Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.113.6.4
      1 /*	$NetBSD: kern_proc.c,v 1.113.6.4 2007/10/28 20:11:12 joerg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.113.6.4 2007/10/28 20:11:12 joerg Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_maxuprc.h"
     76 #include "opt_multiprocessor.h"
     77 #include "opt_lockdebug.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/proc.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/buf.h>
     85 #include <sys/acct.h>
     86 #include <sys/wait.h>
     87 #include <sys/file.h>
     88 #include <ufs/ufs/quota.h>
     89 #include <sys/uio.h>
     90 #include <sys/malloc.h>
     91 #include <sys/pool.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include "sys/syscall_stats.h"
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 
    102 #include <uvm/uvm.h>
    103 #include <uvm/uvm_extern.h>
    104 
    105 /*
    106  * Other process lists
    107  */
    108 
    109 struct proclist allproc;
    110 struct proclist zombproc;	/* resources have been freed */
    111 
    112 /*
    113  * There are two locks on global process state.
    114  *
    115  * 1. proclist_lock is an adaptive mutex and is used when modifying
    116  * or examining process state from a process context.  It protects
    117  * the internal tables, all of the process lists, and a number of
    118  * members of struct proc.
    119  *
    120  * 2. proclist_mutex is used when allproc must be traversed from an
    121  * interrupt context, or when changing the state of processes.  The
    122  * proclist_lock should always be used in preference.  In some cases,
    123  * both locks need to be held.
    124  *
    125  *	proclist_lock	proclist_mutex	structure
    126  *	--------------- --------------- -----------------
    127  *	x				zombproc
    128  *	x		x		pid_table
    129  *	x				proc::p_pptr
    130  *	x				proc::p_sibling
    131  *	x				proc::p_children
    132  *	x		x		allproc
    133  *	x		x		proc::p_pgrp
    134  *	x		x		proc::p_pglist
    135  *	x		x		proc::p_session
    136  *	x		x		proc::p_list
    137  *			x		alllwp
    138  *			x		lwp::l_list
    139  *
    140  * The lock order for processes and LWPs is approximately as following:
    141  *
    142  * kernel_lock
    143  * -> proclist_lock
    144  *   -> proc::p_mutex
    145  *      -> proclist_mutex
    146  *         -> proc::p_smutex
    147  *           -> proc::p_stmutex
    148  *
    149  * XXX p_smutex can be run at IPL_VM once audio drivers on the x86
    150  * platform are made MP safe.  Currently it blocks interrupts at
    151  * IPL_SCHED and below.
    152  *
    153  * XXX The two process locks (p_smutex + p_mutex), and the two global
    154  * state locks (proclist_lock + proclist_mutex) should be merged
    155  * together.  However, to do so requires interrupts that interrupts
    156  * be run with LWP context.
    157  */
    158 kmutex_t	proclist_lock;
    159 kmutex_t	proclist_mutex;
    160 
    161 /*
    162  * pid to proc lookup is done by indexing the pid_table array.
    163  * Since pid numbers are only allocated when an empty slot
    164  * has been found, there is no need to search any lists ever.
    165  * (an orphaned pgrp will lock the slot, a session will lock
    166  * the pgrp with the same number.)
    167  * If the table is too small it is reallocated with twice the
    168  * previous size and the entries 'unzipped' into the two halves.
    169  * A linked list of free entries is passed through the pt_proc
    170  * field of 'free' items - set odd to be an invalid ptr.
    171  */
    172 
    173 struct pid_table {
    174 	struct proc	*pt_proc;
    175 	struct pgrp	*pt_pgrp;
    176 };
    177 #if 1	/* strongly typed cast - should be a noop */
    178 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    179 #else
    180 #define p2u(p) ((uint)p)
    181 #endif
    182 #define P_VALID(p) (!(p2u(p) & 1))
    183 #define P_NEXT(p) (p2u(p) >> 1)
    184 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    185 
    186 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    187 static struct pid_table *pid_table;
    188 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    189 static uint pid_alloc_lim;	/* max we allocate before growing table */
    190 static uint pid_alloc_cnt;	/* number of allocated pids */
    191 
    192 /* links through free slots - never empty! */
    193 static uint next_free_pt, last_free_pt;
    194 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    195 
    196 /* Components of the first process -- never freed. */
    197 struct session session0;
    198 struct pgrp pgrp0;
    199 struct proc proc0;
    200 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT);
    201 kauth_cred_t cred0;
    202 struct filedesc0 filedesc0;
    203 struct cwdinfo cwdi0;
    204 struct plimit limit0;
    205 struct pstats pstat0;
    206 struct vmspace vmspace0;
    207 struct sigacts sigacts0;
    208 struct turnstile turnstile0;
    209 
    210 extern struct user *proc0paddr;
    211 
    212 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    213 
    214 int nofile = NOFILE;
    215 int maxuprc = MAXUPRC;
    216 int cmask = CMASK;
    217 
    218 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
    219     &pool_allocator_nointr, IPL_NONE);
    220 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
    221     &pool_allocator_nointr, IPL_NONE);
    222 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
    223     &pool_allocator_nointr, IPL_NONE);
    224 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
    225     &pool_allocator_nointr, IPL_NONE);
    226 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
    227     &pool_allocator_nointr, IPL_NONE);
    228 
    229 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    230 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    231 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    232 
    233 /*
    234  * The process list descriptors, used during pid allocation and
    235  * by sysctl.  No locking on this data structure is needed since
    236  * it is completely static.
    237  */
    238 const struct proclist_desc proclists[] = {
    239 	{ &allproc	},
    240 	{ &zombproc	},
    241 	{ NULL		},
    242 };
    243 
    244 static void orphanpg(struct pgrp *);
    245 static void pg_delete(pid_t);
    246 
    247 static specificdata_domain_t proc_specificdata_domain;
    248 
    249 /*
    250  * Initialize global process hashing structures.
    251  */
    252 void
    253 procinit(void)
    254 {
    255 	const struct proclist_desc *pd;
    256 	int i;
    257 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    258 
    259 	for (pd = proclists; pd->pd_list != NULL; pd++)
    260 		LIST_INIT(pd->pd_list);
    261 
    262 	mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
    263 	mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
    264 
    265 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    266 			    M_PROC, M_WAITOK);
    267 	/* Set free list running through table...
    268 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    269 	for (i = 0; i <= pid_tbl_mask; i++) {
    270 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    271 		pid_table[i].pt_pgrp = 0;
    272 	}
    273 	/* slot 0 is just grabbed */
    274 	next_free_pt = 1;
    275 	/* Need to fix last entry. */
    276 	last_free_pt = pid_tbl_mask;
    277 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    278 	/* point at which we grow table - to avoid reusing pids too often */
    279 	pid_alloc_lim = pid_tbl_mask - 1;
    280 #undef LINK_EMPTY
    281 
    282 	LIST_INIT(&alllwp);
    283 
    284 	uihashtbl =
    285 	    hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
    286 
    287 	proc_specificdata_domain = specificdata_domain_create();
    288 	KASSERT(proc_specificdata_domain != NULL);
    289 }
    290 
    291 /*
    292  * Initialize process 0.
    293  */
    294 void
    295 proc0_init(void)
    296 {
    297 	struct proc *p;
    298 	struct pgrp *pg;
    299 	struct session *sess;
    300 	struct lwp *l;
    301 	u_int i;
    302 	rlim_t lim;
    303 
    304 	p = &proc0;
    305 	pg = &pgrp0;
    306 	sess = &session0;
    307 	l = &lwp0;
    308 
    309 	mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
    310 	mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_HIGH);
    311 	mutex_init(&p->p_raslock, MUTEX_DEFAULT, IPL_NONE);
    312 	mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
    313 	mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    314 
    315 	cv_init(&p->p_refcv, "drainref");
    316 	cv_init(&p->p_waitcv, "wait");
    317 	cv_init(&p->p_lwpcv, "lwpwait");
    318 
    319 	LIST_INIT(&p->p_lwps);
    320 	LIST_INIT(&p->p_sigwaiters);
    321 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    322 
    323 	p->p_nlwps = 1;
    324 	p->p_nrlwps = 1;
    325 	p->p_nlwpid = l->l_lid;
    326 	p->p_refcnt = 1;
    327 
    328 	pid_table[0].pt_proc = p;
    329 	LIST_INSERT_HEAD(&allproc, p, p_list);
    330 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    331 
    332 	p->p_pgrp = pg;
    333 	pid_table[0].pt_pgrp = pg;
    334 	LIST_INIT(&pg->pg_members);
    335 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    336 
    337 	pg->pg_session = sess;
    338 	sess->s_count = 1;
    339 	sess->s_sid = 0;
    340 	sess->s_leader = p;
    341 
    342 	/*
    343 	 * Set P_NOCLDWAIT so that kernel threads are reparented to
    344 	 * init(8) when they exit.  init(8) can easily wait them out
    345 	 * for us.
    346 	 */
    347 	p->p_flag = PK_SYSTEM | PK_NOCLDWAIT;
    348 	p->p_stat = SACTIVE;
    349 	p->p_nice = NZERO;
    350 	p->p_emul = &emul_netbsd;
    351 #ifdef __HAVE_SYSCALL_INTERN
    352 	(*p->p_emul->e_syscall_intern)(p);
    353 #endif
    354 	strlcpy(p->p_comm, "system", sizeof(p->p_comm));
    355 
    356 	l->l_flag = LW_INMEM | LW_SYSTEM;
    357 	l->l_stat = LSONPROC;
    358 	l->l_ts = &turnstile0;
    359 	l->l_syncobj = &sched_syncobj;
    360 	l->l_refcnt = 1;
    361 	l->l_cpu = curcpu();
    362 	l->l_priority = PUSER;
    363 	l->l_usrpri = PUSER;
    364 	l->l_inheritedprio = MAXPRI;
    365 	SLIST_INIT(&l->l_pi_lenders);
    366 	l->l_name = __UNCONST("swapper");
    367 
    368 	callout_init(&l->l_timeout_ch, 0);
    369 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    370 	cv_init(&l->l_sigcv, "sigwait");
    371 
    372 	/* Create credentials. */
    373 	cred0 = kauth_cred_alloc();
    374 	p->p_cred = cred0;
    375 	kauth_cred_hold(cred0);
    376 	l->l_cred = cred0;
    377 
    378 	/* Create the CWD info. */
    379 	p->p_cwdi = &cwdi0;
    380 	cwdi0.cwdi_cmask = cmask;
    381 	cwdi0.cwdi_refcnt = 1;
    382 	rw_init(&cwdi0.cwdi_lock);
    383 
    384 	/* Create the limits structures. */
    385 	p->p_limit = &limit0;
    386 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    387 	for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
    388 		limit0.pl_rlimit[i].rlim_cur =
    389 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    390 
    391 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    392 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    393 	    maxfiles < nofile ? maxfiles : nofile;
    394 
    395 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    396 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    397 	    maxproc < maxuprc ? maxproc : maxuprc;
    398 
    399 	lim = ptoa(uvmexp.free);
    400 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    401 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    402 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    403 	limit0.pl_corename = defcorename;
    404 	limit0.pl_refcnt = 1;
    405 	limit0.pl_sv_limit = NULL;
    406 
    407 	/* Configure virtual memory system, set vm rlimits. */
    408 	uvm_init_limits(p);
    409 
    410 	/* Initialize file descriptor table for proc0. */
    411 	p->p_fd = &filedesc0.fd_fd;
    412 	fdinit1(&filedesc0);
    413 
    414 	/*
    415 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    416 	 * All kernel processes (which never have user space mappings)
    417 	 * share proc0's vmspace, and thus, the kernel pmap.
    418 	 */
    419 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    420 	    trunc_page(VM_MAX_ADDRESS));
    421 	p->p_vmspace = &vmspace0;
    422 
    423 	l->l_addr = proc0paddr;				/* XXX */
    424 
    425 	p->p_stats = &pstat0;
    426 
    427 	/* Initialize signal state for proc0. */
    428 	p->p_sigacts = &sigacts0;
    429 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
    430 	siginit(p);
    431 
    432 	proc_initspecific(p);
    433 	lwp_initspecific(l);
    434 
    435 	SYSCALL_TIME_LWP_INIT(l);
    436 }
    437 
    438 /*
    439  * Check that the specified process group is in the session of the
    440  * specified process.
    441  * Treats -ve ids as process ids.
    442  * Used to validate TIOCSPGRP requests.
    443  */
    444 int
    445 pgid_in_session(struct proc *p, pid_t pg_id)
    446 {
    447 	struct pgrp *pgrp;
    448 	struct session *session;
    449 	int error;
    450 
    451 	mutex_enter(&proclist_lock);
    452 	if (pg_id < 0) {
    453 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    454 		if (p1 == NULL)
    455 			return EINVAL;
    456 		pgrp = p1->p_pgrp;
    457 	} else {
    458 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    459 		if (pgrp == NULL)
    460 			return EINVAL;
    461 	}
    462 	session = pgrp->pg_session;
    463 	if (session != p->p_pgrp->pg_session)
    464 		error = EPERM;
    465 	else
    466 		error = 0;
    467 	mutex_exit(&proclist_lock);
    468 
    469 	return error;
    470 }
    471 
    472 /*
    473  * Is p an inferior of q?
    474  *
    475  * Call with the proclist_lock held.
    476  */
    477 int
    478 inferior(struct proc *p, struct proc *q)
    479 {
    480 
    481 	for (; p != q; p = p->p_pptr)
    482 		if (p->p_pid == 0)
    483 			return 0;
    484 	return 1;
    485 }
    486 
    487 /*
    488  * Locate a process by number
    489  */
    490 struct proc *
    491 p_find(pid_t pid, uint flags)
    492 {
    493 	struct proc *p;
    494 	char stat;
    495 
    496 	if (!(flags & PFIND_LOCKED))
    497 		mutex_enter(&proclist_lock);
    498 
    499 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    500 
    501 	/* Only allow live processes to be found by pid. */
    502 	/* XXXSMP p_stat */
    503 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    504 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    505 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    506 		if (flags & PFIND_UNLOCK_OK)
    507 			 mutex_exit(&proclist_lock);
    508 		return p;
    509 	}
    510 	if (flags & PFIND_UNLOCK_FAIL)
    511 		mutex_exit(&proclist_lock);
    512 	return NULL;
    513 }
    514 
    515 
    516 /*
    517  * Locate a process group by number
    518  */
    519 struct pgrp *
    520 pg_find(pid_t pgid, uint flags)
    521 {
    522 	struct pgrp *pg;
    523 
    524 	if (!(flags & PFIND_LOCKED))
    525 		mutex_enter(&proclist_lock);
    526 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    527 	/*
    528 	 * Can't look up a pgrp that only exists because the session
    529 	 * hasn't died yet (traditional)
    530 	 */
    531 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    532 		if (flags & PFIND_UNLOCK_FAIL)
    533 			 mutex_exit(&proclist_lock);
    534 		return NULL;
    535 	}
    536 
    537 	if (flags & PFIND_UNLOCK_OK)
    538 		mutex_exit(&proclist_lock);
    539 	return pg;
    540 }
    541 
    542 static void
    543 expand_pid_table(void)
    544 {
    545 	uint pt_size = pid_tbl_mask + 1;
    546 	struct pid_table *n_pt, *new_pt;
    547 	struct proc *proc;
    548 	struct pgrp *pgrp;
    549 	int i;
    550 	pid_t pid;
    551 
    552 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    553 
    554 	mutex_enter(&proclist_lock);
    555 	if (pt_size != pid_tbl_mask + 1) {
    556 		/* Another process beat us to it... */
    557 		mutex_exit(&proclist_lock);
    558 		FREE(new_pt, M_PROC);
    559 		return;
    560 	}
    561 
    562 	/*
    563 	 * Copy entries from old table into new one.
    564 	 * If 'pid' is 'odd' we need to place in the upper half,
    565 	 * even pid's to the lower half.
    566 	 * Free items stay in the low half so we don't have to
    567 	 * fixup the reference to them.
    568 	 * We stuff free items on the front of the freelist
    569 	 * because we can't write to unmodified entries.
    570 	 * Processing the table backwards maintains a semblance
    571 	 * of issueing pid numbers that increase with time.
    572 	 */
    573 	i = pt_size - 1;
    574 	n_pt = new_pt + i;
    575 	for (; ; i--, n_pt--) {
    576 		proc = pid_table[i].pt_proc;
    577 		pgrp = pid_table[i].pt_pgrp;
    578 		if (!P_VALID(proc)) {
    579 			/* Up 'use count' so that link is valid */
    580 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    581 			proc = P_FREE(pid);
    582 			if (pgrp)
    583 				pid = pgrp->pg_id;
    584 		} else
    585 			pid = proc->p_pid;
    586 
    587 		/* Save entry in appropriate half of table */
    588 		n_pt[pid & pt_size].pt_proc = proc;
    589 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    590 
    591 		/* Put other piece on start of free list */
    592 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    593 		n_pt[pid & pt_size].pt_proc =
    594 				    P_FREE((pid & ~pt_size) | next_free_pt);
    595 		n_pt[pid & pt_size].pt_pgrp = 0;
    596 		next_free_pt = i | (pid & pt_size);
    597 		if (i == 0)
    598 			break;
    599 	}
    600 
    601 	/* Switch tables */
    602 	mutex_enter(&proclist_mutex);
    603 	n_pt = pid_table;
    604 	pid_table = new_pt;
    605 	mutex_exit(&proclist_mutex);
    606 	pid_tbl_mask = pt_size * 2 - 1;
    607 
    608 	/*
    609 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    610 	 * allocated pids we need it to be larger!
    611 	 */
    612 	if (pid_tbl_mask > PID_MAX) {
    613 		pid_max = pid_tbl_mask * 2 + 1;
    614 		pid_alloc_lim |= pid_alloc_lim << 1;
    615 	} else
    616 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    617 
    618 	mutex_exit(&proclist_lock);
    619 	FREE(n_pt, M_PROC);
    620 }
    621 
    622 struct proc *
    623 proc_alloc(void)
    624 {
    625 	struct proc *p;
    626 	int nxt;
    627 	pid_t pid;
    628 	struct pid_table *pt;
    629 
    630 	p = pool_get(&proc_pool, PR_WAITOK);
    631 	p->p_stat = SIDL;			/* protect against others */
    632 
    633 	proc_initspecific(p);
    634 	/* allocate next free pid */
    635 
    636 	for (;;expand_pid_table()) {
    637 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    638 			/* ensure pids cycle through 2000+ values */
    639 			continue;
    640 		mutex_enter(&proclist_lock);
    641 		pt = &pid_table[next_free_pt];
    642 #ifdef DIAGNOSTIC
    643 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    644 			panic("proc_alloc: slot busy");
    645 #endif
    646 		nxt = P_NEXT(pt->pt_proc);
    647 		if (nxt & pid_tbl_mask)
    648 			break;
    649 		/* Table full - expand (NB last entry not used....) */
    650 		mutex_exit(&proclist_lock);
    651 	}
    652 
    653 	/* pid is 'saved use count' + 'size' + entry */
    654 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    655 	if ((uint)pid > (uint)pid_max)
    656 		pid &= pid_tbl_mask;
    657 	p->p_pid = pid;
    658 	next_free_pt = nxt & pid_tbl_mask;
    659 
    660 	/* Grab table slot */
    661 	mutex_enter(&proclist_mutex);
    662 	pt->pt_proc = p;
    663 	mutex_exit(&proclist_mutex);
    664 	pid_alloc_cnt++;
    665 
    666 	mutex_exit(&proclist_lock);
    667 
    668 	return p;
    669 }
    670 
    671 /*
    672  * Free a process id - called from proc_free (in kern_exit.c)
    673  *
    674  * Called with the proclist_lock held.
    675  */
    676 void
    677 proc_free_pid(struct proc *p)
    678 {
    679 	pid_t pid = p->p_pid;
    680 	struct pid_table *pt;
    681 
    682 	KASSERT(mutex_owned(&proclist_lock));
    683 
    684 	pt = &pid_table[pid & pid_tbl_mask];
    685 #ifdef DIAGNOSTIC
    686 	if (__predict_false(pt->pt_proc != p))
    687 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    688 			pid, p);
    689 #endif
    690 	mutex_enter(&proclist_mutex);
    691 	/* save pid use count in slot */
    692 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    693 
    694 	if (pt->pt_pgrp == NULL) {
    695 		/* link last freed entry onto ours */
    696 		pid &= pid_tbl_mask;
    697 		pt = &pid_table[last_free_pt];
    698 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    699 		last_free_pt = pid;
    700 		pid_alloc_cnt--;
    701 	}
    702 	mutex_exit(&proclist_mutex);
    703 
    704 	nprocs--;
    705 }
    706 
    707 /*
    708  * Move p to a new or existing process group (and session)
    709  *
    710  * If we are creating a new pgrp, the pgid should equal
    711  * the calling process' pid.
    712  * If is only valid to enter a process group that is in the session
    713  * of the process.
    714  * Also mksess should only be set if we are creating a process group
    715  *
    716  * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
    717  * SYSV setpgrp support for hpux.
    718  */
    719 int
    720 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
    721 {
    722 	struct pgrp *new_pgrp, *pgrp;
    723 	struct session *sess;
    724 	struct proc *p;
    725 	int rval;
    726 	pid_t pg_id = NO_PGID;
    727 
    728 	if (mksess)
    729 		sess = pool_get(&session_pool, PR_WAITOK);
    730 	else
    731 		sess = NULL;
    732 
    733 	/* Allocate data areas we might need before doing any validity checks */
    734 	mutex_enter(&proclist_lock);		/* Because pid_table might change */
    735 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    736 		mutex_exit(&proclist_lock);
    737 		new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
    738 		mutex_enter(&proclist_lock);
    739 	} else
    740 		new_pgrp = NULL;
    741 	rval = EPERM;	/* most common error (to save typing) */
    742 
    743 	/* Check pgrp exists or can be created */
    744 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    745 	if (pgrp != NULL && pgrp->pg_id != pgid)
    746 		goto done;
    747 
    748 	/* Can only set another process under restricted circumstances. */
    749 	if (pid != curp->p_pid) {
    750 		/* must exist and be one of our children... */
    751 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    752 		    !inferior(p, curp)) {
    753 			rval = ESRCH;
    754 			goto done;
    755 		}
    756 		/* ... in the same session... */
    757 		if (sess != NULL || p->p_session != curp->p_session)
    758 			goto done;
    759 		/* ... existing pgid must be in same session ... */
    760 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    761 			goto done;
    762 		/* ... and not done an exec. */
    763 		if (p->p_flag & PK_EXEC) {
    764 			rval = EACCES;
    765 			goto done;
    766 		}
    767 	} else {
    768 		/* ... setsid() cannot re-enter a pgrp */
    769 		if (mksess && (curp->p_pgid == curp->p_pid ||
    770 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    771 			goto done;
    772 		p = curp;
    773 	}
    774 
    775 	/* Changing the process group/session of a session
    776 	   leader is definitely off limits. */
    777 	if (SESS_LEADER(p)) {
    778 		if (sess == NULL && p->p_pgrp == pgrp)
    779 			/* unless it's a definite noop */
    780 			rval = 0;
    781 		goto done;
    782 	}
    783 
    784 	/* Can only create a process group with id of process */
    785 	if (pgrp == NULL && pgid != pid)
    786 		goto done;
    787 
    788 	/* Can only create a session if creating pgrp */
    789 	if (sess != NULL && pgrp != NULL)
    790 		goto done;
    791 
    792 	/* Check we allocated memory for a pgrp... */
    793 	if (pgrp == NULL && new_pgrp == NULL)
    794 		goto done;
    795 
    796 	/* Don't attach to 'zombie' pgrp */
    797 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    798 		goto done;
    799 
    800 	/* Expect to succeed now */
    801 	rval = 0;
    802 
    803 	if (pgrp == p->p_pgrp)
    804 		/* nothing to do */
    805 		goto done;
    806 
    807 	/* Ok all setup, link up required structures */
    808 
    809 	if (pgrp == NULL) {
    810 		pgrp = new_pgrp;
    811 		new_pgrp = 0;
    812 		if (sess != NULL) {
    813 			sess->s_sid = p->p_pid;
    814 			sess->s_leader = p;
    815 			sess->s_count = 1;
    816 			sess->s_ttyvp = NULL;
    817 			sess->s_ttyp = NULL;
    818 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    819 			memcpy(sess->s_login, p->p_session->s_login,
    820 			    sizeof(sess->s_login));
    821 			p->p_lflag &= ~PL_CONTROLT;
    822 		} else {
    823 			sess = p->p_pgrp->pg_session;
    824 			SESSHOLD(sess);
    825 		}
    826 		pgrp->pg_session = sess;
    827 		sess = 0;
    828 
    829 		pgrp->pg_id = pgid;
    830 		LIST_INIT(&pgrp->pg_members);
    831 #ifdef DIAGNOSTIC
    832 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    833 			panic("enterpgrp: pgrp table slot in use");
    834 		if (__predict_false(mksess && p != curp))
    835 			panic("enterpgrp: mksession and p != curproc");
    836 #endif
    837 		mutex_enter(&proclist_mutex);
    838 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    839 		pgrp->pg_jobc = 0;
    840 	} else
    841 		mutex_enter(&proclist_mutex);
    842 
    843 #ifdef notyet
    844 	/*
    845 	 * If there's a controlling terminal for the current session, we
    846 	 * have to interlock with it.  See ttread().
    847 	 */
    848 	if (p->p_session->s_ttyvp != NULL) {
    849 		tp = p->p_session->s_ttyp;
    850 		mutex_enter(&tp->t_mutex);
    851 	} else
    852 		tp = NULL;
    853 #endif
    854 
    855 	/*
    856 	 * Adjust eligibility of affected pgrps to participate in job control.
    857 	 * Increment eligibility counts before decrementing, otherwise we
    858 	 * could reach 0 spuriously during the first call.
    859 	 */
    860 	fixjobc(p, pgrp, 1);
    861 	fixjobc(p, p->p_pgrp, 0);
    862 
    863 	/* Move process to requested group. */
    864 	LIST_REMOVE(p, p_pglist);
    865 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    866 		/* defer delete until we've dumped the lock */
    867 		pg_id = p->p_pgrp->pg_id;
    868 	p->p_pgrp = pgrp;
    869 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    870 	mutex_exit(&proclist_mutex);
    871 
    872 #ifdef notyet
    873 	/* Done with the swap; we can release the tty mutex. */
    874 	if (tp != NULL)
    875 		mutex_exit(&tp->t_mutex);
    876 #endif
    877 
    878     done:
    879 	if (pg_id != NO_PGID)
    880 		pg_delete(pg_id);
    881 	mutex_exit(&proclist_lock);
    882 	if (sess != NULL)
    883 		pool_put(&session_pool, sess);
    884 	if (new_pgrp != NULL)
    885 		pool_put(&pgrp_pool, new_pgrp);
    886 #ifdef DEBUG_PGRP
    887 	if (__predict_false(rval))
    888 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    889 			pid, pgid, mksess, curp->p_pid, rval);
    890 #endif
    891 	return rval;
    892 }
    893 
    894 /*
    895  * Remove a process from its process group.  Must be called with the
    896  * proclist_lock held.
    897  */
    898 void
    899 leavepgrp(struct proc *p)
    900 {
    901 	struct pgrp *pgrp;
    902 
    903 	KASSERT(mutex_owned(&proclist_lock));
    904 
    905 	/*
    906 	 * If there's a controlling terminal for the session, we have to
    907 	 * interlock with it.  See ttread().
    908 	 */
    909 	mutex_enter(&proclist_mutex);
    910 #ifdef notyet
    911 	if (p_>p_session->s_ttyvp != NULL) {
    912 		tp = p->p_session->s_ttyp;
    913 		mutex_enter(&tp->t_mutex);
    914 	} else
    915 		tp = NULL;
    916 #endif
    917 
    918 	pgrp = p->p_pgrp;
    919 	LIST_REMOVE(p, p_pglist);
    920 	p->p_pgrp = NULL;
    921 
    922 #ifdef notyet
    923 	if (tp != NULL)
    924 		mutex_exit(&tp->t_mutex);
    925 #endif
    926 	mutex_exit(&proclist_mutex);
    927 
    928 	if (LIST_EMPTY(&pgrp->pg_members))
    929 		pg_delete(pgrp->pg_id);
    930 }
    931 
    932 /*
    933  * Free a process group.  Must be called with the proclist_lock held.
    934  */
    935 static void
    936 pg_free(pid_t pg_id)
    937 {
    938 	struct pgrp *pgrp;
    939 	struct pid_table *pt;
    940 
    941 	KASSERT(mutex_owned(&proclist_lock));
    942 
    943 	pt = &pid_table[pg_id & pid_tbl_mask];
    944 	pgrp = pt->pt_pgrp;
    945 #ifdef DIAGNOSTIC
    946 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    947 	    || !LIST_EMPTY(&pgrp->pg_members)))
    948 		panic("pg_free: process group absent or has members");
    949 #endif
    950 	pt->pt_pgrp = 0;
    951 
    952 	if (!P_VALID(pt->pt_proc)) {
    953 		/* orphaned pgrp, put slot onto free list */
    954 #ifdef DIAGNOSTIC
    955 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    956 			panic("pg_free: process slot on free list");
    957 #endif
    958 		mutex_enter(&proclist_mutex);
    959 		pg_id &= pid_tbl_mask;
    960 		pt = &pid_table[last_free_pt];
    961 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    962 		mutex_exit(&proclist_mutex);
    963 		last_free_pt = pg_id;
    964 		pid_alloc_cnt--;
    965 	}
    966 	pool_put(&pgrp_pool, pgrp);
    967 }
    968 
    969 /*
    970  * Delete a process group.  Must be called with the proclist_lock held.
    971  */
    972 static void
    973 pg_delete(pid_t pg_id)
    974 {
    975 	struct pgrp *pgrp;
    976 	struct tty *ttyp;
    977 	struct session *ss;
    978 	int is_pgrp_leader;
    979 
    980 	KASSERT(mutex_owned(&proclist_lock));
    981 
    982 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    983 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    984 	    !LIST_EMPTY(&pgrp->pg_members))
    985 		return;
    986 
    987 	ss = pgrp->pg_session;
    988 
    989 	/* Remove reference (if any) from tty to this process group */
    990 	ttyp = ss->s_ttyp;
    991 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    992 		ttyp->t_pgrp = NULL;
    993 #ifdef DIAGNOSTIC
    994 		if (ttyp->t_session != ss)
    995 			panic("pg_delete: wrong session on terminal");
    996 #endif
    997 	}
    998 
    999 	/*
   1000 	 * The leading process group in a session is freed
   1001 	 * by sessdelete() if last reference.
   1002 	 */
   1003 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
   1004 	SESSRELE(ss);
   1005 
   1006 	if (is_pgrp_leader)
   1007 		return;
   1008 
   1009 	pg_free(pg_id);
   1010 }
   1011 
   1012 /*
   1013  * Delete session - called from SESSRELE when s_count becomes zero.
   1014  * Must be called with the proclist_lock held.
   1015  */
   1016 void
   1017 sessdelete(struct session *ss)
   1018 {
   1019 
   1020 	KASSERT(mutex_owned(&proclist_lock));
   1021 
   1022 	/*
   1023 	 * We keep the pgrp with the same id as the session in
   1024 	 * order to stop a process being given the same pid.
   1025 	 * Since the pgrp holds a reference to the session, it
   1026 	 * must be a 'zombie' pgrp by now.
   1027 	 */
   1028 	pg_free(ss->s_sid);
   1029 	pool_put(&session_pool, ss);
   1030 }
   1031 
   1032 /*
   1033  * Adjust pgrp jobc counters when specified process changes process group.
   1034  * We count the number of processes in each process group that "qualify"
   1035  * the group for terminal job control (those with a parent in a different
   1036  * process group of the same session).  If that count reaches zero, the
   1037  * process group becomes orphaned.  Check both the specified process'
   1038  * process group and that of its children.
   1039  * entering == 0 => p is leaving specified group.
   1040  * entering == 1 => p is entering specified group.
   1041  *
   1042  * Call with proclist_lock held.
   1043  */
   1044 void
   1045 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1046 {
   1047 	struct pgrp *hispgrp;
   1048 	struct session *mysession = pgrp->pg_session;
   1049 	struct proc *child;
   1050 
   1051 	KASSERT(mutex_owned(&proclist_lock));
   1052 	KASSERT(mutex_owned(&proclist_mutex));
   1053 
   1054 	/*
   1055 	 * Check p's parent to see whether p qualifies its own process
   1056 	 * group; if so, adjust count for p's process group.
   1057 	 */
   1058 	hispgrp = p->p_pptr->p_pgrp;
   1059 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1060 		if (entering) {
   1061 			mutex_enter(&p->p_smutex);
   1062 			p->p_sflag &= ~PS_ORPHANPG;
   1063 			mutex_exit(&p->p_smutex);
   1064 			pgrp->pg_jobc++;
   1065 		} else if (--pgrp->pg_jobc == 0)
   1066 			orphanpg(pgrp);
   1067 	}
   1068 
   1069 	/*
   1070 	 * Check this process' children to see whether they qualify
   1071 	 * their process groups; if so, adjust counts for children's
   1072 	 * process groups.
   1073 	 */
   1074 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1075 		hispgrp = child->p_pgrp;
   1076 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1077 		    !P_ZOMBIE(child)) {
   1078 			if (entering) {
   1079 				mutex_enter(&child->p_smutex);
   1080 				child->p_sflag &= ~PS_ORPHANPG;
   1081 				mutex_exit(&child->p_smutex);
   1082 				hispgrp->pg_jobc++;
   1083 			} else if (--hispgrp->pg_jobc == 0)
   1084 				orphanpg(hispgrp);
   1085 		}
   1086 	}
   1087 }
   1088 
   1089 /*
   1090  * A process group has become orphaned;
   1091  * if there are any stopped processes in the group,
   1092  * hang-up all process in that group.
   1093  *
   1094  * Call with proclist_lock held.
   1095  */
   1096 static void
   1097 orphanpg(struct pgrp *pg)
   1098 {
   1099 	struct proc *p;
   1100 	int doit;
   1101 
   1102 	KASSERT(mutex_owned(&proclist_lock));
   1103 	KASSERT(mutex_owned(&proclist_mutex));
   1104 
   1105 	doit = 0;
   1106 
   1107 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1108 		mutex_enter(&p->p_smutex);
   1109 		if (p->p_stat == SSTOP) {
   1110 			doit = 1;
   1111 			p->p_sflag |= PS_ORPHANPG;
   1112 		}
   1113 		mutex_exit(&p->p_smutex);
   1114 	}
   1115 
   1116 	if (doit) {
   1117 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1118 			psignal(p, SIGHUP);
   1119 			psignal(p, SIGCONT);
   1120 		}
   1121 	}
   1122 }
   1123 
   1124 #ifdef DDB
   1125 #include <ddb/db_output.h>
   1126 void pidtbl_dump(void);
   1127 void
   1128 pidtbl_dump(void)
   1129 {
   1130 	struct pid_table *pt;
   1131 	struct proc *p;
   1132 	struct pgrp *pgrp;
   1133 	int id;
   1134 
   1135 	db_printf("pid table %p size %x, next %x, last %x\n",
   1136 		pid_table, pid_tbl_mask+1,
   1137 		next_free_pt, last_free_pt);
   1138 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1139 		p = pt->pt_proc;
   1140 		if (!P_VALID(p) && !pt->pt_pgrp)
   1141 			continue;
   1142 		db_printf("  id %x: ", id);
   1143 		if (P_VALID(p))
   1144 			db_printf("proc %p id %d (0x%x) %s\n",
   1145 				p, p->p_pid, p->p_pid, p->p_comm);
   1146 		else
   1147 			db_printf("next %x use %x\n",
   1148 				P_NEXT(p) & pid_tbl_mask,
   1149 				P_NEXT(p) & ~pid_tbl_mask);
   1150 		if ((pgrp = pt->pt_pgrp)) {
   1151 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1152 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1153 			    pgrp->pg_session->s_count,
   1154 			    pgrp->pg_session->s_login);
   1155 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1156 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1157 			    pgrp->pg_members.lh_first);
   1158 			for (p = pgrp->pg_members.lh_first; p != 0;
   1159 			    p = p->p_pglist.le_next) {
   1160 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1161 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1162 			}
   1163 		}
   1164 	}
   1165 }
   1166 #endif /* DDB */
   1167 
   1168 #ifdef KSTACK_CHECK_MAGIC
   1169 #include <sys/user.h>
   1170 
   1171 #define	KSTACK_MAGIC	0xdeadbeaf
   1172 
   1173 /* XXX should be per process basis? */
   1174 int kstackleftmin = KSTACK_SIZE;
   1175 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1176 					  less than this */
   1177 
   1178 void
   1179 kstack_setup_magic(const struct lwp *l)
   1180 {
   1181 	uint32_t *ip;
   1182 	uint32_t const *end;
   1183 
   1184 	KASSERT(l != NULL);
   1185 	KASSERT(l != &lwp0);
   1186 
   1187 	/*
   1188 	 * fill all the stack with magic number
   1189 	 * so that later modification on it can be detected.
   1190 	 */
   1191 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1192 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1193 	for (; ip < end; ip++) {
   1194 		*ip = KSTACK_MAGIC;
   1195 	}
   1196 }
   1197 
   1198 void
   1199 kstack_check_magic(const struct lwp *l)
   1200 {
   1201 	uint32_t const *ip, *end;
   1202 	int stackleft;
   1203 
   1204 	KASSERT(l != NULL);
   1205 
   1206 	/* don't check proc0 */ /*XXX*/
   1207 	if (l == &lwp0)
   1208 		return;
   1209 
   1210 #ifdef __MACHINE_STACK_GROWS_UP
   1211 	/* stack grows upwards (eg. hppa) */
   1212 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1213 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1214 	for (ip--; ip >= end; ip--)
   1215 		if (*ip != KSTACK_MAGIC)
   1216 			break;
   1217 
   1218 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1219 #else /* __MACHINE_STACK_GROWS_UP */
   1220 	/* stack grows downwards (eg. i386) */
   1221 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1222 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1223 	for (; ip < end; ip++)
   1224 		if (*ip != KSTACK_MAGIC)
   1225 			break;
   1226 
   1227 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1228 #endif /* __MACHINE_STACK_GROWS_UP */
   1229 
   1230 	if (kstackleftmin > stackleft) {
   1231 		kstackleftmin = stackleft;
   1232 		if (stackleft < kstackleftthres)
   1233 			printf("warning: kernel stack left %d bytes"
   1234 			    "(pid %u:lid %u)\n", stackleft,
   1235 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1236 	}
   1237 
   1238 	if (stackleft <= 0) {
   1239 		panic("magic on the top of kernel stack changed for "
   1240 		    "pid %u, lid %u: maybe kernel stack overflow",
   1241 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1242 	}
   1243 }
   1244 #endif /* KSTACK_CHECK_MAGIC */
   1245 
   1246 /*
   1247  * XXXSMP this is bust, it grabs a read lock and then messes about
   1248  * with allproc.
   1249  */
   1250 int
   1251 proclist_foreach_call(struct proclist *list,
   1252     int (*callback)(struct proc *, void *arg), void *arg)
   1253 {
   1254 	struct proc marker;
   1255 	struct proc *p;
   1256 	struct lwp * const l = curlwp;
   1257 	int ret = 0;
   1258 
   1259 	marker.p_flag = PK_MARKER;
   1260 	uvm_lwp_hold(l);
   1261 	mutex_enter(&proclist_lock);
   1262 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1263 		if (p->p_flag & PK_MARKER) {
   1264 			p = LIST_NEXT(p, p_list);
   1265 			continue;
   1266 		}
   1267 		LIST_INSERT_AFTER(p, &marker, p_list);
   1268 		ret = (*callback)(p, arg);
   1269 		KASSERT(mutex_owned(&proclist_lock));
   1270 		p = LIST_NEXT(&marker, p_list);
   1271 		LIST_REMOVE(&marker, p_list);
   1272 	}
   1273 	mutex_exit(&proclist_lock);
   1274 	uvm_lwp_rele(l);
   1275 
   1276 	return ret;
   1277 }
   1278 
   1279 int
   1280 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1281 {
   1282 
   1283 	/* XXXCDC: how should locking work here? */
   1284 
   1285 	/* curproc exception is for coredump. */
   1286 
   1287 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1288 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1289 		return EFAULT;
   1290 	}
   1291 
   1292 	uvmspace_addref(p->p_vmspace);
   1293 	*vm = p->p_vmspace;
   1294 
   1295 	return 0;
   1296 }
   1297 
   1298 /*
   1299  * Acquire a write lock on the process credential.
   1300  */
   1301 void
   1302 proc_crmod_enter(void)
   1303 {
   1304 	struct lwp *l = curlwp;
   1305 	struct proc *p = l->l_proc;
   1306 	struct plimit *lim;
   1307 	kauth_cred_t oc;
   1308 	char *cn;
   1309 
   1310 	/* Reset what needs to be reset in plimit. */
   1311 	if (p->p_limit->pl_corename != defcorename) {
   1312 		lim_privatise(p, false);
   1313 		lim = p->p_limit;
   1314 		mutex_enter(&lim->pl_lock);
   1315 		cn = lim->pl_corename;
   1316 		lim->pl_corename = defcorename;
   1317 		mutex_exit(&lim->pl_lock);
   1318 		if (cn != defcorename)
   1319 			free(cn, M_TEMP);
   1320 	}
   1321 
   1322 	mutex_enter(&p->p_mutex);
   1323 
   1324 	/* Ensure the LWP cached credentials are up to date. */
   1325 	if ((oc = l->l_cred) != p->p_cred) {
   1326 		kauth_cred_hold(p->p_cred);
   1327 		l->l_cred = p->p_cred;
   1328 		kauth_cred_free(oc);
   1329 	}
   1330 
   1331 }
   1332 
   1333 /*
   1334  * Set in a new process credential, and drop the write lock.  The credential
   1335  * must have a reference already.  Optionally, free a no-longer required
   1336  * credential.  The scheduler also needs to inspect p_cred, so we also
   1337  * briefly acquire the sched state mutex.
   1338  */
   1339 void
   1340 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1341 {
   1342 	struct lwp *l = curlwp;
   1343 	struct proc *p = l->l_proc;
   1344 	kauth_cred_t oc;
   1345 
   1346 	/* Is there a new credential to set in? */
   1347 	if (scred != NULL) {
   1348 		mutex_enter(&p->p_smutex);
   1349 		p->p_cred = scred;
   1350 		mutex_exit(&p->p_smutex);
   1351 
   1352 		/* Ensure the LWP cached credentials are up to date. */
   1353 		if ((oc = l->l_cred) != scred) {
   1354 			kauth_cred_hold(scred);
   1355 			l->l_cred = scred;
   1356 		}
   1357 	} else
   1358 		oc = NULL;	/* XXXgcc */
   1359 
   1360 	if (sugid) {
   1361 		/*
   1362 		 * Mark process as having changed credentials, stops
   1363 		 * tracing etc.
   1364 		 */
   1365 		p->p_flag |= PK_SUGID;
   1366 	}
   1367 
   1368 	mutex_exit(&p->p_mutex);
   1369 
   1370 	/* If there is a credential to be released, free it now. */
   1371 	if (fcred != NULL) {
   1372 		KASSERT(scred != NULL);
   1373 		kauth_cred_free(fcred);
   1374 		if (oc != scred)
   1375 			kauth_cred_free(oc);
   1376 	}
   1377 }
   1378 
   1379 /*
   1380  * Acquire a reference on a process, to prevent it from exiting or execing.
   1381  */
   1382 int
   1383 proc_addref(struct proc *p)
   1384 {
   1385 
   1386 	KASSERT(mutex_owned(&p->p_mutex));
   1387 
   1388 	if (p->p_refcnt <= 0)
   1389 		return EAGAIN;
   1390 	p->p_refcnt++;
   1391 
   1392 	return 0;
   1393 }
   1394 
   1395 /*
   1396  * Release a reference on a process.
   1397  */
   1398 void
   1399 proc_delref(struct proc *p)
   1400 {
   1401 
   1402 	KASSERT(mutex_owned(&p->p_mutex));
   1403 
   1404 	if (p->p_refcnt < 0) {
   1405 		if (++p->p_refcnt == 0)
   1406 			cv_broadcast(&p->p_refcv);
   1407 	} else {
   1408 		p->p_refcnt--;
   1409 		KASSERT(p->p_refcnt != 0);
   1410 	}
   1411 }
   1412 
   1413 /*
   1414  * Wait for all references on the process to drain, and prevent new
   1415  * references from being acquired.
   1416  */
   1417 void
   1418 proc_drainrefs(struct proc *p)
   1419 {
   1420 
   1421 	KASSERT(mutex_owned(&p->p_mutex));
   1422 	KASSERT(p->p_refcnt >= 0);
   1423 
   1424 	/*
   1425 	 * The process itself holds the last reference.  Once it's released,
   1426 	 * no new references will be granted.  If we have already locked out
   1427 	 * new references (refcnt <= 0), potentially due to a failed exec,
   1428 	 * there is nothing more to do.
   1429 	 */
   1430 	if (p->p_refcnt == 0)
   1431 		return;
   1432 	p->p_refcnt = 1 - p->p_refcnt;
   1433 	while (p->p_refcnt != 0)
   1434 		cv_wait(&p->p_refcv, &p->p_mutex);
   1435 }
   1436 
   1437 /*
   1438  * proc_specific_key_create --
   1439  *	Create a key for subsystem proc-specific data.
   1440  */
   1441 int
   1442 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1443 {
   1444 
   1445 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1446 }
   1447 
   1448 /*
   1449  * proc_specific_key_delete --
   1450  *	Delete a key for subsystem proc-specific data.
   1451  */
   1452 void
   1453 proc_specific_key_delete(specificdata_key_t key)
   1454 {
   1455 
   1456 	specificdata_key_delete(proc_specificdata_domain, key);
   1457 }
   1458 
   1459 /*
   1460  * proc_initspecific --
   1461  *	Initialize a proc's specificdata container.
   1462  */
   1463 void
   1464 proc_initspecific(struct proc *p)
   1465 {
   1466 	int error;
   1467 
   1468 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1469 	KASSERT(error == 0);
   1470 }
   1471 
   1472 /*
   1473  * proc_finispecific --
   1474  *	Finalize a proc's specificdata container.
   1475  */
   1476 void
   1477 proc_finispecific(struct proc *p)
   1478 {
   1479 
   1480 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1481 }
   1482 
   1483 /*
   1484  * proc_getspecific --
   1485  *	Return proc-specific data corresponding to the specified key.
   1486  */
   1487 void *
   1488 proc_getspecific(struct proc *p, specificdata_key_t key)
   1489 {
   1490 
   1491 	return (specificdata_getspecific(proc_specificdata_domain,
   1492 					 &p->p_specdataref, key));
   1493 }
   1494 
   1495 /*
   1496  * proc_setspecific --
   1497  *	Set proc-specific data corresponding to the specified key.
   1498  */
   1499 void
   1500 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1501 {
   1502 
   1503 	specificdata_setspecific(proc_specificdata_domain,
   1504 				 &p->p_specdataref, key, data);
   1505 }
   1506