kern_proc.c revision 1.107.2.16 1 /* $NetBSD: kern_proc.c,v 1.107.2.16 2007/10/25 19:43:10 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.107.2.16 2007/10/25 19:43:10 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include "sys/syscall_stats.h"
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_extern.h>
104
105 /*
106 * Other process lists
107 */
108
109 struct proclist allproc;
110 struct proclist zombproc; /* resources have been freed */
111
112 /*
113 * There are two locks on global process state.
114 *
115 * 1. proclist_lock is an adaptive mutex and is used when modifying
116 * or examining process state from a process context. It protects
117 * the internal tables, all of the process lists, and a number of
118 * members of struct proc.
119 *
120 * 2. proclist_mutex is used when allproc must be traversed from an
121 * interrupt context, or when changing the state of processes. The
122 * proclist_lock should always be used in preference. In some cases,
123 * both locks need to be held.
124 *
125 * proclist_lock proclist_mutex structure
126 * --------------- --------------- -----------------
127 * x zombproc
128 * x x pid_table
129 * x proc::p_pptr
130 * x proc::p_sibling
131 * x proc::p_children
132 * x x allproc
133 * x x proc::p_pgrp
134 * x x proc::p_pglist
135 * x x proc::p_session
136 * x x proc::p_list
137 * x alllwp
138 * x lwp::l_list
139 *
140 * The lock order for processes and LWPs is approximately as following:
141 *
142 * kernel_lock
143 * -> proclist_lock
144 * -> proc::p_mutex
145 * -> proclist_mutex
146 * -> proc::p_smutex
147 * -> proc::p_stmutex
148 *
149 * XXX p_smutex can be run at IPL_VM once audio drivers on the x86
150 * platform are made MP safe. Currently it blocks interrupts at
151 * IPL_SCHED and below.
152 *
153 * XXX The two process locks (p_smutex + p_mutex), and the two global
154 * state locks (proclist_lock + proclist_mutex) should be merged
155 * together. However, to do so requires interrupts that interrupts
156 * be run with LWP context.
157 */
158 kmutex_t proclist_lock;
159 kmutex_t proclist_mutex;
160
161 /*
162 * pid to proc lookup is done by indexing the pid_table array.
163 * Since pid numbers are only allocated when an empty slot
164 * has been found, there is no need to search any lists ever.
165 * (an orphaned pgrp will lock the slot, a session will lock
166 * the pgrp with the same number.)
167 * If the table is too small it is reallocated with twice the
168 * previous size and the entries 'unzipped' into the two halves.
169 * A linked list of free entries is passed through the pt_proc
170 * field of 'free' items - set odd to be an invalid ptr.
171 */
172
173 struct pid_table {
174 struct proc *pt_proc;
175 struct pgrp *pt_pgrp;
176 };
177 #if 1 /* strongly typed cast - should be a noop */
178 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
179 #else
180 #define p2u(p) ((uint)p)
181 #endif
182 #define P_VALID(p) (!(p2u(p) & 1))
183 #define P_NEXT(p) (p2u(p) >> 1)
184 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
185
186 #define INITIAL_PID_TABLE_SIZE (1 << 5)
187 static struct pid_table *pid_table;
188 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
189 static uint pid_alloc_lim; /* max we allocate before growing table */
190 static uint pid_alloc_cnt; /* number of allocated pids */
191
192 /* links through free slots - never empty! */
193 static uint next_free_pt, last_free_pt;
194 static pid_t pid_max = PID_MAX; /* largest value we allocate */
195
196 /* Components of the first process -- never freed. */
197 struct session session0;
198 struct pgrp pgrp0;
199 struct proc proc0;
200 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT);
201 kauth_cred_t cred0;
202 struct filedesc0 filedesc0;
203 struct cwdinfo cwdi0;
204 struct plimit limit0;
205 struct pstats pstat0;
206 struct vmspace vmspace0;
207 struct sigacts sigacts0;
208 struct turnstile turnstile0;
209
210 extern struct user *proc0paddr;
211
212 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
213
214 int nofile = NOFILE;
215 int maxuprc = MAXUPRC;
216 int cmask = CMASK;
217
218 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
219 &pool_allocator_nointr, IPL_NONE);
220 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
221 &pool_allocator_nointr, IPL_NONE);
222 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
223 &pool_allocator_nointr, IPL_NONE);
224 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
225 &pool_allocator_nointr, IPL_NONE);
226 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
227 &pool_allocator_nointr, IPL_NONE);
228
229 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
230 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
231 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
232
233 /*
234 * The process list descriptors, used during pid allocation and
235 * by sysctl. No locking on this data structure is needed since
236 * it is completely static.
237 */
238 const struct proclist_desc proclists[] = {
239 { &allproc },
240 { &zombproc },
241 { NULL },
242 };
243
244 static void orphanpg(struct pgrp *);
245 static void pg_delete(pid_t);
246
247 static specificdata_domain_t proc_specificdata_domain;
248
249 /*
250 * Initialize global process hashing structures.
251 */
252 void
253 procinit(void)
254 {
255 const struct proclist_desc *pd;
256 int i;
257 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
258
259 for (pd = proclists; pd->pd_list != NULL; pd++)
260 LIST_INIT(pd->pd_list);
261
262 mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
263 mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
264
265 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
266 M_PROC, M_WAITOK);
267 /* Set free list running through table...
268 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
269 for (i = 0; i <= pid_tbl_mask; i++) {
270 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
271 pid_table[i].pt_pgrp = 0;
272 }
273 /* slot 0 is just grabbed */
274 next_free_pt = 1;
275 /* Need to fix last entry. */
276 last_free_pt = pid_tbl_mask;
277 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
278 /* point at which we grow table - to avoid reusing pids too often */
279 pid_alloc_lim = pid_tbl_mask - 1;
280 #undef LINK_EMPTY
281
282 LIST_INIT(&alllwp);
283
284 uihashtbl =
285 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
286
287 proc_specificdata_domain = specificdata_domain_create();
288 KASSERT(proc_specificdata_domain != NULL);
289 }
290
291 /*
292 * Initialize process 0.
293 */
294 void
295 proc0_init(void)
296 {
297 struct proc *p;
298 struct pgrp *pg;
299 struct session *sess;
300 struct lwp *l;
301 u_int i;
302 rlim_t lim;
303
304 p = &proc0;
305 pg = &pgrp0;
306 sess = &session0;
307 l = &lwp0;
308
309 /*
310 * XXX p_rasmutex is run at IPL_SCHED, because of lock order
311 * issues (kernel_lock -> p_rasmutex). Ideally ras_lookup
312 * should operate "lock free".
313 */
314 mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
315 mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_HIGH);
316 mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_SCHED);
317 mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
318 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
319
320 rw_init(&p->p_reflock);
321 cv_init(&p->p_waitcv, "wait");
322 cv_init(&p->p_lwpcv, "lwpwait");
323
324 LIST_INIT(&p->p_lwps);
325 LIST_INIT(&p->p_sigwaiters);
326 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
327
328 p->p_nlwps = 1;
329 p->p_nrlwps = 1;
330 p->p_nlwpid = l->l_lid;
331
332 pid_table[0].pt_proc = p;
333 LIST_INSERT_HEAD(&allproc, p, p_list);
334 LIST_INSERT_HEAD(&alllwp, l, l_list);
335
336 p->p_pgrp = pg;
337 pid_table[0].pt_pgrp = pg;
338 LIST_INIT(&pg->pg_members);
339 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
340
341 pg->pg_session = sess;
342 sess->s_count = 1;
343 sess->s_sid = 0;
344 sess->s_leader = p;
345
346 /*
347 * Set P_NOCLDWAIT so that kernel threads are reparented to
348 * init(8) when they exit. init(8) can easily wait them out
349 * for us.
350 */
351 p->p_flag = PK_SYSTEM | PK_NOCLDWAIT;
352 p->p_stat = SACTIVE;
353 p->p_nice = NZERO;
354 p->p_emul = &emul_netbsd;
355 #ifdef __HAVE_SYSCALL_INTERN
356 (*p->p_emul->e_syscall_intern)(p);
357 #endif
358 strlcpy(p->p_comm, "system", sizeof(p->p_comm));
359
360 l->l_flag = LW_INMEM | LW_SYSTEM;
361 l->l_stat = LSONPROC;
362 l->l_ts = &turnstile0;
363 l->l_syncobj = &sched_syncobj;
364 l->l_refcnt = 1;
365 l->l_cpu = curcpu();
366 l->l_priority = PRIBIO;
367 l->l_usrpri = PRIBIO;
368 l->l_inheritedprio = -1;
369 SLIST_INIT(&l->l_pi_lenders);
370 l->l_name = __UNCONST("swapper");
371
372 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
373 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
374 cv_init(&l->l_sigcv, "sigwait");
375
376 /* Create credentials. */
377 cred0 = kauth_cred_alloc();
378 p->p_cred = cred0;
379 kauth_cred_hold(cred0);
380 l->l_cred = cred0;
381
382 /* Create the CWD info. */
383 p->p_cwdi = &cwdi0;
384 cwdi0.cwdi_cmask = cmask;
385 cwdi0.cwdi_refcnt = 1;
386 rw_init(&cwdi0.cwdi_lock);
387
388 /* Create the limits structures. */
389 p->p_limit = &limit0;
390 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
391 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
392 limit0.pl_rlimit[i].rlim_cur =
393 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
394
395 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
396 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
397 maxfiles < nofile ? maxfiles : nofile;
398
399 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
400 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
401 maxproc < maxuprc ? maxproc : maxuprc;
402
403 lim = ptoa(uvmexp.free);
404 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
405 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
406 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
407 limit0.pl_corename = defcorename;
408 limit0.pl_refcnt = 1;
409 limit0.pl_sv_limit = NULL;
410
411 /* Configure virtual memory system, set vm rlimits. */
412 uvm_init_limits(p);
413
414 /* Initialize file descriptor table for proc0. */
415 p->p_fd = &filedesc0.fd_fd;
416 fdinit1(&filedesc0);
417
418 /*
419 * Initialize proc0's vmspace, which uses the kernel pmap.
420 * All kernel processes (which never have user space mappings)
421 * share proc0's vmspace, and thus, the kernel pmap.
422 */
423 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
424 trunc_page(VM_MAX_ADDRESS));
425 p->p_vmspace = &vmspace0;
426
427 l->l_addr = proc0paddr; /* XXX */
428
429 p->p_stats = &pstat0;
430
431 /* Initialize signal state for proc0. */
432 p->p_sigacts = &sigacts0;
433 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
434 siginit(p);
435
436 proc_initspecific(p);
437 lwp_initspecific(l);
438
439 SYSCALL_TIME_LWP_INIT(l);
440 }
441
442 /*
443 * Check that the specified process group is in the session of the
444 * specified process.
445 * Treats -ve ids as process ids.
446 * Used to validate TIOCSPGRP requests.
447 */
448 int
449 pgid_in_session(struct proc *p, pid_t pg_id)
450 {
451 struct pgrp *pgrp;
452 struct session *session;
453 int error;
454
455 mutex_enter(&proclist_lock);
456 if (pg_id < 0) {
457 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
458 if (p1 == NULL)
459 return EINVAL;
460 pgrp = p1->p_pgrp;
461 } else {
462 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
463 if (pgrp == NULL)
464 return EINVAL;
465 }
466 session = pgrp->pg_session;
467 if (session != p->p_pgrp->pg_session)
468 error = EPERM;
469 else
470 error = 0;
471 mutex_exit(&proclist_lock);
472
473 return error;
474 }
475
476 /*
477 * Is p an inferior of q?
478 *
479 * Call with the proclist_lock held.
480 */
481 int
482 inferior(struct proc *p, struct proc *q)
483 {
484
485 for (; p != q; p = p->p_pptr)
486 if (p->p_pid == 0)
487 return 0;
488 return 1;
489 }
490
491 /*
492 * Locate a process by number
493 */
494 struct proc *
495 p_find(pid_t pid, uint flags)
496 {
497 struct proc *p;
498 char stat;
499
500 if (!(flags & PFIND_LOCKED))
501 mutex_enter(&proclist_lock);
502
503 p = pid_table[pid & pid_tbl_mask].pt_proc;
504
505 /* Only allow live processes to be found by pid. */
506 /* XXXSMP p_stat */
507 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
508 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
509 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
510 if (flags & PFIND_UNLOCK_OK)
511 mutex_exit(&proclist_lock);
512 return p;
513 }
514 if (flags & PFIND_UNLOCK_FAIL)
515 mutex_exit(&proclist_lock);
516 return NULL;
517 }
518
519
520 /*
521 * Locate a process group by number
522 */
523 struct pgrp *
524 pg_find(pid_t pgid, uint flags)
525 {
526 struct pgrp *pg;
527
528 if (!(flags & PFIND_LOCKED))
529 mutex_enter(&proclist_lock);
530 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
531 /*
532 * Can't look up a pgrp that only exists because the session
533 * hasn't died yet (traditional)
534 */
535 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
536 if (flags & PFIND_UNLOCK_FAIL)
537 mutex_exit(&proclist_lock);
538 return NULL;
539 }
540
541 if (flags & PFIND_UNLOCK_OK)
542 mutex_exit(&proclist_lock);
543 return pg;
544 }
545
546 static void
547 expand_pid_table(void)
548 {
549 uint pt_size = pid_tbl_mask + 1;
550 struct pid_table *n_pt, *new_pt;
551 struct proc *proc;
552 struct pgrp *pgrp;
553 int i;
554 pid_t pid;
555
556 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
557
558 mutex_enter(&proclist_lock);
559 if (pt_size != pid_tbl_mask + 1) {
560 /* Another process beat us to it... */
561 mutex_exit(&proclist_lock);
562 FREE(new_pt, M_PROC);
563 return;
564 }
565
566 /*
567 * Copy entries from old table into new one.
568 * If 'pid' is 'odd' we need to place in the upper half,
569 * even pid's to the lower half.
570 * Free items stay in the low half so we don't have to
571 * fixup the reference to them.
572 * We stuff free items on the front of the freelist
573 * because we can't write to unmodified entries.
574 * Processing the table backwards maintains a semblance
575 * of issueing pid numbers that increase with time.
576 */
577 i = pt_size - 1;
578 n_pt = new_pt + i;
579 for (; ; i--, n_pt--) {
580 proc = pid_table[i].pt_proc;
581 pgrp = pid_table[i].pt_pgrp;
582 if (!P_VALID(proc)) {
583 /* Up 'use count' so that link is valid */
584 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
585 proc = P_FREE(pid);
586 if (pgrp)
587 pid = pgrp->pg_id;
588 } else
589 pid = proc->p_pid;
590
591 /* Save entry in appropriate half of table */
592 n_pt[pid & pt_size].pt_proc = proc;
593 n_pt[pid & pt_size].pt_pgrp = pgrp;
594
595 /* Put other piece on start of free list */
596 pid = (pid ^ pt_size) & ~pid_tbl_mask;
597 n_pt[pid & pt_size].pt_proc =
598 P_FREE((pid & ~pt_size) | next_free_pt);
599 n_pt[pid & pt_size].pt_pgrp = 0;
600 next_free_pt = i | (pid & pt_size);
601 if (i == 0)
602 break;
603 }
604
605 /* Switch tables */
606 mutex_enter(&proclist_mutex);
607 n_pt = pid_table;
608 pid_table = new_pt;
609 mutex_exit(&proclist_mutex);
610 pid_tbl_mask = pt_size * 2 - 1;
611
612 /*
613 * pid_max starts as PID_MAX (= 30000), once we have 16384
614 * allocated pids we need it to be larger!
615 */
616 if (pid_tbl_mask > PID_MAX) {
617 pid_max = pid_tbl_mask * 2 + 1;
618 pid_alloc_lim |= pid_alloc_lim << 1;
619 } else
620 pid_alloc_lim <<= 1; /* doubles number of free slots... */
621
622 mutex_exit(&proclist_lock);
623 FREE(n_pt, M_PROC);
624 }
625
626 struct proc *
627 proc_alloc(void)
628 {
629 struct proc *p;
630 int nxt;
631 pid_t pid;
632 struct pid_table *pt;
633
634 p = pool_get(&proc_pool, PR_WAITOK);
635 p->p_stat = SIDL; /* protect against others */
636
637 proc_initspecific(p);
638 /* allocate next free pid */
639
640 for (;;expand_pid_table()) {
641 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
642 /* ensure pids cycle through 2000+ values */
643 continue;
644 mutex_enter(&proclist_lock);
645 pt = &pid_table[next_free_pt];
646 #ifdef DIAGNOSTIC
647 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
648 panic("proc_alloc: slot busy");
649 #endif
650 nxt = P_NEXT(pt->pt_proc);
651 if (nxt & pid_tbl_mask)
652 break;
653 /* Table full - expand (NB last entry not used....) */
654 mutex_exit(&proclist_lock);
655 }
656
657 /* pid is 'saved use count' + 'size' + entry */
658 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
659 if ((uint)pid > (uint)pid_max)
660 pid &= pid_tbl_mask;
661 p->p_pid = pid;
662 next_free_pt = nxt & pid_tbl_mask;
663
664 /* Grab table slot */
665 mutex_enter(&proclist_mutex);
666 pt->pt_proc = p;
667 mutex_exit(&proclist_mutex);
668 pid_alloc_cnt++;
669
670 mutex_exit(&proclist_lock);
671
672 return p;
673 }
674
675 /*
676 * Free a process id - called from proc_free (in kern_exit.c)
677 *
678 * Called with the proclist_lock held.
679 */
680 void
681 proc_free_pid(struct proc *p)
682 {
683 pid_t pid = p->p_pid;
684 struct pid_table *pt;
685
686 KASSERT(mutex_owned(&proclist_lock));
687
688 pt = &pid_table[pid & pid_tbl_mask];
689 #ifdef DIAGNOSTIC
690 if (__predict_false(pt->pt_proc != p))
691 panic("proc_free: pid_table mismatch, pid %x, proc %p",
692 pid, p);
693 #endif
694 mutex_enter(&proclist_mutex);
695 /* save pid use count in slot */
696 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
697
698 if (pt->pt_pgrp == NULL) {
699 /* link last freed entry onto ours */
700 pid &= pid_tbl_mask;
701 pt = &pid_table[last_free_pt];
702 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
703 last_free_pt = pid;
704 pid_alloc_cnt--;
705 }
706 mutex_exit(&proclist_mutex);
707
708 nprocs--;
709 }
710
711 /*
712 * Move p to a new or existing process group (and session)
713 *
714 * If we are creating a new pgrp, the pgid should equal
715 * the calling process' pid.
716 * If is only valid to enter a process group that is in the session
717 * of the process.
718 * Also mksess should only be set if we are creating a process group
719 *
720 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
721 * SYSV setpgrp support for hpux.
722 */
723 int
724 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
725 {
726 struct pgrp *new_pgrp, *pgrp;
727 struct session *sess;
728 struct proc *p;
729 int rval;
730 pid_t pg_id = NO_PGID;
731
732 if (mksess)
733 sess = pool_get(&session_pool, PR_WAITOK);
734 else
735 sess = NULL;
736
737 /* Allocate data areas we might need before doing any validity checks */
738 mutex_enter(&proclist_lock); /* Because pid_table might change */
739 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
740 mutex_exit(&proclist_lock);
741 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
742 mutex_enter(&proclist_lock);
743 } else
744 new_pgrp = NULL;
745 rval = EPERM; /* most common error (to save typing) */
746
747 /* Check pgrp exists or can be created */
748 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
749 if (pgrp != NULL && pgrp->pg_id != pgid)
750 goto done;
751
752 /* Can only set another process under restricted circumstances. */
753 if (pid != curp->p_pid) {
754 /* must exist and be one of our children... */
755 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
756 !inferior(p, curp)) {
757 rval = ESRCH;
758 goto done;
759 }
760 /* ... in the same session... */
761 if (sess != NULL || p->p_session != curp->p_session)
762 goto done;
763 /* ... existing pgid must be in same session ... */
764 if (pgrp != NULL && pgrp->pg_session != p->p_session)
765 goto done;
766 /* ... and not done an exec. */
767 if (p->p_flag & PK_EXEC) {
768 rval = EACCES;
769 goto done;
770 }
771 } else {
772 /* ... setsid() cannot re-enter a pgrp */
773 if (mksess && (curp->p_pgid == curp->p_pid ||
774 pg_find(curp->p_pid, PFIND_LOCKED)))
775 goto done;
776 p = curp;
777 }
778
779 /* Changing the process group/session of a session
780 leader is definitely off limits. */
781 if (SESS_LEADER(p)) {
782 if (sess == NULL && p->p_pgrp == pgrp)
783 /* unless it's a definite noop */
784 rval = 0;
785 goto done;
786 }
787
788 /* Can only create a process group with id of process */
789 if (pgrp == NULL && pgid != pid)
790 goto done;
791
792 /* Can only create a session if creating pgrp */
793 if (sess != NULL && pgrp != NULL)
794 goto done;
795
796 /* Check we allocated memory for a pgrp... */
797 if (pgrp == NULL && new_pgrp == NULL)
798 goto done;
799
800 /* Don't attach to 'zombie' pgrp */
801 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
802 goto done;
803
804 /* Expect to succeed now */
805 rval = 0;
806
807 if (pgrp == p->p_pgrp)
808 /* nothing to do */
809 goto done;
810
811 /* Ok all setup, link up required structures */
812
813 if (pgrp == NULL) {
814 pgrp = new_pgrp;
815 new_pgrp = 0;
816 if (sess != NULL) {
817 sess->s_sid = p->p_pid;
818 sess->s_leader = p;
819 sess->s_count = 1;
820 sess->s_ttyvp = NULL;
821 sess->s_ttyp = NULL;
822 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
823 memcpy(sess->s_login, p->p_session->s_login,
824 sizeof(sess->s_login));
825 p->p_lflag &= ~PL_CONTROLT;
826 } else {
827 sess = p->p_pgrp->pg_session;
828 SESSHOLD(sess);
829 }
830 pgrp->pg_session = sess;
831 sess = 0;
832
833 pgrp->pg_id = pgid;
834 LIST_INIT(&pgrp->pg_members);
835 #ifdef DIAGNOSTIC
836 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
837 panic("enterpgrp: pgrp table slot in use");
838 if (__predict_false(mksess && p != curp))
839 panic("enterpgrp: mksession and p != curproc");
840 #endif
841 mutex_enter(&proclist_mutex);
842 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
843 pgrp->pg_jobc = 0;
844 } else
845 mutex_enter(&proclist_mutex);
846
847 #ifdef notyet
848 /*
849 * If there's a controlling terminal for the current session, we
850 * have to interlock with it. See ttread().
851 */
852 if (p->p_session->s_ttyvp != NULL) {
853 tp = p->p_session->s_ttyp;
854 mutex_enter(&tp->t_mutex);
855 } else
856 tp = NULL;
857 #endif
858
859 /*
860 * Adjust eligibility of affected pgrps to participate in job control.
861 * Increment eligibility counts before decrementing, otherwise we
862 * could reach 0 spuriously during the first call.
863 */
864 fixjobc(p, pgrp, 1);
865 fixjobc(p, p->p_pgrp, 0);
866
867 /* Move process to requested group. */
868 LIST_REMOVE(p, p_pglist);
869 if (LIST_EMPTY(&p->p_pgrp->pg_members))
870 /* defer delete until we've dumped the lock */
871 pg_id = p->p_pgrp->pg_id;
872 p->p_pgrp = pgrp;
873 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
874 mutex_exit(&proclist_mutex);
875
876 #ifdef notyet
877 /* Done with the swap; we can release the tty mutex. */
878 if (tp != NULL)
879 mutex_exit(&tp->t_mutex);
880 #endif
881
882 done:
883 if (pg_id != NO_PGID)
884 pg_delete(pg_id);
885 mutex_exit(&proclist_lock);
886 if (sess != NULL)
887 pool_put(&session_pool, sess);
888 if (new_pgrp != NULL)
889 pool_put(&pgrp_pool, new_pgrp);
890 #ifdef DEBUG_PGRP
891 if (__predict_false(rval))
892 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
893 pid, pgid, mksess, curp->p_pid, rval);
894 #endif
895 return rval;
896 }
897
898 /*
899 * Remove a process from its process group. Must be called with the
900 * proclist_lock held.
901 */
902 void
903 leavepgrp(struct proc *p)
904 {
905 struct pgrp *pgrp;
906
907 KASSERT(mutex_owned(&proclist_lock));
908
909 /*
910 * If there's a controlling terminal for the session, we have to
911 * interlock with it. See ttread().
912 */
913 mutex_enter(&proclist_mutex);
914 #ifdef notyet
915 if (p_>p_session->s_ttyvp != NULL) {
916 tp = p->p_session->s_ttyp;
917 mutex_enter(&tp->t_mutex);
918 } else
919 tp = NULL;
920 #endif
921
922 pgrp = p->p_pgrp;
923 LIST_REMOVE(p, p_pglist);
924 p->p_pgrp = NULL;
925
926 #ifdef notyet
927 if (tp != NULL)
928 mutex_exit(&tp->t_mutex);
929 #endif
930 mutex_exit(&proclist_mutex);
931
932 if (LIST_EMPTY(&pgrp->pg_members))
933 pg_delete(pgrp->pg_id);
934 }
935
936 /*
937 * Free a process group. Must be called with the proclist_lock held.
938 */
939 static void
940 pg_free(pid_t pg_id)
941 {
942 struct pgrp *pgrp;
943 struct pid_table *pt;
944
945 KASSERT(mutex_owned(&proclist_lock));
946
947 pt = &pid_table[pg_id & pid_tbl_mask];
948 pgrp = pt->pt_pgrp;
949 #ifdef DIAGNOSTIC
950 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
951 || !LIST_EMPTY(&pgrp->pg_members)))
952 panic("pg_free: process group absent or has members");
953 #endif
954 pt->pt_pgrp = 0;
955
956 if (!P_VALID(pt->pt_proc)) {
957 /* orphaned pgrp, put slot onto free list */
958 #ifdef DIAGNOSTIC
959 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
960 panic("pg_free: process slot on free list");
961 #endif
962 mutex_enter(&proclist_mutex);
963 pg_id &= pid_tbl_mask;
964 pt = &pid_table[last_free_pt];
965 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
966 mutex_exit(&proclist_mutex);
967 last_free_pt = pg_id;
968 pid_alloc_cnt--;
969 }
970 pool_put(&pgrp_pool, pgrp);
971 }
972
973 /*
974 * Delete a process group. Must be called with the proclist_lock held.
975 */
976 static void
977 pg_delete(pid_t pg_id)
978 {
979 struct pgrp *pgrp;
980 struct tty *ttyp;
981 struct session *ss;
982 int is_pgrp_leader;
983
984 KASSERT(mutex_owned(&proclist_lock));
985
986 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
987 if (pgrp == NULL || pgrp->pg_id != pg_id ||
988 !LIST_EMPTY(&pgrp->pg_members))
989 return;
990
991 ss = pgrp->pg_session;
992
993 /* Remove reference (if any) from tty to this process group */
994 ttyp = ss->s_ttyp;
995 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
996 ttyp->t_pgrp = NULL;
997 #ifdef DIAGNOSTIC
998 if (ttyp->t_session != ss)
999 panic("pg_delete: wrong session on terminal");
1000 #endif
1001 }
1002
1003 /*
1004 * The leading process group in a session is freed
1005 * by sessdelete() if last reference.
1006 */
1007 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
1008 SESSRELE(ss);
1009
1010 if (is_pgrp_leader)
1011 return;
1012
1013 pg_free(pg_id);
1014 }
1015
1016 /*
1017 * Delete session - called from SESSRELE when s_count becomes zero.
1018 * Must be called with the proclist_lock held.
1019 */
1020 void
1021 sessdelete(struct session *ss)
1022 {
1023
1024 KASSERT(mutex_owned(&proclist_lock));
1025
1026 /*
1027 * We keep the pgrp with the same id as the session in
1028 * order to stop a process being given the same pid.
1029 * Since the pgrp holds a reference to the session, it
1030 * must be a 'zombie' pgrp by now.
1031 */
1032 pg_free(ss->s_sid);
1033 pool_put(&session_pool, ss);
1034 }
1035
1036 /*
1037 * Adjust pgrp jobc counters when specified process changes process group.
1038 * We count the number of processes in each process group that "qualify"
1039 * the group for terminal job control (those with a parent in a different
1040 * process group of the same session). If that count reaches zero, the
1041 * process group becomes orphaned. Check both the specified process'
1042 * process group and that of its children.
1043 * entering == 0 => p is leaving specified group.
1044 * entering == 1 => p is entering specified group.
1045 *
1046 * Call with proclist_lock held.
1047 */
1048 void
1049 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1050 {
1051 struct pgrp *hispgrp;
1052 struct session *mysession = pgrp->pg_session;
1053 struct proc *child;
1054
1055 KASSERT(mutex_owned(&proclist_lock));
1056 KASSERT(mutex_owned(&proclist_mutex));
1057
1058 /*
1059 * Check p's parent to see whether p qualifies its own process
1060 * group; if so, adjust count for p's process group.
1061 */
1062 hispgrp = p->p_pptr->p_pgrp;
1063 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1064 if (entering) {
1065 mutex_enter(&p->p_smutex);
1066 p->p_sflag &= ~PS_ORPHANPG;
1067 mutex_exit(&p->p_smutex);
1068 pgrp->pg_jobc++;
1069 } else if (--pgrp->pg_jobc == 0)
1070 orphanpg(pgrp);
1071 }
1072
1073 /*
1074 * Check this process' children to see whether they qualify
1075 * their process groups; if so, adjust counts for children's
1076 * process groups.
1077 */
1078 LIST_FOREACH(child, &p->p_children, p_sibling) {
1079 hispgrp = child->p_pgrp;
1080 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1081 !P_ZOMBIE(child)) {
1082 if (entering) {
1083 mutex_enter(&child->p_smutex);
1084 child->p_sflag &= ~PS_ORPHANPG;
1085 mutex_exit(&child->p_smutex);
1086 hispgrp->pg_jobc++;
1087 } else if (--hispgrp->pg_jobc == 0)
1088 orphanpg(hispgrp);
1089 }
1090 }
1091 }
1092
1093 /*
1094 * A process group has become orphaned;
1095 * if there are any stopped processes in the group,
1096 * hang-up all process in that group.
1097 *
1098 * Call with proclist_lock held.
1099 */
1100 static void
1101 orphanpg(struct pgrp *pg)
1102 {
1103 struct proc *p;
1104 int doit;
1105
1106 KASSERT(mutex_owned(&proclist_lock));
1107 KASSERT(mutex_owned(&proclist_mutex));
1108
1109 doit = 0;
1110
1111 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1112 mutex_enter(&p->p_smutex);
1113 if (p->p_stat == SSTOP) {
1114 doit = 1;
1115 p->p_sflag |= PS_ORPHANPG;
1116 }
1117 mutex_exit(&p->p_smutex);
1118 }
1119
1120 if (doit) {
1121 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1122 psignal(p, SIGHUP);
1123 psignal(p, SIGCONT);
1124 }
1125 }
1126 }
1127
1128 #ifdef DDB
1129 #include <ddb/db_output.h>
1130 void pidtbl_dump(void);
1131 void
1132 pidtbl_dump(void)
1133 {
1134 struct pid_table *pt;
1135 struct proc *p;
1136 struct pgrp *pgrp;
1137 int id;
1138
1139 db_printf("pid table %p size %x, next %x, last %x\n",
1140 pid_table, pid_tbl_mask+1,
1141 next_free_pt, last_free_pt);
1142 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1143 p = pt->pt_proc;
1144 if (!P_VALID(p) && !pt->pt_pgrp)
1145 continue;
1146 db_printf(" id %x: ", id);
1147 if (P_VALID(p))
1148 db_printf("proc %p id %d (0x%x) %s\n",
1149 p, p->p_pid, p->p_pid, p->p_comm);
1150 else
1151 db_printf("next %x use %x\n",
1152 P_NEXT(p) & pid_tbl_mask,
1153 P_NEXT(p) & ~pid_tbl_mask);
1154 if ((pgrp = pt->pt_pgrp)) {
1155 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1156 pgrp->pg_session, pgrp->pg_session->s_sid,
1157 pgrp->pg_session->s_count,
1158 pgrp->pg_session->s_login);
1159 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1160 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1161 pgrp->pg_members.lh_first);
1162 for (p = pgrp->pg_members.lh_first; p != 0;
1163 p = p->p_pglist.le_next) {
1164 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1165 p->p_pid, p, p->p_pgrp, p->p_comm);
1166 }
1167 }
1168 }
1169 }
1170 #endif /* DDB */
1171
1172 #ifdef KSTACK_CHECK_MAGIC
1173 #include <sys/user.h>
1174
1175 #define KSTACK_MAGIC 0xdeadbeaf
1176
1177 /* XXX should be per process basis? */
1178 int kstackleftmin = KSTACK_SIZE;
1179 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1180 less than this */
1181
1182 void
1183 kstack_setup_magic(const struct lwp *l)
1184 {
1185 uint32_t *ip;
1186 uint32_t const *end;
1187
1188 KASSERT(l != NULL);
1189 KASSERT(l != &lwp0);
1190
1191 /*
1192 * fill all the stack with magic number
1193 * so that later modification on it can be detected.
1194 */
1195 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1196 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1197 for (; ip < end; ip++) {
1198 *ip = KSTACK_MAGIC;
1199 }
1200 }
1201
1202 void
1203 kstack_check_magic(const struct lwp *l)
1204 {
1205 uint32_t const *ip, *end;
1206 int stackleft;
1207
1208 KASSERT(l != NULL);
1209
1210 /* don't check proc0 */ /*XXX*/
1211 if (l == &lwp0)
1212 return;
1213
1214 #ifdef __MACHINE_STACK_GROWS_UP
1215 /* stack grows upwards (eg. hppa) */
1216 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1217 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1218 for (ip--; ip >= end; ip--)
1219 if (*ip != KSTACK_MAGIC)
1220 break;
1221
1222 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1223 #else /* __MACHINE_STACK_GROWS_UP */
1224 /* stack grows downwards (eg. i386) */
1225 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1226 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1227 for (; ip < end; ip++)
1228 if (*ip != KSTACK_MAGIC)
1229 break;
1230
1231 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1232 #endif /* __MACHINE_STACK_GROWS_UP */
1233
1234 if (kstackleftmin > stackleft) {
1235 kstackleftmin = stackleft;
1236 if (stackleft < kstackleftthres)
1237 printf("warning: kernel stack left %d bytes"
1238 "(pid %u:lid %u)\n", stackleft,
1239 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1240 }
1241
1242 if (stackleft <= 0) {
1243 panic("magic on the top of kernel stack changed for "
1244 "pid %u, lid %u: maybe kernel stack overflow",
1245 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1246 }
1247 }
1248 #endif /* KSTACK_CHECK_MAGIC */
1249
1250 /*
1251 * XXXSMP this is bust, it grabs a read lock and then messes about
1252 * with allproc.
1253 */
1254 int
1255 proclist_foreach_call(struct proclist *list,
1256 int (*callback)(struct proc *, void *arg), void *arg)
1257 {
1258 struct proc marker;
1259 struct proc *p;
1260 struct lwp * const l = curlwp;
1261 int ret = 0;
1262
1263 marker.p_flag = PK_MARKER;
1264 uvm_lwp_hold(l);
1265 mutex_enter(&proclist_lock);
1266 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1267 if (p->p_flag & PK_MARKER) {
1268 p = LIST_NEXT(p, p_list);
1269 continue;
1270 }
1271 LIST_INSERT_AFTER(p, &marker, p_list);
1272 ret = (*callback)(p, arg);
1273 KASSERT(mutex_owned(&proclist_lock));
1274 p = LIST_NEXT(&marker, p_list);
1275 LIST_REMOVE(&marker, p_list);
1276 }
1277 mutex_exit(&proclist_lock);
1278 uvm_lwp_rele(l);
1279
1280 return ret;
1281 }
1282
1283 int
1284 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1285 {
1286
1287 /* XXXCDC: how should locking work here? */
1288
1289 /* curproc exception is for coredump. */
1290
1291 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1292 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1293 return EFAULT;
1294 }
1295
1296 uvmspace_addref(p->p_vmspace);
1297 *vm = p->p_vmspace;
1298
1299 return 0;
1300 }
1301
1302 /*
1303 * Acquire a write lock on the process credential.
1304 */
1305 void
1306 proc_crmod_enter(void)
1307 {
1308 struct lwp *l = curlwp;
1309 struct proc *p = l->l_proc;
1310 struct plimit *lim;
1311 kauth_cred_t oc;
1312 char *cn;
1313
1314 /* Reset what needs to be reset in plimit. */
1315 if (p->p_limit->pl_corename != defcorename) {
1316 lim_privatise(p, false);
1317 lim = p->p_limit;
1318 mutex_enter(&lim->pl_lock);
1319 cn = lim->pl_corename;
1320 lim->pl_corename = defcorename;
1321 mutex_exit(&lim->pl_lock);
1322 if (cn != defcorename)
1323 free(cn, M_TEMP);
1324 }
1325
1326 mutex_enter(&p->p_mutex);
1327
1328 /* Ensure the LWP cached credentials are up to date. */
1329 if ((oc = l->l_cred) != p->p_cred) {
1330 kauth_cred_hold(p->p_cred);
1331 l->l_cred = p->p_cred;
1332 kauth_cred_free(oc);
1333 }
1334
1335 }
1336
1337 /*
1338 * Set in a new process credential, and drop the write lock. The credential
1339 * must have a reference already. Optionally, free a no-longer required
1340 * credential. The scheduler also needs to inspect p_cred, so we also
1341 * briefly acquire the sched state mutex.
1342 */
1343 void
1344 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1345 {
1346 struct lwp *l = curlwp;
1347 struct proc *p = l->l_proc;
1348 kauth_cred_t oc;
1349
1350 /* Is there a new credential to set in? */
1351 if (scred != NULL) {
1352 mutex_enter(&p->p_smutex);
1353 p->p_cred = scred;
1354 mutex_exit(&p->p_smutex);
1355
1356 /* Ensure the LWP cached credentials are up to date. */
1357 if ((oc = l->l_cred) != scred) {
1358 kauth_cred_hold(scred);
1359 l->l_cred = scred;
1360 }
1361 } else
1362 oc = NULL; /* XXXgcc */
1363
1364 if (sugid) {
1365 /*
1366 * Mark process as having changed credentials, stops
1367 * tracing etc.
1368 */
1369 p->p_flag |= PK_SUGID;
1370 }
1371
1372 mutex_exit(&p->p_mutex);
1373
1374 /* If there is a credential to be released, free it now. */
1375 if (fcred != NULL) {
1376 KASSERT(scred != NULL);
1377 kauth_cred_free(fcred);
1378 if (oc != scred)
1379 kauth_cred_free(oc);
1380 }
1381 }
1382
1383 /*
1384 * proc_specific_key_create --
1385 * Create a key for subsystem proc-specific data.
1386 */
1387 int
1388 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1389 {
1390
1391 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1392 }
1393
1394 /*
1395 * proc_specific_key_delete --
1396 * Delete a key for subsystem proc-specific data.
1397 */
1398 void
1399 proc_specific_key_delete(specificdata_key_t key)
1400 {
1401
1402 specificdata_key_delete(proc_specificdata_domain, key);
1403 }
1404
1405 /*
1406 * proc_initspecific --
1407 * Initialize a proc's specificdata container.
1408 */
1409 void
1410 proc_initspecific(struct proc *p)
1411 {
1412 int error;
1413
1414 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1415 KASSERT(error == 0);
1416 }
1417
1418 /*
1419 * proc_finispecific --
1420 * Finalize a proc's specificdata container.
1421 */
1422 void
1423 proc_finispecific(struct proc *p)
1424 {
1425
1426 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1427 }
1428
1429 /*
1430 * proc_getspecific --
1431 * Return proc-specific data corresponding to the specified key.
1432 */
1433 void *
1434 proc_getspecific(struct proc *p, specificdata_key_t key)
1435 {
1436
1437 return (specificdata_getspecific(proc_specificdata_domain,
1438 &p->p_specdataref, key));
1439 }
1440
1441 /*
1442 * proc_setspecific --
1443 * Set proc-specific data corresponding to the specified key.
1444 */
1445 void
1446 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1447 {
1448
1449 specificdata_setspecific(proc_specificdata_domain,
1450 &p->p_specdataref, key, data);
1451 }
1452