002 
   1003 	pg_free(pg_id);
   1004 }
   1005 
   1006 /*
   1007  * Delete session - called from SESSRELE when s_count becomes zero.
   1008  * Must be called with the proclist_lock write held.
   1009  */
   1010 void
   1011 sessdelete(struct session *ss)
   1012 {
   1013 
   1014 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1015 
   1016 	/*
   1017 	 * We keep the pgrp with the same id as the session in
   1018 	 * order to stop a process being given the same pid.
   1019 	 * Since the pgrp holds a reference to the session, it
   1020 	 * must be a 'zombie' pgrp by now.
   1021 	 */
   1022 	pg_free(ss->s_sid);
   1023 	pool_put(&session_pool, ss);
   1024 }
   1025 
   1026 /*
   1027  * Adjust pgrp jobc counters when specified process changes process group.
   1028  * We count the number of processes in each process group that "qualify"
   1029  * the group for terminal job control (those with a parent in a different
   1030  * process group of the same session).  If that count reaches zero, the
   1031  * process group becomes orphaned.  Check both the specified process'
   1032  * process group and that of its children.
   1033  * entering == 0 => p is leaving specified group.
   1034  * entering == 1 => p is entering specified group.
   1035  *
   1036  * Call with proclist_lock write held.
   1037  */
   1038 void
   1039 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1040 {
   1041 	struct pgrp *hispgrp;
   1042 	struct session *mysession = pgrp->pg_session;
   1043 	struct proc *child;
   1044 
   1045 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1046 	LOCK_ASSERT(mutex_owned(&proclist_mutex));
   1047 
   1048 	/*
   1049 	 * Check p's parent to see whether p qualifies its own process
   1050 	 * group; if so, adjust count for p's process group.
   1051 	 */
   1052 	hispgrp = p->p_pptr->p_pgrp;
   1053 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1054 		if (entering) {
   1055 			mutex_enter(&p->p_smutex);
   1056 			p->p_sflag &= ~PS_ORPHANPG;
   1057 			mutex_exit(&p->p_smutex);
   1058 			pgrp->pg_jobc++;
   1059 		} else if (--pgrp->pg_jobc == 0)
   1060 			orphanpg(pgrp);
   1061 	}
   1062 
   1063 	/*
   1064 	 * Check this process' children to see whether they qualify
   1065 	 * their process groups; if so, adjust counts for children's
   1066 	 * process groups.
   1067 	 */
   1068 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1069 		hispgrp = child->p_pgrp;
   1070 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1071 		    !P_ZOMBIE(child)) {
   1072 			if (entering) {
   1073 				mutex_enter(&child->p_smutex);
   1074 				child->p_sflag &= ~PS_ORPHANPG;
   1075 				mutex_exit(&child->p_smutex);
   1076 				hispgrp->pg_jobc++;
   1077 			} else if (--hispgrp->pg_jobc == 0)
   1078 				orphanpg(hispgrp);
   1079 		}
   1080 	}
   1081 }
   1082 
   1083 /*
   1084  * A process group has become orphaned;
   1085  * if there are any stopped processes in the group,
   1086  * hang-up all process in that group.
   1087  *
   1088  * Call with proclist_lock write held.
   1089  */
   1090 static void
   1091 orphanpg(struct pgrp *pg)
   1092 {
   1093 	struct proc *p;
   1094 	int doit;
   1095 
   1096 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1097 	LOCK_ASSERT(mutex_owned(&proclist_mutex));
   1098 
   1099 	doit = 0;
   1100 
   1101 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1102 		mutex_enter(&p->p_smutex);
   1103 		if (p->p_stat == SSTOP) {
   1104 			doit = 1;
   1105 			p->p_sflag |= PS_ORPHANPG;
   1106 		}
   1107 		mutex_exit(&p->p_smutex);
   1108 	}
   1109 
   1110 	if (doit) {
   1111 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1112 			psignal(p, SIGHUP);
   1113 			psignal(p, SIGCONT);
   1114 		}
   1115 	}
   1116 }
   1117 
   1118 #ifdef DDB
   1119 #include <ddb/db_output.h>
   1120 void pidtbl_dump(void);
   1121 void
   1122 pidtbl_dump(void)
   1123 {
   1124 	struct pid_table *pt;
   1125 	struct proc *p;
   1126 	struct pgrp *pgrp;
   1127 	int id;
   1128 
   1129 	db_printf("pid table %p size %x, next %x, last %x\n",
   1130 		pid_table, pid_tbl_mask+1,
   1131 		next_free_pt, last_free_pt);
   1132 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1133 		p = pt->pt_proc;
   1134 		if (!P_VALID(p) && !pt->pt_pgrp)
   1135 			continue;
   1136 		db_printf("  id %x: ", id);
   1137 		if (P_VALID(p))
   1138 			db_printf("proc %p id %d (0x%x) %s\n",
   1139 				p, p->p_pid, p->p_pid, p->p_comm);
   1140 		else
   1141 			db_printf("next %x use %x\n",
   1142 				P_NEXT(p) & pid_tbl_mask,
   1143 				P_NEXT(p) & ~pid_tbl_mask);
   1144 		if ((pgrp = pt->pt_pgrp)) {
   1145 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1146 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1147 			    pgrp->pg_session->s_count,
   1148 			    pgrp->pg_session->s_login);
   1149 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1150 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1151 			    pgrp->pg_members.lh_first);
   1152 			for (p = pgrp->pg_members.lh_first; p != 0;
   1153 			    p = p->p_pglist.le_next) {
   1154 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1155 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1156 			}
   1157 		}
   1158 	}
   1159 }
   1160 #endif /* DDB */
   1161 
   1162 #ifdef KSTACK_CHECK_MAGIC
   1163 #include <sys/user.h>
   1164 
   1165 #define	KSTACK_MAGIC	0xdeadbeaf
   1166 
   1167 /* XXX should be per process basis? */
   1168 int kstackleftmin = KSTACK_SIZE;
   1169 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1170 					  less than this */
   1171 
   1172 void
   1173 kstack_setup_magic(const struct lwp *l)
   1174 {
   1175 	uint32_t *ip;
   1176 	uint32_t const *end;
   1177 
   1178 	KASSERT(l != NULL);
   1179 	KASSERT(l != &lwp0);
   1180 
   1181 	/*
   1182 	 * fill all the stack with magic number
   1183 	 * so that later modification on it can be detected.
   1184 	 */
   1185 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1186 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1187 	for (; ip < end; ip++) {
   1188 		*ip = KSTACK_MAGIC;
   1189 	}
   1190 }
   1191 
   1192 void
   1193 kstack_check_magic(const struct lwp *l)
   1194 {
   1195 	uint32_t const *ip, *end;
   1196 	int stackleft;
   1197 
   1198 	KASSERT(l != NULL);
   1199 
   1200 	/* don't check proc0 */ /*XXX*/
   1201 	if (l == &lwp0)
   1202 		return;
   1203 
   1204 #ifdef __MACHINE_STACK_GROWS_UP
   1205 	/* stack grows upwards (eg. hppa) */
   1206 	ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1207 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1208 	for (ip--; ip >= end; ip--)
   1209 		if (*ip != KSTACK_MAGIC)
   1210 			break;
   1211 
   1212 	stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
   1213 #else /* __MACHINE_STACK_GROWS_UP */
   1214 	/* stack grows downwards (eg. i386) */
   1215 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1216 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1217 	for (; ip < end; ip++)
   1218 		if (*ip != KSTACK_MAGIC)
   1219 			break;
   1220 
   1221 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1222 #endif /* __MACHINE_STACK_GROWS_UP */
   1223 
   1224 	if (kstackleftmin > stackleft) {
   1225 		kstackleftmin = stackleft;
   1226 		if (stackleft < kstackleftthres)
   1227 			printf("warning: kernel stack left %d bytes"
   1228 			    "(pid %u:lid %u)\n", stackleft,
   1229 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1230 	}
   1231 
   1232 	if (stackleft <= 0) {
   1233 		panic("magic on the top of kernel stack changed for "
   1234 		    "pid %u, lid %u: maybe kernel stack overflow",
   1235 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1236 	}
   1237 }
   1238 #endif /* KSTACK_CHECK_MAGIC */
   1239 
   1240 /*
   1241  * XXXSMP this is bust, it grabs a read lock and then messes about
   1242  * with allproc.
   1243  */
   1244 int
   1245 proclist_foreach_call(struct proclist *list,
   1246     int (*callback)(struct proc *, void *arg), void *arg)
   1247 {
   1248 	struct proc marker;
   1249 	struct proc *p;
   1250 	struct lwp * const l = curlwp;
   1251 	int ret = 0;
   1252 
   1253 	marker.p_flag = PK_MARKER;
   1254 	PHOLD(l);
   1255 	rw_enter(&proclist_lock, RW_READER);
   1256 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1257 		if (p->p_flag & PK_MARKER) {
   1258 			p = LIST_NEXT(p, p_list);
   1259 			continue;
   1260 		}
   1261 		LIST_INSERT_AFTER(p, &marker, p_list);
   1262 		ret = (*callback)(p, arg);
   1263 		KASSERT(rw_read_held(&proclist_lock));
   1264 		p = LIST_NEXT(&marker, p_list);
   1265 		LIST_REMOVE(&marker, p_list);
   1266 	}
   1267 	rw_exit(&proclist_lock);
   1268 	PRELE(l);
   1269 
   1270 	return ret;
   1271 }
   1272 
   1273 int
   1274 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1275 {
   1276 
   1277 	/* XXXCDC: how should locking work here? */
   1278 
   1279 	/* curproc exception is for coredump. */
   1280 
   1281 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1282 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1283 		return EFAULT;
   1284 	}
   1285 
   1286 	uvmspace_addref(p->p_vmspace);
   1287 	*vm = p->p_vmspace;
   1288 
   1289 	return 0;
   1290 }
   1291 
   1292 /*
   1293  * Acquire a write lock on the process credential.
   1294  */
   1295 void
   1296 proc_crmod_enter(void)
   1297 {
   1298 	struct lwp *l = curlwp;
   1299 	struct proc *p = l->l_proc;
   1300 	struct plimit *lim;
   1301 	kauth_cred_t oc;
   1302 	char *cn;
   1303 
   1304 	mutex_enter(&p->p_mutex);
   1305 
   1306 	/* Ensure the LWP cached credentials are up to date. */
   1307 	if ((oc = l->l_cred) != p->p_cred) {
   1308 		kauth_cred_hold(p->p_cred);
   1309 		l->l_cred = p->p_cred;
   1310 		kauth_cred_free(oc);
   1311 	}
   1312 
   1313 	/* Reset what needs to be reset in plimit. */
   1314 	lim = p->p_limit;
   1315 	if (lim->pl_corename != defcorename) {
   1316 		if (lim->p_refcnt > 1 &&
   1317 		    (lim->p_lflags & PL_SHAREMOD) == 0) {
   1318 			p->p_limit = limcopy(p);
   1319 			limfree(lim);
   1320 			lim = p->p_limit;
   1321 		}
   1322 		simple_lock(&lim->p_slock);
   1323 		cn = lim->pl_corename;
   1324 		lim->pl_corename = defcorename;
   1325 		simple_unlock(&lim->p_slock);
   1326 		if (cn != defcorename)
   1327 			free(cn, M_TEMP);
   1328 	}
   1329 }
   1330 
   1331 /*
   1332  * Set in a new process credential, and drop the write lock.  The credential
   1333  * must have a reference already.  Optionally, free a no-longer required
   1334  * credential.  The scheduler also needs to inspect p_cred, so we also
   1335  * briefly acquire the sched state mutex.
   1336  */
   1337 void
   1338 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1339 {
   1340 	struct lwp *l = curlwp;
   1341 	struct proc *p = l->l_proc;
   1342 	kauth_cred_t oc;
   1343 
   1344 	/* Is there a new credential to set in? */
   1345 	if (scred != NULL) {
   1346 		mutex_enter(&p->p_smutex);
   1347 		p->p_cred = scred;
   1348 		mutex_exit(&p->p_smutex);
   1349 
   1350 		/* Ensure the LWP cached credentials are up to date. */
   1351 		if ((oc = l->l_cred) != scred) {
   1352 			kauth_cred_hold(scred);
   1353 			l->l_cred = scred;
   1354 		}
   1355 	} else
   1356 		oc = NULL;	/* XXXgcc */
   1357 
   1358 	if (sugid) {
   1359 		/*
   1360 		 * Mark process as having changed credentials, stops
   1361 		 * tracing etc.
   1362 		 */
   1363 		p->p_flag |= PK_SUGID;
   1364 	}
   1365 
   1366 	mutex_exit(&p->p_mutex);
   1367 
   1368 	/* If there is a credential to be released, free it now. */
   1369 	if (fcred != NULL) {
   1370 		KASSERT(scred != NULL);
   1371 		kauth_cred_free(fcred);
   1372 		if (oc != scred)
   1373 			kauth_cred_free(oc);
   1374 	}
   1375 }
   1376 
   1377 /*
   1378  * Acquire a reference on a process, to prevent it from exiting or execing.
   1379  */
   1380 int
   1381 proc_addref(struct proc *p)
   1382 {
   1383 
   1384 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1385 
   1386 	if (p->p_refcnt <= 0)
   1387 		return EAGAIN;
   1388 	p->p_refcnt++;
   1389 
   1390 	return 0;
   1391 }
   1392 
   1393 /*
   1394  * Release a reference on a process.
   1395  */
   1396 void
   1397 proc_delref(struct proc *p)
   1398 {
   1399 
   1400 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1401 
   1402 	if (p->p_refcnt < 0) {
   1403 		if (++p->p_refcnt == 0)
   1404 			cv_broadcast(&p->p_refcv);
   1405 	} else {
   1406 		p->p_refcnt--;
   1407 		KASSERT(p->p_refcnt != 0);
   1408 	}
   1409 }
   1410 
   1411 /*
   1412  * Wait for all references on the process to drain, and prevent new
   1413  * references from being acquired.
   1414  */
   1415 void
   1416 proc_drainrefs(struct proc *p)
   1417 {
   1418 
   1419 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1420 	KASSERT(p->p_refcnt > 0);
   1421 
   1422 	/*
   1423 	 * The process itself holds the last reference.  Once it's released,
   1424 	 * no new references will be granted.  If we have already locked out
   1425 	 * new references (refcnt <= 0), potentially due to a failed exec,
   1426 	 * there is nothing more to do.
   1427 	 */
   1428 	p->p_refcnt = 1 - p->p_refcnt;
   1429 	while (p->p_refcnt != 0)
   1430 		cv_wait(&p->p_refcv, &p->p_mutex);
   1431 }
   1432 
   1433 /*
   1434  * proc_specific_key_create --
   1435  *	Create a key for subsystem proc-specific data.
   1436  */
   1437 int
   1438 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1439 {
   1440 
   1441 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1442 }
   1443 
   1444 /*
   1445  * proc_specific_key_delete --
   1446  *	Delete a key for subsystem proc-specific data.
   1447  */
   1448 void
   1449 proc_specific_key_delete(specificdata_key_t key)
   1450 {
   1451 
   1452 	specificdata_key_delete(proc_specificdata_domain, key);
   1453 }
   1454 
   1455 /*
   1456  * proc_initspecific --
   1457  *	Initialize a proc's specificdata container.
   1458  */
   1459 void
   1460 proc_initspecific(struct proc *p)
   1461 {
   1462 	int error;
   1463 
   1464 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1465 	KASSERT(error == 0);
   1466 }
   1467 
   1468 /*
   1469  * proc_finispecific --
   1470  *	Finalize a proc's specificdata container.
   1471  */
   1472 void
   1473 proc_finispecific(struct proc *p)
   1474 {
   1475 
   1476 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1477 }
   1478 
   1479 /*
   1480  * proc_getspecific --
   1481  *	Return proc-specific data corresponding to the specified key.
   1482  */
   1483 void *
   1484 proc_getspecific(struct proc *p, specificdata_key_t key)
   1485 {
   1486 
   1487 	return (specificdata_getspecific(proc_specificdata_domain,
   1488 					 &p->p_specdataref, key));
   1489 }
   1490 
   1491 /*
   1492  * proc_setspecific --
   1493  *	Set proc-specific data corresponding to the specified key.
   1494  */
   1495 void
   1496 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1497 {
   1498 
   1499 	specificdata_setspecific(proc_specificdata_domain,
   1500 				 &p->p_specdataref, key, data);
   1501 }
   1502