kern_proc.c revision 1.107 1 /* $NetBSD: kern_proc.c,v 1.107 2007/03/09 14:11:25 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.107 2007/03/09 14:11:25 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include "sys/syscall_stats.h"
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_extern.h>
104
105 /*
106 * Other process lists
107 */
108
109 struct proclist allproc;
110 struct proclist zombproc; /* resources have been freed */
111
112 /*
113 * There are two locks on global process state.
114 *
115 * 1. proclist_lock is an adaptive mutex and is used when modifying
116 * or examining process state from a process context. It protects
117 * the internal tables, all of the process lists, and a number of
118 * members of struct proc.
119 *
120 * 2. proclist_mutex is used when allproc must be traversed from an
121 * interrupt context, or when changing the state of processes. The
122 * proclist_lock should always be used in preference. In some cases,
123 * both locks need to be held.
124 *
125 * proclist_lock proclist_mutex structure
126 * --------------- --------------- -----------------
127 * x zombproc
128 * x x pid_table
129 * x proc::p_pptr
130 * x proc::p_sibling
131 * x proc::p_children
132 * x x allproc
133 * x x proc::p_pgrp
134 * x x proc::p_pglist
135 * x x proc::p_session
136 * x x proc::p_list
137 * x alllwp
138 * x lwp::l_list
139 *
140 * The lock order for processes and LWPs is approximately as following:
141 *
142 * kernel_lock
143 * -> proclist_lock
144 * -> proc::p_mutex
145 * -> proclist_mutex
146 * -> proc::p_smutex
147 * -> proc::p_stmutex
148 *
149 * XXX p_smutex can be run at IPL_VM once audio drivers on the x86
150 * platform are made MP safe. Currently it blocks interrupts at
151 * IPL_SCHED and below.
152 *
153 * XXX The two process locks (p_smutex + p_mutex), and the two global
154 * state locks (proclist_lock + proclist_mutex) should be merged
155 * together. However, to do so requires interrupts that interrupts
156 * be run with LWP context.
157 */
158 kmutex_t proclist_lock;
159 kmutex_t proclist_mutex;
160
161 /*
162 * pid to proc lookup is done by indexing the pid_table array.
163 * Since pid numbers are only allocated when an empty slot
164 * has been found, there is no need to search any lists ever.
165 * (an orphaned pgrp will lock the slot, a session will lock
166 * the pgrp with the same number.)
167 * If the table is too small it is reallocated with twice the
168 * previous size and the entries 'unzipped' into the two halves.
169 * A linked list of free entries is passed through the pt_proc
170 * field of 'free' items - set odd to be an invalid ptr.
171 */
172
173 struct pid_table {
174 struct proc *pt_proc;
175 struct pgrp *pt_pgrp;
176 };
177 #if 1 /* strongly typed cast - should be a noop */
178 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
179 #else
180 #define p2u(p) ((uint)p)
181 #endif
182 #define P_VALID(p) (!(p2u(p) & 1))
183 #define P_NEXT(p) (p2u(p) >> 1)
184 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
185
186 #define INITIAL_PID_TABLE_SIZE (1 << 5)
187 static struct pid_table *pid_table;
188 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
189 static uint pid_alloc_lim; /* max we allocate before growing table */
190 static uint pid_alloc_cnt; /* number of allocated pids */
191
192 /* links through free slots - never empty! */
193 static uint next_free_pt, last_free_pt;
194 static pid_t pid_max = PID_MAX; /* largest value we allocate */
195
196 /* Components of the first process -- never freed. */
197 struct session session0;
198 struct pgrp pgrp0;
199 struct proc proc0;
200 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT);
201 kauth_cred_t cred0;
202 struct filedesc0 filedesc0;
203 struct cwdinfo cwdi0;
204 struct plimit limit0;
205 struct pstats pstat0;
206 struct vmspace vmspace0;
207 struct sigacts sigacts0;
208 struct turnstile turnstile0;
209
210 extern struct user *proc0paddr;
211
212 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
213
214 int nofile = NOFILE;
215 int maxuprc = MAXUPRC;
216 int cmask = CMASK;
217
218 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
219 &pool_allocator_nointr);
220 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
221 &pool_allocator_nointr);
222 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
223 &pool_allocator_nointr);
224 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
225 &pool_allocator_nointr);
226 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
227 &pool_allocator_nointr);
228 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
229 &pool_allocator_nointr);
230
231 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
232 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
233 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
234
235 /*
236 * The process list descriptors, used during pid allocation and
237 * by sysctl. No locking on this data structure is needed since
238 * it is completely static.
239 */
240 const struct proclist_desc proclists[] = {
241 { &allproc },
242 { &zombproc },
243 { NULL },
244 };
245
246 static void orphanpg(struct pgrp *);
247 static void pg_delete(pid_t);
248
249 static specificdata_domain_t proc_specificdata_domain;
250
251 /*
252 * Initialize global process hashing structures.
253 */
254 void
255 procinit(void)
256 {
257 const struct proclist_desc *pd;
258 int i;
259 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
260
261 for (pd = proclists; pd->pd_list != NULL; pd++)
262 LIST_INIT(pd->pd_list);
263
264 mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
265 mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
266
267 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
268 M_PROC, M_WAITOK);
269 /* Set free list running through table...
270 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
271 for (i = 0; i <= pid_tbl_mask; i++) {
272 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
273 pid_table[i].pt_pgrp = 0;
274 }
275 /* slot 0 is just grabbed */
276 next_free_pt = 1;
277 /* Need to fix last entry. */
278 last_free_pt = pid_tbl_mask;
279 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
280 /* point at which we grow table - to avoid reusing pids too often */
281 pid_alloc_lim = pid_tbl_mask - 1;
282 #undef LINK_EMPTY
283
284 LIST_INIT(&alllwp);
285
286 uihashtbl =
287 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
288
289 proc_specificdata_domain = specificdata_domain_create();
290 KASSERT(proc_specificdata_domain != NULL);
291 }
292
293 /*
294 * Initialize process 0.
295 */
296 void
297 proc0_init(void)
298 {
299 struct proc *p;
300 struct pgrp *pg;
301 struct session *sess;
302 struct lwp *l;
303 u_int i;
304 rlim_t lim;
305
306 p = &proc0;
307 pg = &pgrp0;
308 sess = &session0;
309 l = &lwp0;
310
311 /*
312 * XXX p_rasmutex is run at IPL_SCHED, because of lock order
313 * issues (kernel_lock -> p_rasmutex). Ideally ras_lookup
314 * should operate "lock free".
315 */
316 mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
317 mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_STATCLOCK);
318 mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_SCHED);
319 mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
320
321 cv_init(&p->p_refcv, "drainref");
322 cv_init(&p->p_waitcv, "wait");
323 cv_init(&p->p_lwpcv, "lwpwait");
324
325 LIST_INIT(&p->p_lwps);
326 LIST_INIT(&p->p_sigwaiters);
327 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
328
329 p->p_nlwps = 1;
330 p->p_nrlwps = 1;
331 p->p_refcnt = 1;
332
333 pid_table[0].pt_proc = p;
334 LIST_INSERT_HEAD(&allproc, p, p_list);
335 LIST_INSERT_HEAD(&alllwp, l, l_list);
336
337 p->p_pgrp = pg;
338 pid_table[0].pt_pgrp = pg;
339 LIST_INIT(&pg->pg_members);
340 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
341
342 pg->pg_session = sess;
343 sess->s_count = 1;
344 sess->s_sid = 0;
345 sess->s_leader = p;
346
347 /*
348 * Set P_NOCLDWAIT so that kernel threads are reparented to
349 * init(8) when they exit. init(8) can easily wait them out
350 * for us.
351 */
352 p->p_flag = PK_SYSTEM | PK_NOCLDWAIT;
353 p->p_stat = SACTIVE;
354 p->p_nice = NZERO;
355 p->p_emul = &emul_netbsd;
356 #ifdef __HAVE_SYSCALL_INTERN
357 (*p->p_emul->e_syscall_intern)(p);
358 #endif
359 strncpy(p->p_comm, "swapper", MAXCOMLEN);
360
361 l->l_mutex = &sched_mutex;
362 l->l_flag = LW_INMEM | LW_SYSTEM;
363 l->l_stat = LSONPROC;
364 l->l_ts = &turnstile0;
365 l->l_syncobj = &sched_syncobj;
366 l->l_refcnt = 1;
367 l->l_cpu = curcpu();
368 l->l_priority = PRIBIO;
369 l->l_usrpri = PRIBIO;
370 l->l_inheritedprio = MAXPRI;
371 SLIST_INIT(&l->l_pi_lenders);
372
373 callout_init(&l->l_tsleep_ch);
374 cv_init(&l->l_sigcv, "sigwait");
375
376 /* Create credentials. */
377 cred0 = kauth_cred_alloc();
378 p->p_cred = cred0;
379 kauth_cred_hold(cred0);
380 l->l_cred = cred0;
381
382 /* Create the CWD info. */
383 p->p_cwdi = &cwdi0;
384 cwdi0.cwdi_cmask = cmask;
385 cwdi0.cwdi_refcnt = 1;
386 simple_lock_init(&cwdi0.cwdi_slock);
387
388 /* Create the limits structures. */
389 p->p_limit = &limit0;
390 simple_lock_init(&limit0.p_slock);
391 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
392 limit0.pl_rlimit[i].rlim_cur =
393 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
394
395 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
396 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
397 maxfiles < nofile ? maxfiles : nofile;
398
399 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
400 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
401 maxproc < maxuprc ? maxproc : maxuprc;
402
403 lim = ptoa(uvmexp.free);
404 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
405 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
406 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
407 limit0.pl_corename = defcorename;
408 limit0.p_refcnt = 1;
409
410 /* Configure virtual memory system, set vm rlimits. */
411 uvm_init_limits(p);
412
413 /* Initialize file descriptor table for proc0. */
414 p->p_fd = &filedesc0.fd_fd;
415 fdinit1(&filedesc0);
416
417 /*
418 * Initialize proc0's vmspace, which uses the kernel pmap.
419 * All kernel processes (which never have user space mappings)
420 * share proc0's vmspace, and thus, the kernel pmap.
421 */
422 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
423 trunc_page(VM_MAX_ADDRESS));
424 p->p_vmspace = &vmspace0;
425
426 l->l_addr = proc0paddr; /* XXX */
427
428 p->p_stats = &pstat0;
429
430 /* Initialize signal state for proc0. */
431 p->p_sigacts = &sigacts0;
432 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
433 siginit(p);
434
435 proc_initspecific(p);
436 lwp_initspecific(l);
437
438 SYSCALL_TIME_LWP_INIT(l);
439 }
440
441 /*
442 * Check that the specified process group is in the session of the
443 * specified process.
444 * Treats -ve ids as process ids.
445 * Used to validate TIOCSPGRP requests.
446 */
447 int
448 pgid_in_session(struct proc *p, pid_t pg_id)
449 {
450 struct pgrp *pgrp;
451 struct session *session;
452 int error;
453
454 mutex_enter(&proclist_lock);
455 if (pg_id < 0) {
456 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
457 if (p1 == NULL)
458 return EINVAL;
459 pgrp = p1->p_pgrp;
460 } else {
461 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
462 if (pgrp == NULL)
463 return EINVAL;
464 }
465 session = pgrp->pg_session;
466 if (session != p->p_pgrp->pg_session)
467 error = EPERM;
468 else
469 error = 0;
470 mutex_exit(&proclist_lock);
471
472 return error;
473 }
474
475 /*
476 * Is p an inferior of q?
477 *
478 * Call with the proclist_lock held.
479 */
480 int
481 inferior(struct proc *p, struct proc *q)
482 {
483
484 for (; p != q; p = p->p_pptr)
485 if (p->p_pid == 0)
486 return 0;
487 return 1;
488 }
489
490 /*
491 * Locate a process by number
492 */
493 struct proc *
494 p_find(pid_t pid, uint flags)
495 {
496 struct proc *p;
497 char stat;
498
499 if (!(flags & PFIND_LOCKED))
500 mutex_enter(&proclist_lock);
501
502 p = pid_table[pid & pid_tbl_mask].pt_proc;
503
504 /* Only allow live processes to be found by pid. */
505 /* XXXSMP p_stat */
506 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
507 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
508 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
509 if (flags & PFIND_UNLOCK_OK)
510 mutex_exit(&proclist_lock);
511 return p;
512 }
513 if (flags & PFIND_UNLOCK_FAIL)
514 mutex_exit(&proclist_lock);
515 return NULL;
516 }
517
518
519 /*
520 * Locate a process group by number
521 */
522 struct pgrp *
523 pg_find(pid_t pgid, uint flags)
524 {
525 struct pgrp *pg;
526
527 if (!(flags & PFIND_LOCKED))
528 mutex_enter(&proclist_lock);
529 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
530 /*
531 * Can't look up a pgrp that only exists because the session
532 * hasn't died yet (traditional)
533 */
534 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
535 if (flags & PFIND_UNLOCK_FAIL)
536 mutex_exit(&proclist_lock);
537 return NULL;
538 }
539
540 if (flags & PFIND_UNLOCK_OK)
541 mutex_exit(&proclist_lock);
542 return pg;
543 }
544
545 static void
546 expand_pid_table(void)
547 {
548 uint pt_size = pid_tbl_mask + 1;
549 struct pid_table *n_pt, *new_pt;
550 struct proc *proc;
551 struct pgrp *pgrp;
552 int i;
553 pid_t pid;
554
555 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
556
557 mutex_enter(&proclist_lock);
558 if (pt_size != pid_tbl_mask + 1) {
559 /* Another process beat us to it... */
560 mutex_exit(&proclist_lock);
561 FREE(new_pt, M_PROC);
562 return;
563 }
564
565 /*
566 * Copy entries from old table into new one.
567 * If 'pid' is 'odd' we need to place in the upper half,
568 * even pid's to the lower half.
569 * Free items stay in the low half so we don't have to
570 * fixup the reference to them.
571 * We stuff free items on the front of the freelist
572 * because we can't write to unmodified entries.
573 * Processing the table backwards maintains a semblance
574 * of issueing pid numbers that increase with time.
575 */
576 i = pt_size - 1;
577 n_pt = new_pt + i;
578 for (; ; i--, n_pt--) {
579 proc = pid_table[i].pt_proc;
580 pgrp = pid_table[i].pt_pgrp;
581 if (!P_VALID(proc)) {
582 /* Up 'use count' so that link is valid */
583 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
584 proc = P_FREE(pid);
585 if (pgrp)
586 pid = pgrp->pg_id;
587 } else
588 pid = proc->p_pid;
589
590 /* Save entry in appropriate half of table */
591 n_pt[pid & pt_size].pt_proc = proc;
592 n_pt[pid & pt_size].pt_pgrp = pgrp;
593
594 /* Put other piece on start of free list */
595 pid = (pid ^ pt_size) & ~pid_tbl_mask;
596 n_pt[pid & pt_size].pt_proc =
597 P_FREE((pid & ~pt_size) | next_free_pt);
598 n_pt[pid & pt_size].pt_pgrp = 0;
599 next_free_pt = i | (pid & pt_size);
600 if (i == 0)
601 break;
602 }
603
604 /* Switch tables */
605 mutex_enter(&proclist_mutex);
606 n_pt = pid_table;
607 pid_table = new_pt;
608 mutex_exit(&proclist_mutex);
609 pid_tbl_mask = pt_size * 2 - 1;
610
611 /*
612 * pid_max starts as PID_MAX (= 30000), once we have 16384
613 * allocated pids we need it to be larger!
614 */
615 if (pid_tbl_mask > PID_MAX) {
616 pid_max = pid_tbl_mask * 2 + 1;
617 pid_alloc_lim |= pid_alloc_lim << 1;
618 } else
619 pid_alloc_lim <<= 1; /* doubles number of free slots... */
620
621 mutex_exit(&proclist_lock);
622 FREE(n_pt, M_PROC);
623 }
624
625 struct proc *
626 proc_alloc(void)
627 {
628 struct proc *p;
629 int nxt;
630 pid_t pid;
631 struct pid_table *pt;
632
633 p = pool_get(&proc_pool, PR_WAITOK);
634 p->p_stat = SIDL; /* protect against others */
635
636 proc_initspecific(p);
637 /* allocate next free pid */
638
639 for (;;expand_pid_table()) {
640 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
641 /* ensure pids cycle through 2000+ values */
642 continue;
643 mutex_enter(&proclist_lock);
644 pt = &pid_table[next_free_pt];
645 #ifdef DIAGNOSTIC
646 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
647 panic("proc_alloc: slot busy");
648 #endif
649 nxt = P_NEXT(pt->pt_proc);
650 if (nxt & pid_tbl_mask)
651 break;
652 /* Table full - expand (NB last entry not used....) */
653 mutex_exit(&proclist_lock);
654 }
655
656 /* pid is 'saved use count' + 'size' + entry */
657 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
658 if ((uint)pid > (uint)pid_max)
659 pid &= pid_tbl_mask;
660 p->p_pid = pid;
661 next_free_pt = nxt & pid_tbl_mask;
662
663 /* Grab table slot */
664 mutex_enter(&proclist_mutex);
665 pt->pt_proc = p;
666 mutex_exit(&proclist_mutex);
667 pid_alloc_cnt++;
668
669 mutex_exit(&proclist_lock);
670
671 return p;
672 }
673
674 /*
675 * Free last resources of a process - called from proc_free (in kern_exit.c)
676 *
677 * Called with the proclist_lock held, and releases upon exit.
678 */
679 void
680 proc_free_mem(struct proc *p)
681 {
682 pid_t pid = p->p_pid;
683 struct pid_table *pt;
684
685 KASSERT(mutex_owned(&proclist_lock));
686
687 pt = &pid_table[pid & pid_tbl_mask];
688 #ifdef DIAGNOSTIC
689 if (__predict_false(pt->pt_proc != p))
690 panic("proc_free: pid_table mismatch, pid %x, proc %p",
691 pid, p);
692 #endif
693 mutex_enter(&proclist_mutex);
694 /* save pid use count in slot */
695 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
696
697 if (pt->pt_pgrp == NULL) {
698 /* link last freed entry onto ours */
699 pid &= pid_tbl_mask;
700 pt = &pid_table[last_free_pt];
701 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
702 last_free_pt = pid;
703 pid_alloc_cnt--;
704 }
705 mutex_exit(&proclist_mutex);
706
707 nprocs--;
708 mutex_exit(&proclist_lock);
709
710 pool_put(&proc_pool, p);
711 }
712
713 /*
714 * Move p to a new or existing process group (and session)
715 *
716 * If we are creating a new pgrp, the pgid should equal
717 * the calling process' pid.
718 * If is only valid to enter a process group that is in the session
719 * of the process.
720 * Also mksess should only be set if we are creating a process group
721 *
722 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
723 * SYSV setpgrp support for hpux.
724 */
725 int
726 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
727 {
728 struct pgrp *new_pgrp, *pgrp;
729 struct session *sess;
730 struct proc *p;
731 int rval;
732 pid_t pg_id = NO_PGID;
733
734 if (mksess)
735 sess = pool_get(&session_pool, PR_WAITOK);
736 else
737 sess = NULL;
738
739 /* Allocate data areas we might need before doing any validity checks */
740 mutex_enter(&proclist_lock); /* Because pid_table might change */
741 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
742 mutex_exit(&proclist_lock);
743 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
744 mutex_enter(&proclist_lock);
745 } else
746 new_pgrp = NULL;
747 rval = EPERM; /* most common error (to save typing) */
748
749 /* Check pgrp exists or can be created */
750 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
751 if (pgrp != NULL && pgrp->pg_id != pgid)
752 goto done;
753
754 /* Can only set another process under restricted circumstances. */
755 if (pid != curp->p_pid) {
756 /* must exist and be one of our children... */
757 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
758 !inferior(p, curp)) {
759 rval = ESRCH;
760 goto done;
761 }
762 /* ... in the same session... */
763 if (sess != NULL || p->p_session != curp->p_session)
764 goto done;
765 /* ... existing pgid must be in same session ... */
766 if (pgrp != NULL && pgrp->pg_session != p->p_session)
767 goto done;
768 /* ... and not done an exec. */
769 if (p->p_flag & PK_EXEC) {
770 rval = EACCES;
771 goto done;
772 }
773 } else {
774 /* ... setsid() cannot re-enter a pgrp */
775 if (mksess && (curp->p_pgid == curp->p_pid ||
776 pg_find(curp->p_pid, PFIND_LOCKED)))
777 goto done;
778 p = curp;
779 }
780
781 /* Changing the process group/session of a session
782 leader is definitely off limits. */
783 if (SESS_LEADER(p)) {
784 if (sess == NULL && p->p_pgrp == pgrp)
785 /* unless it's a definite noop */
786 rval = 0;
787 goto done;
788 }
789
790 /* Can only create a process group with id of process */
791 if (pgrp == NULL && pgid != pid)
792 goto done;
793
794 /* Can only create a session if creating pgrp */
795 if (sess != NULL && pgrp != NULL)
796 goto done;
797
798 /* Check we allocated memory for a pgrp... */
799 if (pgrp == NULL && new_pgrp == NULL)
800 goto done;
801
802 /* Don't attach to 'zombie' pgrp */
803 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
804 goto done;
805
806 /* Expect to succeed now */
807 rval = 0;
808
809 if (pgrp == p->p_pgrp)
810 /* nothing to do */
811 goto done;
812
813 /* Ok all setup, link up required structures */
814
815 if (pgrp == NULL) {
816 pgrp = new_pgrp;
817 new_pgrp = 0;
818 if (sess != NULL) {
819 sess->s_sid = p->p_pid;
820 sess->s_leader = p;
821 sess->s_count = 1;
822 sess->s_ttyvp = NULL;
823 sess->s_ttyp = NULL;
824 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
825 memcpy(sess->s_login, p->p_session->s_login,
826 sizeof(sess->s_login));
827 p->p_lflag &= ~PL_CONTROLT;
828 } else {
829 sess = p->p_pgrp->pg_session;
830 SESSHOLD(sess);
831 }
832 pgrp->pg_session = sess;
833 sess = 0;
834
835 pgrp->pg_id = pgid;
836 LIST_INIT(&pgrp->pg_members);
837 #ifdef DIAGNOSTIC
838 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
839 panic("enterpgrp: pgrp table slot in use");
840 if (__predict_false(mksess && p != curp))
841 panic("enterpgrp: mksession and p != curproc");
842 #endif
843 mutex_enter(&proclist_mutex);
844 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
845 pgrp->pg_jobc = 0;
846 } else
847 mutex_enter(&proclist_mutex);
848
849 #ifdef notyet
850 /*
851 * If there's a controlling terminal for the current session, we
852 * have to interlock with it. See ttread().
853 */
854 if (p->p_session->s_ttyvp != NULL) {
855 tp = p->p_session->s_ttyp;
856 mutex_enter(&tp->t_mutex);
857 } else
858 tp = NULL;
859 #endif
860
861 /*
862 * Adjust eligibility of affected pgrps to participate in job control.
863 * Increment eligibility counts before decrementing, otherwise we
864 * could reach 0 spuriously during the first call.
865 */
866 fixjobc(p, pgrp, 1);
867 fixjobc(p, p->p_pgrp, 0);
868
869 /* Move process to requested group. */
870 LIST_REMOVE(p, p_pglist);
871 if (LIST_EMPTY(&p->p_pgrp->pg_members))
872 /* defer delete until we've dumped the lock */
873 pg_id = p->p_pgrp->pg_id;
874 p->p_pgrp = pgrp;
875 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
876 mutex_exit(&proclist_mutex);
877
878 #ifdef notyet
879 /* Done with the swap; we can release the tty mutex. */
880 if (tp != NULL)
881 mutex_exit(&tp->t_mutex);
882 #endif
883
884 done:
885 if (pg_id != NO_PGID)
886 pg_delete(pg_id);
887 mutex_exit(&proclist_lock);
888 if (sess != NULL)
889 pool_put(&session_pool, sess);
890 if (new_pgrp != NULL)
891 pool_put(&pgrp_pool, new_pgrp);
892 #ifdef DEBUG_PGRP
893 if (__predict_false(rval))
894 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
895 pid, pgid, mksess, curp->p_pid, rval);
896 #endif
897 return rval;
898 }
899
900 /*
901 * Remove a process from its process group. Must be called with the
902 * proclist_lock held.
903 */
904 void
905 leavepgrp(struct proc *p)
906 {
907 struct pgrp *pgrp;
908
909 KASSERT(mutex_owned(&proclist_lock));
910
911 /*
912 * If there's a controlling terminal for the session, we have to
913 * interlock with it. See ttread().
914 */
915 mutex_enter(&proclist_mutex);
916 #ifdef notyet
917 if (p_>p_session->s_ttyvp != NULL) {
918 tp = p->p_session->s_ttyp;
919 mutex_enter(&tp->t_mutex);
920 } else
921 tp = NULL;
922 #endif
923
924 pgrp = p->p_pgrp;
925 LIST_REMOVE(p, p_pglist);
926 p->p_pgrp = NULL;
927
928 #ifdef notyet
929 if (tp != NULL)
930 mutex_exit(&tp->t_mutex);
931 #endif
932 mutex_exit(&proclist_mutex);
933
934 if (LIST_EMPTY(&pgrp->pg_members))
935 pg_delete(pgrp->pg_id);
936 }
937
938 /*
939 * Free a process group. Must be called with the proclist_lock held.
940 */
941 static void
942 pg_free(pid_t pg_id)
943 {
944 struct pgrp *pgrp;
945 struct pid_table *pt;
946
947 KASSERT(mutex_owned(&proclist_lock));
948
949 pt = &pid_table[pg_id & pid_tbl_mask];
950 pgrp = pt->pt_pgrp;
951 #ifdef DIAGNOSTIC
952 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
953 || !LIST_EMPTY(&pgrp->pg_members)))
954 panic("pg_free: process group absent or has members");
955 #endif
956 pt->pt_pgrp = 0;
957
958 if (!P_VALID(pt->pt_proc)) {
959 /* orphaned pgrp, put slot onto free list */
960 #ifdef DIAGNOSTIC
961 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
962 panic("pg_free: process slot on free list");
963 #endif
964 mutex_enter(&proclist_mutex);
965 pg_id &= pid_tbl_mask;
966 pt = &pid_table[last_free_pt];
967 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
968 mutex_exit(&proclist_mutex);
969 last_free_pt = pg_id;
970 pid_alloc_cnt--;
971 }
972 pool_put(&pgrp_pool, pgrp);
973 }
974
975 /*
976 * Delete a process group. Must be called with the proclist_lock held.
977 */
978 static void
979 pg_delete(pid_t pg_id)
980 {
981 struct pgrp *pgrp;
982 struct tty *ttyp;
983 struct session *ss;
984 int is_pgrp_leader;
985
986 KASSERT(mutex_owned(&proclist_lock));
987
988 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
989 if (pgrp == NULL || pgrp->pg_id != pg_id ||
990 !LIST_EMPTY(&pgrp->pg_members))
991 return;
992
993 ss = pgrp->pg_session;
994
995 /* Remove reference (if any) from tty to this process group */
996 ttyp = ss->s_ttyp;
997 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
998 ttyp->t_pgrp = NULL;
999 #ifdef DIAGNOSTIC
1000 if (ttyp->t_session != ss)
1001 panic("pg_delete: wrong session on terminal");
1002 #endif
1003 }
1004
1005 /*
1006 * The leading process group in a session is freed
1007 * by sessdelete() if last reference.
1008 */
1009 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
1010 SESSRELE(ss);
1011
1012 if (is_pgrp_leader)
1013 return;
1014
1015 pg_free(pg_id);
1016 }
1017
1018 /*
1019 * Delete session - called from SESSRELE when s_count becomes zero.
1020 * Must be called with the proclist_lock held.
1021 */
1022 void
1023 sessdelete(struct session *ss)
1024 {
1025
1026 KASSERT(mutex_owned(&proclist_lock));
1027
1028 /*
1029 * We keep the pgrp with the same id as the session in
1030 * order to stop a process being given the same pid.
1031 * Since the pgrp holds a reference to the session, it
1032 * must be a 'zombie' pgrp by now.
1033 */
1034 pg_free(ss->s_sid);
1035 pool_put(&session_pool, ss);
1036 }
1037
1038 /*
1039 * Adjust pgrp jobc counters when specified process changes process group.
1040 * We count the number of processes in each process group that "qualify"
1041 * the group for terminal job control (those with a parent in a different
1042 * process group of the same session). If that count reaches zero, the
1043 * process group becomes orphaned. Check both the specified process'
1044 * process group and that of its children.
1045 * entering == 0 => p is leaving specified group.
1046 * entering == 1 => p is entering specified group.
1047 *
1048 * Call with proclist_lock held.
1049 */
1050 void
1051 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1052 {
1053 struct pgrp *hispgrp;
1054 struct session *mysession = pgrp->pg_session;
1055 struct proc *child;
1056
1057 KASSERT(mutex_owned(&proclist_lock));
1058 KASSERT(mutex_owned(&proclist_mutex));
1059
1060 /*
1061 * Check p's parent to see whether p qualifies its own process
1062 * group; if so, adjust count for p's process group.
1063 */
1064 hispgrp = p->p_pptr->p_pgrp;
1065 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1066 if (entering) {
1067 mutex_enter(&p->p_smutex);
1068 p->p_sflag &= ~PS_ORPHANPG;
1069 mutex_exit(&p->p_smutex);
1070 pgrp->pg_jobc++;
1071 } else if (--pgrp->pg_jobc == 0)
1072 orphanpg(pgrp);
1073 }
1074
1075 /*
1076 * Check this process' children to see whether they qualify
1077 * their process groups; if so, adjust counts for children's
1078 * process groups.
1079 */
1080 LIST_FOREACH(child, &p->p_children, p_sibling) {
1081 hispgrp = child->p_pgrp;
1082 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1083 !P_ZOMBIE(child)) {
1084 if (entering) {
1085 mutex_enter(&child->p_smutex);
1086 child->p_sflag &= ~PS_ORPHANPG;
1087 mutex_exit(&child->p_smutex);
1088 hispgrp->pg_jobc++;
1089 } else if (--hispgrp->pg_jobc == 0)
1090 orphanpg(hispgrp);
1091 }
1092 }
1093 }
1094
1095 /*
1096 * A process group has become orphaned;
1097 * if there are any stopped processes in the group,
1098 * hang-up all process in that group.
1099 *
1100 * Call with proclist_lock held.
1101 */
1102 static void
1103 orphanpg(struct pgrp *pg)
1104 {
1105 struct proc *p;
1106 int doit;
1107
1108 KASSERT(mutex_owned(&proclist_lock));
1109 KASSERT(mutex_owned(&proclist_mutex));
1110
1111 doit = 0;
1112
1113 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1114 mutex_enter(&p->p_smutex);
1115 if (p->p_stat == SSTOP) {
1116 doit = 1;
1117 p->p_sflag |= PS_ORPHANPG;
1118 }
1119 mutex_exit(&p->p_smutex);
1120 }
1121
1122 if (doit) {
1123 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1124 psignal(p, SIGHUP);
1125 psignal(p, SIGCONT);
1126 }
1127 }
1128 }
1129
1130 #ifdef DDB
1131 #include <ddb/db_output.h>
1132 void pidtbl_dump(void);
1133 void
1134 pidtbl_dump(void)
1135 {
1136 struct pid_table *pt;
1137 struct proc *p;
1138 struct pgrp *pgrp;
1139 int id;
1140
1141 db_printf("pid table %p size %x, next %x, last %x\n",
1142 pid_table, pid_tbl_mask+1,
1143 next_free_pt, last_free_pt);
1144 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1145 p = pt->pt_proc;
1146 if (!P_VALID(p) && !pt->pt_pgrp)
1147 continue;
1148 db_printf(" id %x: ", id);
1149 if (P_VALID(p))
1150 db_printf("proc %p id %d (0x%x) %s\n",
1151 p, p->p_pid, p->p_pid, p->p_comm);
1152 else
1153 db_printf("next %x use %x\n",
1154 P_NEXT(p) & pid_tbl_mask,
1155 P_NEXT(p) & ~pid_tbl_mask);
1156 if ((pgrp = pt->pt_pgrp)) {
1157 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1158 pgrp->pg_session, pgrp->pg_session->s_sid,
1159 pgrp->pg_session->s_count,
1160 pgrp->pg_session->s_login);
1161 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1162 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1163 pgrp->pg_members.lh_first);
1164 for (p = pgrp->pg_members.lh_first; p != 0;
1165 p = p->p_pglist.le_next) {
1166 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1167 p->p_pid, p, p->p_pgrp, p->p_comm);
1168 }
1169 }
1170 }
1171 }
1172 #endif /* DDB */
1173
1174 #ifdef KSTACK_CHECK_MAGIC
1175 #include <sys/user.h>
1176
1177 #define KSTACK_MAGIC 0xdeadbeaf
1178
1179 /* XXX should be per process basis? */
1180 int kstackleftmin = KSTACK_SIZE;
1181 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1182 less than this */
1183
1184 void
1185 kstack_setup_magic(const struct lwp *l)
1186 {
1187 uint32_t *ip;
1188 uint32_t const *end;
1189
1190 KASSERT(l != NULL);
1191 KASSERT(l != &lwp0);
1192
1193 /*
1194 * fill all the stack with magic number
1195 * so that later modification on it can be detected.
1196 */
1197 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1198 end = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1199 for (; ip < end; ip++) {
1200 *ip = KSTACK_MAGIC;
1201 }
1202 }
1203
1204 void
1205 kstack_check_magic(const struct lwp *l)
1206 {
1207 uint32_t const *ip, *end;
1208 int stackleft;
1209
1210 KASSERT(l != NULL);
1211
1212 /* don't check proc0 */ /*XXX*/
1213 if (l == &lwp0)
1214 return;
1215
1216 #ifdef __MACHINE_STACK_GROWS_UP
1217 /* stack grows upwards (eg. hppa) */
1218 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1219 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1220 for (ip--; ip >= end; ip--)
1221 if (*ip != KSTACK_MAGIC)
1222 break;
1223
1224 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1225 #else /* __MACHINE_STACK_GROWS_UP */
1226 /* stack grows downwards (eg. i386) */
1227 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1228 end = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1229 for (; ip < end; ip++)
1230 if (*ip != KSTACK_MAGIC)
1231 break;
1232
1233 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1234 #endif /* __MACHINE_STACK_GROWS_UP */
1235
1236 if (kstackleftmin > stackleft) {
1237 kstackleftmin = stackleft;
1238 if (stackleft < kstackleftthres)
1239 printf("warning: kernel stack left %d bytes"
1240 "(pid %u:lid %u)\n", stackleft,
1241 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1242 }
1243
1244 if (stackleft <= 0) {
1245 panic("magic on the top of kernel stack changed for "
1246 "pid %u, lid %u: maybe kernel stack overflow",
1247 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1248 }
1249 }
1250 #endif /* KSTACK_CHECK_MAGIC */
1251
1252 /*
1253 * XXXSMP this is bust, it grabs a read lock and then messes about
1254 * with allproc.
1255 */
1256 int
1257 proclist_foreach_call(struct proclist *list,
1258 int (*callback)(struct proc *, void *arg), void *arg)
1259 {
1260 struct proc marker;
1261 struct proc *p;
1262 struct lwp * const l = curlwp;
1263 int ret = 0;
1264
1265 marker.p_flag = PK_MARKER;
1266 PHOLD(l);
1267 mutex_enter(&proclist_lock);
1268 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1269 if (p->p_flag & PK_MARKER) {
1270 p = LIST_NEXT(p, p_list);
1271 continue;
1272 }
1273 LIST_INSERT_AFTER(p, &marker, p_list);
1274 ret = (*callback)(p, arg);
1275 KASSERT(mutex_owned(&proclist_lock));
1276 p = LIST_NEXT(&marker, p_list);
1277 LIST_REMOVE(&marker, p_list);
1278 }
1279 mutex_exit(&proclist_lock);
1280 PRELE(l);
1281
1282 return ret;
1283 }
1284
1285 int
1286 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1287 {
1288
1289 /* XXXCDC: how should locking work here? */
1290
1291 /* curproc exception is for coredump. */
1292
1293 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1294 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1295 return EFAULT;
1296 }
1297
1298 uvmspace_addref(p->p_vmspace);
1299 *vm = p->p_vmspace;
1300
1301 return 0;
1302 }
1303
1304 /*
1305 * Acquire a write lock on the process credential.
1306 */
1307 void
1308 proc_crmod_enter(void)
1309 {
1310 struct lwp *l = curlwp;
1311 struct proc *p = l->l_proc;
1312 struct plimit *lim;
1313 kauth_cred_t oc;
1314 char *cn;
1315
1316 mutex_enter(&p->p_mutex);
1317
1318 /* Ensure the LWP cached credentials are up to date. */
1319 if ((oc = l->l_cred) != p->p_cred) {
1320 kauth_cred_hold(p->p_cred);
1321 l->l_cred = p->p_cred;
1322 kauth_cred_free(oc);
1323 }
1324
1325 /* Reset what needs to be reset in plimit. */
1326 lim = p->p_limit;
1327 if (lim->pl_corename != defcorename) {
1328 if (lim->p_refcnt > 1 &&
1329 (lim->p_lflags & PL_SHAREMOD) == 0) {
1330 p->p_limit = limcopy(p);
1331 limfree(lim);
1332 lim = p->p_limit;
1333 }
1334 simple_lock(&lim->p_slock);
1335 cn = lim->pl_corename;
1336 lim->pl_corename = defcorename;
1337 simple_unlock(&lim->p_slock);
1338 if (cn != defcorename)
1339 free(cn, M_TEMP);
1340 }
1341 }
1342
1343 /*
1344 * Set in a new process credential, and drop the write lock. The credential
1345 * must have a reference already. Optionally, free a no-longer required
1346 * credential. The scheduler also needs to inspect p_cred, so we also
1347 * briefly acquire the sched state mutex.
1348 */
1349 void
1350 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1351 {
1352 struct lwp *l = curlwp;
1353 struct proc *p = l->l_proc;
1354 kauth_cred_t oc;
1355
1356 /* Is there a new credential to set in? */
1357 if (scred != NULL) {
1358 mutex_enter(&p->p_smutex);
1359 p->p_cred = scred;
1360 mutex_exit(&p->p_smutex);
1361
1362 /* Ensure the LWP cached credentials are up to date. */
1363 if ((oc = l->l_cred) != scred) {
1364 kauth_cred_hold(scred);
1365 l->l_cred = scred;
1366 }
1367 } else
1368 oc = NULL; /* XXXgcc */
1369
1370 if (sugid) {
1371 /*
1372 * Mark process as having changed credentials, stops
1373 * tracing etc.
1374 */
1375 p->p_flag |= PK_SUGID;
1376 }
1377
1378 mutex_exit(&p->p_mutex);
1379
1380 /* If there is a credential to be released, free it now. */
1381 if (fcred != NULL) {
1382 KASSERT(scred != NULL);
1383 kauth_cred_free(fcred);
1384 if (oc != scred)
1385 kauth_cred_free(oc);
1386 }
1387 }
1388
1389 /*
1390 * Acquire a reference on a process, to prevent it from exiting or execing.
1391 */
1392 int
1393 proc_addref(struct proc *p)
1394 {
1395
1396 KASSERT(mutex_owned(&p->p_mutex));
1397
1398 if (p->p_refcnt <= 0)
1399 return EAGAIN;
1400 p->p_refcnt++;
1401
1402 return 0;
1403 }
1404
1405 /*
1406 * Release a reference on a process.
1407 */
1408 void
1409 proc_delref(struct proc *p)
1410 {
1411
1412 KASSERT(mutex_owned(&p->p_mutex));
1413
1414 if (p->p_refcnt < 0) {
1415 if (++p->p_refcnt == 0)
1416 cv_broadcast(&p->p_refcv);
1417 } else {
1418 p->p_refcnt--;
1419 KASSERT(p->p_refcnt != 0);
1420 }
1421 }
1422
1423 /*
1424 * Wait for all references on the process to drain, and prevent new
1425 * references from being acquired.
1426 */
1427 void
1428 proc_drainrefs(struct proc *p)
1429 {
1430
1431 KASSERT(mutex_owned(&p->p_mutex));
1432 KASSERT(p->p_refcnt > 0);
1433
1434 /*
1435 * The process itself holds the last reference. Once it's released,
1436 * no new references will be granted. If we have already locked out
1437 * new references (refcnt <= 0), potentially due to a failed exec,
1438 * there is nothing more to do.
1439 */
1440 p->p_refcnt = 1 - p->p_refcnt;
1441 while (p->p_refcnt != 0)
1442 cv_wait(&p->p_refcv, &p->p_mutex);
1443 }
1444
1445 /*
1446 * proc_specific_key_create --
1447 * Create a key for subsystem proc-specific data.
1448 */
1449 int
1450 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1451 {
1452
1453 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1454 }
1455
1456 /*
1457 * proc_specific_key_delete --
1458 * Delete a key for subsystem proc-specific data.
1459 */
1460 void
1461 proc_specific_key_delete(specificdata_key_t key)
1462 {
1463
1464 specificdata_key_delete(proc_specificdata_domain, key);
1465 }
1466
1467 /*
1468 * proc_initspecific --
1469 * Initialize a proc's specificdata container.
1470 */
1471 void
1472 proc_initspecific(struct proc *p)
1473 {
1474 int error;
1475
1476 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1477 KASSERT(error == 0);
1478 }
1479
1480 /*
1481 * proc_finispecific --
1482 * Finalize a proc's specificdata container.
1483 */
1484 void
1485 proc_finispecific(struct proc *p)
1486 {
1487
1488 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1489 }
1490
1491 /*
1492 * proc_getspecific --
1493 * Return proc-specific data corresponding to the specified key.
1494 */
1495 void *
1496 proc_getspecific(struct proc *p, specificdata_key_t key)
1497 {
1498
1499 return (specificdata_getspecific(proc_specificdata_domain,
1500 &p->p_specdataref, key));
1501 }
1502
1503 /*
1504 * proc_setspecific --
1505 * Set proc-specific data corresponding to the specified key.
1506 */
1507 void
1508 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1509 {
1510
1511 specificdata_setspecific(proc_specificdata_domain,
1512 &p->p_specdataref, key, data);
1513 }
1514